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Abstract
Metric Access Methods (MAM) are employed to ac-

celerate the processing of similarity queries, such as the
range and the k-nearest neighbor queries. Current meth-
ods, such as the Slim-tree and the M-tree, improve the
query performance minimizing the number of disk ac-
cesses, keeping a constant height of the structures stored
on disks (height-balanced trees). However, the overlap-
ping between their nodes has a very high influence on
their performance. This paper presents a new dynamic
MAM called the DBM-tree (Density-Based Metric tree),
which can minimize the overlap between high-density
nodes by relaxing the height-balancing of the structure.
Thus, the height of the tree is larger in denser regions, in
order to keep a tradeoff between breadth-searching and
depth-searching. An underpinning for cost estimation on
tree structures is their height, so we show a non-height
dependable cost model that can be applied for DBM-tree.
Moreover, an optimization algorithm called Shrink is also
presented, which improves the performance of an already
built DBM-tree by reorganizing the elements among their
nodes. Experiments performed over both synthetic and
real world datasets showed that the DBM-tree is, in av-
erage, 50% faster than traditional MAM and reduces the
number of distance calculations by up to 72% and disk
accesses by up to 66%. After performing the Shrink algo-
rithm, the performance improves up to 40% regarding the
number of disk accesses for range and k-nearest neigh-
bor queries. In addition, the DBM-tree scales up well,
exhibiting linear performance with growing number of el-
ements in the database.
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dexing, Similarity Queries.

1. Introduction
The volume of data managed by the Database Man-

agement Systems (DBMS) is continually increasing.
Moreover, new complex data types, such as multimedia
data (image, audio, video and long text), geo-referenced
information, time series, fingerprints, genomic data and
protein sequences, among others, have been added to
DBMS.
The main technique employed to accelerate data re-

trieval in DBMS is indexing the data using Access
Methods (AM). The data domains used by traditional
databases, i.e. numbers and short character strings, have
the total ordering property. Every AM used in traditional
DBMS to answer both equality (= and �=) and relational
ordering predicates (≤, <, ≥ and >), such as the B-trees,
are based on this property.
Unfortunately, the majority of complex data domains

do not have the total ordering property. The lack of this
property precludes the use of traditional AM to index
complex data. Nevertheless, these data domains allow
the definition of similarity relations among pairs of ob-
jects. Similarity queries are more natural for these data
domains. For a given reference object, also called the
query center object, a similarity query returns all objects
that meet a given similarity criteria. Traditional AM rely
on the total ordering relationship only, and are not able
to handle these complex data properly, neither to answer
similarity queries over such data. These restrictions led
to the development of a new class of AM, the Metric Ac-
cess Methods (MAM), which are well-suited to answer
similarity queries over complex data types.
A MAM such as the Slim-tree [15, 14] and the M-tree
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[9] were developed to answer similarity queries based on
the similarity relationships among pairs of objects. The
similarity (or dissimilarity) relationships are usually rep-
resented by distance functions computed over the pairs of
objects of the data domain. The data domain and distance
function defines a metric space or metric domain.
Formally, a metric space is a pair < S, d() >, where

S is the data domain and d() is a distance function that
complies with the following three properties:

1. symmetry: d(s1, s2) = d(s2, s1);

2. non-negativity: 0 < d(s1, s2) < ∞ if s1 �= s2 and
d(s1, s1) = 0; and

3. triangular inequality: d(s1, s2) ≤ d(s1, s3) +
d(s3, s2),

∀s1, s2, s3 ∈ S. A metric dataset S ⊂ S is a set of objects
si ∈ S currently stored in a database. Vectorial data with
a Lp distance function, such as Euclidean distance (L2),
are special cases of metric spaces. The two main types of
similarity queries are:

• Range query - Rq: given a query center object
sq ∈ S and a maximum query distance rq, the query
Rq(sq, rq) retrieves every object si ∈ S, such that
d(si, sq) ≤ rq. An example is: “Select the proteins
that are similar to the protein P by up to 5 purine
bases”, which is represented as Rq(P, 5);

• k-Nearest Neighbor query - kNNq: given a query
center object sq ∈ S and an integer value k ≥ 1,
the query kNNq(sq, k) retrieves the k objects in S

that have the smallest distance from the query ob-
ject sq, according to the distance function d(). An
example is: “Select the 3 protein most similar to
the protein P ”, where k=3, which is represented as
kNNq(P, 3).

This paper presents a new dynamic MAM called
DBM-tree (Density-Based Metric tree), which can min-
imize the overlap of nodes storing objects in high-density
regions relaxing the height-balance of the structure.
Therefore, the height of a DBM-tree is larger in higher-
density regions, in order to keep a compromise between
the number of disk accesses required to breadth-search
various subtrees and to depth-searching one subtree. As
the experiments will show, the DBM-tree presents better
performance to answer similarity queries than the rigidly
balanced trees. This article also presents an algorithm to
optimize DBM-trees, called Shrink, which improves the
performance of these structures reorganizing the elements
among the tree nodes.
The experiments performed over synthetic and real

datasets show that the DBM-tree outperforms the tradi-
tional MAM, such as the Slim-tree and the M-tree. The

DBM-tree is, in average, 50% faster than these traditional
balanced MAM, reducing up to 66% the number of disk
accesses and up to 72% the number of distance calcula-
tions required to answer similarity queries. The Shrink
algorithm, helps to achieve improvements of up to 40%
in number of disk accesses to answer range and k-nearest
neighbor queries. Moreover, the DBM-tree is scalable,
exhibiting linear behavior in the total processing time, the
number of disk accesses and the number of distance cal-
culations regarding the number of indexed elements.
A preliminary version of this paper was presented at

SBBD 2004 [20]. Here, we show a new split algorithm
for the DBM-tree. Additionally, this paper shows an ac-
curate cost function for the DBM-tree using only informa-
tion easily derivable from the tree, thus providing a cost
function that does not depend upon a constant tree-height.
A cost function is fundamental to enable the DBM-tree to
be employed in real DBMS. Every tree-based AM used in
existing DBMS uses the height of the tree as the main pa-
rameter to optimize a query plan. As the DBM-tree does
not have a reference height, every existing theory about
query plan optimizations are knocked out when using a
DBM-tree. Therefore, the cost function presented in this
paper is a fundamental requirement to enable using DBM-
trees in a real DBMS.
The remainder of this paper is structured as follows:

Section 2 presents the basic concepts and Section 3 sum-
marizes the related works. The new metric access method
DBM-tree is presented in Section 4. Section 5 describes
the experiments performed and the results obtained. Fi-
nally, Section 6 gives the conclusions of this paper and
suggests future works.

