
Common Coupling as a Measure of
Reuse Effort in Kernel-Based

Software with Case Studies on the
Creation of MkLinux and Darwin

Liguo Yu

Department of Informatics
Computer and Information Sciences Department

Indiana University South Bend
South Bend, IN 46634, USA. Fax: 1-574-520-5589

E-mail: ligyu@iusb.edu

The initial version of this paper appers in the 19th International Conference on Software Engineering and Knowledge Engineering.

Abstract

An obstacle to software reuse is the large number
of major modifications that frequently have to be made
as a consequence of dependencies within the reused
software components. In this paper, common coupling is
categorized and used as a measure of the dependencies
between software components. We compared common
coupling in three operating systems, Linux, FreeBSD,
and Mach, and related it to the reuse effort of these
systems. The measure is evaluated by studying the
creation of two operating systems, MkLinux which is
based on the reuse of Linux and Mach, and Darwin
which is based on the reuse of FreeBSD and Mach. We
conclude that the way that common coupling is
implemented in Linux kernel induces large dependencies
between software components, which required more
effort in order to be reused to produce MkLinux, while
the common coupling implemented in the Mach and
FreeBSD kernels induces few dependencies between

software components, which required less effort in order
to be reused to produce Darwin.

Keywords: Reuse, common coupling, kernel-based software,
MkLinux, Darwin

1. INTRODUCTION
Software reuse has become a topic of interest within

the software community because of its potential
benefits. These include increased productivity and
quality, and decreased cost and time-to-market.
Obviously the biggest savings are to be found in large-
scale reuse, that is, the reuse of a large portion of an
existing software product. A considerable amount of
research has been undertaken in this area [1, 2, 3].

One problem with software reuse is that large
software components may be dependent on other
components. On the one hand, suppose that the
components of a software product are classes that
communicate exclusively by message passing. The

 Common Coupling as a Measure of Reuse Effort in Kernel-Based
Liguo Yu Software with Case Studies on the Creation of MkLinux and Darwin

46

dependency between the components is low, and it should
be possible to reuse one component in a new software
product with little difficulty. But if a software product
consists of components, all of which reference a large
number of global variables, it may be impossible to reuse
any one component in a new product without first totally
redesigning and reimplementing that component, thereby
all but defeating the purpose of reuse.

Many software products, including operating systems
and database management systems, are kernel-based.
That is, each implementation consists of required kernel
components, together with specific optional architecture-
specific or hardware-specific non-kernel components. The
word kernel is overloaded. It can refer to a nucleus that
can execute certain instructions [4, 5], or to a set of
modules that are included in every installation. In this
paper, we use “kernel” in the latter sense.

Coupling is a measure of the degree of interaction
between two software components. It reflects the
modifiability and the maintainability of a software
product [6]. There are many different categorizations of
coupling, all of which include common (global)
coupling (two software components are common
coupled if they reference the same global variable).
Certain types of coupling, especially common coupling,
are considered to present risks for software development
and, in particular, for maintenance [7]. Common
coupling can also be used to measure the dependencies
between software components [8]. To reuse a kernel
component in another software product, it is important
that the kernel component should have minimal
dependency on other components. Accordingly, it is
important that the kernel components have as little
common coupling as possible.

In a previous study, Yu et al. [8] defined a new
categorization of common coupling within kernel-based
software, and used it to measure the maintenance effort
of kernel-based software. In this paper, we extend the
categorization and use it to evaluate reuse effort in
kernel-based software. Reuse and maintenance are
different in many ways. For example, reuse is almost
always optional, and often just one component or a few
related components are reused. In contrast, maintenance
is usually required, especially corrective maintenance,
and maintenance has to be performed on a software
product as a whole (hence the need for regression
testing). On the other hand, reuse and maintenance have
at least one feature in common: Both are adversely
affected by common coupling.

MkLinux and Darwin are the outcomes of Apple
Computer’s endeavor to create new operating systems
based on the reuse of existing operating systems, in
which MkLinux is produced through the reuse of Linux

and Mach, and Darwin is produced through the reuse of
FreeBSD and Mach. However, MkLinux and Darwin
have different fates. MkLinux is active for only several
years (1996 to 2001) and the development is dormant
now. In contrast, Darwin is considered a successfully
project and has continually being developed and used
since 1998. In this paper, we use common coupling as a
measure to study the reuse effort in the creation of the
two operating systems.

The remainder of the paper is divided into six
sections. Section 2 discusses component dependencies
and reuse effort. In Section 3, we review the
categorization of common coupling and discuss its
relation to reuse effort. We introduce additional
terminology in Section 4. Section 5 describes MkLinux,
Darwin, and other open-source operating systems. Section
6 contains the results of our study of open-source
operating systems. The conclusions are in Section 7.

