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Abstract

This paper describes an accurate method for com-
puting the dimensions of boxes directly from perspective
projection images acquired by conventional cameras. The
approach is based on projective geometry and computes
the box dimensions using data extracted from the box si-
lhouette and from the projection of two parallel laser be-
ams on one of the imaged faces of the box. In order to
identify the box silhouette, we have developed a statis-
tical model for homogeneous-background-color removal
that works with a moving camera, and an efficient voting
scheme for the Hough transform that allows the identifi-
cation of almost collinear groups of pixels. We demons-
trate the effectiveness of the proposed approach by auto-
matically computing the dimensions of real boxes using
a scanner prototype that implements the algorithms and
methods described in the paper. We also present a discus-
sion of the performed measurements, and an error propa-
gation analysis that allows the method to estimate, from
each single video frame, the uncertainty associated to all
measurements made over that frame, in real-time.

Keywords: Computing dimensions of boxes, image-
based metrology, extraction of geometric information
from scenes, uncertainty analysis, real time.

Figure 1. Scanner prototype: (left) Its operation. (right) Camera’s view
from another position showing the recovered dimensions and

uncertainty computed in real time.

1. INTRODUCTION
The ability to measure the dimensions of three-

dimensional objects directly from images has many prac-
tical applications including quality control, surveillance,
analysis of forensic records, storagemanagement and cost
estimation. Unfortunately, unless some information rela-
ting distances measured in image space to distances me-
asured in 3D is available, the problem of making mea-
surements directly on images is not well defined. This
results from the inherent ambiguity of perspective projec-
tion caused by the loss of depth information.
This paper presents a method for computing box di-

mensions from single perspective projection images in a
completely automatic way. The approach uses informa-
tion extracted from the silhouette of the target boxes and
can be applied when at least two of their faces are visible,
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even when the target box is partially occluded by other
objects in the scene (Figure 1). We eliminate the inherent
ambiguity associated with perspective images by projec-
ting two parallel laser beams, apart from each other by a
known distance, onto one of the visible faces of the box.
We demonstrate this technique by building a scanner pro-
totype for computing box dimensions and using it to com-
pute the dimensions of boxes in real time (Figure 1). This
can be an invaluable tool for companies that manipulate
boxes on their day-by-day operations, such as couriers,
airlines and warehouses.
The paper presents a revised and significantly exten-

ded version of the work originally described in [9]. The
new materials in this extended version include: (i) the use
of variable-size elliptical Gaussian kernels in the Hough
transform voting procedure (Section 5). The use of such
kernels makes the transform more robust to discretization
errors and allows the proper detection of support silhou-
ette lines of boxes with bent edges; (ii) the determination
of the plane spanned by the laser beams using a calibra-
tion procedure (Subsection 3.2.1). The use of calibrated
data removed the only assumption in the original deriva-
tion [9] of the equations shown in Section 3 and improved
the accuracy of the method; (iii) the statistical analysis of
the results (Section 7.1) was significantly enhanced con-
sidering a larger number of real boxes and new graphs
that improve the interpretation of these results. Such an
analysis shows that the proposed approach is both accu-
rate and precise; and (iv) a modeling of the error propaga-
tion along all steps of the algorithm that allows our system
to estimate the uncertainty in the computedmeasurements
in real time (Section 7.2).
The main contributions of this paper include:

• An algorithm for computing the dimensions of bo-
xes in a completely automatic way in real-time (Sec-
tion 3);

• An algorithm for extracting box silhouettes in the
presence of partial occlusion of the box edges (Sec-
tion 3.1);

• A statistical model of homogeneous background co-
lor for use with a moving camera under different
lighting conditions (Section 4);

• An efficient voting scheme for identifying nearly
collinear line segments with a Hough transform
(Section 5);

• A derivation of how to estimate the error associated
with the computed dimensions from a single image
in real time (Section 7.2).

2. RELATED WORK
Many optical devices have been created for making

measurements in the real world. Those based on active
techniques project some kind of energy onto the surfa-
ces of the target objects and analyze the reflected energy.
Examples of active techniques include optical triangula-
tion [1] and laser range finding [22] to capture the shapes
of objects at proper scale [17], and ultrasound to measure
distances [10]. In contrast, passive techniques rely only
on the use of cameras for extracting the three-dimensional
structure of a scene and are primarily based on the use of
stereo [18]. In order to achievemetric reconstruction [13],
both optical triangulation and stereo-based systems re-
quire careful calibration. For optical triangulation, several
images of the target object with a superimposed moving
pattern are usually required for accurate reconstruction.
Labeling schemes for trihedral junctions [4, 15] have

been used to estimate the spatial orientation of polyhe-
dral objects from images. These techniques tend to be
computationally expensive when too many junctions are
identified. Additional information from the shading of the
objects can be used to improve the process. Silhouettes
have been used in computer vision and computer graphics
for object shape extraction [16, 21]. These techniques re-
quire precise camera calibration and use silhouettes obtai-
ned from multiple images to define a set of cones whose
intersections approximate the shapes of the objects.
Criminisi et al. [5] presented a technique for making