2. Basic Concepts
Access Methods (AM) are used by DBMS to improve

performance on retrieval operations. The use of meaning-
ful properties from the objects indexed is fundamental to
achieve the improvements. Using properties of the data
domain, it is possible to discard large subsets of data with-
out comparing every stored object with the query object.
For example, consider the case of numeric data, where the
total ordering property holds: this property allows divid-
ing the stored numbers in two sets: those that are larger
and those that are smaller than or equal to the query ref-
erence number. Hence, the fastest way to perform the
search is maintaining the numbers sorted. Thus, when
a search for a given number is required, comparing this
number with a stored one enables discarding further com-
parisons with the part of the data where the number cannot
be in.
An important class of AM are the hierarchical struc-

tures (trees), which enables recursive processes to index
and search the data. In a tree, the objects are divided in
blocks called nodes. When a search is needed, the query
object is compared with one or more objects in the root
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node, determining which subtrees need to be traversed,
recursively repeating this process for each subtree that is
able to store answers.
Notice that whenever the total ordering property ap-

plies, only a subtree at each tree level can hold the an-
swer. If the data domain has only a partial ordering prop-
erty, then it is possible that more than one subtree need
to be analyzed in each level. As numeric domains pos-
sess the total ordering property, the trees indexing num-
bers requires the access of only one node in each level
of the structure. On the other hand, trees storing spatial
coordinates, which have only a partial ordering property,
require searches in more than one subtree in each level of
the structure. This effect is known as covering, or overlap-
ping between subtrees, and occurs for example in R-trees
[12].
Hierarchical structures can be classified as (height-

)balanced or unbalanced. In the balanced structures, the
height of every subtree is the same, or at most changes by
a fixed amount.
The nodes of an AM used in a DBMS are stored in

disk using fixed size registers. Storing the nodes in disk is
essential to warrant data persistence and to allow handling
any number of objects. However, as disk accesses are
slow, it is important to keep the number of disk accesses
required to answer queries small.
Traditional DBMS build indexes only on data holding

the total ordering property, so if a tree grows deeper, more
disk accesses are required to traverse it. Therefore it is im-
portant to keep every tree the shallowest possible. When
a tree is allowed to grow unbalanced, it is possible that
it degenerates completely, making it useless. Therefore,
only balanced trees have been widely used in traditional
DBMS.
A metric tree divides a dataset into regions and

chooses objects called representatives or centers to rep-
resent each region. Each node stores the representatives,
the objects in the covered region, and their distances to
the representatives. As the stored objects can be repre-
sentatives in other nodes, this enables the structure to be
organized hierarchically, resulting in a tree. When a query
is performed, the query object is first compared with the
representatives of the root node. The triangular inequality
is then used to prune subtrees, avoiding distance calcula-
tions between the query object and objects or subtrees in
the pruned subtrees. Distance calculations between com-
plex objects can have a high computational cost. There-
fore, to achieve good performance in metric access meth-
ods, it is vital to minimize also the number of distance
calculations in query operations.
Metric access methods exhibits the node overlapping

effect, so the number of disk accesses depends both on the
height of the tree and on the amount of overlapping. In
this case, it is not worthwhile reducing the number of lev-
els at the expense of increasing the overlapping. Indeed,
reducing the number of subtrees that cannot be pruned at
each node access can be more important than keep the

tree balanced. As more node accesses also requires more
distance calculations, increasing the pruning ability of a
MAM becomes even more important. However, no pub-
lished access method took this fact into account so far.
The DBM-tree presented in this paper is a dynamic

MAM that relax the usual rule that imposes a rigid height-
balancing policy, therefore trading a controlled amount of
unbalancing at denser regions of the dataset for a reduced
overlap between subtrees. As our experiments show, this
tradeoff allows an overall increase in performance when
answering similarity queries.

3. Related Works
Plenty of Spatial Access Methods (SAM) were pro-

posed for multidimensional data. A comprehensive sur-
vey showing the evolution of SAM and their main con-
cepts can be found in [11]. However, the majority of them
cannot index data in metric domains, and suffer from the
dimensionality curse, being efficient to index only low-
dimensional datasets.
An unbalanced R-tree called CUR-tree (Cost-Based

Unbalanced R-tree) was proposed in [16] to optimize
query executions. It uses promotion and demotion to
move data objects and subtrees around the tree taking into
account a given query distribution and a cost model for
their execution. The tree is shallower where the most fre-
quent queries are posed, but it needs to be reorganized ev-
ery time a query is executed. This technique works only
in SAM, making it infeasible to MAM.
Considering cost models, a great deal of work were

also published regarding SAM [17]. However they rely on
data distribution in the space and other spatial properties,
what turns them infeasible for MAM.
The techniques of recursive partitioning of data in

metric domains proposed by Burkhard and Keller [5]
were the starting point for the development of MAM. The
first technique divides the dataset choosing one represen-
tative for each subset, grouping the remaining elements
according to their distances to the representatives. The
second technique divides the original set in a fixed num-
ber of subsets, selecting one representative for each sub-
set. Each representative and the biggest distance from the
representative to all elements in the subset are stored in
the structure to improve nearest-neighbor queries.
The MAM proposed by Uhlmann [19] and the VP-

tree (Vantage-Point tree) [21] are examples based on the
first technique, where the vantage points are the repre-
sentatives proposed by [5]. Aiming to reduce the num-
ber of distance calculations to answer similarity queries
in the VP-tree, Baeza-Yates et al. [1] proposed to use the
same representative for every node in the same level. The
MVP-tree (Multi-Vantage-Point tree) [2, 3] is an exten-
sion of the VP-tree, allowing to select M representatives
for each node in the tree. Using many representatives the
MVP-tree requires lesser distance calculations to answer
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similarity queries than the VP-tree. The GH-tree (Gener-
alized Hyper-plane tree) [19] is another method that re-
cursively partitions the dataset in two groups, selecting
two representatives and associating the remaining objects
to the nearest representative.
The GNAT (Geometric Near-Neighbor Access tree)

[4] can be viewed as a refinement of the second tech-
nique presented in [5]. It stores the distances between
pairs of representatives, and the biggest distance between
each stored object to each representative. The tree uses
these data to prune distance calculations using the trian-
gular inequality.
All MAM for metric datasets discussed so far are

static, in the sense that the data structure is built at once
using the full dataset, and new insertions are not allowed
afterward. Furthermore, they only attempt to reduce the
number of distance calculations, paying no attention on
disk accesses. The M-tree [9] was the first MAM to over-
come this deficiency. The M-tree is a height-balanced tree
based on the second technique of [5], with the data ele-
ments stored in leaf nodes.
A cost model based only in the distance distributions

of the dataset and information of the M-tree nodes is pro-
vided in [8].
The Slim-Tree [15] is an evolution from the M-

Tree, embodying the first published method to reduce the
amount of node overlapping, called the Slim-Down.
The use of multiple representatives called, “omni-

foci”, was proposed in [10] to generate a coordinate sys-
tem of the objects in the dataset. The coordinates can
be indexed using any SAM, ISAM (Indexed Sequential
Access Method), or even sequential scanning, generating
a family of MAM called the “Omni-family”. Two good
surveys on MAM can be found in [7] and [13].
The MAM described so far build height-balanced

trees aiming to minimize the tree height at the expense
of little flexibility to reduce node overlap. The DBM-
tree proposed in this paper is the first MAM which keep
a tradeoff between breadth-searching and depth-searching
to allows trading height-balancing with overlap reduction,
to achieve better overall search performance.