2. SOFTWARE DEPENDENCIES AND REUSE
EFFORT
Coupling is a measure of the degree of dependency

between two software components (classes, modules,
packages, or the like). A good software system should
have high cohesion within each component and weak
coupling between components. Coupling between
components strengthens the dependency of one
component on others and increases the probability that
changes in one component may affect other components.
There are several different coupling categorizations [6,
9], all of which include common coupling. Common
coupling is considered to be a strong form of coupling,
that is, it induces strong dependencies between software
components, making software components difficult to
understand, maintain, and reuse [7].

If a software component has strong dependencies (such
as common coupling) on other components, it requires
more effort to be adapted to a new environment. Common
coupling makes a software component difficult to reuse for
two reasons. First, suppose that we wish to reuse
component C0, and that C0 is common coupled to n
components C1, C2, … Cn. One alternative would be to
incorporate and reuse not just C0 but also components C1
through Cn as well. However, this would result in
unnecessary reuse and make the resulting product hard to
comprehend. A second alternative is to reuse component
C0 on its own, that is, without components C1 through Cn.
In order to do this, we would need to make major
modifications to C0. In fact, these modifications might well
be so drastic that it would be cheaper and quicker to design
and implement a new version of C0 from scratch, rather
than reuse the existing version. Therefore, it requires more
effort to reuse a component with strong coupling, like
common coupling.

 Common Coupling as a Measure of Reuse Effort in Kernel-Based
Liguo Yu Software with Case Studies on the Creation of MkLinux and Darwin

47

The kernel is the common part of a kernel-based
software product. It is the most frequently reused
component; reuse of kernel-based software usually
consists of reusing all or most of the kernel, together
with certain other non-kernel components. Therefore,
the effort involved in reusing the kernel reflects the
reuse effort of a kernel-based software product.
Common coupling within a kernel-based product may
increase the dependency of the kernel on non-kernel
components and, therefore, it would require more effort
to reuse the kernel or the software product as a whole.

3. COMMON COUPLING AND SOFTWARE
REUSE EFFORT

Common coupling induces dependencies between
software components. As described in [8], these
dependencies are induced by the definition-use
mechanism; we say component C1 is dependent on
component C2 via global variable gv if C1 uses gv and
C2 defines gv (that is, if C2 changes the value of gv and
C1 utilizes that value).

In previous study [8], global variables were categorized
in terms of five categories, as summarized in Table 1.

Table 1: Categorization of global variables in kernel-based
software [8]

Category
number Description

1
A global variable defined in one or morekernel
components but not used in any kernel
components.

2
A global variable defined in one kernel
component and used in one or more kernel
components.

3
A global variable defined in more than one
kernel component, and used in one or more
kernel components.

4
A global variable defined in one or more non-
kernel components and used in one or more
kernel components.

5
A global variable defined in one or more non-
kernel components and defined and used in one
or more kernel components.

This categorization of common coupling was introduced
within the context of kernel maintenance [8] and discussed the
impact of the existence of global variables in each category on
kernel maintenance. In this paper, the categorization of
common coupling is applied to software reuse effort.
Maintenance effort is not directly related to reuse effort, but
both are dependent on component dependencies. As described
in Section 2, strong dependencies affect not only software
maintenance but also software reuse. In the remainder of this
section, we discuss how our categorization of common
coupling can be used as a measure for reuse effort.

We consider two types of reuse. We refer to the
reuse of one or more independent kernel components as
kernel-component reuse and the reuse of all of the kernel
as entire-kernel reuse. When we wish to refer to either
kernel-component reuse or entire-kernel reuse, we use
the umbrella term kernel reuse.

Dependencies induced by common coupling affect
the reuse effort; in general, more effort is needed to
reuse a component with a large number of global
variables. However, reuse effort is also affected by the
category into which each global variable falls.

A category-1 global variable is not used in a
kernel component, so definitions of the global
variable in other components (kernel or non-kernel)
cannot affect kernel components. All kernel
components are independent with respect to this
global variable. Accordingly, the presence of a
category-1 global variable will not cause difficulties
for kernel reuse. Therefore, no kernel reuse effort is
associated with a category-1 global variable.

A category-2 or category-3 global variable is
defined in one or more kernel components but not in
any non-kernel component. It is used in kernel
components. A category-2 or category-3 global
variable therefore induces dependencies between
kernel components. A kernel component that defines
a category-2 or category-3 global variable can affect
the reuse effort of any kernel component that uses
that global variable. Turning to the reuse effort of the
entire kernel, this is not affected by the presence of a
category-2 or category-3 global variable because
there is no definition outside the kernel.

