
Journal of the
Brazilian Computer Society

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17
https://doi.org/10.1186/s13173-021-00120-y

RESEARCH Open Access

Amethod for monitoring the coupling
evolution of microservice-based
architectures
Daniel R.F. Apolinário1,2* and Breno B.N. de França2

*Correspondence:
drfapolinario@gmail.com
1Embrapa Digital Agriculture,
Brazilian Agricultural Research
Company, Campinas, Brazil
2Institute of Computing, State
University of Campinas, Campinas,
Brazil

Abstract

The microservice architecture is claimed to satisfy ongoing software development
demands, such as resilience, flexibility, and velocity. However, developing applications
based on microservices also brings some drawbacks, such as the increased software
operational complexity. Recent studies have also pointed out the lack of methods to
prevent problems related to the maintainability of these solutions. Disregarding
established design principles during the software evolution may lead to the so-called
architectural erosion, which can end up in a condition of unfeasible maintenance. As
microservices can be considered a new architecture style, there are few initiatives to
monitoring the evolution of software microservice-based architectures. In this paper,
we introduce the SYMBIOTE method for monitoring the coupling evolution of
microservice-based systems. More specifically, this method collects coupling metrics
during runtime (staging or production environments) and monitors them throughout
software evolution. The longitudinal analysis of the collectedmeasures allows detecting
an upward trend in coupling metrics that could represent signs of architectural
degradation. To develop the proposedmethod, we performed an experimental analysis
of the coupling metrics behavior using artificially generated data. The results of these
experiment revealed the metrics behavior in different scenarios, providing insights to
develop the analysis method for the identification of architectural degradation. We
evaluated the SYMBIOTE method in a real-case open source project called Spinnaker.
The results obtained in this evaluation show the relationship between architectural
changes and upward trends in coupling metrics for most of the analyzed release
intervals. Therefore, the first version of SYMBIOTE has shown potential to detect signs of
architectural degradation during the evolution of microservice-based architectures.

Keywords: Microservices, Maintainability, Coupling metrics, Software evolution,
Software architecture, Software engineering

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-021-00120-y&domain=pdf
http://orcid.org/0000-0002-7636-536X
mailto: drfapolinario@gmail.com
http://creativecommons.org/licenses/by/4.0/

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 2 of 35

Introduction
Companies have established the use of the microservice architectural style in software
development. Scaling agile processes and continuous deployment are among the primary
motivations for its use [1]. Microservices have as their main characteristic the breaking
down of the software into small and independently deployable services that communicate
through lightweight mechanisms [2].
Despite the expected benefits of adopting microservices, this architectural style poses

new challenges for the evolution of systems. Bogner et al. [3] mention that some features
of microservices such as technological heterogeneity and decentralized control may harm
the maintainability of an application when not handled properly. For instance, when a
team responsible for a microservice makes architectural decisions, the lack of a holistic
view of the system may cause bad decisions w.r.t. the integration between microservices.
Throughout the system evolution, it becomes more complex to understand its codebase
and operational environment, which can lead developers to introduce modifications that
damage the architectural integrity of the system [4]. The lack of knowledge related to
code or tools in your environment can lead, for example, a developer to create an unnec-
essary dependency with another service. It is also necessary to consider the architectural
technical debt that can occur even with experienced teams due to external pressures
such as tight deadlines. Over time, the accumulation of architectural issues can cause
architectural degradation [4].
Ideally, microservice-based applications (MSAs) should prevent architectural degrada-

tion based on its characteristics, such as the physical boundaries between services that
inhibit development teams from making convenient changes causing system architec-
ture violation. Other features of MSAs, such as flexibility, scalability, fewer dependency
problems, and separation of concerns, also promote maintainability [3]. Those character-
istics explain the claim that MSAs are resilient to architectural degradation [5]. However,
Lehman’s 7th software evolution law states that if no deliberate action is taken, there is a
tendency for internal quality to degrade. As the number of microservices increases, the
interactions among them tend to increase significantly, causing difficulties in monitor-
ing the system as a whole [6], and its evolution. It calls for methods and tools to support
monitoring the evolution of this type of architecture.
Due to the complexity involving distributed systems, maintaining an overview of these

