
Automatically Composing
Reusable Software Components

for Mobile Devices

Jules White and Douglas C. Schmidt1, Egon Wuchner and Andrey Nechypurenko2

1 Department of Electrical Engineering and Computer Science
Vanderbilt University

Box 1829, Station B – Nashville – TN – USA – ZC: 37235
Phone: +1 (615) - 343 7440 (FAX)

jules@dre.vanderbilt.edu, schmidt@dre.vanderbilt.edu

2 Siemens AG, Corporate Research SE2
Otto-Hahn-Ring 6 – Munich – Germany – ZC: 81730

Phone: +49 (89) - 636 45450 (FAX)
egon.wuchner@siemens.com, andrey.nechypurenko@siemens.com

Abstract

Product-line architectures (PLAs) are an effective
mechanism for facilitating the reuse of software
components on different mobile devices. Mobile
applications are typically delivered to devices using
over-the-air provisioning services that allow a mobile
phone to download and install software over a cellular
network connection. Current techniques for automating
product-line variant selection do not address the unique
requirements (such as the need to consider resource
constraints) of dynamically selecting a variant for over-
the-air provisioning.

This paper presents the following contributions
to product-line variant selection for mobile devices: (1)
it describes how a constraint solver can be used to
dynamically select a product-line variant while adhering
to resource constraints, (2) it presents architectures for
automatically discovering device capabilities and
mapping them to product-line feature models, (3) it
includes results from experiments and field tests with an
automated variant selector, and (4) it describes PLA
design rules that can be used to increase the
performance of automated constraint-based variant
selection. Our empirical results show that fast au-
tomated variant selection from a feature model is
possible if certain product-line design guidelines are
followed.

Keywords: Feature Modeling, Product-lines, Constraint
Satisfaction, Software Reuse.

1. INTRODUCTION
A recent trend in mobile devices that makes

pervasive computing more realistic is the proliferation of
services that allow mobile devices to download software
on-demand across a mobile network. Services that allow
software to be downloaded over cellular networks are
called Over The Air Provisioning (OTAP) services [19,
29, 3, 4]. For example, mobile phones can now access
web-based applications, such as Google mail, or
download custom applications from services, such as
Verizon’s “Get It Now.” Nokia estimated that in 2003
the 2.2 billion mobile phone subscribers downloaded
10,000,000 Java 2 Micro Edition (J2ME) games per
month [32]. In 2007, there are now over 3.3 billion [38]
subscribers and significantly more downloads.

Despite the advances in middleware and deployment
technologies, however, there are still significant
variabilities between devices in terms of hardware
resources (such as CPU power, RAM, and display size),
middleware versions (such as Java Virtual Machine
versions), hardware capabilities (such as Bluetooth
support), and service provider restrictions (such as
required use of provider-specific APIs). Developing

Jules White, Douglas C. Schmidt, Automatically composing reusable software
Egon Wuchner and Andrey Nechypurenko components for mobile devices

 26

software that can handle all of these diverse restrictions
and be deployed on a large number of heterogeneous
devices is hard [5]. In some cases, due to large differ-
ences in non-functional device properties like display
size, separate variants of the same Java application must
be developed for each device despite the presence of a
virtual machine [2].

Product-line architectures (PLAs) [12] are a promis-
ing approach to help developers reduce the high cost of
mobile application development by facilitating software
reuse [6, 42, 31]. A product-line architecture (PLA) [12]
leverages a set of reusable software components that can
be composed in different configurations (variants) for
different requirement sets. Constructing a product-line
variant consists of finding a way of reusing and
composing the product-line’s components to create a
functional application. The design of a PLA is typically
guided by scope, commonality, and variability (SCV)
analysis [15]. SCV captures key characteristics of
software product-lines, including their (1) scope, which
defines the domains and context of the PLA, (2)
commonalities, which describe the attributes that recur
across all members of the family of products, and (3)
variabilities, which describe the attributes unique to the
different members of the family of products.

A product-line documents the rules that a
developer must follow when assembling existing
reusable software components into an application for
a new mobile device. It is hard to manually retarget
mobile applications using product-line components,
however, due to the large number of mobile devices,
limited device capabilities, complex product-line
constraints, and the rapid development rate of new
devices. Moreover, in a pervasive environment,
software reuse must happen on-demand. When a
device enters a particular context, such as a retail
store, the provisioning server must very quickly
deduce and create a variant for the device, regardless
of whether or not the device type and its capabilities
have been previously encountered.

Current automated software reuse techniques, such
as those presented in [8, 25, 30, 33, 36], do not
sufficiently address various challenges of designing and
implementing an automated approach to selecting a
product variant for a mobile device. One common
capability lacking in each approach is the ability to
consider resource consumption constraints, such as the
total available memory consumed by the features
selected for the variant must be less than 64 kilobytes.
Another missing detail of these automatic reuse
approaches is the architecture for how an autonomous
variant selection mechanism can be the integrated into
an over-the-air provisioning server.

To address these gaps in online mobile software variant
selection engines, we have developed a tool called Scatter
that first captures the requirements of a PLA and the
resources of a mobile device and then quickly constructs a
custom variant from a PLA for the device. This paper
presents the architecture and functionality of Scatter and
provides the following contributions to research on
software reuse for mobile devices:

�� We show how Scatter enables and disables
features/components in product-line models
based on the sets of device capabilities it receives
from the provisioning server

�� We describe the automated variant selection engine,
based on a Constraint Logic Programming Finite
Domain (CLP(FD)) solver [21, 37], that can
dynamically derive a valid configuration of reusable
software components suitable for a target device’s
capabilities and resource constraints

�� We present data from experiments that show how
PLA constraints impact variant selection time for
a constraint-based variant selection engine

�� We describe PLA design rules gleaned from our
experiments that help to improve variant
selection time when using a constraint-based
software reuse approach.

This paper builds on our previous work on software
reuse that involved automatically deriving product-variants
for mobile devices with a constraint solver [40]. In particu-
lar, this paper enhances previous work by describing the
design and functionality of a Scatter-integrated server for
performing over-the-air provisioning of mobile devices.
We also offer new empirical results obtained from field
testing the Scatter-integrated provisioning server with both
real and emulated mobile devices. The new results show
that despite the apparent complexity of product-line
composition rules and non-functional requirements, a
constraint solver can be used to derive a product variant
quickly enough to support over-the-air provisioning.

The remainder of this paper is organized as follows:
Section 2 presents the train food services application that
we use as an example product-line throughout the paper;
Section 3 describes the challenges of dynamically
composing reusable software components for different
mobile devices and the unresolved problems of using
current techniques; Section 4 presents architectures for
integrating an automated variant selection mechanism into
an over-the-air provisioning server; Section 5 shows how
Scatter automatically transforms PLA requirements and
mobile device resources into a model that can be operated

Jules White, Douglas C. Schmidt, Automatically composing reusable software
Egon Wuchner and Andrey Nechypurenko components for mobile devices

 27

on by the CLP(FD) based variant selector; Section 6
analyzes the results of field tests and simulations of using
Scatter for over-the-air provisioning; Section 7 summarizes
product-line design rules that we have learned from our
results that improve the speed at which a product variant
can be selected; Section 8 compares our work on Scatter
with related research; and Section 9 presents lessons
learned and concluding remarks.

Figure 1: Feature Model for Train Services Applications

Figure 2: Food Services Menu Feature Model

Figure 3: Food Services UI Feature Model

Figure 4: Food Services Order submission Feature Model

Figure 5: Food Services Delivery Options Feature Model

Figure 6: Customer Locator Application Feature Model

Figure 7: Target Device Feature Model

Figure 8: Java Optional Libraries Feature Model

Figure 9: Java Virtual Machine Feature Model

2. MOTIVATING EXAMPLE
To motivate the need for—and capabilities of—

Scatter, we use an application throughout this paper that
allows train passengers to order food from their mobile
phones. This application is downloaded by passengers to
their phones upon entering a train. The application
allows passengers to choose menu items from either a
first class or second class menu (depending on the
traveler’s ticket class).

The food services product-line has been described
using feature models. Feature modeling [7, 16]
characterizes and application based on function and non-
functional variabilities. The feature models are designed
to show the composition rules for the variable
application components and how device capabilities
affect what application components can be deployed.