3D affine measurements from a single perspective image.
They show how to compute distances between planes pa-
rallel to a reference one. In case of some distance from
a scene element to the reference plane is known, it is
possible to compute the distances between scene points
and the reference plane. If such a distance is not known,
the computed dimensions are correct up to a scaling fac-
tor. The technique requires user interaction and cannot
be used for computing dimensions automatically. Pho-
togrammetrists have also made measurements based on
single images [23], but these techniques also require user
intervention.
In a work closely related to ours, Lu [20] described a

method for finding the dimensions of boxes from single
gray-scale images. In order to simplify the task, Lu as-
sumes that the images are acquired using parallel ortho-
graphic projection and that three faces of the box are visi-
ble simultaneously. The computed dimensions are appro-
ximately correct up to a scaling factor. Also, special care
is required to distinguish the actual box edges from lines
in the box texture, causing the method not to perform in
real time.
Our approach computes the dimensions of boxes from

single perspective projection images, producing metric
reconstructions in real time and in a completely automatic
way. The method can be applied to boxes with arbitrary
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Figure 2. Identifying the target box silhouette. Naive approach: (b) Background segmentation, followed by (c) High-pass filter (note the spurious
“edge” pixels). Proposed approach: (d) Contouring of the foreground region, (e) Contour segmentation, (f) Grouping candidate segments for the

target silhouette, and (g) Recovery of supporting lines for silhouette edges and vertices.

textures, can be used when only two faces of the box are
visible, even when the edges of the target box are partially
occluded by other objects in the scene.

3. COMPUTING BOX DIMENSIONS
We model boxes as parallelepipeds although real bo-

xes can present many imperfections (e.g., bent edges and
corners, asymmetries, etc.). The dimensions of a paralle-
lepiped can be computed from the 3D coordinates of four
of its non-coplanar vertices. Conceptually, the 3D coor-
dinates of the vertices of a box can be obtained by inter-
secting rays, defined by the camera’s center and the pro-
jections of the box vertices on the camera’s image plane,
with the planes containing the actual faces of the box in
3D. Thus, before one can compute the dimensions of a gi-
ven box (Section 3.3), its necessary to find the projections
of the vertices on the image (Section 3.1), and then find
the equations of the planes containing the box faces in 3D
(Section 3.2).
In the following derivations, we assume that the ori-

gin of the image coordinate system is at the center of the
image, with the X-axis growing to the right and the Y -
axis growing down, and assume that the imaged boxes
have three visible faces. The case involving only two visi-
ble faces is similar. Also, we assume that the images used
for computing the dimensions were obtained through li-
near projection (i.e., using a pinhole camera). Although
images obtained with real cameras contain some amount
of radial and tangential distortions, we compensate such
distortions in real time with the use of simple warping

procedures [13].
The number of visible faces of the box can be ob-

tained by checking if the projection of some of the ed-
ges that share the same direction in 3D is (almost) pa-
rallel in 2D. In this case, two faces of the box are vi-
sible; otherwise, three faces are visible simultaneously.
Although this approach has proven to produce good re-
sults for well-constructed boxes, most real boxes present
some distorted edges, which breaks the parallelism as-
sumption. Thus, in practice, it is more effective to as-
sume that three box faces are visible. Since the system is
capable of computing the dimensions of boxes at 30 Hz,
we can afford to discard frames if the silhouettes recove-
red from the acquired images do not satisfy the imposed
requirements. In this case, the perception of the user is
similar to that of a barcode scanner user: if no answer is
coming out, just slightly change the scanner’s orientation
relatively to the target object in order to get it.

3.1. FINDING THE PROJECTIONS OF THE VERTI-
CES
The projection of the vertices can be obtained as the

corners of the box silhouette. Although edge detection
techniques [3] could be used to find the box silhouette,
these algorithms tend to be very sensitive to the presence
of other high-frequency contents in the image. In order
to minimize the occurrence of spurious edges and sup-
port the use of boxes with arbitrary textures, we perform
silhouette detection using a model for the background pi-
xels. Since the images are acquired using a handheld ca-
mera, proper modeling of the background pixels is requi-

21



Leandro A. F. Fernandes, Manuel M. Oliveira,
Roberto da Silva & Gustavo J. Crespo