4. The MAM DBM-tree
The DBM-tree is a dynamic MAM that grows bottom-

up. The objects of the dataset are grouped into fixed size
disk pages, each page corresponding to a tree node. An
object can be stored at any level of the tree. Its main in-
tent is to organize the objects in a hierarchical structure
using a representative object as the center of each mini-
mum bounding region that covers the objects in a subtree.
An object can be stored in a node if the covering radius of
the representative covers it.
Unlike the Slim-tree and the M-tree, there is only one

type of node in the DBM-tree. There are no distinctions
between leaf and index nodes. Each node has a capac-

ity to hold up to C entries, and it stores a field Ceff to
count how many entries si are effectively stored in that
node. An entry can be either a single object or a sub-
tree. A node can have subtree entries, single object en-
tries, or both. Single objects cannot be covered by any of
the subtrees stored in the same node. Each node has one
of its entries elected to be a representative. If a subtree is
elected, the representative is the center of the root node of
the subtree. The representative of a node is copied to its
immediate parent node, unless it is already the root node.
Entries storing subtrees have: one representative object si

that is the representative of the i-th subtree, the distance
between the node representative and the representative of
the subtree d(srep, si), the link Ptri pointing to the node
storing that subtree and the covering radius of the subtree
Ri. Entries storing single objects have: the single object
sj , the identifier of this object OIdj and the distance be-
tween the object representative and the object d(srep, sj).
This structure can be represented as:

Node [Ceff , array [1..Ceff ] of | < si, d(srep, si), Ptri,
Ri > or < sj , OIdj , d(srep, sj) > |]

In this structure, the entry si whose d(srep, si) = 0 holds
the representative object srep.

4.1. Building the DBM-tree
The DBM-tree is a dynamic structure, allowing to in-

sert new objects at any time after its creation. When the
DBM-tree is asked to insert a new object, it searches the
structure for one node qualified to store it. A qualifying
node is one with at least one subtree that covers the new
object. The Insert() algorithm is shown as Algorithm 1.
It starts searching in the root node and proceeds searching
recursively for a node that qualifies to store the new ob-
ject. The insertion of the new object can occur at any level
of the structure. In each node, the Insert() algorithm
uses the ChooseSubtree() algorithm (line 1), which re-
turns the subtree that better qualifies to have the new ob-
ject stored. If there is no subtree that qualifies, the new
object is inserted in the current node (line 9). The DBM-
tree provides two policies for the ChooseSubtree() al-
gorithm:

• Minimum distance that covers the new object
(minDist): among the subtrees that cover the new
object, choose the one that has the smallest distance
between the representative and the new object. If
there is not an entry that qualifies to insert the new
object, it is inserted in the current node;

• Minimum growing distance (minGDist): similar to
minDist but if there is no subtree that covers the new
object, it is chosen the one whose representative is
the closest to the new object, increasing the covering
radius accordingly. Therefore, the radius of one sub-
tree is increased only when no other subtree covers
the new object.
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Algorithm 1 Insert()
Require: Ptrt: pointer to the subtree where the new object sn will be

inserted.
sn: the object to be inserted.

Ensure: Insert object sn in the Ptrt subtree.
1: ChooseSubtree(Ptrt, sn)
2: if There is a subtree that qualifies then
3: Insert(Ptri, sn)
4: if There is a promotion then
5: Update the new representatives and their information.
6: Insert the object set not covered for node split in the current
node.

7: for Each entry si now covered by the update do
8: Demote entry si.
9: else if There is space in current node Ptrt to insert sn then Insert
the new object sn in node Ptrt.

10: else SplitNode(Ptrt, sn)

The policy chosen by the ChooseSubtree() algo-
rithm has a high impact on the resulting tree. The minDist
policy tends to build trees with smaller covering radii,
but the trees can grow higher than the trees built with the
minGDist policy. The minGDist policy tends to produce
shallower trees than those produced with the minDist pol-
icy, but with higher overlap between the subtrees.
If the node chosen by the Insert() algorithm has no

free space to store the new object, then all the existing en-
tries together with the new object taken as a single object
must be redistributed between one or two nodes, depend-
ing on the redistribution option set in the SplitNode()
algorithm (line 10). The SplitNode() algorithm deletes
the node Ptrt and remove its representative from its par-
ent node. Its former entries are then redistributed between
one or two new nodes, and the representatives of the new
nodes together with the set of entries of the former node
Ptrt not covered by the new nodes are promoted and in-
serted in the parent node (line 6). Notice that the set of
entries of the former node that are not covered by any
new node can be empty. The DBM-tree has three op-
tions to choose the representatives of the new nodes in
the SplitNode() algorithm:

• Minimum of the largest radii (minMax): this op-
tion distributes the entries into at most two nodes,
allowing a possibly null set of entries not covered by
these two nodes. To select the representatives of each
new node, each pair of entries is considered as can-
didate. For each pair, this option tries to insert each
remaining entry into the node having the represen-
tative closest to it. The chosen representatives will
be those generating the pair of radii whose largest
radius is the smallest among all possible pairs. The
computational complexity of the algorithm execut-
ing this option is O(C3), where C is the number of
entries to be distribute between the nodes;

• Minimum radii sum (minSum): this option is sim-
ilar to the minMax, but the two representatives se-
lected is the pair with the smallest sum of the two
covering radii;

• 2-Clusters: this option tries to build at most two
groups. These groups were built choosing objects
that minimizes the distances inside each group, or-
ganizing them as a minimal spanning tree. This op-
tion is detailed as Algorithm 2. The first step of this
algorithm is the creation of C groups, each one of
only one entry. The second step is joining each group
with its nearest group. This step finishes when only
2 groups remain (line 2). The next step checks if
there is a group with only one object then it will be
inserted in the upper level (line 4). A representative
object is chosen (line 5) for each remaining group,
and nodes are created to store their objects (line 6).
The representatives and all their information are pro-
moted to the next upper level. Figure 1 illustrates this
approach applied to a bi-dimensional vector space.
The node to be split is presented in Figure 1(a). Af-
ter building the C groups (Figure 1(b)), the groups
are joined to form 2 groups (Figure 1(c)). Figure
1(d) presets the two resulting nodes after the split by
the 2-Clusters approach.