The food services application is implemented using a
variety of components, such as the Open Device
Monitoring and Tracking Protocol (OpenDMTP) Java
MIDlet1. This application can be reconfigured for
devices that support different Java JVM Mobile
Information Device Profile (MIDP) versions, JVM
configurations (e.g. CDC 1.0, CLDC 1.0, and CLDC
1.1), and optional Java APIs (e.g. JSR 135 Mobile
Media API, JSR 229 Payment API, etc.). Figures 1
through 6 show feature models capturing the SCV of the
food service application. Figures 7 through 9, show the
key points of variability in the target devices that deter-
mine which food services application components are
chosen when selecting a variant for a mobile device. For
example, if the TextAndImagesUI feature from the

Jules White, Douglas C. Schmidt, Automatically composing reusable software
Egon Wuchner and Andrey Nechypurenko components for mobile devices

 28

feature model in Figure 3 is chosen, the target device
must have the JSR 135 Mobile Media API feature
(Figure 8) enabled.

Figure 10: Alternate Variant Selection Based on Cabin Class

Context data also determines which application compo-
nents can be delivered to a device, as seen in Figure 10.
Second class passengers can pre-order food from a second
class menu from their mobile devices but must go to the
restaurant car of the train to pickup the food. First class
passengers, however, order from a more extensive first
class menu and can have the food delivered to either their
seat or directly to their current location on the train. The
food services application uses the OpenDMTP Java client
implementation to report the location of a first class
passenger with a Global Positioning System (GPS) capable
phone. If a first class passenger does not have a phone with
a connected GPS device, an application variant is delivered
to the device that replaces the OpenDMTP tracking MIDlet
with a form for the user to enter their current seat number.
There are certainly numerous technical challenges to accu-
rately predicting a passenger’s location via GPS on a train,
but this paper focuses on the software variability aspects of
including such a capability if it was developed.

Finally, non-functional characteristics of the device
dictate certain key features of the selected variant. The
food services application can be delivered with either
high resolution images of the entrees (requires 64
kilobytes of storage space), low resolution images (12
kilobytes), or no entree images (0 kilobytes). The
available memory and storage space on the device
determines which of these image sets is appropriate.
The OpenDMTP client is the largest of the other
application components and requires approximately 2
kilobytes of storage space. The remaining application

components consume another 2 kilobytes. The total
combined resource consumption of all of the
application components must be considered when
choosing image sets.

For a phone with at least 66 kilobytes of remaining
storage space, a number of variants are possible. If the
owner of the device has a first class ticket and a GPS
capable phone, a variant with the OpenDMTP library
and low resolution images is suitable. If the user does
not have a first class ticket or a GPS capable phone, then
the high resolution images may fit. To choose an
appropriate variant, therefore, the variant selection must
account for the tradeoffs in resource consumption of
different configurations.

3. CHALLENGES OF AUTOMATED VARIANT

SELECTION FOR MOBILE DEVICES
Applications for mobile devices must be carefully

matched to the capabilities of each individual device due
to resource constraints. Developers must therefore con-
sider both functional capabilities (such as the optional li-
braries installed on the device) and non-functional
capabilities (such as total memory) when reusing
software components. Due to the large and highly
differing array of device capabilities, however, it is
difficult to determine which software components can
function with each device’s unique limitations and how
an entire application can be assembled by reusing these
viable components. For example, reusing product-line
components for a mobile device involves:

1. Capturing the rules for composing the reusable
product-line components or features (the application
model)

2. Specifying what capabilities the target mobile
device must have to support each application component
or feature (the target infrastructure model)

3. Identifying the target mobile device and mapping
its capabilities onto the target infrastructure model by
enabling or disabling features in the model

4. Disabling application components that cannot be
supported by the functional and non-functional capabili-
ties of the device

5. Selecting and assembling a product variant from
the remaining enabled components and features that ad-
heres to the product-line’s composition rules and the
resource constraints of the device.

For example, with the food services application pre-
sented in Section 2, the rules for composing the
application’s components were first documented in the
feature models presented in Figures 1 through 6. Next,

Jules White, Douglas C. Schmidt, Automatically composing reusable software
Egon Wuchner and Andrey Nechypurenko components for mobile devices

 29

the important features of the target infrastructure that
govern which application components can be supported
by a device were documented in Figures 7 through 9.

The dependencies between the application
components and target device capabilities were specified
with feature references [17]. Any feature can exclude,
require, or apply a cardinality constraint to the selection
of another feature through a feature reference. The
reference is specified as a constraint on another named
feature that is not a direct child of the feature declaring
the constraint.

For example, the SMS_Msg component (Figure 4)
for submitting orders contains a reference to the target
infrastructure feature JSR 120 Wireless Messaging
(Figure 8). This reference indicates that the JSR 120
Wireless Messaging feature must be enabled on the
target device if the SMS_Msg component will be
deployed to it.

To find a way of reusing existing software
components to assemble a variant of the food services
application for a Blackberry Pearl 8100 mobile phone, a
developer would enable and disable the appropriate
features in the target device feature model (Figures 7
through 9). The CDC feature of the JVM Configuration
and the GPS features would be disabled while the CLDC
1.1 feature would be enabled (the Blackberry 8100
supports MIDP 2.0, CLDC 1.1, and no GPS). Since the
Blackberry 8100 does not support GPS in its stock
configuration, this would preclude deploying the
OpenDMTP feature to the phone and thus it would be
disabled. Finally, an appropriate set of features, would
be selected from the remaining points of variability (e.g.,
TextUI or TextAndImagesUI, SMS_Msg order
submission or HTTPS_Post, etc.).

Traditional processes of reusing software
components involve developers manually evaluating a
mobile device and determining the software
components that must be in an application variant, the
components to configure, and how to compose and
deploy the components. In addition to being
infeasible in a pervasive environment (where the
target device signatures are not known ahead of time
and variant selection must be done on demand), such
manual approaches are tedious and error-prone, and
are thus a significant source of system downtime [18].
Manual reuse approaches also do not scale well and
become impractical with the large solution spaces
typical of PLAs.

1. There is no clear architecture for automatically
discovering and mapping device capabilities to
product-line models. Numerous tools and approaches
have been developed [9, 10, 7] to capture the rules for

composing a product variant. For example,
Pure::variants [9] is a commercial tool that provides
feature modeling capabilities, allows developers to
specify features and feature constraints, and derives
required unconfigured features for a partially configured
variant. All these tools, however, are designed for a
priori product variant selection and assume that a human
modeler enables/disables features and uses the tool to
derive any required additional features. To select a
variant for a mobile device, therefore, developers must
manually enable/disable model features to reflect the
capabilities of a target device.

Figure 11: Selecting a Food Services Variant for a Blackberry 8100
Mobile Phone

An over-the-air provisioning request begins by a
mobile device sending a request to a provisioning
server that includes a unique identifier for the device
type, as seen in Figure 11. From this unique
identifier, the provisioning server must be able to find
the capabilities associated with the device and
automatically map these capabilities into the model of
the target infrastructure. Existing tools do not address
how a human is removed from the modeling loop and
a single device identifier is mapped into a complex
set of infrastructure model capabilities. In Section 4,
we present three different architectures that can be
used to automatically discover device capabilities and
map them to product-line models.

2. There is no documented architecture for
handling incomplete context information and
unknown device types. Many research efforts [30, 8,
26] have produced models for transforming a feature
model or other SCV capturing mechanism into a formal

Jules White, Douglas C. Schmidt, Automatically composing reusable software
Egon Wuchner and Andrey Nechypurenko components for mobile devices

 30

model that can be reasoned with automatically. For
example, [8] presents a method for transforming feature
models into Constraint Satisfaction Problems (CSPs). A
solver, such as a Constraint Logic Programming (CLP)
solver, can then be used to automatically derive product
variants for a set of device capabilities.

The key assumption with these techniques is that
values for all relevant device capabilities are known.
Although devices may share common communication
protocols and resource description schemas, a variant
selection service will not know all device signatures
at design time. In many cases, information, such as
the exact set of optional libraries installed on a device
or ticket class of the owner may not be able to be
determined based on the unique device identifier
associated with the provisioning request. In other
situations, a provisioning server may encounter a
newly released device with completely unknown
capabilities.

To address the more dynamic information needs of
PLAs for mobile applications, therefore, either a strategy
for selecting a variant with incomplete information or an
automated method for obtaining missing capability
information is needed. Current research does not address
this open problem. Section 4 presents our on-demand
probing approach that allows a provisioning server to
help guarantee it has complete device information when
selecting a variant.

3. There is no method for incorporating resource
constraints in variant selection. Although multiple
models and tools are available [30, 8, 26, 9, 10, 7] for
deriving ways of reusing and assembling components
for a set of device capabilities, none of these techniques
or tools address how resource constraints are considered
in the selection process. For mobile devices, resource
constraints are a major concern and must be considered
carefully. Without a mechanism for adhering to resource
constraints, no reliable component selection automation
can be performed. For example, deploying a set of
components that requires more JVM stack capacity than
is available on the target device will result in a non-
functioning variant.