A Fast and Accurate Approach for Computing
the Dimensions of Boxes from Single

Perspective Images

red and will be discussed in detail in Section 4.
However, as shown in Figure 2 (a, b and c), a naive ap-

proach that just models the background and applies sim-
ple image processing operations, like background remo-
val and high-pass filtering, does not properly identify the
silhouette pixels of the target box (selected by the user by
pointing the laser beams onto one of its faces). This is
because the scene may contain other objects, whose si-
lhouettes possibly overlap with the one of the target box.
Also, the occurrence of some misclassified pixels (see Fi-
gure 2, c) may lead to the detection of spurious edges.
Thus, a suitable method was developed to deal with these
problems. The steps of our algorithm are shown in Figu-
res 2 (a, d, e, f and g).
In our approach, the target box silhouette is obtained

starting from one of the laser dots, finding a silhouette
pixel and using a contour-following procedure [12]. The
seed silhouette pixel for the contour-following is found
stepping from the laser dot within the target foreground
region and checking whether the current pixel matches
the background model. In order to be a valid silhouette,
both laser dots need to fall inside of the contouring re-
gion. Notice this procedure produces a much cleaner set
of border pixels (Figure 2, d) compared to results shown
in Figure 2 (c). But the resulting silhouette may include
overlapping objects, and one still needs to identify which
border pixels belong to the target box. To facilitate the
handling of the border pixels, the contour is subdivided
into its most perceptually significant straight line seg-
ments [19] (Figure 2, e). Then, the segments resulting
from the clipping of a foreground object against the limits
of the frame (e.g., segments h, o and p in Figure 2, e) are
discarded. Since a box silhouette defines a convex poly-
gon, the remaining segments whose two endpoints are not
visible by both laser dots can also be discarded. This test
is performed using a 2D BSP-tree [11]. In the example of
Figure 2, only segments c, d, k, l, t, u and v pass this test.
Still, there is no guarantee that all the remaining seg-

ments belong to the target box silhouette. In order to res-
trict the amount of possible combinations, the remaining
chains of segments defining convex fragments are grou-
ped (e.g., groupsA, B and C in Figure 2, f). We then try
to find the largest combination of groups into valid por-
tions of the silhouette. In order to be considered a valid
combination, the groups must satisfy the following vali-
dation rules: (i) they must characterize a convex polygon;
(ii) the silhouette must have six edges (the silhouette of
a parallelepiped with at least two visible faces); (iii) the
laser dots must be on the same box face; and (iv) the com-
puted lengths for pairs of parallel edges in 3D must be
approximately the same. In the case of more than one
combination of groups pass the validation tests, the sys-
tem discards this ambiguous data and starts processing a
new frame (our system is capable of processing frames at

Figure 3. Vanishing points (ωi) and vanishing lines (λi). ej , vj ,m0,
and fi are the supporting lines for silhouette edges, the silhouette
vertices, the inner vertex and the faces of the box, respectively.

the rate of about 29 fps).
Once the box silhouette is known, the projections of

the six vertices are obtained intersecting pairs of adja-
cent supporting lines for the silhouette edges (Figure 2, g).
Section 5 discusses how to obtain those supporting lines.

3.2. COMPUTING THE PLANE EQUATIONS
The set of all parallel lines in 3D sharing the same

direction intersect at a point at infinite whose image un-
der perspective projection is called a vanishing point ω.
The line defined by all vanishing points from all sets of
parallel lines on a plane Π is called the vanishing line λ
of Π (Figure 3). The normal vector to Π in a given ca-
mera’s coordinate system can be obtained multiplying the
transpose of the camera’s intrinsic-parameter matrix by
the coefficients of λ [13]. Since the resulting vector is
not necessarily a unit vector, it needs to be normalized.
Equations (1) and (2) and Figure 3 show the relationship
among the vanishing points ωi, vanishing lines λi and the
supporting lines ej for the edges that coincide with the
imaged silhouette of a parallelepiped with three visible
faces. The supporting lines are ordered clockwise.

ωi = ei × ei+3 (1)
λi = ωi × ω(i+1)mod3 (2)

where 0 ≤ i ≤ 2, 0 ≤ j ≤ 5, λi = (aλi
, bλi

, cλi
)T and

× is the cross product operator. The normalNΠi
to plane
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Πi is then given by

NΠi
=

RKT λi

‖RKT λi‖
(3)

where NΠi
= (AΠi

, BΠi
, CΠi

). K is the matrix that mo-
dels the intrinsic camera parameters [13] and R is a re-
flection matrix (Equation 4) used to make the Y -axis of
the image coordinate system grows in the up direction.