The minimum node occupation is set when the struc-
ture is created, and this value must be between one ob-
ject and at most half of the node capacity C. If the
ChooseSubTree policy is set to minGDist then all the
C entries must be distributed between the two new nodes
created by the SplitNode() algorithm. After defining the
representative of each new node, the remaining entries are
inserted in the node with the closest representative. After
distributing every entry, if one of the two nodes stores
only the representative, then this node is destroyed and
its sole entry is inserted in its parent node as a single ob-
ject. Based on the experiments and in the literature [9],
splits leading to an unequal number of entries in the nodes
can be better than splits with equal number of entries in
each node, because it tends to minimize overlap between
nodes.
If the ChooseSubTree policy is set to minDist and

the minimum occupation is set to a value lower than half
of the node capacity, then each node is first filled with this
minimum number of entries. After this, the remaining
entries will be inserted into the node only if its covering
radius does not increase the overlapping regions between
the two. The rest of the entries, that were not inserted into
the two nodes, are inserted in the parent node.

Algorithm 2 2-Clusters()
Require: C entries to be redistributed in nodes.
Ensure: A representative set (RepSet) and a entry set to be inserted in

the upper level (PromoSet).
1: Build C groups.
2: Try to join, one by one, the C groups, until only 2 groups remain.
3: for each group that have unique entries. do
4: Insert the unique entries in PromoSet.
5: end for
6: Choose each representative object for each group.
7: Create the nodes for the remaining groups.
8: Insert in RepsSet the generated representatives.
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Figure 1. Exemplifying a node split using the 2-Clusters() algorithm: (a) before the split, (b) forming C groups with
unique nodes, (c) 2 final groups, and (d) the final nodes created with the chosen representatives.

Splittings promote the representative to the parent
node, which in turn can cause other splittings. After the
split propagation in Algorithm 1 (promotion - line 4) or
the update of the representative radii (line 5), it can oc-
cur that former uncovered single object entries are now
covered by the updated subtree. In this case each of these
entries is removed from the current node and reinserted
into the subtree that covers it (demotion in lines 7 and 8).

4.2. Similarity Queries in the DBM-tree
The DBM-tree can answer the two main types of simi-

larity queries: Range query (Rq) and k-Nearest Neighbor
query (kNNq). Their algorithms are similar to those of
the Slim-tree and the M-tree.
The Rq() algorithm for the DBM-tree is described as

Algorithm 3. It receives as input parameters a tree node
Ptrt, the query center sq and the query radius rq. All
entries in Ptrt are checked against the search condition
(line 2). The triangular inequality allows pruning subtrees
and single objects that do not pertain to the region defined
by the query. The entries that cannot be pruned in this way
have their distance to the query object (line 3) calculated.
Each entry covered by the query (line 4) is now processed.
If it is a subtree, it will be recursively analyzed by the
Rq algorithm (line 5). If the entry is an object, then it is
added to the answer set (line 6). The end of the process
returns the answer set including every object that satisfies
the query criteria.

Algorithm 3 Rq()
Require: Ptrt tree to be perform the search, the query object sq and

the query radius rq .
Ensure: Answer set AnswerSet with all objects satisfying the query

conditions.
1: for Each si ∈ Ptrt do
2: if |d(srep, sq)− d(srep, si)| ≤ rq + Ri then
3: Calculate dist = d(si, sq)
4: if dist ≤ rq + Ri then
5: if si is a subtree then Rq(Ptri, sq , rq)
6: else AnswerSet.Add(si).
7: end if
8: end if
9: end for

The kNNq() algorithm, described as Algorithm 4, is
similar to Rq(), but it requires a dynamic radius rk to
perform the pruning. In the beginning of the process, this
radius is set to a value that covers all the indexed objects
(line 1). It is adjusted when the answer set is first filled
with k objects, or when the answer set is changed there-
after (line 12). Another difference is that there is a pri-
ority queue to hold the not yet checked subtrees from the
nodes. Entries are checked processing the single objects
first (line 4 to 12) and then the subtrees (line 13 to 18).
Among the subtrees, those closer to the query object that
intersect the query region are checked first (line 3). When
an object closer than the k already found is located (line
8), it substitutes the previous farthest one (line 11) and
the dynamic radius is adjusted (diminished) to tight fur-
ther pruning (line 12).

4.3. The Shrink() optimization Algorithm
A special algorithm to optimize loaded DBM-trees

was created, called Shrink(). This algorithm aims at
shrinking the nodes by exchanging entries between nodes
to reduce the amount of overlapping between subtrees.
Reducing overlap improves the structure, which results
in a decreased number of distance calculations, total pro-
cessing time and number of disk accesses required to an-
swer both Rq and kNNq queries. During the exchanging
of entries between nodes, some nodes can retain just one
entry, so they are promoted and the empty node is deleted
from the structure, further improving the performance of
the search operations.
The Shrink() algorithm can be called at any time dur-

ing the evolution of a tree, as for example, after the inser-
tion of many new objects. This algorithm is described as
Algorithm 5.
The algorithm is applied in every node of a DBM-tree.

The input parameter is the pointer Ptrt to the subtree to
be optimized, and the result is the optimized subtree. The
stop condition (line 1) holds in two cases: when there is
no entry exchange in the previous iteration or when the
number of exchanges already done is larger than 3 times
the number of entries in the node. This latter condition
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Algorithm 4 kNNq()()
Require: root node Ptrroot, the query object sq and number of ob-

jects k.
Ensure: Answer set with all objects satisfying the query conditions.
1: rk = ∞
2: PriorityQueue.Add(Ptrroot, 0)
3: while ((Node = PriorityQueue.F irst()) <= rk) do
4: for each si ∈ Node do
5: if si is a single object then
6: if |d(srep, sq)− d(srep, si)| ≤ rk then
7: Calculate dist = d(si, sq)
8: if dist ≤ rk then
9: AnswerSet.Add(si).
10: if AnswerSet.Elements() ≥ k then
11: AnswerSet.Cut(k).
12: rk = AnswerSet.MaxDistance().
13: end if
14: end if
15: end if
16: end if
17: end for
18: for each si ∈ Node do
19: if si is a subtree then
20: if |d(srep, sq)− d(srep, si)| ≤ rk + Ri then
21: Calculate dist = d(si, sq)
22: if dist ≤ rk + Ri then
23: PriorityQueue.Add(si, dist).
24: end if
25: end if
26: end if
27: end for
28: end while