Different configurations of reusable components
may have different costs associated with them. There
may be many valid variants that can be deployed and the
selector must possess the ability to choose the best
configuration based on a cost formula. For example, if
the variant selected is deployed to a device across a
GPRS connection that is billed for the total data
transferred, it is crucial that this cost/benefit tradeoff be
analyzed when determining which variant to deploy. If
one variant minimizes the amount of data transferred
over thousands or hundreds of thousands of devices

deployments, it can provide significant cost savings. In
Section 5, we describe a modified constraint-based
variant selection approach that can take resource
constraints into account.

4. It is unclear if automated variant selection can
be performed fast enough to support on-demand
software reuse. Determining which components to
reuse and how to assemble them must happen rapidly.
For instance, in the train example from Section 2 a
variant selection engine may have tens of minutes or
hours before the device exits (although the traveler may
become irritated if variant selection takes this long). In a
retail store, conversely, if customers cannot get a variant
of a sales application quickly, they may become
frustrated and leave. To provide a truly seamless
pervasive environment, automated variant selection
must happen rapidly. When combined with the
challenge of not knowing device signatures a priori and
the need for optimization, achieving quick selection
times is even harder.

Many methods and tools [8, 9, 10] for automating
variant selection are used for design-time selection of
variants. It is still unclear, however, whether the current
approaches and tools provide sufficient performance to
support dynamic software reuse for over-the-air mobile
software provisioning. Design-time selection with a
human involves processing a single request at a time. An
over-the-air provisioning server could potentially
receive hundreds, thousands, or more simultaneous
requests. Empirical evaluation is needed to determine if
current automation techniques are sufficiently fast in
practice. Section 6 presents the results from field and
performance tests we performed using automated and
constraint-based variant selection.

5. There are no documented design rules for
facilitating variant selection automation. Although
the tools and related papers cited above cover the
basics of building a product-line, they do not
systematically capture best design practices to
facilitate automation. Many constraint solvers and
theorem proving algorithms—particularly ones that
incorporate resource constraints—have exponential
worst case performance. For developers of product-
lines that will leverage an automated variant selector,
therefore, it is important to have guidelines for
designing a product-line’s composition rules to avoid
these worst case scenarios and improve automated
selection speed. Few—if any—of these types of rules
have yet been documented for product-lines. Section
7, describes product-line design rules we derived
from our empirical results to help improve the speed
at which a variant can be automatically derived using
a constraint-based approach.

Jules White, Douglas C. Schmidt, Automatically composing reusable software
Egon Wuchner and Andrey Nechypurenko components for mobile devices

 31

4. AN ARCHITECTURE FOR OVER-THE-AIR

PROVISIONING FROM A PRODUCT-LINE
In previous work [40], we developed Scatter, which

is a graphical modeling tool for capturing the SCV of a
product-line, compiling the product-line rules into a
constraint satisfaction problem (CSP), and using a
constraint solver to derive a valid product variant for a
mobile device. This initial research began to address
challenges 4 and 5 from Section 3, which involved
showing that constraint-based approaches to variant
selection provide good performance and deriving PLA
design rules to facilitate automation. We found that
model-driven development could be used to transform a
high-level specification of a product-line, such as a
feature model, into a constraint satisfaction problem. We
also found that a constraint solver could be given a CSP
and a set of device capabilities and derive an optimal
variant in a reasonable time-frame.

Our initial results, however, also showed that care
was needed when designing a product-line to achieve
good constraint solving performance. Depending on the
constraints governing the product-line, solving
performance for a 50 feature model varied from a low of
�1 second to a high of over 30 seconds. We found that
several widely applicable rules, such as grouping
components into sets based on limitations in packaging
variability, could help ensure best-case solving
performance.

4.1. OBTAINING THE DEVICE INFORMATION REQUIRED TO

MAKE REUSE DECISIONS
The first step in determining how to fulfill a

provisioning request using existing software components
is to characterize the unique capabilities of the
requesting mobile device. After these capabilities are
known, compatible components can be selected and
reused in a product variant. Below, we present three
different architectures for dynamically discovering
device capabilities and mapping them to product-line
models. These architectures can be used to help address
Challenge 1 of Section 3, which is that no clear
architectures have been developed for integrating an
automated variant selector and an over-the-air
provisioning server.

Over-the-air provisioning is typically initiated by a
mobile user dialing a specified mobile number or
sending an HTTP request to a provisioning server. In
most scenarios, the provisioning request includes an
identifier that the server uses to determine the type of
device issuing the provisioning request and the
requesting device’s capabilities. The capabilities of the
device are used to help determine what components are

compatible with the device and should be used to
assemble a variant to fulfill the request. The high-level
architecture for issuing a provisioning request and de-
riving a variant for a mobile device with Scatter is
shown in Figure 12.

Once a mobile device has initiated a provisioning re-
quest, the device’s functional properties (such as op-
tional Java libraries that are installed) and non-
functional properties (such as JVMConfiguration,
Memory, and CabinClass2) must be obtained and
mapped to the target infrastructure model of the product-
line. In our experience, we found that device capabilities
can be returned as a set of name/value pairs.

Each reusable component can have an expression
associated with it based on these name/value pairs that
determines if it can be reused in a particular device. For
example, after a set of device capabilities is collected,
the JSR 135 feature (Figure 9) can be enabled or
disabled based on whether or not the JSR135 device
capability variable is equal to true. If the JSR 135
feature is disabled, the TextAndImagesUI component
will not be considered for reuse.

The values for these variables are typically
determined using either a push or pull architecture. With
a pull architecture the device sends its unique identifier
and the provisioning server queries either a device
description repository [41, 24] (a database of device
identifiers and their associated capabilities) or the device
itself for the capabilities of the device. A push model
may also be used where the mobile device sends its
device type information and capabilities to the server as
part of its provisioning request. For example, if a user is
presented with a set of HTML links to variants for a
Java MIDP 1.0/CLDC 1.0 phone or an MIDP 2.0/CLDC
1.1 phone, when the user clicks on a specific link, the
device is sending a request that is pushing the needed
device capability information.

We next describe the push and pull models in more
detail and show how neither is ideally suited for
obtaining the information required for deriving a
configuration of reusable software components for a
product variant. We then present an alternative
approach, called on-demand probing, that attempts to
address the limitations of the push and pull models.
Scatter uses this on-demand probing approach to gather
missing device capability information and ensure that all
needed capability values are known when reusable
components are selected and assembled for a device.

4.2. PULL MODELS FOR DISCOVERING DEVICE

CAPABILITIES
A pull model extracts device capabilities from a

device description repository and can provide detailed
information with regard to static device capabilities

Jules White, Douglas C. Schmidt, Automatically composing reusable software
Egon Wuchner and Andrey Nechypurenko components for mobile devices

 32

ranging from supported APIs to hardware specifications.
A mobile device may not be able to introspectively
determine all of the in formation available in a device
description repository nor may it be efficient to send this
large amount of data across a cellular network. Pull
models are also desirable since they place the burden of
the work on the server and decouple the device from the
capability discovery mechanism. Moreover, a pull
model does not require error-prone user-interaction.

Figure 12: Scatter Integration with a Discovery Service

Numerous open-source and commercial projects are
available that offer databases of device capabilities. With a
pull model, the provisioning server’s main task is to
identify the identifier for the type of device issuing the
request and then query the appropriate device description
repository for its capabilities. Although having a large
database of device capabilities may appear to make it
possible to build variants for devices ahead of time, a
device description repository only contains static capability
information and cannot leverage context (e.g. CabinClass)
or dynamic information (e.g. remaining storage space)
about a device.

A diagram of a request for a MIDP application
(MIDlet) product variant using the pull model is shown
in Figure 13. Initially, the device sends an HTTP request
to the provisioning server for the MIDlet and includes
the device’s User-Agent, an identifier of the requesting
device type or browser type, in the request headers. The
provisioning server uses the User-Agent name to query a
device description repository and identify the device’s
capabilities. Once the device’s unique signature is
known, Scatter is executed to determine the appropriate
product variant to fulfill the provisioning request.

The key disadvantage of pull models is that they
limit the information that can be used to guide variant
construction since they rely on pre-compiled device
information databases. New devices are released
frequently and thus a repository may not know the
capabilities of the latest products. Pre-compiled
databases also cannot use dynamic information, such as
CabinClass, specific to an individual user’s device. In
situations where not all required device information is
available, the variant selection process faces Challenge 2
of Section 3, which involves handling missing capability
information.