A kernel component that uses a category-4 or category-
5 global variable is dependent upon non-kernel components
that define that global variable. Thus, the presence of a
category-4 or category-5 global variable in a kernel
component negatively impacts both kernel-component
reuse as well as entire-kernel reuse. Hence, more effort for
kernel reuse is associated with category-4 and category-5
global variables than for categories 2 and 3.

Table 2 summarizes the impact of global variables in
different categories on kernel reuse effort.

Table 2: The Impact of global variables on kernel reuse effort in
kernel-based software

Category
number

Kernel-component
reuse effort

Entire-kernel reuse
effort

1 No impact No impact
2 Negative impact No impact
3 Negative impact No impact
4 Negative impact Negative impact
5 Negative impact Negative impact

 Common Coupling as a Measure of Reuse Effort in Kernel-Based
Liguo Yu Software with Case Studies on the Creation of MkLinux and Darwin

48

4. NEW TERMINOLOGY
As indicated in the previous section, reuse is

hampered by definitions in non-kernel components that
affect uses in kernel modules. In order to be able to
quantify this phenomenon, we introduce additional
terminology in this section.

Terminology 1: A definition of a global variable that
induces a dependency of a kernel component on another
component is called a component-dependency-inducing
definition.

Terminology 2: A global variable is kernel-on-non-
kernel-dependency-inducing if it induces a dependency
of a kernel component on a non-kernel component.

Terminology 3: A kernel component is use-
dependency-induced if it contains a use of a kernel-on-
non-kernel-dependency-inducing variable.

Terminology 4: A non-kernel component is
definition-dependency-inducing if it contains a
definition of a kernel-on-non-kernel-dependency-
inducing variable.

This terminology is discussed and utilized in Section 6.

5. MKLINUX, DARWIN, AND OTHER OPEN-
SOURCE OPERATING SYSTEMS

MkLinux is short for Microkernel Linux, which is one of
the outcomes of Apple Computer’s endeavor to adapt a
Unix-like kernel to create an operating system for Macintosh
computers [10]. This project was started in February 1996 by
integrating the Linux kernel with the Mach microkernel. In
the summer of 1998, MkLinux Developers Association took
over development of the system. However, the project
appears to be abandoned now, having not had a release since
2002. Some updates are occasionally produced, but no
further development [11].

Darwin is another outcome of Apple computer’s
endeavor to adapt a Unix-like operating system for
Macintosh computers [12]. In contrast to MkLinux,
Darwin was produced through the integration of
FreeBSD and Mach. The first version of Darwin
(version 0.1) was released on March, 1999. The latest
version (version 8.9) was released on March, 2007.
Darwin is considered a successful project. Until now it
is still actively developing new versions.

In the creation of MkLinux and Darwin, the existing
software components, Mach, Linux, and FreeBSD,
designed and implemented separately, were customized
and reused. However, none of Linux, FreeBSD, or Mach
consists of ready-to-use building blocks. Modifications
had to be made and effort had to be spent on each of
those components in order to incorporate them into the
new product [13].

In this study, we wished to understand the effort
involved in modifying the different pieces that were
reused to produce MkLinux and Darwin. Accordingly,
we studied the three major pieces from which MkLinux
and Darwin was built: version 3.0 of Mach, version
2.1.129 of Linux, and version 5.1 of Linux, from which
Mach 3.0 and Linux 2.1.129 were used to create
MkLinux 1.1 and Mach 3.0 and FreeBSD 5.1 were used
to create Darwin 7.0 [14].

More precisely, we studied common coupling of the
following open-source operating systems: Mach 3.0,
FreeBSD 5.1, Linux 2.1.129 in order to understand the
effort to reusing these systems. To examine the results
of using common coupling to measure reuse effort, we
compared the source code of Linux 2.1.129, Mach 3.0,
and FreeBSD 5.1 with MkLinux 1.1 and Darwin 7.0.

All these operating system are written in C or C++.
In this paper, a component is defined to be a source code
file (“.c” file, “.cpp”, or “.h” file). The size of the
product is measured in thousands of lines of code
(KLOC). Data regarding the number of components and
the number of lines of code of these systems are
provided in Table 3. All these operating systems are
kernel-based [15]. The column headed Kernel
components in Table 3 shows the number of components
in the kernel, and the number of lines of code in the
kernel components is shown in the column headed
Kernel KLOC. The column headed Non-kernel
components shows the number of components in the
non-kernel and the total number lines of code (both
kernel and non-kernel) is shown in column headed Total
KLOC. It should be noted that both MkLinux and
Darwin are dual kernel systems, in which MkLinux
contains Linux kernel and osfmk (Mach) kernel while
Darwin contains BSD kernel and osfmk (Mach) kernel.
This will be further illustrated in Section 6. It should be
noted that in Table 3, the kernel components are
determined according to their component names (kernel,
for example) within the source code three.