applications is challenging [7]. Existent monitoring technologies such as tracing, logs,
operational metrics, and alerts [8] are useful for development teams, but there is a short-
age of specific methods and tools to monitor architecture problems that can impact the
maintainability of MSAs.
Therefore, we developed the SYMBIOTE method to monitor the architectural evolu-

tion of MSAs. It uses service coupling metrics to warn developers and architects when
successive changes can negatively affect the system maintainability. We aim to identify
microservices coupling issues throughout the software evolution, answering the research
question: “Is the continuous monitoring of coupling metrics from microservice-based
applications able to indicate architectural degradation?” To answer this, we understand it
is crucial to distinguish regular increasing coupling from harmful degradation.
This paper is an extended version of the work that presents SYMBIOTE [9]. We addi-

tionally evaluated the SYMBIOTE method in a real application called Spinnaker (the
“Method evaluation” section).We use the same set ofmetrics tested in the previous exper-

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 3 of 35

iment. We observed the trend in metrics of the real case is slightly different from the
results of the experiment, which is a sign that the experiment did not cover all the vari-
ety of architectures and evolution that can happen. However, we identified a relationship
between trends in metrics and the architectural changes of the application, which means
the method is able to detect scenarios when architectural changes may cause architecture
degradation.
The remainder of this paper is organized as follows. The “Background” section

describes the background related to microservices and metrics maintainability. In
the “Related work” section, we report the closest related works. The “Research
method” section describes the research method. In the “Analysis of service coupling
metrics” section, we report the experiment used to develop the analysis of proposed
method. In the “The SYMBIOTEmethod” section, we present the proposed solution. The
“Conclusions” section presents the conclusions and future work.

Background
Microservices have been a trend not only for modern new applications but also in the evo-
lution (re-engineering) of monolithic systems. Jamshidi et al. [8] analyze several factors
that have contributed to the emergence and subsequent growth of this architectural style.
Among the main factors, the authors mention the growing demand for scalability and
new practices for software development, such as continuous integration and continuous
deployment, containerization, and cloud technologies. In this context, constant software
changes may impact software architecture.
According to Lehman’s 7th law, there is a tendency for software quality decay during

its evolution. The loss of architectural quality is one of the most significant in the sys-
tem’s maintainability. The architectural decay of software is the phenomenon “1) when
concrete (as-built) architecture of a software system deviates from its conceptual (as-
planned) architecture where it no longer satisfies the key quality attributes that led to its
construction or 2) when the architecture of software system allows no more changes to it
due to changes introduced in the system over time and renders it unmaintainable” [10].
The second part of this definition is a motivation for our work since the coupling is a
relevant aspect regarding well-established design principles and maintainability [11].
Lindvall et al. [12] argue that architectural degradation occurs when constant software

changes can negatively impact its structural complexity. Architects should observe rele-
vant maintenance aspects to avoid architectural degradation. Specifically for microservice
architectures, a “systematic understanding of maintainability as well as metrics to auto-
matically quantify its degrees” are essentials [13]. Systems built on this architecture are
flexible, but managing constraints and dependencies between services is challenging [14].
Regarding metrics, Perepletchikov et al. [15] show that existing maintainability met-

rics for procedural and OO software are not well-suited for service-oriented systems.
Recently, specific metrics and models have been introduced to measure the maintain-
ability of service-oriented systems and microservices [16] [17]. Our work will focus on
coupling metrics as they are directly related to system architecture and represent an
important aspect when managing maintainability [11] [18]. Bogner et al. [17] list several
maintainability metrics for service and microservice-based applications. We present a
subset of the coupling metrics belonging to the maintainability metrics for Service-based
Systems (SBSs) cataloged in [17].

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 4 of 35

The following metrics should be collected per individual service:

• Absolute Importance of the Service (AIS) : number of consumers invoking at least
one operation from a service S1. The higher the AIS, the more important the service
S1 is within the system. Average AIS can be useful for identifying and quantifying the
most critical services.