K =

⎛
⎝ αx γ ox

0 αy oy

0 0 1

⎞
⎠ , R =

⎛
⎝ 1 0 0

0 −1 0
0 0 1

⎞
⎠ (4)

In Equation (4), αx = f/sx and αy = f/sy, where
f is the focal length, and sx and sy are the dimensions of
the pixel in centimeters. γ, ox and oy represent the skew
and the coordinates of the principal point, respectively.
Once we have NΠi

, finding DΠi
, the fourth coeffi-

cient of the plane equation, is equivalent to solving the
projective ambiguity and will require the introduction of
one more constraint. Thus, consider the situation depic-
ted in 2D in Figure 4 (left), where two laser beams, pa-
rallel to each other, are projected onto one of the faces
of the box. Let the 3D coordinates of the laser dots de-
fined with respect to the camera coordinate system be
P0 = (XP0

, YP0
, ZP0

)T and P1 = (XP1
, YP1

, ZP1
)T ,

respectively (Figure 4, right). Since P0 and P1 are on the
same plane Π, one can write

AΠXP0
+BΠYP0

+CΠZP0
= AΠXP1

+BΠYP1
+CΠZP1

(5)
Using the linear projection model and given

pi = (xpi
, ypi

, 1)T , the homogeneous coordinates of
the pixel associated with the projection of point Pi, one
can reproject pi on the plane Z = 1 (in 3D) using

p′i = (xp′

i
, yp′

i
, 1)T = RK−1pi (6)

and express the 3D coordinates of the laser dots on the
face of the box as

XPi
= xp′

i
ZPi

, YPi
= yp′

i
ZPi

and ZPi
(7)

Substituting the expression for XP0
, YP0

, XP1
and

YP1
(Equation 7) in Equation (5) and solving for ZP0

, we
obtain

ZP0
= kZP1

(8)

where

k =
AΠxp′

1
+ BΠyp′

1
+ CΠ

AΠxp′

0
+ BΠyp′

0
+ CΠ

(9)

Now, let dlb and dld be the distances, in 3D, between
the two parallel laser beams and between the two laser
dots projected onto one of the faces of the box, respecti-
vely (Figure 4). Section 6 discusses how to find the laser
dots on the image. dld can be directly computed fromNΠ,

Figure 4. Top view of a scene. Two laser beams apart in 3D by dlb

project onto one box face at points P0 and P1, whose distance in 3D is
dld. α is the angle between −L and NL.

the normal vector of the face onto which the dots project,
and the known distance dlb:

dld =
dlb

cos(α)
=

dlb

−(NL · L)
(10)

where α is the angle between NL, the normalized projec-
tion ofNΠ onto the plane defined by the two laser beams,
and L is the vector representing the laser beam direction.
For now, we will assume that the laser plane is parallel to
the cameraXZ plane and L = (0, 0, 1)T . Therefore,NL

is obtained by dropping the Y coordinate of NΠ and nor-
malizing the resulting vector. dld can also be expressed as
the Euclidean distance between the two laser dots in 3D:

d2
ld = (XP1

−XP0
)2+(YP1

−YP0
)2+(ZP1

−ZP0
)2 (11)

Substituting Equations (7), (8) and (10) into (11) and sol-
ving for ZP1

, one gets

ZP1
=

√
d2

ld

ak2 − 2bk + c
(12)

where a = (xp′

0
)2 +(yp′

0
)2 +1, b = xp′

0
xp′

1
+ yp′

0
yp′

1
+1

and c = (xp′

1
)2 + (yp′

1
)2 + 1. Given ZP1

, the 3D coordi-
nates of P1 can be computed as

P1 = (XP1
, YP1

, ZP1
)T = (xp′

1
ZP1

, yp′

1
ZP1

, ZP1
)T

(13)
The projective ambiguity can be finally removed by

computing the DΠ coefficient for the plane equation of
the face containing the two dots:

DΠ = −(AΠXP1
+ BΠYP1

+ CΠZP1
) (14)
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3.2.1. Estimating the Laser Plane: In practice, it is
difficult to guarantee that the plane defined by the laser
beams is parallel to the camera’s XZ plane, and that the
L vector is aligned with the camera Z-axis. In our scan-
ner prototype, we noticed that although the laser beams
are parallel to each other, the plane they define (Πlb) is
not parallel to the camera’sXZ plane. Therefore, it is ne-
cessary to take into account the angle between these two
planes before computingNL and then dld (Equation 10).

The orientation of Πlb and the direction of the L vec-
tor were estimated projecting the laser beams on a planar
checkerboard calibration pattern, placed at varying dis-
tances from the scanner. By collecting the coordinates
of a set of 3D points (corresponding to these projections)
along the laser lines, we estimated both Πlb’s orientation
and L’s direction with respect to the camera’s coordinate
system.