Figure 13: An HTTP Provisioning Request

4.3. PUSH MODELS FOR DISCOVERING DEVICE

CAPABILITIES
Push models offer an apparent solution to the

deficiencies of pull models. With a push model, the
mobile device encodes all required capabilities and
context information for deriving a product variant into
its provisioning request. This architecture avoids
Challenge 2 from 3 by ensuring that all needed device
information is submitted with the request. For example,
a device can issue an HTTP request with request
parameters for the device memory, JVM stack size,
display dimensions, JVM profiles/configurations, and a
list of available optional Java libraries.

A push model can also incorporate context-dependent
data. For example, a user can be presented with an HTML
form to capture the traveler’s ticket number. The form can
then be sent to the provisioning server via an HTTP POST
and the server can obtain the device user’s cabin-class, seat
assignment, name, and other reservation attributes before
invoking Scatter and deriving a variant. This form-based
architecture is shown in Figure 14.

The push model, however, has its own drawbacks.
First, the push model relies on the user to supply critical
information that is used to select a product variant. A
user can easily make mistakes (e.g. provide the wrong
CLDC version) and cause incorrect software variants to
be delivered to the device. Users may not know all of
the required platform information, such as JVM stack

Jules White, Douglas C. Schmidt, Automatically composing reusable software
Egon Wuchner and Andrey Nechypurenko components for mobile devices

 33

size, required by the provisioning server. The push
model also requires sending device capabilities, such as
CPU megahertz, across the network even though they do
not vary across a particular device model.

Figure 14: A Push Provisioning Request

4.4 ON-DEMAND PROBING: A HYBRID CAPABILITY

DISCOVERY MODEL
Integrating Scatter with a provisioning server created

the unique challenge that the device information
required to perform variant selection could vary
depending on the constraints of the product-line. For
example, for some products, a pull model is appropriate
since the product-line constraints only depend on device
capabilities that do not vary across a model. For other
product-lines, such as the train food service application,
context information, such as cabin-class, is needed,
motivating a push model.

The Scatter integration needed to support context
information that would not be available with a pull
model. Since selecting product variants using partial
information is not a well-understood area of
research, we decided our solution had to ensure that
all required device information was available.
Instead of opting for a push model and requiring
error-prone interaction with the user to obtain all
required capabilities, Scatter’s integration with
JVending uses a hybrid push/pull model, which we
call on-demand probing.

On-demand probing uses a device description
repository to obtain static capabilities. If a product-
line includes constraints on capabilities that are
unavailable from the repository, Scatter returns a
small MIDlet to the device. The MIDlet
programmatically probes the user’s device for the
missing capability information and may also prompt
the user for context information (e.g ticket number).
After obtaining the needed capabilities the probe
sends the information back to the server to obtain the
originally requested product variant. This on-demand
probing architecture is shown in Figure 15.

On-demand probing combines the best attributes of
both the push and pull models. When only static device
capabilities are needed by the product-line constraints,
on-demand probing obtains the required information
from a device description repository. When context or
other information that is unavailable in the repository is
needed, Scatter addresses Challenge 2 by reverting to a
push model. To help reduce user interaction and
improve the reliability of the capability information
received through a push, Scatter delivers a small
executable probe to the device to obtain missing ca-
pability information.

Figure 15: A Probe Provisioning Request

When a new device is encountered, a probe can pro-
grammatically determine display size, JVM
configuration/profile, and other information through Java
APIs. Typically, a probe is sent that uses API interfaces that
are constant across JVM versions and configurations, such
as querying the JVM for the “microedition.profiles”
property to determine the profiles supported by the JVM.
This capabilities information can be cached for future
encounters with the same device type. For context-specific
information, the same probe can prompt the user for
reservation numbers and other required attributes. The on-
demand probing approach minimizes human interaction
and can obtain dynamic context information for product
variant derivation.

5. SCATTER’S RESOURCE-AWARE VARIANT

SELECTION ENGINE
Finding a way to configure and reuse existing

software components on an arbitrary mobile device is
hard. The complex requirements and composition
constraints of the product-line must be used to derive
a component configuration that will function properly
on the limited resources of the device. Developers
may therefore need to consider a combination of
context, resource, software dependency, UI, and cost
constraints when selecting which components to reuse
and how to configure them.

Jules White, Douglas C. Schmidt, Automatically composing reusable software
Egon Wuchner and Andrey Nechypurenko components for mobile devices

 34

It is particularly important to respect resource
constraints when reusing software components on
different mobile devices. As discussed in Section 3,
current approaches do not account for resource
constraints when deriving a product variant. Likewise,
they also do not provide optimization mechanisms to
selectively reuse components that consume 9 less
bandwidth and hence incur smaller cellular air time
charges. To address this deficiency, this section
describes how we extended the CSP approach presented
in [8] to include both resource constraints and a simple
variant cost optimization.

Scatter provides an automated variant selector that
leverages Prolog’s inferencing engine and the Java
Choco CLP(FD) constraint solver [1]. The Scatter
solver uses a layered solving approach to reduce the
combinatorial complexity of satisfying the resource
constraints. Scatter prunes the solution space using
the PLA composition rules and the local non-
functional requirements so only variants that can run
on the target infrastructure are considered. The
resource constraints are a form of the knapsack
problem an NP-Hard problem [13]. Scatter’s layered
pruning helps improve selection speed and enables
more efficient solving. As shown in the Section 6,
this layered pruning can significantly improve variant
selection performance.

5.1. LAYERED SOLUTION SPACE PRUNING
Initially, the variant solution space may contain

many millions or more possible component or feature
compositions. Solving the resource constraints is thus
time consuming since it is a highly combinatorial
problem. To optimize this search, Scatter first prunes
the solution space by eliminating components that
cannot be reused on the device because their non-
functional requirements, such a JVMVersion or
CabinClass, are not met. After pruning away these
components, Scatter evaluates the PLA composition
rules to see if any components can no longer be
reused because one of their dependencies has been
pruned in the previous step. This layered pruning
process is shown in Figure 16

After pruning the solution space using the PLA
composition rules, Scatter considers resource
requirements. After solving the resource constraints,
Scatter is left with a drastically reduced number of
reusable component configurations to select from. At
this point, if there is more than one valid variant
remaining, Scatter uses a branch and bound algorithm
to iteratively try and optimize a developer-supplied
cost function by searching the remaining valid
solutions.

Figure 16: Layered Solution Space Pruning

The first two phases of Scatter’s solution space
pruning use a constraint solver based on Prolog
inferencing. A rule is specified that only allows a
component to be reused on a device, if for every local
non-functional requirement on the component, a
capability is present that satisfies the requirement. For
example, if a component requires a JVMVersion greater
than 1.2, the target device must contain a capability
named JVMVersion with a value greater that 1.2 or the
component is pruned from the solution space and not
considered.

The simple Prolog rules for performing this pruning
are listed below:

matchesResource(Req,Resources) :-
member(Res,Resources),
self_name(Req,RName),
self_name(Res,RName),
self_resourcetype(Req,Type),
self_value(Req,Rqv),
self_value(Res,Rsv),
comparevalue(Rsv,Rqv,Type).

canReuseOn(Componentid,Device) :-
self_type(Componentid,component),
self_type(Device,node),
self_requires(Componentid,
 Requirements),
self_dependencies(Componentid,
 Depends),
self_provides(Device,Resources),
forall(member(Req,Requirements),
matchesResource(Req,Resources)),

For each component, the rule ‘canReuseOn’ is
invoked to determine reuse feasibility. This rule also

Jules White, Douglas C. Schmidt, Automatically composing reusable software
Egon Wuchner and Andrey Nechypurenko components for mobile devices

 35

simultaneously tests the feasibility of reusing a
component based on its dependencies. The last
invocation in the rules checks to ensure that all of the
components that the current component depends on can
also be reused on the device. If any of the dependencies
cannot be reused, the component cannot be reused. The
rule also throws out components with a resource
requirement exceeding what is available on the device,
which helps to eliminate the size of the search space for
the resource solver.

5.2. USING CLP(FD) TO SOLVE RESOURCE CONSTRAINTS
After performing this initial pruning of the solution

space, the resource and PLA composition constraints are
turned into an input for a CLP(FD) solver. The
transformation is an extension of the model proposed in
[8] to include resource consumption constraints. The
model is also extended to allow for feature references.

A Constraint Satisfaction Problem (CSP) is a problem
that involves finding a labeling (a set of values) for a set of
variables that adheres to a set of labeling rules (constraints).
For example, given the constraint "X<Y" then X=3 and
Y=4 is a correct labeling of the values for X and Y. The
more variables and constraints that are involved in a CSP,
the more complex it typically is to find a correct labeling of
the variables.

Selecting a product variant can be reduced to a CSP.
Scatter constructs a set of variables DC0 ...DCn, with do-
main [0,1], to indicate whether or not the ith component
is present in a variant. A variant therefore becomes a
binary string where the ith position represents if the ith
component (or feature) is present. Satisfying the CSP for
variant selection is devising a labeling of DC0...DCn that
adheres to the composition rules of the feature model.