• Absolute Dependence of the Service (ADS) : number of services on which the S1
service depends. In other words, ADS is the number of services that S1 calls for its
operation to be complete. The higher the ADS, the more this service depends on other
services, i.e., it is more vulnerable to the side effects of failures in the services invoked.

The following metrics work for the entire application:

• Service Coupling Factor (SCF) : measure of the density of a graph’s connectivity.
SCF = SC/(N2 − N), where SC (service coupling) is a sum of all dependencies
between services. That is, each service that can invoke operations from another
service adds one more to this value. N is the total number of services. If we represent
dependencies as a graph, SC is the sum of all edges and N2 − N represents the
maximum oriented edges the graph can have.

• Average number of directly connected services (ADCS) : the average of ADS metric
of all services.

Moreover, metrics presenting the following criteria were not considered for the analysis
of coupling evolution in our work:

1. Derived, repeated, or similar metrics tend to present similar variability and trends
to their primary metrics. For instance, Relative Coupling of Service (RCS) and
Relative Importance of Service (RIS) metrics are not considered as they will
present a similar behavior to ADS and AIS metrics. The System’s Service Coupling
(SSC) metric measures edge density in the dependency graph (similar to the SCF
metric). The SCF metric is repeated in two different research literature sources.

2. Metrics whose definitions are inconsistent were discarded. For instance, the
Absolute Criticality of the Service (ACS) metric is defined as the product of two
other metrics (ADS and AIS). In this case, if a service presents ADS equals zero (no
outgoing edges), then ACS will be zero (no coupling) also regardless of the AIS
value. We consider it offers a misleading regarding the coupling meaning. Thus, we
decided not to use this metric to avoid misinterpretation in the analysis.

3. Metrics of cyclical dependency like Services Interdependence in the System (SIY)
are not used because the mere existence of a single dependency of this type already
constitutes an architectural smell. Therefore, it makes no sense to analyze the
variability or trend of a metric for which we know that the only acceptable value
would be zero.

4. Metrics based on internal elements of a service (classes, packages, operations,
interfaces), as well as those that use weight to differentiate different types of
connections between these elements will not be considered. Our interest in this
initial work is to capture dependencies only at the logical service level and treat
them with the same weight. This is the case with the metrics WISCE, WESICE,

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 5 of 35

WESOCE, ESICSI, EESIOC, SIIEC, SPARF, and SPURF (metrics originally defined
in [16]).

Related work
Some related work focus on maintainability metrics for SOA-based systems, for instance,
proposing coupling metrics [16], and reviewing the literature on SOA metrics and
microservices [17]. Metrics presented in these works lack empirical validation.
De Toledo et al. [19] created a catalog of Architectural Technical Debt (ATD) related to

microservice-based architectures, as well as impacts and solutions for each one of them.
The authors conducted cross-company interviews with professionals to prepare this ATD
map. This study aimed to contribute to the management of ATDs in software develop-
ment. This study provides some evidence that multiple debts increase the probability of
coupling problems between microservices.
To support the evolution of systems based on microservices, Sampaio [20] proposes

a service evolution model. This model aggregates structural, deployment, and execu-
tion information of MSA, but there are no further details regarding the data extraction.
Similarly, Mayer et al. [21] developed an approach to extract architectural information
(static, infrastructure, and runtime) from MSA. In this last work, the authors propose
both static and dynamic strategies to capture architecture-relevant information. In both
works, authors created a small test scenario to verify their proposal feasibility.
Kitajima et al. [22] propose a method to extract information from calls between services

to infer their relationship. The authors use a dynamic approach to gathering information
from the running system. The evaluation of the method used a small test application (not
a real system).
Other works regard the architecture conformance with patterns or standards. ArchCI