3.3. COMPUTING THE BOX DIMENSIONS
Having computed the plane equation of a face of the

box, one can recover the 3D coordinates of vertices of that
face. For each such vertex v on the image, we compute v′

using Equation (6). We then compute its corresponding
ZV coordinate by substituting Equation (7) into the plane
equation for the face. Given ZV , both XV and YV coor-
dinates are computed using Equation (7). Since all visible
faces of the box share some vertices with each other, the
D coefficients for the other faces of the box can also be
obtained, allowing the recovery of the 3D coordinates of
all vertices on the box silhouette, from which the dimen-
sions are computed.
Although not required for computing the dimensions

of the box, the 3D coordinates of the inner vertexm0 (Fi-
gure 3, top) can also be computed. Its 2D coordinates
are obtained as the intersection among three lines. Each
such line is defined by a vanishing point and the silhou-
ette vertex falling in between the two box edges used to
compute that vanishing point. This situation is illustra-
ted in Figure 3. Since it is unlikely that these three lines
will intersect exactly at one point, we approximate this in-
tersection using least-squares. Given the inner vertex 2D
coordinates, its corresponding 3D coordinates are com-
puted using the same algorithm used to compute the 3D
coordinates of the other vertices.

4. A MODEL FOR BACKGROUND PI-
XELS
In order to obtain the box silhouette, we need to clas-

sify the pixels as either background or foreground pixels.
One of the most popular techniques for object segmenta-
tion is chroma keying [24]. Unfortunately, standard ch-
roma keying techniques do not produce satisfactory re-

Figure 5. Chromaticity axis rotated to align to a horizontal axis. The
curve is a polynomial fit to the chromaticity distortion threshold for

each slice (the small rectangles).

sults for our application. Shading variations in the back-
ground and shadows cast by the boxes usually lend to mis-
classification of background pixels. Horprasert et al. [14]
describe a statistical method that computes a per-pixel
model of the background from a set of static background
images. While this technique is fast and produces very
good segmentation results for scenes acquired from a sta-
tic camera, it is not appropriate for use with moving ca-
meras. Also it requires a complete new calibration when
the lighting conditions change too much. To avoid pro-
blems from lighting changes, a threshold solution based
on hue component of the HSV color space might seem to
be a good solution. However, such an approach tends to
misclassify foreground pixels whose colors are close to
the background color.
In order to support a moving camera, we have deve-

loped an approach that proved to be robust, lending to
very satisfactory results. It works under different lighting
conditions by computing a statistical model of the back-
ground, which contains a single hue. Such a model is
defined by a chromaticity axis that represents the mean
expected shade of the background under various lighting
conditions and a polynomial curve describing a variable
threshold along the chromaticity axis.
The algorithm takes as input a set of n images Ii of the

background acquired under different lighting conditions.
In the first step, we compute E, the average color of all
pixels in all images Ii, and the eigenvalues and eigenvec-
tors associated with the colors of those pixels. E and the
eigenvector associated with the highest eigenvalue define
an axis in the RGB color space (the chromaticity axis).
The chromaticity distortion d of a given color C is com-
puted as the distance from C to the chromaticity axis.
After discarding the pixels whose projections on the

chromaticity axis have at least one saturated channel (they
lend to misclassification of bright foreground pixels), we
subdivide the chromaticity axis into m slices (Figure 5).
For each slice, we compute d̄j and σd̄j

, the mean and
the standard deviation, respectively, for the chromaticity
distortion of the pixels in the slice. Then, we com-
pute a threshold dTj for the maximum acceptable slice-
chromaticity distortion considering a confidence level of
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Figure 6. Hough Transform parameter space obtained with the conventional (left) and the new voting scheme (right) applied to the segments shown
in Figure 2 (f). The peaks represent the supporting lines for silhouette edges.

99% as dTj = d̄j + 2.33σd̄j
.

Finally, the coefficients of a polynomial that models
the chromaticity-distortion thresholds are computed by
fitting a curve through the dT values at the centers of the
slices (Figure 5). Intuitively, such a polynomial describes
a variable threshold for the different shades of the back-
ground color. Once the coefficients have been computed,
the dT values are discarded and the tests are performed
against the model. Figure 5 illustrates the case of a color
C being tested against the background color model. C′ is
the projection ofC on the chromaticity axis. In this exam-
ple, as the distance between C and the chromaticity axis
is bigger than the threshold defined by the polynomial,C
will be classified as foreground.
Changing the background color only requires obtai-

ning samples of the new background and computing the
new values for the chromaticity axis and the coefficients
of the polynomial. It is possible that the box texture may
contain some pixels whose chromaticity distortions are
smaller than the threshold defined by the polynomial for
a given background color shade. In this case, the classi-
fication process would incorrectly indicate the presence
of background pixels inside the box region. However,
the silhouette detection approach described in Section 3.1
can handle groups of misclassified foreground pixels and,
in practice, no problems have been noticed as a result of
possible such misclassification. According to our experi-
ments, 100 slices and a polynomial of degree 3 produce
very satisfactory results.