assures that no cyclic exchanges can lead to a dead loop.
It was experimentally verified that a larger number of ex-
changes does not improve the results. For each entry sa in
node Ptrt (line 2), the farthest entry from the node repre-
sentative is set as i (line 3). Then search another entry sb

in Ptrt that can store the entry i (line 5). If such a node
exists, remove i from sa and reinsert it in node sb (line
6). If the exchange makes node sa empty, it is deleted,
as well as its entry in node Ptrt (line 7). If this does not
generate an empty node, it is only needed to update the
reduced covering radius of entry sa in node Ptrt (line 8).
This process is recursively applied over all nodes of the
tree (line 9 and 10). After every entry in Ptrt has been
verified, the nodes holding only one entry are deleted and
its single entry replaces the node in Ptrt (line 11).

4.4. A Cost Model for DBM-tree
Cost models for search operations in trees usually rely

on the tree height. Such cost models does not apply for the
DBM-tree. However, an AM requires a cost model in or-
der to be used in a DBMS. Therefore, we developed a cost
model for the DBM-tree, based on statistics of each tree
node. The proposed approach does not rely on the data
distribution, but rather on the distance distribution among
objects. The cost model developed assumes that the ex-
pected probability P () of a node Ptrt to be accessed is
equal to the probability of the node radius RPtrt

plus the
query radius rq be greater or equal to the distance of the
node representative srep of Ptrt to the query object sq.
The probability of Ptrt to be accessed can therefore be

Algorithm 5 Shrink()
Require: Ptrt tree to optimize.
Ensure: Ptrt tree optimized.
1: while The number of exchanges does not exceed 3 times the num-
ber of entries in Ptrt node or no exchanges occurred the previous
iteration do

2: for Each subtree entry sa in node Ptrt do
3: Set entry i from sa as the farthest from the sa representative.
4: for Each entry sb distinct from sa in Ptrt do
5: if The entry i of sa is covered by node sb and this node

has enough space to store i then
6: Remove the entry i from sa and reinsert it in sb.
7: end if
8: end for
9: if node sa is empty then delete node sa and delete the entry

sa from Ptrt.
10: else Update the radius of entry sa in Ptrt.
11: end for
12: end while
13: for Each sa subtree in node Ptrt do
14: Shrink(sa).
15: if node sa has only one entry then Delete node sa and update

the entry sa in Ptrt.
16: end for

expressed as:

P (Ptrt) = P (RPtrt
+ rq ≥ d(srep, sq)) (1)

We assume that every object has a distribution of dis-
tances to the other objects in the dataset, in average, sim-
ilar to the distribution of the other objects. Thus, For-
mula (1) can be approximated by a normalized histogram
Hist() of the distance distribution instead of computing
the distance of the query object to the node representative.
Therefore

P (Ptrt) ≈ Hist(RPtrt
+ rq) (2)

whereHist() is an equi-width histogram of the distances
among pairs of objects of the dataset.
The histogram can be computed calculating the av-

erage number of distances falling at the range defined at
each histogram bin, for every object in the dataset, or only
for a small unbiased sample of the dataset. Thereafter, to
calculate the expected number of disk accesses (DA) for
any Rq, it is sufficient to sum the above probabilities over
all N nodes of a DBM-tree, as:

DA(Rq(sq, rq)) =

N∑

i=1

Hist(RPtri
+ rq) (3)

The cost to keep the histogram is low and requires a
small amount of main memory to maintain the histogram.
Moreover, if it is calculated over a fixed size sample of
the database, it is linear on the database size, making it
scalable for the database size.

5. Experimental Evaluation of the DBM-tree
The performance evaluation of the DBM-tree was

done with a large assortment of real and synthetic

43



Marcos R. Vieira, Caetano Traina Jr., Fabio J. T.
Chino, Agma J. M. Traina

DBM-Tree: Trading Height-Balancing for
Performance in Metric Access Methods

datasets, with varying properties that affects the behav-
ior of a MAM. Among these properties are the embed-
ded dimensionality of the dataset, the dataset size and
the distribution of the data in the metric space. Table
1 presents some illustrative datasets used to evaluate the
DBM-tree performance. The dataset name is indicated
with its total number of objects (# Objs.), the embed-
ding dimensionality of the dataset (E), the page size in
KBytes (Pg), and the composition and source description
of each dataset. The multidimensional datasets uses the
Euclidean distance L2, and theMedHisto dataset uses the
metric-histogramMhisto distance [18].
The DBM-tree was compared with Slim-tree and M-

tree, that are the most known and used dynamics MAM.
The Slim-tree and the M-tree were configured using their
best recommended setup. They are: minDist for the
ChooseSubtre() algorithm, minMax for the split algo-
rithm and the minimal occupation set to 25% of node ca-
pacity. The results for the Slim-tree were measured after
the execution of the Slim −Down() optimization algo-
rithm.
We tested the DBM-tree considering four distinct con-

figurations, to evaluate its available options. The tested
configurations are the following:

• DBM-MM: minDist for the ChooseSubtree() algo-
rithm, minMax for the SplitNode() algorithm and
minimal occupation set to 30% of node capacity;

• DBM-MS: equal to DBM-MM, except using the op-
tion minSum for the SplitNode() algorithm;

• DBM-GMM: minGDist for ChooseSubtree(), min-
Max for SplitNode();

• DBM-2CL: minGDist for ChooseSubtree(), 2-
Clusters for SplitNode().

All measurements were performed after the execution of
the Shrink() algorithm.
The computer used for the experiments was an Intel

Pentium III 800MHz processor with 512MB of RAM and
80 GB of disk space, running the Linux operating system.
The DBM-tree, the Slim-tree and the M-tree MAM were
implemented using the C++ language into the Arbore-
tumMAM library (www.gbdi.icmc.usp.br/arboretum), all
with the same code optimization, to obtain a fair compar-
ison.
From each dataset it was extracted 500 objects to be

used as query centers. They were chosen randomly from
the dataset, and half of them (250) were removed from
the dataset before creating the trees. The other half were
copied to the query set, but maintained in the set of ob-
jects inserted in the trees. Hence, half of the query set
belongs to the indexed dataset by the MAM and the other
half does not, allowing to evaluate queries with centers
indexed or not. However, as the query centers are in fact
objects of the original dataset, the set of queries closely

follows the queries expected to be posed by a real appli-
cation. Each dataset was used to build one tree of each
type, creating a total of thirty trees. Each tree was built in-
serting one object at a time, counting the average number
of distance calculations, the average number of disk ac-
cesses and measuring the total building time (in seconds).
In the graphs showing results from the query evaluations,
each point corresponds to performing 500 queries with
the same parameters but varying query centers. The num-
ber k for the kNNq queries varied from 2 to 20 for each
measurement, and the radius varied from 0.01% to 10% of
the largest distance between pairs of objects in the dataset,
because they are the most meaningful range of radii asked
when performing similarity queries. The Rq graphics are
in log scale for the radius abscissa, to emphasize the most
relevant part of the graph.