[23] is an integrated CI tool to monitor architectural drift (deviation between concrete
and planned) for each deployment in the application integration pipeline. The idea is to
check architectural compliance through a Dependency Constraint Language. In a differ-
ent approach, Ntentos et al. [24] propose an assessment of architecture compliance based
on microservices with well-established coupling patterns. They propose metrics that rep-
resent adherence to patterns. The objective of this work was to evaluate the feasibility of
building a method to measure compliance with standards.
Some works focus on coupling evolution. Sousa et al. [18] present an exploratory

study observing the coupling behavior throughout the evolution of open-source, object-
oriented software. This work is related to ours concerning the time series analysis of
historic version and the use of coupling metrics. However, our work concerns the detec-
tion of architectural problems while the related is interested in establishing coupling
evolution properties.
Jenkins and Kirk [25] used a software component instability metric to analyze the evo-

lution of software architecture using complex network theory. The instability metric is
based on coupling. This work is related to ours in some aspects, but it focuses on show-
ing similarities between the behavior of software graphs with complex networks as well
as predicting the software maintainability, which differs from our goal that is to evaluate
the current architecture for detect potential issues.
The most related work is the GMAT [26], which proposes a tool to obtain the depen-

dency graph of an MSA. This tool implements the static analysis approach to gather

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 6 of 35

information about dependencies. Its main concern is to offer a graphic visualization of
the dependencies between the services to support the monitoring of the evolution of the
software. This tool is not evaluated in a real case. Our work differs mainly in two aspects:
(1) our goal is to detect indications of architectural deterioration whereas GMAT only
generates the dependencies graphs; (2) as GMAT relies on static analysis, it is limited to
several technological constraints such as the use of Java language, Spring Boot Actuator,
Spring Feign, and springfox-swagger2. The capability to accurately identify calls between
services using static declarations is also limited.
Our work uses coupling metrics to evaluate the structure of the architecture over the

continuous software evolution. Therefore, it differs from these mainly because it pro-
poses a dynamic analysis approach to collect the dependencies between services, analyze
trends in the evolution data series, and inform architects when the trends indicate signs
of architectural degradation; it is also evaluated in a real project.

Researchmethod

Our research goal is to monitor the coupling evolution of MSA using metrics, assuming
it can support software engineers on improving software maintainability.
For that, we concentrate on three objectives:

• Define a strategy for collecting the selected coupling metrics from MSAs based on its
concrete (deployed) architecture

• Evaluate the behavior of existing selected metrics over time, considering the
structural characteristics of MSAs

• Create a method to continuously analyze the evolution of the coupling metrics
between services

• Evaluate the proposed method in a real-case application

To achieve them, we defined the following activities:
Literature review: we performed an ad hoc literature review on software mainte-

nance metrics for service and microservice-based architectures. We identified two recent
studies compiling metrics for services and microservices [16, 17].
Selecting maintainability metrics: Bogner et al. [17] present a literature review onmain-

tainabilitymetrics for service-oriented andmicroservice-based systems, but the identified
ones lack empirical validation. From this review, we selected a subset of coupling metrics
(see the “Background” section) to be used by the proposed method.
Defining a strategy for metrics collection: Firstly, we analyzed which software informa-

tion we needed to collect. For the selected coupling metrics, we needed to identify service
dependencies. Afterward, we decided on using the static or dynamic analysis to gather the
dependencies between the services. Next, we defined the collection strategy and searched
for existing tools to support it.
Develop the method for monitoring the coupling evolution of MSA: We designed an

experiment (details in the “Analysis of service coupling metrics” section) that simulates
the MSA evolution (represented as dependency graphs). The goal of this experiment is to
characterize the behavior of the metrics in face of different changes over time. For that,

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 7 of 35

we use artificially generated data as it allows us to verify their behavior under different
conditions, such as application size and structure.
Evaluate the proposed method in a real-case MSA: After developing the method, we

design a study in retrospect based on a real case (open source software), so that we
can characterize the method’s effectiveness on identifying meaningful changes on the
application coupling over time.
Although we recognize the existence of publicly available MSA repositories, some hin-

drances cannot be disregarded. Zhou et al. report the gap of benchmark systems reflecting
the characteristics of real microservice systems [27]. In [28], the authors create a dataset
of MSA open source projects. Most of the applications in this dataset are demo or toy
projects. Furthermore, a suitable case for evaluating the proposed method demands (i) to
be a real case; (ii) to have at least 10 stable releases to be able to detect trends and vari-
ations in metrics, besides, unstable releases do not allow to perform dynamic analysis;
(iii) being an active project, as our experience (SiteWhere, Spinnaker, OpenEBS, Lelylan,
Magda, and others) shows the deployment of this kind of system can become unfeasible
without minimum support.