5. IDENTIFYING ALMOST COLLINEAR
SEGMENTS
To compute the image coordinates of the box vertices,

first we need to obtain the supporting lines for the silhou-
ette edges. We do this using a Hough transform proce-
dure [7]. However, the conventional voting process and

the detection of the most significant lines is computatio-
nally intensive and turned out to be a bottleneck to our
system. To reduce the amount of computation, an alterna-
tive to the conventional voting process was developed.

As seen in Section 3.1, silhouette pixels are organized
into perceptually most significant straight-line segments.
The new voting scheme consists in casting votes directly
for these segments, instead of for individual pixels as it is
traditionally done [7]. Thus, for each segment, the (ρ, θ)
parameters of its supporting line are computed from the
average position of the set of pixels defining the segment
and from the 2D eigenvectors of that pixel distribution.
The eigenvector with the smaller eigenvalue is the nor-
mal to the line, so ρ can be computed as the dot product
between this eigenvector and the average pixel. θ is the
angle between theX-axis of the image and the secondary
eigenvector. The use of eigenvectors makes the process
robust, allowing it to handle lines with arbitrary orientati-
ons in a consistent way.

For each segment, we distribute its votes in the para-
meter space using a Gaussian elliptical kernel (Figure 6,
right), whose central position is defined by the (ρ, θ) para-
meters of the line fit to its set of pixels. The Gaussian ker-
nel spread the votes over a region of the parameters space
around (ρ, θ), according to the quality of the fit. Notice
however, that different segments have different numbers
of pixels, as well as have different degrees of dispersion
around their corresponding best-fitting lines. The smaller
the dispersion, the more concentrated these votes should
be in the parameter space. We estimate the quality of the
line fit by computing the variances and covariance of the
(ρ, θ) parameters. The variances give the dimensions of
the axes of the elliptical kernel, while the covariance gives
the orientation of the ellipse. One can compute the vari-
ances and covariance of ρ and θ using a linear regression
procedure [6]. However, standard linear regression proce-
dures use the slope-intercept line notation, so one can use
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a first order uncertainty propagation analysis [25] to com-
pute the variances and covariance of ρ and θ from the va-
riances and covariances of the slope-intercept parameters.
Once one has computed the variances and covariance as-
sociated with ρ and θ, the votes are cast using a bi-variated
Gaussian distribution [26]. The use of a Gaussian kernel
distributes the votes around a neighborhood, allowing the
identification of approximately collinear segments. This
is a very important and unique feature of our approach
that allows our system to better handle discretization er-
rors and boxes with slightly bent edges. A detailed ex-
planation about the proposed voting process can be found
in [8].
Using the new approach, the voting process and the

peak detection are significantly improved because the
amount of cells that receive votes is substantially redu-
ced. Figure 6 shows the parameter space after the traditi-
onal (left) and the new (right) voting processes have been
applied to the segments shown in Figure 2 (f). Using the
conventional (i.e., per-pixel) voting scheme [7], 376, 884
votes are distributed over 228, 255 cells. In contrast,
the new approach only casts 6, 382 votes distributed over
5, 020 cells, which represents 1.7% of the number of votes
and 2.2% of the number of cells used in the conventional
approach. As a result, the produced voting map is very
clean (Figure 6, right), reducing ambiguities and impro-
ving the identification of the most important lines. The
extra cost involved in computing the covariance matrices
associated with a few segments and by the use of Gaus-
sian elliptical kernels to cast votes is more than compen-
sated by the huge saving achieved.
Special care must be taken when the θ parameter is

close to 0◦ or to 180◦. In this situation, the voting process
continues in the diagonally opposing quadrant, at the −ρ
position (see Figure 6, peaks d and t). For the examples
shown in the paper, the parameter space was discretized
using 360 angular steps in the range θ = [0◦, 180◦) and
1, 600 ρ values in the range [−400, 400].

6. FINDING THE LASER DOTS
The ability to find the proper positions of the laser dots

in the image can be affected by several factors such as
the camera’s shutter speed, the box materials and textu-
res, and ambient illumination. Although we are using a
red laser (650 nm class II), we cannot rely simply on the
red channel of the image to identify the positions of the
dots. Such a procedure would not distinguish between the
laser dot and red texture elements on the box. Since the
pixels corresponding to the laser dots present very high lu-
minance, we identify them by thresholding the luminance
image. However, just simple thresholding may not work
for boxes containing white regions, which tend to have

large areas with saturated pixels. We solved this problem
by setting the camera’s shutter speed so that the laser dots
are the only elements in the image with high luminance.
Since the image of a laser spot is composed by seve-

ral pixels, we approximate the actual position of the dot
by the centroid of its pixels. According to our experi-
ments, a variation of one pixel in the estimated center of
the laser spot produces a variation of a few millimeters
in the computed dimensions. These numbers were obtai-
ned assuming a camera standing about two meters from
the box. After computing the position of the inner ver-
tex (Section 3.3), the face that contains the laser dots is
identified.
The system may fail to properly detect the laser dots if

they project on some black region or if the surface exhi-
bits specular peaks. This, however, can be avoided by
aiming the beams on other portions of the box. Due to the
construction of the scanner prototype and to some epipo-
lar constraints [13], one only needs to search for the laser
dots inside a small window in the image. Although a sin-
gle laser beam could be used to break the projective am-
biguity, the use of two beams introduces additional cons-
traints that make silhouette identification more robust.