6. THE EFFORT TO REUSING LINUX, MACH,
AND FREEBSD

In the previous sections, we analyzed the relation
between common coupling and software reuse effort,
showing that common coupling can be used as a
measure of software reuse effort. In the following
subsections, we apply this measure to the three open-
source operating systems and hence determine the reuse
effort.

6.1. COMMON COUPLING IN GENERAL
We analyzed common coupling in the Mach,

FreeBSD, and Linux operating systems. Global
variables appearing in kernel components were

 Common Coupling as a Measure of Reuse Effort in Kernel-Based
Liguo Yu Software with Case Studies on the Creation of MkLinux and Darwin

49

identified by the Linux cross-referencing tool, lxr. Every
instance of a global variable was determined to be either
a definition or a use of that variable. An overview of
our results is summarized in Table 4. As shown in the
Table, there are 77 distinct global variables in the Mach
kernel. Altogether, there are 332 instances of global
variables in Mach kernel components. However, if
multiple instances of a given global variable in a
component are considered as one, there are 147 unique
instances of a global variable in Mach kernel
components. The other entries are similar. It worth
noting that Linux has many more instances of global
variables in kernel and non-kernel components than
Mach and FreeBSD.

In general, global variables induce dependencies
between software components and make the components
difficult to reuse. However, as outlined in Section 3, the
different categories of global variables have different
effects on the reuse effort. To understand how global
variables in the open-source operating systems affect the
kernel reuse effort, each global variable was assigned to
one of the five categories. Detailed results are shown in
Tables 5 through 7 for Mach, Linux, and FreeBSD,
respectively.

In the next two subsections, we discuss how
dependencies within a kernel component and the kernel
as a whole affect the reuse effort.

Table 3: The kernel and non-kernel structure of the five open-source operating systems

 Kernel
components

Non-kernel
components

Kernel KLOC Total KLOC

Mach 3.0* 71 892 30.576 365.502
Linux 2.1.129* 20 3,597 9.829 1,512.314
FreeBSD 5.1* 131 3,157 108.475 1,821.619
MkLinux 1.1** 135 4,647 67.718 1,855.384
Darwin 7.0** 196 1,658 110.482 744.528

*single kernel system; **dual kernel system

Table 4: Global variables in open-source operating systems

Operating
system

Total number
of global
variables

Number of
unique

instances of a
global variable

in kernel
components

Number of
unique instances

of a global
variable in non-

kernel
components

Total number of
instances of

global variables
in kernel

components

Total number of
instances of

global variables
in non-kernel
components

Mach 77 147 99 332 228
Linux 76 137 2,027 759 6,964

FreeBSD 75 166 338 483 770

Table 5: Definitions and uses of global variables in Mach

Category Number Kernel components Non-kernel components
number of global

variables
Number of

unique
instances of

a global
variable

Number of
instances of
definitions

Number
of

instances
of uses

Number of
unique

instances of
a global
variable

Number of
instances of
definitions

Number of
instances of

uses

1 20 20 20 – 20 19 23
2 22 47 36 105 25 – 54
3 22 51 52 69 1 – 1
4 6 6 – 9 17 27 44
5 7 23 12 29 36 13 47

Overall 77 147 120 212 99 59 169

 Common Coupling as a Measure of Reuse Effort in Kernel-Based
Liguo Yu Software with Case Studies on the Creation of MkLinux and Darwin

50

Table 6: Definitions and uses of global variables in Linux

Category Number Kernel components Non-kernel components
number of global

variables
Number of

unique
instances of

a global
variable

Number of
instances of
definitions

Number
of

instances
of uses

Number of
unique

instances of
a global
variable

Number of
instances of
definitions

Number of
instances of

uses

1 17 19 19 – 157 0 209
2 21 51 15 156 749 – 1,467
3 4 8 17 13 65 – 280
4 18 21 – 42 43 27 109
5 16 38 137 360 1,013 1,080 3,792

Overall 76 137 188 571 2,027 1,107 5,857

Table 7: Definitions and uses of global variables in FreeBSD

Category Number Kernel components Non-kernel components
number of global

variables
Number of

unique
instances of

a global
variable

Number of
instances of
definitions

Number
of

instances
of uses

Number of
unique

instances of
a global
variable

Number of
instances of
definitions

Number of
instances of

uses

1 22 23 53 – 73 0 87
2 35 104 74 251 172 – 504
3 8 18 23 28 36 – 70
4 4 8 – 25 24 22 21
5 6 13 6 23 33 24 42

Overall 75 166 156 327 338 46 724

6.2. DEPENDENCY OF A KERNEL COMPONENT
In order to analyze dependencies within the kernel

and between kernel components and non-kernel
components, we need to examine definitions and uses of
global variables in more detail.