5.1. Evaluating the tree building process
The building time and the maximum height were mea-

sured for every tree. The building time of the 6 trees were
similar for each dataset. It is interesting to compare the
maximum height of the various DBM-tree options and the
balanced trees, so they are summarized in Table 2.

The maximum height for theDBM-MM and theDBM-
MS trees were bigger than the balanced trees in every
dataset. The biggest difference was in the ColorHisto,
with achieved a height of 10 levels as compared to only 4
levels for the Slim-tree and the M-tree. However, as the
other experiments show, this higher height does not in-
creases the number of disk accesses. In fact, those DBM-
trees did, in average, less disk accesses than the Slim-tree
and M-tree, as is shown in the next subsection.

It is worth to note that, although the DBM-GMM trees
do not force the height-balance, the maximum height in
these trees were equal or very close to those of the Slim-
tree and the M-tree. This fact is an interesting result that
corroborates our claim that the height-balance is not as
important for MAM as it is for the overlap-free structures.

The data distribution in the levels of a DBM-tree is
shown using the Cities dataset. This visualization was
generated using theMAMView system [6]. TheMAMView
system is a tool to visualize similarity queries and MAM
behavior, making it possible to explore metric trees. This
is possible because this dataset is in a bi-dimensional Eu-
clidean space. Figure 2 shows the indexed objects in the
DBM-MM with each color representing objects at differ-
ent levels. Darker colors indicate objects in deeper levels.
Figure 3(a) shows the objects and the covering radius of
each node, and Figure 2(b) shows only the objects. The
figure shows that the depth of the tree is larger in higher
density regions and that objects are stored in every level
of the structure, as is expected. This figure shows visually
that the depth of the tree is smaller in low density regions.
It also shows that the number of objects in the deepest
levels is small, even in high-density regions.
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Table 1. Description of the synthetic and real-world datasets used in the experiments.
Name # Objs. E Pg Description
Cities 5,507 2 1 Geographical coordinates of the Brazilian cities (www.ibge.gov.br).

ColorHisto 68,040 32 8 Color image histograms from the KDD repository of the University of
California at Irvine (http://kdd.ics.uci.edu). The metric returns the distance
between two objects in a 32-d Euclidean space.

MedHisto 4,247 - 4 Metric histograms of medical gray-level images. This dataset is adimensional
and was generated at GBDI-ICMC-USP. For more details on this
dataset and the metric used see [18].

Synt16D 10,000 16 8 Synthetic clustered datasets consisting of 16-dimensional vectors normally-distributed
(with σ=0.1) in 10 clusters over the unit hypercube. The process to generate this
dataset is described in [9].

Synt256D 20,000 256 128 Similar to Synt16D, but it is with 20 clusters (with σ=0.001) in a 256-d hypercube.

Table 2. Maximum height of the tree for each dataset tested.
Name Cities ColorHisto MedHisto Synt16D Synt256D
M-tree 4 4 4 3 3
Slim-tree 4 4 4 3 3
DBM-MM 7 10 9 6 7
DBM-MS 7 10 11 6 6
DBM-GMM 4 4 5 3 3
DBM-2CL 4 4 5 3 4

5.2. Performance of query execution
We present the results obtained comparing the DBM-

tree with the best setup of the Slim-tree and the M-tree.
In this paper we present the results from four meaningful
datasets (ColorHisto,MedHisto, Synt16D and Synt256D),
which are or high-dimensional or non-dimensional (met-
ric) datasets, and gives a fair sample of what happened.
The main motivation in these experiments is evaluating
the DBM-tree performance with its best competitors with
respect to the 2 main similarity query types: rangeRq and
k-nearest neighbors kNNq.

Figure 4 shows the measurements to answer Rq and
kNNq on these 4 datasets. The graphs on the first col-
umn (Figures 4(a), (d), (g) and (j)) show the average num-
ber of distance calculations. It is possible to note in the
graphs that every DBM-tree executed in average a smaller
number of distance calculations than Slim-tree and M-
tree. Among all, the DBM-MS presented the best result
for almost every dataset. No DBM-tree executed more
distance calculations than the Slim-tree or the M-tree, for
any dataset. The graphs also show that the DBM-tree re-
duces the average number of distance calculations up to
67% for Rq (graph (g)) and up to 37% for kNNq (graph
(j)), when compared to the Slim-tree. When compared
to the M-tree, the DBM-tree reduced up to 72% for Rq

(graph (g)) and up to 41% for kNNq (graph (j)).

The graphs of the second column (Figures 4(b), (e),
(h) and (k)) show the average number of disk accesses
for both Rq and kNNq queries. In every measurement
the DBM-trees clearly outperformed the Slim-tree and the
M-tree, with respect to the number of disk accesses. The
graphs show that the DBM-tree reduces the average num-
ber of disk accesses up to 43% for Rq (graph (h)) and
up to 53% for kNNq (graph (k)), when compared to the

Slim-tree. It is important to note that the Slim-tree is
the MAM that in general requires the lowest number of
disk accesses between every previous published MAM.
These measurements were taken after the execution of the
Slim−Down() algorithm of the Slim-tree. When com-
pared to the M-tree, the gain is even larger, increasing to
up to 54% for Rq (graph (h)) and up to 66% for kNNq

(graph (k)).
The results are better when the dimensionality and the

number of clusters of the datasets increase (as shown for
the Synt16D and Synt256D datasets). The main reason
is that traditional MAM produces high overlapping areas
with these datasets due both to the high dimension and the
need to fit the objects in the inter-cluster regions together
with the objects in the clusters. The DBM-tree achieves a
very good performance in high dimensional datasets and
in datasets with non-uniform distribution (a common sit-
uation in real world datasets).
An important observation is that the immediate result

of reducing the overlap between nodes is a reduced num-
ber of distance calculations. However, the number of disk
accesses in a MAM is also related to the overlapping be-
tween subtrees. An immediate consequence of this fact
is that decreasing the overlap reduces both the number of
distance calculations and of disk accesses, to answer both
types of similarity queries. These two benefits sums up to
reduce the total processing time of queries.
The graphs of the third column (Figures 4(c), (f), (i)

and (l)) show the total processing time (in seconds). As
the four DBM-trees performed lesser distance calcula-
tions and disk accesses than both Slim-tree and M-tree,
they are naturally faster to answer both Rq and kNNq.
The importance of comparing query time is that it reflects
the total complexity of the algorithms besides the number
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Figure 2. Visualization of the DBM-MM structure for the Cities dataset. (a) with the covering radius of the nodes; and
(b) only the objects. It is possible to verify that the structure is deeper (darker objects) in high-density regions, and
shallower (lighter objects) in low-density regions.