7. RESULTS
We have built a prototype of a scanner for compu-

ting box dimensions and implemented the techniques des-
cribed in the paper using C++. The system was tested
on several real boxes. For a typical scene, such as the
one shown in Figure 2, it can process video and com-
pute box dimensions at about 29 fps. For comparison,
the frame rate drops to 10 fps if the traditional pixel-
based Hough-transform voting scheme (Figure 6, left) is
used. Such numbers illustrate the effectiveness of the pro-
posed voting solution. These measurements were made
on a 2.8 GHz PC with 1.0 GB of memory. A video se-
quence illustrating the use of our scanner can be found at
http://www.inf.ufrgs.br/˜laffernandes/boxdimensions.
Figure 1 (left) shows the scanner prototype whose

hardware is comprised of a firewire color camera (Point
Grey Research DragonFly with 640 × 480 pixels), a 16
mm lens (Computar M1614, with manual focus, no iris
and 30.9 degrees horizontal field of view) and two laser
pointers. The camera is mounted on a plastic box and the
laser pointers were aligned and glued to the sides of this
box. In such an assembly, the laser beams are 15.8 cm
apart. For our experiments, we acquired pictures of boxes
from distances varying from 1.7 to 3.0 meters to the ca-
mera. The background was created using a piece of green
cloth and its statistical model was computed from a set of
23 images. Figure 7 shows some examples of boxes used
to test our system. Some of these boxes are particularly
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. Examples of real boxes used for testing.

challenging: (e), (f) and (g) are very bright; (f) and (g)
have a reflective plastic finishing; and box (b) is mostly
covered with red texture. The dimensions of these boxes
vary from 13.8 to 48.2 cm. The intrinsic parameters of the
camera (Equation 4) were estimated using a calibrations
procedure [2].
The geometry of the box is somewhat different from

a parallelepiped due to imperfections introduced during
construction and handling. For instance, bent edges, dif-
ferent sizes for two parallel edges of the same face, lack of
parallelism between opposing faces, and warped corners
are not unlikely to be found in practice. Such inconsisten-
cies lend to errors in the orientation of the silhouette ed-
ges, which are cascaded into the computation of the box
dimensions.
In order to estimate the inherent inaccuracies of the

proposed algorithm, we performed measurements on a
wooden box (Figure 7, h) that was carefully constructed
to avoid these imperfections. We have also implemented a
simulator that performs the same computations on images
of synthetic boxes (exact parallelepipeds) generated using

computer graphics techniques. Using images generated
by the simulator, our system can recover the dimensions
of the box with an average relative error of 0.58%. Next,
we analyze some of the results obtained on real boxes.

7.1. STATISTICAL ANALYSIS ON REAL BOXES
In order to evaluate the effectiveness of the proposed

approach, we carried out a few statistical experiments.
First, we selected several real boxes (Figure 7) and ma-
nually measured the dimensions of all their edges with a
ruler. Each edge was measured twice, once per shared
face of the edge. The eight measurements of each box
dimensions were averaged to produce a single value per
dimension. All measurements were made in centimeters.
We then used our system to collect a total of 30 measure-
ments of each dimension of the same box. For each col-
lected sample, we projected the laser beams on different
parts of the box. We used this data to compute the mean,
standard deviation and confidence intervals for each of
the computed dimensions. The confidence intervals were
computed as CI =

[
x̄− tγ

σ√
n
, x̄ + tγ

σ√
n

]
, where x̄ is

the mean, σ is the standard deviation, n is the size of sam-
ple and tγ is a t−Student variable with n − 1 degrees of
freedom, such that the probability of a measure x belongs
to CI is γ. The tightest the CI , the more precise are the
computed values.
Figure 8 shows the computed confidence intervals

with γ = 99.5%. Note that the values of the actual di-
mensions (the red line) fall inside most these confidence
intervals, indicating accurate measurements. Boxes (f),
(g) and especially the wooden box (h) are the ones with
tightest confidence intervals. Those are well constructed
boxes. Wider confidence intervals were obtained for bo-
xes with bent faces and edges, like boxes (a) and (e). The
only box whose actual dimensions do not fall inside the
confidence interval is box (d). This box has a cardboard
lid that changes the box silhouette, shifting the computed
mean values away from the true ones.
Another estimate of the error can be expressed as the

relative error ε = |x− xv| /xv, where x is the computed
dimension and xv is the value of the actual dimension. Fi-
gure 9 shows a histogram of the relative errors in the me-
asurements obtained with our scanner prototype for the
boxes shown in Figure 7. The higher relative errors were
computed for boxes (a), (d) and (e) (the ones exhibiting
imperfections) and is in accordance with the experiment
summarized in Figure 8. Considering all measurements,
the mean relative error for all real boxes is 3.75%, indica-
ting very good accuracy.