As stated in Section 4, a definition of a global
variable that induces a dependency of a kernel
component on another component is called a
component-dependency-inducing definition. A reusable
component should be dependent on as few other
components as possible. A global variable in category 2,
3, 4, or 5 is used in a kernel component and defined in
another component. Therefore, a definition of a
category-2, -3, -4, or -5 global variable induces the
dependency of a kernel component on another
component, either in the kernel or the non-kernel. More
specifically, a definition of a category-2, -3, or -5 global
variable in a kernel component or a category-4 or -5
global variable in a non-kernel component is a
component-dependency-inducing definition (see Section
4). Table 8 lists the number of component-dependency-
inducing definitions in the operating systems we

consider here. The entries in the columns headed
“Number of component-dependency-inducing
definitions per kernel component” and “Number of
component-dependency-inducing definitions per kernel
KLOC” were calculated by dividing the entries in
column 4 by those in columns 2 and 3, respectively.

The entries in Table 8 may be interpreted as follows:
Suppose we wish to reuse a kernel component K of
Mach. On average, we will then have to modify 1.97
definitions of global variables in other components that
induce dependencies in K and thereby affect its reuse.
Similarly, if we wish to reuse 1,000 lines of Mach kernel
code, on average we will need to need to modify 4.58
definitions of global variables in other components that
induce dependencies and thereby affect the reuse of this
code. In contrast, if we wish to reuse a Linux kernel
component, on average we will need to modify 63.8
definitions of global variable in other components; to
reuse 1,000 lines of Linux kernel code, on average we
will need to modify 129.82 definitions of global
variables in other components.

 Common Coupling as a Measure of Reuse Effort in Kernel-Based
Liguo Yu Software with Case Studies on the Creation of MkLinux and Darwin

51

From Table 8, we can see that Mach and FreeBSD
have a relatively small number of component-
dependency-inducing definitions per kernel component
and per kernel KLOC. This shows that, on average, a
kernel component K in Mach and FreeBSD has few
dependencies on other components, which makes K
comparatively easy to reuse. The relatively independent
property of a kernel component in Mach and FreeBSD
means less effort is needed to perform kernel component
reuse, while the relative dependent property of Linux
means more effort is needed to perform kernel
component reuse.

6.3. DEPENDENCIES OF THE KERNEL AS A WHOLE
In this paper, we are more concerned with entire-

kernel reuse than kernel-component reuse. As we
mentioned before, in most cases, successful reuse of
kernel-based software depends on the reuse effort of the
entire kernel. As stated in Section 4, a global variable is

kernel-on-non-kernel-dependency-inducing if it induces
a dependency of a kernel component on a non-kernel
component.

As mentioned before, a category-4 or category-5
global variable is the most undesirable. According to
terminology 2, such a global variable is kernel-on-non-
kernel-dependency-inducing, because it has a definition
in a non-kernel component and a use in a kernel
component. That is, the definition of a category-4 or -5
global variable induces a dependency of a kernel
component on a non-kernel component; these
dependencies adversely affect the entire-kernel reuse
effort. Table 9 enumerates the kernel-on-non-kernel-
dependency-inducing global variables in the open-
source operating systems we consider here.

Table 8: Dependencies of a kernel component
Operatin
g system

Number of
kernel

components

Kernel
size

(KLOC)

Number of
component-

dependency-inducing
definitions

Number of component-
dependency-inducing
definitions per kernel

component

Number of component-
dependency-inducing
definitions per kernel

KLOC
Mach 71 30.576 140 1.97 4.58
Linux 20 9.829 1,276 63.80 129.82

FreeBSD 131 108.475 149 1.14 1.37

Table 9: Kernel-on-non-kernel-dependency-inducing global variables
Operating Number Kernel components Non-kernel components

system of global
variables

Number of unique
instances of uses

Number of
instances of uses

Number of unique
instances of
definitions

Number of
instances of
definitions

Mach 13 22 38 22 40
Linux 34 57 402 421 1,107

FreeBSD 10 18 48 42 46

Table 10: Dependencies of kernel components on non-kernel components induced by
kernel-on-non-kernel-dependency-inducing variables

Operating Kernel Non-kernel
System Number of

components
Number of use-

dependency-induced
kernel components

Number
of instances of

uses

Number of definition-
dependency-inducing

non-kernel
components

Number of
instances of
definitions

Mach 71 12 38 19 40
Linux 20 16 402 395 1,107

FreeBSD 131 14 48 25 46

Considering entire-kernel reuse, there are 13 global
variables that make Mach kernel components dependent
on non-kernel components. These 13 global variables

are used 38 times in kernel components. If multiple
instances of uses of the same global variable in the same
component are ignored, there are 22 unique instances of

 Common Coupling as a Measure of Reuse Effort in Kernel-Based
Liguo Yu Software with Case Studies on the Creation of MkLinux and Darwin

52

uses in kernel components. Also, these 13 global
variables are defined 40 times in non-kernel
components. If multiple instances of definitions of the
same global variable in the same component are ignored,
there are 22 unique instances of definitions in non-
kernel components. The other entries in Table 9 are
similar.