Figure 3. Visualization of the Slim-tree structure for the Cities dataset. (a) with the covering radius of the nodes; and (b)
only the objects. It is possible to verify that the structure has the same level in high-density regions and in low-density
regions (level 4).

of distance calculations and the number of disk accesses.
The graphs show that the DBM-tree is up to 44% faster to
answer Rq and kNNq (graphs (i) and (l)) than Slim-tree.
When compared to the M-tree, the reducion in total query
time is even larger, with the DBM-tree being up to 50%
faster for Rq and kNNq queries (graphs (i) and (l)).

5.3. Experiments regarding the Shrink() Algorithm
The experiments to evaluate the improvement

achieved by the Shrink() algorithm were performed on
the four DBM-trees over all datasets shown in Table 1.
As the results of all the datasets were similar, in Figure
5 we show only the results for the number of disk ac-
cesses with the ColorHisto (Figures 5(a) for Rq and (b)
for kNNq) and Synt256D dataset (Figures 5(c) for Rq

and (d) for kNNq).
Figure 5 compares the query performance before and

after the execution of the Shrink() algorithm for DBM-
MM, DBM-MS, DBM-GMM and DBM-2CL for both Rq

and kNNq. Every graph shows that the Shrink() algo-
rithm improves the final trees. The most expressive result
occurs in the DBM-GMM indexing the Synt256D, which
achieved up to 40% lesser disk accesses for kNNq and
Rq as compared with the same structure not optimized.

5.4. Cost of Disk Accesses in the DBM-tree
This experiment evaluates the cost model to estimate

the number of disk accesses of query operations. Only
10% of the dataset objects were employed to build the
histograms Hist, as a larger number of objects slightly
improves the estimation.
Figure 6 shows the predicted values obtained from the

formula 3, and the real measurements obtained executing
the query on the tree. Here we show only experiments
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Figure 4. Comparison of the average number of distance calculations (first column), average number of disk accesses
(second column) and total processing time in seconds (third column) of DBM-tree, Slim-tree and M-tree, for Rq and
kNNq queries for the ColorHisto ((a), (b) and (c) - Rq), MedHisto ((d), (e) and (f) - kNNq), Synt16D ((g), (h) and (i)
- Rq) and Synt256D ((j), (k) and (l) - kNNq) datasets.
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Figure 5. Average number of disk accesses to perform Rq and kNNq queries in the DBM-tree before and after the
execution of the Shrink() algorithm: (a) Rq on ColorHisto, (b) kNNq on ColorHisto, (c) Rq on Synt256D, (d) kNNq

on Synt256D.

for the DBM-MM on MedHisto Figure 6(a), DBM-MS on
Synt16D Figure 6(b), DBM-GMM on ColorHisto Figure
6(c) and DBM-2CL on Synt256D dataset Figure 6(d), as
the others are similar. The real measurements are the av-
erage of 500 queries as before, and the error bars indi-
cate the standard deviation of each measure. It can be
seen that the proposed formula is very accurate, showing
errors within 1% of the real measurement for the DBM-
GMM, and within 20% for the DBM-MS. The estimations
is always within the range of the standard deviation.

5.5. Scalability of the DBM-tree
This experiment evaluated the behavior of the DBM-

tree with respect to the number of elements stored in the
dataset. For the experiment, we generated 20 datasets
similar to the Synt16D, each one with 50,000 elements.
We inserted all 20 datasets in the same tree, totaling
1,000,000 elements. After inserting each dataset we run
the Shrink() algorithm and asked the same sets of 500
similarity queries for each point in the graph, as before.
The behavior was equivalent for different values of k and
radius, thus we present only the results for k=15 and ra-
dius=0.1%.
Figure 7 presents the behavior of the four DBM-tree

considering the average number of distance calculations
for kNNq (a) and for Rq (b), the average number of disk

accesses for kNNq (c) and for Rq (d), and the total pro-
cessing time for kNNq (e) and for Rq (f). As it can be
seen, the DBM-trees exhibit linear behavior as the num-
ber of indexed elements, what makes the method adequate
to index very large datasets, in any of its configurations.

6. Conclusions and Future Works
This paper presents a new dynamic MAM called

DBM-tree (Density-Based Metric tree) that, in a con-
trolled way, relax the height-balancing requirement of ac-
cess methods, trading a controlled amount of unbalanc-
ing at denser regions of the dataset for a reduced overlap
between subtrees. This is the first dynamic MAM that
makes possible to reduce the overlap between nodes re-
laxing the rigid balancing of the structure. The height of
the tree is higher in denser regions, in order to keep a
tradeoff between breadth-searching and depth-searching.
The options to define how to construct a tree and the opti-
mization possibilities in DBM-tree are larger than in rigid
balanced trees, because it is possible to adjust the tree ac-
cording to the data distributions at different regions of the
data space. Therefore, this paper also presented a new
optimization algorithm, called Shrink, which improves
the performance in trees reorganizing the elements among
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Figure 6. Comparation of the real and the estimated number of disk accesses for Rq in the (a) MedHisto dataset using a
DBM-MM tree, (b) Synt16D using a DBM-MS, (c) ColorHisto using a DBM-GMM and (d) Synt256D using a DBM-2CL.

their nodes.
The experiments performed over synthetic and real

datasets showed that the DBM-tree outperforms the main
balanced structures existing so far: the Slim-tree and the
M-tree. In average, it is up to 50% faster than the tra-
ditional MAM and reduces the number of required dis-
tance calculations in up to 72% when answering similar-
ity queries. The DBM-tree spends fewer disk accesses
than the the Slim-tree, that until now was the most effi-
cient MAM with respect to disk access. The DBM-tree
requires up to 66% fewer disk accesses than the balanced
trees. After applying the Shrink() algorithm, the perfor-
mance achieves improvements up to 40% for range and
k-nearest neighbor queries considering disk accesses. It
was also shown that the DBM-tree scales up very well
with respect to the number of indexed elements, present-
ing linear behavior, which makes it well-suited to very
large datasets.
Among the future works, we intend to develop a bulk-

loading algorithm for the DBM-tree. As the construction
possibilities of the DBM-tree is larger than those of the
balanced structures, a bulk-loading algorithm can employ
strategies that can achieve better performance than is pos-
sible in other trees. Other future work is to develop an
object-deletion algorithm that can really remove objects
from the tree. All existing rigidly balanced MAM such as
the Slim-tree and the M-tree, cannot effectively delete ob-
jects being used as representatives, so they are just marked

as removed, without releasing the space occupied. More-
over, they remain being used in the comparisons required
in the search operations. The organizational structure of
the DBM-tree enables the effective deletion of objects,
making it a completely dynamic MAM.