Analysis of service couplingmetrics
Analyzing metrics individually per microservice could lead to misunderstandings about
the evolution of the complete system. This way, we use the Gini coefficient to analyze
both the ADS and AIS metrics (described in the “Background” section).
The Gini coefficient is currently widely used tomeasure the distribution of wealth in the

field of Economics. This index has the advantage of working with a [0;1] interval regard-
less of the statistical distribution of the data. Its value reveals how unequal the values of
the coupling metrics (ADS and AIS) are among microservices in the same application.
Thus, it allows us to observe if few microservices concentrate coupling. For example, the
Single Responsibility Principle is an important design principle for microservices, in which
one service has one single responsibility. A Gini coefficient with a higher value may indi-
cate a possible violation of the Single Responsibility Principle, as there must be a small
number of services concentrating incoming or outgoing calls (logical coupling). There
are several applications of the Gini coefficient in the literature for the software evolution
analysis [29, 30]. However, none of these works applies it in the context of microservices.
We calculated the Gini coefficient G as defined in [31] (1).

G =
∑n

i=1(2i − n − 1)xi
n

∑n
i=1 xi

(1)

where the values xi, xi+1, ...xn are ordered, n is the number of values to be computed,
and i represents the rank of the value x. G assumes values between 0 and 1, in which
the value 0 indicates perfect equality, whereas values closer to 1 indicate more inequality
among the observations. It is important to emphasize that the Gini index cannot quantify
whether the observations have high or low mean values because it just measures how
distributed the values are. That is, the Gini index will be equal to zero if all observations
have maximum values and also if they have minimum values, since all services in each one
have the same values. Therefore, the metrics based on the Gini index support the analysis
of coupling distribution, but it can be inconclusive to assess whether the average level of
coupling between services of an application is high or low. Finally, the derived metrics

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 8 of 35

presented in the following will be analyzed along with the SCF and ADCS metrics (both
explained in the “Background” section), which are more suitable to assess the average
level of coupling:

• Gini coefficient for AIS : calculated using the individual AIS measures for each
microservice in a given release. That is, this coefficient indicates how the importance
of services is distributed among themselves. Values close to zero mean an even
distribution of importance among the microservices. Otherwise, values close to one
mean the importance are very concentrated in a few services. To simplify, we call this
metric Service Importance Distribution (SID).

• Gini coefficient for ADS: calculated using the individual ADS measures for each
microservice in a given release. That is, this coefficient indicates how balanced are
dependencies among services. When close to zero, it represents evenly distributed
dependencies among the microservices. Otherwise, values close to one mean that few
services concentrate many dependencies. To simplify, we call this metric
Service Dependency Distribution (SDD).

Wedesigned an experiment for testing the behavior of themetrics in different scenarios.
We used artificially generated dependency graphs representing microservice architec-
tures, as it is unfeasible to have real MSAs representing all the verified conditions. The
generated data are directed graphs, in which nodes represent the microservices and
edges represent the dependencies (incoming and outgoing). We developed a tool [32] to
generate and evolve them.

Goal and hypotheses

This study aims to analyze four coupling metrics, for the purpose of characterizing with
respect to their behavior over time, in the context of artificially generated dependency
graphs representing MSA releases. For each metric, we test the following hypotheses:
H0: There is not a significant difference in trends in the evolution of the one

SID/SDD/ADCS/SCF metric between introducing and removing an architecture smell
throughout releases of an MSA.
H1: There is a significant difference in trends in the evolution of the one

SID/SDD/ADCS/SCF metric between introducing and removing an architecture smell
throughout releases of an MSA.