An implication of Table 9 is that, if we wish to reuse
the entire Mach kernel, we either need to modify the 38
uses of kernel-on-non-kernel-dependency-inducing
variables in kernel components to remove the
dependencies, or we also need to incorporate 40
definitions in non-kernel components (or some
combination of the two alternatives). Combining Table 9
with Table 4, we see that, although there are 332
instances of global variables in the Mach kernel, only 38
of them induce dependencies of a kernel component on a
non-kernel component. Furthermore, of the 228
instances of global variables in non-kernel components,
only 40 of them make it difficult to reuse the entire
kernel. A similar result is found for FreeBSD, but not
Linux, which contains more kernel uses and non-kernel
definitions of kernel-on-non-kernel-dependency-
inducing global variables.

Now we determine how many kernel components
have to be changed, or how many non-kernel
components have to be reused if we want to reuse the
entire kernel.

Dependencies between components caused by global
variables are induced by the definition–use relationship.
As stated in Section 4, a kernel component is use-
dependency-induced if it contains a use of a kernel-on-
non-kernel-dependency-inducing variable, and a non-
kernel component is definition-dependency-inducing if it
contains a definition of a kernel-on-non-kernel-
dependency-inducing variable. Use-dependency-induced
kernel components use the value of a kernel-on-non-
kernel-dependency-inducing variable; definition-
dependency-inducing non-kernel components define the
value of a kernel-on-non-kernel-dependency-inducing
variable, which means that a use-dependency-induced
kernel component is dependent on at least one
definition-dependency-inducing non-kernel component.
A kernel is difficult to reuse if it has too many use-
dependency-induced kernel components and if there are
too many definition-dependency-inducing non-kernel
components.

Table 10 shows the number of use-dependency-
induced kernel components and definition-dependency-
inducing non-kernel components in the operating
systems we consider here. Multiple occurrences of the
same component are counted as one. For example, if
kernel component K contains multiple uses of kernel-on-

non-kernel-dependency-inducing global variables gv1
and gv2, it is nevertheless counted as only one use-
dependency-induced kernel component, because
modifications will have to be made to kernel component
K irrespective of the number of uses of kernel-on-non-
kernel-dependency-inducing global variables. Similarly,
if non-kernel component NK contains multiple
definitions of kernel-on-non-kernel-dependency-
inducing global variables gv3 and gv4, it is likewise
counted as only one definition-dependency-inducing
non-kernel component.

Using Mach as an example to explain the entries of
Table 10, there are 71 kernel components in Mach, 12 of
which are use-dependency-induced kernel components.
There are 19 definition-dependency-inducing non-kernel
components. This means that 12 kernel components
have dependencies on 19 non-kernel components via
common coupling. More precisely, 12 kernel
components use at least one kernel-on-non-kernel-
dependency-inducing variable in a total of 38 instances,
which depend on 19 non-kernel components that define
a kernel-on-non-kernel-dependency-inducing variable in
a total of 40 instances.

Now, suppose that all 71 Mach kernel components
are to be reused. Two extreme approaches could be
taken. First, we could modify the 12 use-dependency-
induced kernel components in 38 places to remove the
dependencies of kernel components on non-kernel
components. Second, we could reuse the 19 definition-
dependency-inducing non-kernel components together
with the kernel. Clearly, any combination of these two
extreme approaches could also be adopted. Turning
now to reusing the FreeBSD kernel, we could similarly
modify the 14 use-dependency-induced kernel
components in 48 places, reuse the 25 definition-
dependency-inducing non-kernel components together
with the kernel, or adopt some combination of the two
extreme approaches.

Recapitulating, suppose we wish to reuse the entire
Mach kernel, from Table 4, it appears that we would
have to modify 332 instances of global variables in
kernel modules. By considering only those instances that
induce dependencies of a kernel component on a non-
kernel component, we see from Table 9 that only 38 of
the 332 instances would have to be changed. Finally, by
considering use-dependency-induced kernel
components, we see from Table 10 that the number of
kernel components that would have to be changed is 12.
Alternatively, 19 definition-dependency-inducing non-
kernel components would have to be reused together
with the entire kernel. This shows that the Mach kernel
and the FreeBSD kernel are relatively independent as a
whole, which means less effort is needed to perform
entire-kernel reuse.