References
[1] Ricardo A. Baeza-Yates, Walter Cunto, Udi Man-

ber, and Sun Wu. Proximity matching using fixed-
queries trees. In 5th Annual Symposium on Com-
binatorial Pattern Matching (CPM), volume 807
of LNCS, pages 198–212, Asilomar, USA, 1994.
Springer Verlag.

[2] Tolga Bozkaya and Meral zsoyoglu. Distance-based
indexing for high-dimensional metric spaces. In
Proceedings of the ACM International Conference
on Management of Data (SIGMOD), pages 357–
368, 1997.

[3] Tolga Bozkaya and Meral zsoyoglu. Indexing
large metric spaces for similarity search queries.
ACM Transactions on Database Systems (TODS),
24(3):361–404, sep 1999.

[4] Sergey Brin. Near neighbor search in large metric
spaces. In Proceedings of the International Confer-

49



Marcos R. Vieira, Caetano Traina Jr., Fabio J. T.
Chino, Agma J. M. Traina

DBM-Tree: Trading Height-Balancing for
Performance in Metric Access Methods

Figure 7. Scalability of DBM-tree regarding the dataset
size executing kNNq queries ((a), (c) and (e)) and Rq

queries ((b), (d) and (f)), measuring the average number
of distance calculations ((a) and (b)), the average number
of disk accesses ((c) and (d)) and the total processing time
((e) and (f)). The indexed dataset was the Synt16D with
1,000,000 objects.

ence on Very Large Data Bases (VLDB), pages 574–
584, Zurich, Switzerland, 1995. Morgan Kaufmann.

[5] W. A. Burkhard and R. M. Keller. Some approaches
to best-match file searching. Communications of the
ACM, 16(4):230–236, apr 1973.

[6] Fabio J. T. Chino, Marcos R. Vieira, Agma J. M.
Traina, and Caetano Traina Jr. Mamview: A visual
tool for exploring and understanding metric access
methods. In Proceedings of the 20th Annual ACM
Symposium on Applied Computing (SAC), page 6p,
Santa Fe, New Mexico, USA, 2005. ACM Press.

[7] Edgar Chvez, Gonzalo Navarro, Ricardo Baeza-
Yates, and Jos Luis Marroqun. Searching in met-
ric spaces. ACM Computing Surveys (CSUR),
33(3):273–321, sep 2001.

[8] P. Ciaccia, M. Patella, and P. Zezula. A cost model
for similarity queries in metric spaces. In ACM Sym-
posium on Principles of Database Systems (PODS),
pages 59–68, 1998.

[9] Paolo Ciaccia, Marco Patella, and Pavel Zezula.
M-tree: An efficient access method for similarity

search in metric spaces. In Proceedings of In-
ternational Conference on Very Large Data Bases
(VLDB), pages 426–435, Athens, Greece, 1997.
Morgan Kaufmann.

[10] Roberto F. Santos Filho, Agma J. M. Traina, Cae-
tano Traina Jr., and Christos Faloutsos. Similar-
ity search without tears: The OMNI family of all-
purpose access methods. In IEEE International
Conference on Data Engineering (ICDE), pages
623–630, Heidelberg, Germany, 2001.

[11] Volker Gaede and Oliver Gnther. Multidimensional
access methods. ACM Computing Surveys (CSUR),
30(2):170–231, 1998.

[12] A. Guttman. R-tree : A dynamic index structure
for spatial searching. In ACM International Confer-
ence on Data Management (SIGMOD), pages 47–
57, Boston, USA, 1984.

[13] Gisli R. Hjaltason and Hanan Samet. Index-driven
similarity search in metric spaces. ACM Transac-
tions on Database Systems (TODS), 28(4):517–580,
dec 2003.

[14] Caetano Traina Jr., Agma J. M. Traina, Christos
Faloutsos, and Bernhard Seeger. Fast indexing
and visualization of metric datasets using slim-trees.
IEEE Transactions on Knowledge and Data Engi-
neering (TKDE), 14(2):244–260, 2002.

[15] Caetano Traina Jr., Agma J. M. Traina, Bernhard
Seeger, and Christos Faloutsos. Slim-trees: High
performance metric trees minimizing overlap be-
tween nodes. In International Conference on Ex-
tending Database Technology (EDBT), volume 1777
of LNCS, pages 51–65, Konstanz, Germany, 2000.
Springer.

[16] K. A. Ross, I. Sitzmann, and P. J. Stuckey. Cost-
based unbalanced R-trees. In IEEE International
Conference on Scientific and Statistical Database
Management (SSDBM), pages 203–212, 2001.

[17] Y. Theodoridis, E. Stefanakis, and T. K. Sellis. Ef-
ficient cost models for spatial queries using R-trees.
IEEE Transactions on Knowledge and Data Engi-
neering (TKDE), 12(1):19–32, 2000.

[18] Agma J. M. Traina, Caetano Traina Jr., Josiane M.
Bueno, and Paulo M. de A. Marques. The met-
ric histogram: A new and efficient approach for
content-based image retrieval. In Sixth IFIP Work-
ing Conference on Visual Database Systems (VDB),
Brisbane, Australia, 2002.

[19] Jeffrey K. Uhlmann. Satisfying general proxim-
ity/similarity queries with metric trees. Information
Processing Letters, 40(4):175–179, 1991.

50



Marcos R. Vieira, Caetano Traina Jr., Fabio J. T.
Chino, Agma J. M. Traina

DBM-Tree: Trading Height-Balancing for
Performance in Metric Access Methods

[20] Marcos R. Vieira, Caetano Traina Jr., Fabio J. T.
Chino, and Agma J. M. Traina. DBM-tree: A dy-
namic metric access method sensitive to local den-
sity data. In XIX Brazilian Symposium on Databases
(SBBD), pages 163–177, Brası́lia, Brazil, 2004.

[21] Peter N. Yianilos. Data structures and algorithms for
nearest neighbor search in general metric spaces. In
Proceedings of the ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 311–321, Austin,
USA, 1993.

51



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [7200.000 7200.000]
>> setpagedevice