Experimental design

We adopted a full factorial design. Table 1 shows the scenarios resulting from the com-
binations between the two factors (graph size and graph evolution scenario) and their
levels.

Table 1 Experimental design

Scenario Graph size Graph evolution

1 Small Improvement

2 Small Degradation

3 Medium Improvement

4 Medium Degradation

5 Large Improvement

6 Large Degradation

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 9 of 35

Graph structure

In the absence of a referencemodel forMSAs, we adopted the Barabasi-Albert model [33],
which is an algorithm for generating random scale-free networks (SFN), whose degree
distribution follows a power-law. Wheeldon et al. [34] and Potanin et al. [35] verified
power-law distribution related to coupling in real Java programs, i.e., the vast majority
classes have few dependencies while few classes have many dependencies. Wen et al.
[36] observed that dependencies between Java packages also follow scale-free proper-
ties. Many other studies [37] [38] observed that software objects have characteristics of
complex networks such as scale-free and power-law. We understand that, semantically,
coupling metrics for (micro)services have the same meaning as OO coupling metrics.
Therefore, we create all dependency graphs using the preferential attachment process
following the power-law.

Graph size

Amicroservice-based systemmay vary in scale. Thus, we define three levels for the appli-
cation size (amount of services) as follows: from five to ten services, it is considered a
small application; from eleven to 25 services, it is medium; above 25 is large; however,
due to computational limitations, we decided to limit it to 60 in this experiment, since we
intend to evaluate the first results before scaling the number of services.

Architecture smells

For the improvement or degradation scenarios, we have chosen two coupling-related
architecture problems: the concentration of incoming dependencies (problem 1) and out-
going dependencies (problem 2) around a single microservice. These problems reflect
symptoms of known architecture smells with evidence of their existence in the field, such
as God Component [39] or Megaservice [40][41], Hub-like Dependency [39], Bottleneck
Service[41], Nanoservices[41], and The Knot[41].
The number of edges to characterize a microservice with high concentration of incom-

ing or outgoing dependencies is defined by a percentage of the total number of services in
the system, which is a parameter of this experiment. Further details on experiment param-
eters and how architecture smells are included and removed from dependency graphs are
available in a GitHub repository available at Zenodo [42].

Graph evolution scenario

We established 21 releases (including the initial release 0) for the whole evolution of
one application. The default changes during the evolution are limited to the inclusion of
nodes. Additionally, we consider two levels for this factor: an improvement scenario and
an degradation one. For the improvement scenario, we introduce one architecture smell in
the first release, and, during the following releases, the main action is to remove the smell.
For the level of degradation of the architecture, the first release is free of architecture smell
and, during the following releases, we introduce an architecture smell incrementally.
In Fig. 1, we present an illustration of an architectural improvement scenario. The I1

service is a node that concentrates four input edges which are considered a high con-
centration since there are few services in this application. In release 7, the only change
between the 21 releases occurs when a newMI1 service is created. Services I2 and I3 are
no longer dependent on I1 but are now dependent onMI1.

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 10 of 35

Fig. 1 Evolution of one small size graph in the improvement scenario

In Fig. 2, we see an example of an architectural degradation scenario. The D3 service
is chosen to concentrate outgoing edges. In releases 8, 16, and 20, nodesMD1, MD2 and
MD3 are included, respectively. The D3 service then becomes dependent on these three
new services, thus increasing its concentration of outgoing edges.

Microservice-related design patterns

Aiming at generating dependency graphs similar to real microservice-based systems, we
apply six usual design patterns found in MSAs [43] and that can also be expressed in
a dependency graph. The selected patterns are API Composition, Message Service Bro-
ker, Externalized Configuration, API Gateway, Service Registry, and Distributed Tracing.
We know that some design patterns can increase coupling and also concentrate incom-
ing or outgoing edges on a few nodes. Therefore, the method is applied to the evolution
of metrics values, performing the comparison with itself, thus avoiding the creation of

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 11 of 35

Fig. 2 Evolution of one small size graph in the degradation scenario

generic thresholds that fail to consider the different architectural decisions of each soft-
ware. The configurations related to the inclusion of these design patterns are available in
the GitHub[42] repository.