7.2. ERROR PROPAGATION
The error associated to a variable w computed from a

set of experimental data can be estimated using the fol-
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Figure 8. Confidence intervals computed from measurements of the
edges of the boxes shown in Figure 7. The boxes edges are sorted by

length.

lowing error propagation model [25]:

Λw = ∇f Λϑ ∇fT (15)

where Λw is the covariance matrix that models the errors
in w;∇f is the Jacobian matrix for the function f(ϑ) that
computes each term of w from the n input variables; and
Λϑ is the covariance matrix that models the errors of the
input variables. The model assumes a Gaussian distribu-
tion of the errors around the mean values estimated by
f(ϑ) and allows the computation of confidence intervals
for the length of each visible edge using a single input
image.
To apply this error propagation model, one needs to

estimate the error associated to each input variable. In the
proposed method, the input variables are:

• hi = (ρi, θi)
T , 0 ≤ i ≤ 5: the coefficients of the

normal equation of the supporting lines for the si-
lhouette edges (12 variables);

• pj =
(
xpj

, ypj

)T , 0 ≤ j ≤ 1: the image coordinates
of the laser dots (4 variables);

• dlb: the distance between the laser beams (1 varia-
ble);

• K: the camera’s intrinsic-parameters matrix (5 vari-
ables);

• L = (XL, YL, ZL)T : the laser beam direction (3
variables).

So, Λϑ is a 25 × 25 covariance matrix, comprised by
the variances and covariances of all input variables:

Λϑ = diag (Λh0
, . . . ,Λh5

, Λp0
, Λp1

, Λddb
, ΛK , ΛL)

(16)

Figure 9. Histogram of the relative errors in the computed dimensions
for the edges of the boxes in Figure 7.

Given these variables, the Jacobian of the function that
computes the length of the target box edges can be ob-
tained as shown in Equation 17. The partial derivatives
in ∇f are calculated using the chain rule over the set of
equations presented in Section 3.

∇f =
(

∂w
∂ρ0

∂w
∂θ0

. . . ∂w
∂XL

∂w
∂YL

∂w
∂ZL

)
(17)

The error propagation model expressed by Equati-
ons 15, 16 and 17 allows our system to estimate the un-
certainty associated with the measurement of each edge
of the box in real time. This information can be used to
discard unreliable measurements, which may result if the
box is relatively far from the camera, or if one of the box
edges approaches a direction almost perpendicular to the
cameras image plane.
Special care must be taken when choosing the dis-

tance between the laser beams. The uncertainty in the
computed dimensions increases as the lasers distance de-
creases, because the relative error tends to increase as the
distance becomes smaller. However, the distance between
the laser beams constrains the minimal accepted size for
a box, since both laser dots must fall inside the same face.
So, for a given application, one should consider a trade-
off between the minimal box size and the accepted uncer-
tainty in the measurements.

8. CONCLUSIONS AND FUTURE WORK
We have presented a completely automatic approach

for computing the dimensions of boxes from single pers-
pective projection images in real time. The approach uses
information extracted from the silhouette of the target box
and removes the projective ambiguity with the use of two
parallel laser beams. We demonstrated the effectiveness
of the proposed techniques by building a prototype of a
scanner and using it to compute the dimensions of seve-
ral real boxes even when the edges of the target box are
partially occluded by other objects.
We have also introduced an algorithm for extracting

box silhouettes in the presence of partially occluded ed-
ges, an efficient voting scheme for grouping approxima-
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tely collinear segments using a Hough transform, and a
statistical model for background removal that works with
a moving camera and under different lighting conditions.
We validated the proposed approach performing a statisti-
cal analysis over measurements obtained with our scanner
prototype from real boxes. In addition, we presented an
analytical derivation of uncertainty propagated along the
entire computation chain that allows real-time estimation
of the error in the computed measurements. The statistics
and experimental validation have shown that the proposed
approach is accurate and precise.
Our algorithm for computing box dimensions can also

be used by applications requiring heterogeneous back-
grounds. For that, background detection can be perfor-
med using a technique like the one described in [14]. In
this case, the camera should remain static while the boxes
are moved on some conveyor belt.
We believe that these ideas may lead to optimizations

on several procedures that are currently based on manual
measurements of box dimensions. We are currently ex-
ploring ways of using arbitrary backgrounds with a mo-
ving camera.
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