Resource consumption constraints are created by
ensuring that the sum of the resource demands of a binary
string representing a variant do not exceed any resource
bound on the device (e.g., �
variant_component_resource_demands <device_resources).
For each Component Ci that is deployable in the PLA, a
presence variable DCi, with domain [0,1] is created to
indicate whether or not the Component is present in the
chosen variant. For every resource type in the model, such as
CPU, the individual Component demands on that resource,
Ci(R), when multiplied by their presence variables and
summed cannot exceed the available amount of that
resource, Dvc(R), on the Device.

If the presence variable is assigned 0 (which
indicates the component is not in the variant) the
resource demand contributed by that component to the
sum falls to zero. The constraint �Ci(R) DCi
<Dvc(R)is created to enforce this rule. Components that

are not selected by the solver, therefore, will have DCi
=0 and will not add to the resource demands of the
variant.

The solver supports multiple types of composition rela-
tionships between Components. For each Component Cj that
Ci depends on, Scatter creates the constraint: Ci >0 Cj =1.
Scatter also supports a cardinality composition constraint that
allows at least Min and at most Max components from the
dependencies to be present. The cardinality operator creates
the constraint: Ci >0 Cj >Min,�Cj <Max. The standard
XOR dependencies are modeled as a special case of
cardinality where Min/Max =1.

The Scatter solver also supports component
exclusion. For each Component Cn that cannot be
present with Ci, the constraint Ci >0 Cn =0 is created.
The variables that can be referred to by the constraints
need not be direct children of a component or feature
and thus are references.

To support optimization, a variable Cost(V)is de-
fined using the user supplied cost function. For example,
Cost(V) =DC1 GPRSC1 +DC2 GPRSC2 +DC3

GPRSC3 ...DCn GPRSCn could be used to specify the
cost of a variant as the sum of the costs of transferring
each component to the target device using a GPRS
cellular data connection. This cost function would
attempt to minimize the size of the variant deployed
within the resource and PLA composition limits.

After the product-line rules have been translated into
CLP(FD) constraints, Scatter asks the CLP solver for a
labeling of the variables that maximizes or minimizes
the variable Cost(V). This approach allows Scatter’s
variant selector to choose components that not only
adhere to the compositional and resource constraints but
that maximize the value of the variant. Users therefore
supply fitness criteria for selecting the best variant from
the population of valid solutions.

6. SCATTER PERFORMANCE RESULTS
A key question discussed in Challenge 4 of Section 3 is

whether or not automated techniques for dynamically com-
posing and reusing software components are fast enough to
support over-the-air provisioning of mobile devices. To de-
termine the feasibility of timely on-demand software reuse
using a constraint solver, we devised the following series of
tests of the Scatter-integrated over-the-air provisioning server:

�� Synthetic experiments, which are simulated
product-line models and device configurations

Jules White, Douglas C. Schmidt, Automatically composing reusable software
Egon Wuchner and Andrey Nechypurenko components for mobile devices

 36

designed to test specific scenarios for variant
selection and product-line design hypotheses.

�� Field and stress tests, which use actual J2ME
application requirements, device identifiers,
device capabilities, and HTTP provisioning
requests to determine how fast variants can be
derived in a realistic provisioning scenario.

6.1. SYNTHETIC VARIANT SELECTION EXPERIMENTS
To test Scatter’s performance, we developed a series

of progressively larger PLA models to evaluate solution
time. The tests focused solely on the time taken by
Scatter to derive a solution and did not involve
deploying components. We also tested how various
properties of PLA composition and local non-functional
constraints affected the solution speed. Our tests were
performed on an IBM T43 laptop, with a 1.86ghz
Pentium M CPU and 1 gigabyte of memory.

Note that optimization and satisfaction of resource con-
straints is an NP-Hard problem, where it is always possible
to play the role of an adversary and craft a problem instance
that provides exponential performance [13]. Constraint sat-
isfaction and optimization algorithms often perform well in
practice, however, despite their theoretical worst-case
performance. One challenge when developing a PLA that
needs to support online variant selection is ensuring that the
PLA does not induce worst-case performance of the selector.
We therefore attempted to model realistic PLAs and to test
Scatter’s performance and better understand the effects of
PLA design decisions.

6.2. PURE RESOURCE CONSTRAINTS
We first tested the brute force speed of Scatter when

confronting PLAs with no local non-functional or PLA
composition requirements that could prune the solution
space. We created models with 18, 21, 26, 30, 40, and
50 components. Our models were built incrementally, so
each successively larger model contained all of the
components from the previous model. In each model, we
ensured that not all of the components could be
simultaneously supported by the device’s resources.

Product-lines for industrial or enterprise applications
often contain thousands of features. The significant
resource constraints on a mobile device make mobile
applications much smaller and consequently less
variable. Feature modeling, of course, relies on the level
of abstraction chosen by the developer and thus two
different developers can create feature models of wildly
different sizes for the same application. end-user mobile
applications, not OS or other infrastructure software, we
feel that 50 features is a realistic size for documenting
the variable parts of a mobile application.

Our device was initially allocated 100 units of CPU
and 16 megabytes of memory. Scatter’s performance
results on this model can be seen in Figure 17. This
figure shows a large jump for the time to select a variant
from 40 to 50 components, which indicates that solving
for a variant does not scale well if resource constraints
alone are considered.

Figure 17: Scatter Performance on Pure Resource Constraints

6.3. TESTING THE EFFECT OF LIMITED RESOURCES
We next investigated how the tightness of the

resource constraints affected solution time. We
incrementally increased the available CPU on the
modeled device from 100 to 2,500 units for the 50
component model. We chose the 50 component model
since it yielded the worst performance from Scatter. The
results can be seen in Figure 18. As shown in Figure 18,
expanding the CPU units from 100 to 500 units
dramatically decreased the time required to solve for a
variant. Moreover, after increasing the CPU units to
2,500, there was no increase in performance indicating
that the tightness of the CPU resource constraints were
no longer the limiting bottleneck.

Jules White, Douglas C. Schmidt, Automatically composing reusable software
Egon Wuchner and Andrey Nechypurenko components for mobile devices

 37

Figure 18: Scatter Performance as CPU Resources Expand

We then proceeded to increase the memory on the
device while keeping 2,500 units of CPU. The results
are shown in Figure 19. Doubling the memory
immediately halved the solution time. Doubling the
memory again to 128 megabytes provided little benefit
since the initial doubling to 64 megabytes deployed all
of the components possible. As we hypothesized
initially, the solution speed when pure resource
constraints are considered is highly dependent on the
tightness of the resource constraints.

Figure 19: Scatter Performance as Memory Resources Expand

6.4. TESTING THE EFFECT OF PLA COMPOSITION

CONSTRAINTS
Our next set of experiments evaluated how well the de-

pendency constraints within a PLA could filter the solution
space and reduce solution time. We modified our models so
that the components composed sets of applications that
should be deployed together. For example, our TrainTicke-
tReservationService was paired with the TrainScheduleSer-
vice and other complementary components.

As with the first experiment from Section 6.2, we
used our 50 component model as the initial baseline. We

first constructed a tree of dependencies that tied 10
components into an application set that led the root of
the tree, the train service, to only be deployed if all
children where deployed. Each level in the tree
depended on the deployment of the layer beneath it. The
max depth of the tree was 5. We continued to create new
dependencies between the components to produce trees
and see the effect. The results are shown in Figure 20.

As shown in Figure 20, adding dependencies
between components and creating a dependency tree
decreased selection time. This decrease occurs because
the tree reduces the number of possible combinations of
the components that must be considered for a variant.
Adding more dependencies to the model to add other
trees provided only a very small gain over the original
large performance increase.

Figure 20: Scatter Performance with PLA Dependency Trees

6.5. FIELD AND STRESS TESTING SCATTER
We conducted a series of field tests with real mobile

phones and a series of stress tests to determine how on-
demand variant selection would scale with Scatter. We
integrated Scatter with an open-source over-the-air
provisioning server called JVending. JVending delivers
mobile applications to devices via HTTP.

Our tests used a mix of real hardware and synthetically
created requests. The actual hardware used was a Black-
berry 8100, Motorola Razr V3, and Treo 650 mobile
phone. The stress tests were performed using Apache
JMeter to send high numbers of synthetic mobile phone
provisioning requests. JMeter is an application for stress
testing web applications by sending varying numbers,
types, and configurations of HTTP requests. We used
JMeter to simulate requests since it was infeasible to
manually produce large numbers and rates of requests
using real mobile phone hardware. The goals of these tests
was to (1) ensure that real hardware could be provisioned
correctly by Scatter and (2) determine the number of
provisioning requests per second that could be handled by

Jules White, Douglas C. Schmidt, Automatically composing reusable software
Egon Wuchner and Andrey Nechypurenko components for mobile devices

 38

Scatter.