 Common Coupling as a Measure of Reuse Effort in Kernel-Based
Liguo Yu Software with Case Studies on the Creation of MkLinux and Darwin

53

In contrasting, it is hard to find a good strategy for
reusing the 20 Linux kernel components. On one hand,
if we modify the 16 use-dependency-induced kernel
components in 402 places, we may completely change
the functionality of the kernel. On the other hand,
reusing the 395 definition-dependency-inducing non-
kernel components together with the kernel would result
in widespread unnecessary and redundant reuse.
Furthermore, a kernel is generally difficult to reuse if it
references a kernel-on-non-kernel-dependency-inducing
variable gv and there are many definitions of gv in non-
kernel components and many uses in kernel
components. Linux has more instances of uses of kernel-
on-non-kernel-dependency-inducing variables in kernel
components and instances of definitions in non-kernel
components than Mach or the three BSDs, which means
that the Linux kernel is strongly dependent on non-
kernel components.

Software reuse depends on a large number of
disparate factors [16]. One factor is the effort spent on
customizing and reusing these components. The reuse
effort of a kernel-based software product depends on the
reuse effort of its kernel and this, in turn, depends on the
definitions and uses of global variables within the kernel
and non-kernel components. From the viewpoint of
dependencies, reusing both the Mach and FreeBSD
kernels is relatively effortless, irrespective of the precise
reuse mechanism followed, while reusing Linux kernel
will consume more effort.

6.4. THE CREATION OF MKLINUX AND DARWINOLE
As described in Section 5, MkLinux and Darwin

were created by reusing Linux, FreeBSD, and Mach.
Both MkLinux and Darwin are dual-kernel systems.
Their structures are shown in Figure 1. In MkLinux, the
Linux part is reused from Linux operating system, the
Osfmk part is reused from Mach; in Darwin, the Bsd
part is reused from FreeBSD, and the Osfmk part is
reused from Mach.

(a)

(b)

Figure 1. The structure of (a) MkLinux; and (b) Darwin.

In order to evaluate our measures of using common
coupling to represent reuse effort, we compared the
source code of (1) MkLinux 1.1 with Linux 2.1.129 and
Mach 3.0, from which MkLinux 1.1 is produced; (2)
Darwin 7.0 with FreeBSD 5.1 and Mach 3.0, from
which Darwin 7.0 is produced. The comparison is
performed using a Perl program that integrates the
source code diff function. Table 11 lists the number of
components of Linux, Mach, and FreeBSD that were
reused (might with modifications) in the creation of
MkLinux and Darwin. Table 12 lists the number of new
components added to MkLinux and Darwin. These new
components could be added to kernel or non-kernel. The
other components parts in Figure 1 are considered as
non-kernel.

Table 11: The number of components reused from Linux, FreeBSD,
and Mach

Kernel Non-kernel Target
system

Reused
from Original Reused Original Reused

Linux 20 17 3,597 1,582
MkLinux

Mach 71 64 892 395

FreeBSD 131 48 3,157 223
Darwin

Mach 71 59 892 189

Table 12: The number of components in MkLinux and Darwin

 Kernel Non-kernel

Target
system Reused New Reused New

Total

MkLinux 81 54 1,977 2,670 4,782

Darwin 107 89 412 1,246 1,854

 Common Coupling as a Measure of Reuse Effort in Kernel-Based
Liguo Yu Software with Case Studies on the Creation of MkLinux and Darwin

54

The effort to producing new systems by reusing
existing components can be roughly divided into two
parts, (a) the effort of reusing (including identifying
and modifying) existing components, and (b) the
effort of creating new components. Assume the effort
to identifying components is minor comparing with
the effort to modifying the component. We use the
number of lines of code modified on original
components to represent the effort of reusing existing
components. Table 13 shows the effort of reusing
existing components in the creation of MkLinux and
Darwin (The size of the reused component refers to
the size of the modified component, not the original
component). The effort is represented with the total
number of lines of code modified on (including added
to, deleted from, and changed on) the original
components. It shows that about 445.655k and
269.346k lines of code need to be modified on
reusing the existing components in the creation of
MkLinux and Darwin respectively.