The product-line used for testing was the train food
services application presented in Section 2. The
product-line’s feature models comprise a total of 56
features. For the field tests, we selected hardware for a
commodity x86 server. The testbed was a Windows XP
machine with a 2.6 gigahertz Intel Core DUO CPU, 3
gigabytes of DDR2 6400 RAM, a 10,000 rpm SATA
harddrive, and dual gigabit-ethernet network cards. The
JVending provisioning web-application was run in
Apache Tomcat 6.1.0 using a Java 1.5 JVM in server
mode. The Tomcat server and JVending application
were configured with all logging disabled. We used the
Wireless Universal Resource File version 2.1.0.1 and
its associated Java querying libraries to match static
device capabilities to device types using the UserAgent
header parameter included with requests. The WURFL
database contains information on roughly 400
capabilities for approximately 5,000 devices. We do
not include the WURFL querying time in our results
(although it was typically no more than 3-4ms).

Typical web servers may receive hundreds, thousands,
or more requests per second. Although we do not expect a
typical provisioning server to receive such high request
rates, constraint-solver based software reuse must still
provide relatively high performance. To test Scatter’s
variant selection throughput, we used JMeter to generate a
1,000 synthetic provisioning requests from 3 different
mobile phone types. The synthetic request formats were
derived by sending real HTTP provisioning requests from
the phones to the provisioning server and capturing the
included request headers. From the point of view of the
provisioning server, there was no difference between the
requests produced by JMeter and the actual device.

We measured the average variant selection time for
both each individual mobile phone type and overall for
all phone types. The results shown in Figure 21 present
the time required by Scatter to derive a first class food
services variant for each device. The times shown in
this figure do not include the time to send the requests
across a cellular network or download the selected
variant since these attributes of provisioning are
outside the scope of this paper.

As shown in Figure 21, Scatter averaged under ~120ms
for all device types. Scatter could reasonably support ap-
proximately 9 requests per second. One interesting obser-
vation from this data is that the selection times for our 56
feature train food service application models were signifi-
cantly faster than those of our 50 component model in the
synthetic experiments.

Figure 21: First Class Food Services Variant Selection Time Over
1,000 Provisioning Requests

When comparing the synthetic and train food service
feature models, we found that properly specified real
feature models tend to have large numbers of constraints
between features. Our synthetic feature models were
significantly less constrained (had a higher degree of
variability) than our food services application. Less
constrained models typically have far more
features/components that are not disabled by target device
characteristics and must be included in the resource
constraint solving. We expect that this result will apply to
other mobile applications since they are often carefully
matched for the features of the target device.

Figure 22: Second Class Food Services Variant Selection Time Over
1,000 Provisioning Requests

We repeated the same test with Scatter to select a
second class variant for each device. The results from
the second test are shown in Figure 22. There was little
difference in selection time for a second class versus a
first class variant. If Figures 21 and 22 are compared,
the average selection time differs by approximately
�2ms less per device for second class variants. We
attribute this difference to the slightly higher variability
of first class variants. First class variants can select
between two different customer locators whereas the
second class variants cannot.

Jules White, Douglas C. Schmidt, Automatically composing reusable software
Egon Wuchner and Andrey Nechypurenko components for mobile devices

 39

7. RESULTS ANALYSIS: MOBILE PLA DESIGN

STRATEGIES
Although Scatter achieved a throughput of �9

requests a second, Product-line designers still must be
careful when building a PLA for automated software
reuse and real world dynamic over-the-air provisioning.
Clustering, hardware, and constraint solver
improvements can increase variant selection throughput.
Product-line designers can also help increase
performance by designing their product-line models for
automated software reuse. Based on the results we
collected from the experiments, we devised a set of
mobile PLA design rules to help improve variant
selection performance and address Challenge 5 of
Section 3.

The first design strategy focuses on making it
easier to cache the results of variant selection and
apply them as widely as possible. The remaining
strategies are vantage points for observing a product-
line’s design and exploiting domain information to
constraint the solution space. Although resource
constraints and some other constraint types make
solving more difficult, simple feature modeling rules,
such as requires, subfeature, and excludes are easy to
solve and can help to significantly bound the size of
the potential solution space. The remainder of this
section presents the design rules we gleaned from our
results that can be used to improve solution caching
and bound the solution space size.

Maximize variant selection result caching. If a
product-line is designed carefully, a provisioning server can
cache the results of variant selection requests to greatly
improve the performance of provisioning. Scatter need only
be invoked when a variant must be found for a new
device/-context/capabilities signature. For example, two
identical Blackberry 8100 mobile phones in first class can
reuse the same application components in the same
configuration. The majority of requests will be for
previously encountered device/context combinations, so
previous component reuse decisions will still apply.

Context dependent decisions make caching harder.
Product-lines can limit the number of contexts that a
provisioning server is interested in. For example, the
train food services application is interested in
differentiating devices owned by first and second class
passengers. The Cabin-Class context effectively doubles
the number of device/-capability/context signatures that
the server must cache. The number of unique values for
CabinClass acts as a multiplier for the number of
configurations that the provisioning server may need to
cache. In this example, the provisioning server needs to
cache separate variant selection decisions for devices in

first class and second class cabins. Designers should
attempt to use as coarse-grained context information as
possible to limit this multiplier effect.

Limit the situations where resource constraints
must be considered. Resource constraints also can limit
what the server can cache and are the most time
consuming component of variant selection. For example,
if two identical Blackberry 8100 devices are
encountered in first class, one device having 72K of
remaining storage capacity and the other with 2mb of
remaining storage capacity, the selection results from
the first device will not be applicable to the second
device. Either Scatter must be reinvoked for each new
storage space value or a method is needed to identify
when differing storage values will still produce identical
results and thus can be cached.

One strategy is to broadly categorize devices based
on remaining storage capacity. For example, a feature
for storage capacity can be created with three
subfeatures for devices with more than 70K of
remaining storage capacity, devices with 14K to 70K,
and devices with less than 12K. Any device with 70K
can host any combination of the components and
features of the food services application, and thus
resource constraints do not need to be considered. For
devices with 12K to 70K, constraint solving is necessary
since multiple but not all configurations are valid.
Finally, with less than 12K, no menu images can be
deployed to the device but any combination of the
application components is possible.

The disadvantage of broadly categorizing device re-
sources in this manner is that it can lead to sub-optimal
feature selections. For example, the optimal feature
selection for a device with 15K and 69K may be very
different even though they would be categorized the
same and hence receive the same configuration. The
tradeoff for the less optimal feature selection is that the
solver only needs to be run once per unique device
configuration with the corresponding resource feature.

Filter out non-essential resource consumptive compo-
nents. Due to the increased cost of finding a variant for small
devices where resources are more limited, we developed
another design rule. To decrease the difficulty of finding a
deployment on small devices, PLA developers should
provide local non-functional constraints to immediately filter
out unessential resource consumptive components when the
resource requirements of the deployable components greatly
exceed the available resources on the device. Although the
cost function can be used to perform this tradeoff analysis
and filter these components during optimization, this method
is time consuming.

The solver can only filter out solutions ahead of time if

Jules White, Douglas C. Schmidt, Automatically composing reusable software
Egon Wuchner and Andrey Nechypurenko components for mobile devices

 40

a developer explicitly provides rules to do so. The more
rules that are provided, the better the solver typically per-
forms. Filtering some components out ahead of time may
lead to less optimal solutions but it can greatly improve so-
lution speed. Even by selecting only the least valued com-
ponents to exclude from consideration, performance can be
increased significantly.

Exploit non-functional requirements. Non-functional
requirements can be used to further increase the perfor-
mance of Scatter. Each component with an unmet non-
functional requirement is completely eliminated from con-
sideration. When PLA dependency trees are present, this
pruning can have a cascading effect that completely elimi-
nates large numbers of components. One PLA construction
rule based on non-functional requirements that was particu-
larly powerful and natural to implement in Scatter exploited
the relative lack of variation in packaging of a PLA variant.
The solver relies on the developer to provide the non-
functional constraints used for pruning. If developers do not
provide these constraints, the solver is much less efficient.

Prune using low-granularity requirements. The
requirements with the lowest granularity filter the largest
numbers of variants. For example, when deploying vari-
ants, especially from a PLA with high configuration-
based variability, such as varying input parameters, the
disk footprint of various classes of variants can be used
to greatly prune the solution space. If a PLA with 50
components is composed of 5 Java Archive Resource
(JAR) files, there are relatively few valid combinations
of the JAR files, even though there are a large number of
possible ways the PLA can be composed.

Many variants may also require common sets of
these JAR files with various footprints. These variants
can be grouped based on their JAR configurations. For
each group, a non-functional requirement can be added
to the components to ensure that a target Device provide
sufficient disk space or communication bandwidth to
receive the JARs. For small devices that usually have
little available disk space, where resource constraints are
tighter and solving takes more time, large numbers of
components can be pruned solely due to the lack of
packaging variability and need for disk space. This
footprint-based strategy works even if there are few
functional PLA dependencies between components.

Create service classes. Another effective mechanism
for pruning the solution space with non-functional require-
ments is to provide various classes of service that divide the
components into broad categories. In our train example, for
instance, by annotating numerous components with the
CabinClass and other similar context-based requirements,
the solution space can be quickly pruned to only search the
correct class of service for the target device. In general, the
more non-functional requirements that can be specified, the

quicker Scatter can prune away invalid solutions and hone
in on the correct configuration. Moreover, each non-
functional requirement gives the solver more insight into
how components are meant to be used and thus reduces the
likelihood of unanticipated variants that fail. As we pointed
out earlier, however, it is important that service classes are
course-grained since they can adversely affect caching.

8. RELATED WORK
This section compares our research on Scatter with

other tools and techniques that can be used to help
automate the selection of reusable software components
for a mobile device. We first compare our work to other
theoretical techniques for using product-line models to
derive which components should be reused for a device.
Next we compare Scatter to frameworks for adapting
applications and content to the capabilities of a mobile
device. Finally, we evaluate Scatter against other tools
that allow developers to build product-line models and
derive valid variant configurations.

Product-variant derivation techniques. In [25],
Mannion et al present a method for specifying PLA
compositional requirements using first-order logic. The
validity of a variant can then be checked by determining
if a PLA satisfies a logical statement. Although Scatter’s
approach to PLA composition also checks variant
validity, it extends the work in [25] by including the
evaluation of nonfunctional requirements not related to
composition. In particular, Scatter automates the variant
selection process using these boolean expressions and
augments the selection process to take into account
resource constraints, as well as optimization criteria.
Although the idea of automated theorem proving is
enhanced in [26], this approach does not provide a
requirements-driven optimal variant selection engine
like Scatter. Additional discussion of the differences
between constraint-based variant selection and
Mannion’s logic-based approach is available in [8].

Männistö et al. [27] have developed modeling
concepts for including additional constraints to specify
the correct configurations of a product-line. These
concepts include descriptions for how to capture
resource constraints on a configuration process. Scatter
provides a key extension to the ideas laid out by
Männistö–Scatter has the capability to autonomously
select configurations that respect these resource
constraints. Männistö et al. have laid out the modeling
foundations for describing resource constraints on con-
figurations but not the mechanics of how they are
leveraged. Scatter provides this next step in the use of
resource constraints on configurations.

COVAMOF [34], developed by Sinnema et al., pro-
vides mechanisms for capturing complex dependency con-

Jules White, Douglas C. Schmidt, Automatically composing reusable software
Egon Wuchner and Andrey Nechypurenko components for mobile devices

 41

straints that must be respected during product derivation.
These constraints can include resource constraints.
Sinnema points out that complex runtime interactions can
make the modeled knowledge of resource consumption
imprecise and thus not ideal to use for automated product
derivation through formal mechanisms. Although Scatter
could be used to attempt to work with these types of
imprecise values, it is geared towards resource constraints
that do not suffer from runtime interactions. Specifically,
Scatter is designed to be used with resources, such as the
bandwidth or device storage space consumed by the disk
footprint of a media file, that are not variable. Scatter also
provides an automated configuration process that can
handle these constraints whereas COVAMOF is focused on
manual modeling processes.

Many complex modeling tools are available for
describing and solving combinatorial constraint
problems, such as those presented in [28, 14, 35, 11, 20].
These modeling tools provide mechanisms for
describing domain-constraints, a set of knowledge, and
finding solutions to the constraints. These tools,
however, do not provide a high-level mechanism to
capture non-functional requirements and PLA
composition rules geared towards mobile devices. These
tools also do not provide a mechanism for incorporating
data from a device discovery service. These papers also
have not addressed how PLA design decisions influence
variant selection speed.

Adaptation frameworks for mobile devices. In
[23], Lemlouma et. al, present a framework for adapting
and customizing content before delivering it to a mobile
device. Their strategy takes into account device
preferences and capabilities, as does Scatter. The
approaches are comparable in that each attempts to
deliver customized data to a device that handles its
capabilities and preferences. Resource constraints are a
key difference that makes the selection of software for a
device more challenging than adapting content. Unlike
[23], Scatter not only provides adaptation for a device,
but also optimizes adaptation of the software with
respect to its provided PLA cost function.

Product-line modeling and variant derivation
tools. The Eclipse Feature Modeling Plug-in (FMP) [7]
provides feature modeling capabilities for the Eclipse
platform. FMP allows developers to build feature
models to capture the rules governing product-line
configuration. FMP can also enforce product-line
constraints as developers build variants. Although FMP
can automatically map from Java code to feature
models, FMP does not provide a mechanism for
discovering and mapping mobile device capabilities to
product-line models or observing resource constraints.
FMP also requires modelers to construct a configuration

manually, whereas Scatter automatically derives con-
figurations using a constraint solver without user
intervention. Scatter provides both of these missing
critical capabilities. We are collaborating with the FMP
research group to apply Scatter’s on-demand probing
techniques to other domains [39].

Pure::variants [9] is a commercial tool for modeling
product-lines using feature models. Developers use
Pure::variants to describe a product-line and the
constraints between features. Given a feature model,
Pure::variants can derive values for any remaining
unconfigured features that are mandated by the product-
line. Unlike Scatter, however, Pure::variants does not
take into account resource constraints. Moreover,
Pure::variants is designed to be used at design-time by a
modeler and does not provide support for automated
target discovery and variant selection. Pure::variants
requires a human to manually produce a configuration
and Scatter performs configuration autonomously with a
constraint solver.

Big Lever Software Gears [10] is another widely
used commercial product-line modeling tool. Software
Gears posesses similar capabilities to Pure::variants.
Developers describe the rules governing the variable
parts of their product-line and Software Gears can derive
values for required but unconfigured variabilities.
Software Gears does not consider resource constraints or
have a mechanism for performing automated
autonomous variant selection as Scatter does.

9. CONCLUDING REMARKS
Product-line architectures (PLAs) can be used to de-

scribe the rules for reusing software components on
different mobile devices. Each time a new device is
encountered and an application must be assembled from
existing software components, a new application variant
can be derived from a product-line for the device’s
capabilities. Mobile software is often deployed using
over-the-air provisioning, which requires online
selection of reusable components for an application
variant. As discussed in Section 3, existing reuse
approaches do not address the unique challenges of
dynamic software reuse for mobile devices.

Dynamically assembling reusable software
components into an application for a mobile device is
challenging and can benefit from automation since there
are too many complexities and unknown device
characteristics to account for all possibilities manually a
priori. Constraint-solver based automation is a
promising technique for online variant selection. This
paper describes how our Scatter tool supports efficient
online variant selection. By carefully evaluating and
constructing a PLA selection model based on the design

Jules White, Douglas C. Schmidt, Automatically composing reusable software
Egon Wuchner and Andrey Nechypurenko components for mobile devices

 42

rules presented in Section 7, developers can alleviate the
effects of worst-case solver behavior. As shown in
Section 6, a constraint-based variant selection approach
that includes resource constraint considerations can
provide sufficient performance to dynamically select
variants for over-the-air provisioning of mobile
software.

From our experience developing and evaluating
Scatter, we learned the following lessons:

�� Although push and pull capability gathering
models are commonly used for over-the-air
provisioning, neither is ideal. On-demand
probing—which is a hybrid of the push and pull
models described in Section 4.4—can be used to
obtain more complete device information.

�� Although Scatter can automate variant selection,
it works best when the constraints on a PLA’s
reusable software components are crafted with
performance in mind. An arbitrary PLA may or
may not allow for rapid variant selection. PLA’s
that will be used in conjunction with an
automated variant selector should therefore be
constructed carefully to avoid performance
problems.

�� When a PLA for a mobile device is properly
specified with good constraints, Scatter can solve
models involving 50 components in �100ms, as
shown in our experiments in Section 6.5.

�� Developers normally focus on the functional
variability in a product. It is also important to
evaluate nonfunctional variability, such as
packaging variability.