Table 13: The effort of reusing existing components in the
construction of MkLinux and Darwin

Target
system

Reused
from

Number of
reused

components

Size of
reused

Components
(KLOC)

Total
Lines

modified
(KLOC)

Linux 1,599 741.959 332.668
MkLinux

Mach 459 249.268 112.987

FreeBSD 271 179.948 178.093
Darwin

Mach 248 123.442 91.253

The effort of creating new components can be
represented by the number of new components
created and the size of the new components. Table 14
lists the new components created in the construction
of MkLinux and FreeBSD. It can be seen that more
new components and more new lines of code are
created in the construction of MkLinux than in the
construction of Darwin.

Table 14: The effort of creating new components in the construction of
MkLinux and Darwin

Target system Number of new
components

Size of new
components

(KLOC)
MkLinux 2,724 938.132

Darwin 1,335 441.703

From Table 13 and Table 14, we can see that more
efforts are spent in modifying reused components and
in creating new components in the construction of

MkLinux than in the construction of Darwin. In
particular, we found that in the construction of
MkLinux, about 446k lines of code needs to be
modified to reuse Linux and Mach components, and
about 938k new lines of code needs to be created to
add new components; in contrast, in the construction
of Darwin, about 269k lines of code need to be
modified to reuse FreeBSD and Mach components
and about 442k lines of code need to be created to
add new components. These observations indirectly
support our argument of using common coupling as
the measure of reuse effort and the subsequent
conclusions—more effort is needed to reuse Linux
kernel than FreeBSD and Mach Kernel due to kernel
dependency induced by common coupling.

7. CONCLUSIONS
In this paper, we have utilized our categorization of

common coupling based on definitions and uses of
global variables to analyze the reuse effort for a software
component. Common coupling in different categories
has different effects on the reuse effort in kernel-based
software. Our results show that common coupling within
the Mach kernel and the FreeBSD kernel is well
designed, inducing only a few dependencies of kernel
components on non-kernel components. As a result,
relatively less effort is required for entire-kernel reuse of
these two operating systems. While common coupling
within Linux kernel induces large amount of
dependencies, which makes it difficult. The discussions
were evaluated by analyzing the effort in the creation of
MkLinux and Darwin.

REFERENCE
[1] D. E. Perry, H. P. Siy, H. P. and L. G. Votta.

Parallel changes in large-scale software
development: an observational case study. ACM
Transactions on Software Engineering and
Methodology, 10(3): 308–337, 2001.

[2] K. J. Sullivan and J. C. Knight. Experience
assessing an architectural approach to large-scale
systematic reuse. In Proceedings of the Eighteenth
International Conference on Software Engineering
(ICSE-18), Berlin, pp. 220–229, 1996.

[3] W. B. Frakes and S. Isoda. Success factors of
systematic reuse. IEEE Software, 11(5): 14–19, 1994.

[4] P. B. Hansen. The nucleus of a multiprogramming
system. Communications of the ACM, 4(4): 238–
241, 1970.

[5] T. Härden. New approaches to object processing
in engineering databases. In Proceedings of
International Workshop on Object-Oriented
Database Systems, pp. 217, 1986.

 Common Coupling as a Measure of Reuse Effort in Kernel-Based
Liguo Yu Software with Case Studies on the Creation of MkLinux and Darwin

55

[6] W. P. Stevens, G. J. Myers and L. L. Constantine.
Structured design. IBM Systems Journals, 13(2):
115–139, 1974.

[7] S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller and
J. Offutt. Quality impacts of clandestine common
coupling. Software Quality Journal, 11(3): 211–
218, 2003.

[8] L. Yu, S. R. Schach, K. Chen and J. Offutt.
Categorization of common coupling and its
application to the maintainability of the Linux
kernel. IEEE Transactions on Software
Engineering, 30(10): 694–706, 2004

[9] J. Offutt, M. J. Harrold and P. Kolte. A software
metric system for module coupling. Journal of
System and Software, 20(3): 295–308, 1993.

[10] MkLinux.org. http://www.mklinux.org/, 2007

[11] MkLinux News.
http://www.mklinux.org/info/index.html, 2007

[12] Apple Computer. Mac OS X hits stores this
weekend.
http://www.apple.com/pr/library/2001/mar/21osxs
tore.html, 2001

[13] J. West. How open is open enough? Modeling
proprietary and open source platform strategies.
Research Policy, 32(7): 1259–1285, 2003.

[14] Kernelthread. What is Mac OS X.
http://www.kernelthread.com/mac/osx/arch_xnu.ht
ml, 2005.

[15] L. Yu, S. R. Schach, K. Chen, G. Z. Heller and J.
Offutt. Maintainability of the kernels of open-
source operating systems: A comparison of Linux
to FreeBSD, NetBSD, and OpenBSD. Journal of
Systems and Software, 79(6): 807–815, 2006

[16] G. Caldiera and V. R. Basili. Identifying and
qualifying reusable software components. IEEE
Computer, 24(2): 61–70, 1991.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