Scatter is available in open-source form from
www.sf.net/projects/gems

REFERENCES
[1] Constraint Programming System, http://choco

.sourceforge.net/.

[2] Develop/Optimize Case Study: Macrospace’s
Dragon Island. Nokia Forum, http://www.fo
rum.nokia .com/main/,2004.

[3] O. M. Alliance. OMA Client Provisioning V1.1
Candidate Enabler, http://www.openmobile
alliance.org/ release_program/cp_v1_1.htm.

[4] O. M. Alliance. OMA Download over the Air
V2.0,CandidateEnabler, http://www.openmob
ilealliance.org/release_program/dlota_v2_0.html.

[5] V. Alves, I. Cardim, H. Vital, P. Sampaio, A.
Damasceno, P. Borba, and G. Ramalho.
Comparative Analysis of Porting Strategies in
J2ME Games. In Proceedings of the 21st
Conference on Software Maintenance, Budapest,
Hungary, September 2005.

[6] M. Anastasopoulos. Software Product Lines for
Pervasive Computing. IESE-Report No. 044.04/E
version, 1.

[7] M. Antkiewicz and K. Czarnecki. FeaturePlugin:
feature modeling plug-in for Eclipse. In Eclipse ’04:
Proceedings of the 2004 OOPSLA Workshop on
Eclipse Technology eXchange, Vancouver, British
Columbia, Canada, October 2004.

[8] D. Benavides, P. Trinidad, and A. Ruiz-Cortes.
Automated Reasoning on Feature Models. In
Proceedings of the 17th Conference on Advanced
Information Systems Engineering, Porto, Portugal,
June 2005.

[9] D. Beuche. Variant Management with Pure::
variants. Technical report, Pure-Systems GmbH,
http://www.pure-systems.com, 2003.

[10] R. Buhrdorf, D. Churchett, and C. Krueger. Salion’s
Experience with a Reactive Software Product Line
Approach. In Proceedings of the 5th Workshop on
Product Family Engineering, Siena, Italy,
November 2003.

[11] Y. Caseau, F.-X. Josset, and F. Laburthe. CLAIRE:
Combining Sets, Search And Rules To Better
Express Algorithms. Theory and Practice of Logic
Programming, 2:2002, 2004.

[12] P. Clements and L. Northrop. Software Product
Lines: Practices and Patterns. Addison-Wesley,
Boston, Massachusetts, USA, 2002.

[13] E. Coffman Jr, G. Galambos, S. Martello, and D.
Vigo. Bin Packing Approximation Algorithms:
Combinatorial Analysis. Kluwer Academic
Publishers, Norwell, Massachusetts, USA, 1998.

[14] J. Cohen. Constraint Logic Programming
Languages. Communications of the ACM, 33(7):52–
68, 1990.

[15] J. Coplien, D. Hoffman, and D. Weiss.
Commonality and Variability in Software
Engineering. IEEE Software, 15:37–45, Nov.-Dec.
1998.

Jules White, Douglas C. Schmidt, Automatically composing reusable software
Egon Wuchner and Andrey Nechypurenko components for mobile devices

 43

[16] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged
Configuration Through Specialization and Multi-
level Configuration of Feature Models. Software
Process Improvement and Practice, 10(2):143–169,
2005.

[17] K. Czarnecki and C. Kim. Cardinality-based
Feature Modeling and Constraints: A Progress
Report. In Proceedings of the Workshop on
Software Factories, San Diego, California, USA,
October 2005.

[18] D. P. D. Oppenheimer, A. Ganapathi. Why do
Internet Services Fail, and What can be Done about
It? In Proceedings of the USENIX Symposium on
Internet Technologies and Systems, Portland,
Oregon, USA, March 2003.

[19] M. Dillinger, R. Becher, and A. Siemens.
Decentralized Software Distribution for SDR
Terminals. IEEE Wireless Communications,
9(2):20–25, 2002.

[20] R. Fourer, D. M. Gay, and B. W. Kernighan.
AMPL: A Modeling Language for Mathematical
Programming. Duxbury Press, Pacific Grove,
California, USA, 2002.

[21] J. Jaffar and M. Maher. Constraint Logic
Programming: A Survey. Constraints, 2(2):0, 1994.

[22] J. Keeney and V. Cahill. Chisel: a Policy-driven,
Context-aware, Dynamic Adaptation Framework. In
Proceedings of the IEEE 4th International
Workshop on Policies for Distributed Systems and
Networks, Lake Como, Italy, June 2003.

[23] T. Lemlouma and N. Layaida. Context-aware
Adaptation for Mobile Devices. In Proceedings of
the 2004 IEEE International Conference on Mobile
Data Management, Berkeley, California, USA,
January 2004.

[24] A. T. Luca Passani. Wireless Universal Resource
File, http://wurfl.sourceforge.net/.

[25] M. Mannion. Using First-order Logic for Product
Line Model Validation. In Proceedings of the
Second Conference on Software Product Lines, San
Diego, California, USA, August 2002.

[26] M. Mannion and J. Camara. Theorem Proving for
Product Line Model Verification. In Proceedings of
the 5th Workshop on Product Family Engineering,
Siena, Italy, November 2003.

[27] T. Männistö, T. Soininen, and R. Sulonen.
Product Configuration View to Software Product
Families. In Proceedings of the 10th Workshop on
Software Configuration Management, Toronto,
Canada, May 2001.

[28] L. Michel and P. V. Hentenryck. Comet in Context.
In PCK50: Proceedings of the Paris C. Kanellakis
Memorial Workshop on Principles of Computing &
Knowledge, San Diego, California, USA, June
2003.

[29] S. Microsystems. Over The Air User Inititated
Provisioning Recommended Practice, http://ja
va.sun.com/products/midp/OTAProvisioning-
1.0.pdf. May 2001.

[30] S. Mittal and F. Frayman. Towards a Generic
Model of Configuration Tasks. In Proceedings of
the Eleventh International Joint Conference on
Artificial Intelligence, Detroit, Michigan, USA,
Augus 1989.

[31] D. Muthig, I. John, M. Anastasopoulos, T. Forster,
J. Dörr, and K. Schmid. GoPhone-A Software
Product Line in the Mobile Phone Domain, IESE-
Report, 025.04/E. Technical report, Fruanhofer
IESE, Kaiserslautern, Germany, 2004.

[32] Nokia. Java Technology Enables Exciting
Downloading Services for Mobile Users,
http://nds2.ir.nokia.com
/NOKIA_COM_1/About_Nokia/Press/White_Paper
s /pdf_files/javawhitepaperoct2003.pdf. October
2003.

[33] D. Sabin and R. Weigel. Product Configuration
Frameworks-a Survey. IEEE Intelligent Systems
and Their Applications, 13(4):42–49, 1998.

[34] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch.
Modeling Dependencies in Product Families with
COVAMOF. In Proceedings of the 13th Annual
IEEE International Symposium and Workshop on
Engineering of Computer Based Systems, Potsdam,
Germany, March 2006.

[35] G. Smolka. The Oz Programming Model. In
Proceedings of the European Workshop on Logics
in Artificial Intelligence, JELIA ’96, Evora,
Portugal, October 1996.

[36] T. Van der Storm. Variability and Component
Composition. Springer-Verlag, Heidelberg,
Germany, 2004.

[37] P. Van Hentenryck. Constraint Satisfaction in Logic
Programming. MIT Press Cambridge,
Massachusetts, USA, 1989.

[38] T. Virki. Global Cell Phone Penetration Reaches
50%. Reuters, http://investing.reuters.
co.uk/news/articleinvesting.aspx?type=media
&storyID=nL29172095, November 2007.

[39] J. White, K. Czarnecki, D. C. Schmidt, G. Lenz, C.
Wienands, E. Wuchner, and L. Fiege. Automated

Jules White, Douglas C. Schmidt, Automatically composing reusable software
Egon Wuchner and Andrey Nechypurenko components for mobile devices

 44

Model-based Configuration of Enterprise Java
Applications. In EDOC 2007, Annapolis, Maryland
USA, October 2007.

[40] J. White, A. Nechypurenko, E. Wuchner, and D. C.
Schmidt. Optimizing and Automating Product-Line
Variant Selection for Mobile Devices. In 11th
International Software Product Line Conference,
Kyoto, Japan, September 2007.

[41] M. Womer and F. Telecom. Device Description
Landscape, World Wide Web Consortium,
http://jp.w3.org/TR/2006/WD-dd-landscape-
20060210/.

[42] W. Zhang, S. Jarzabek, N. Loughran, and A.
Rashid. Reengineering a PC-based System into a
Mobile Device Product Line. In Proceedings of the
the Workshop on Principles of Software Evolution,
Helsinki, Finland, September 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