Metric trends

We analyze metric trends (up or down) through releases. When there is an upward trend
in ADCS and SCF metric values, we assume the coupling is increasing, and we assume
the coupling decreases when these metrics are trending downward. For the metrics based
on the Gini index (SID and SDD), we acknowledge there may be specific situations in
which this relationship may represent the opposite. For example, if we have an application
in which, in an initial release, all services are fully coupled, we will have SID and SDD
equal to zero. If we are removing one dependency from the same service at each release,
these metrics based on Gini will show an upward trend. However, in this case, we have a
decrease in coupling. Because of that, we chose a suite of metrics and perform the final

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 12 of 35

analysis together, as each one of them is more or less sensitive depending on the coupling
aspect under analysis.

Replications and procedure

We need multiple trials as we have stochastic components to generate graphs so that we
can quantify variation in the results. To determine the minimum number of replications,
we adopted a sequential procedure proposed for simulation modeling [44]. After execut-
ing this procedure, we reached the amount of 210 replications. Based on this, we followed
the experimental procedure:

• Graph generation: based on the factors and levels, the tool generates the dependency
graph corresponding to the first release of each MSA. As we have 6 scenarios and 210
replications each, we generated 1260 experimental units. For all the units in the
improvement scenario, we introduced one architecture smell in the first release.

• Application evolution: according to the evolution scenario, the tool generates a
dependency graph for each of the next 20 releases.

• Metrics calculation: the metrics are calculated for each release of each MSA.
• Metrics analysis: we use the Cox-Stuart test to detect trends for each metric in each

experimental unit, being ten statistical tests per unit considering a range of 12
observations per test. Additionally, we explore trends for the scenarios visually using
the mean values for the coupling metrics evolution.

• Hypothesis testing: we used the chi-square test of independence to evaluate the
experimental hypotheses for each individual replication. Also, we used the Cramér’s
V statistic as the chi-square test is sensitive to large sample sizes.

Experimental results

Firstly, we analyze the general behavior of the metrics. For each scenario, we grouped the
metric values of all replications, and we calculated themean values for each release as they
are independent. Figure 3 shows the plot of the four metrics for the graphs of medium
size as an example of how we can get a visual sense of the metrics with the most evident
upward or downward trends.
In this analysis, the SCF metric presents a downward trend in all scenarios, even

when purposefully introducing smells. Therefore, it is not able to detect the architecture
changes introduced during the experiment. The SCF metric seems to be more sensitive
to the number of nodes in the graph than to the coupling between them since the average
number of edges does not vary significantly during evolution. An increase in SCF would
reveal a chaotic architecture, where the deterioration of the architecture should be evi-
dent. However, in our simulation, there is always growth in the number of microservices,
and in cases there is no such growth, the SCF metric should behave differently.
We also realized the vast majority of cases in architectural degradation scenarios

present an upward trend. In contrast, for ten improvement scenarios, trends are difficult
to be identified only by visual analysis. In general, the SID and SDD metrics seem to be
good indicators for the architecture smells, as their trends are easier to detect when there
is a concentration of input or output edges in few nodes. The ADCS metric shows more
considerable differences in behavior according to the size of the application, performing
better for small applications.

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 13 of 35

Fig. 3 Mean trends for the medium-size graphs

We use the Cox-Stuart test to characterize statistically a trend (upward or downward)
in the series metrics values through the releases. In this experiment, we performed ten
trend tests for each experimental unit (MSA), considering all possible intervals of 12
releases length (from release n to n + 11 successively). For each scenario, we determined
a contingency (see Table 2).
For each MSA, we count as Improvement Scenario and Decreasing Trend when at least

one of the ten tests resulted in Decreasing Trend. For instance (in Table 2 for the Medium
Scenarios), the evolution of 60 applications reveals a significant decreasing trend for
the SID metric when we remove the architecture smell. The same is valid for count-
ing as Degradation Scenario and Increasing Trend; that is when at least one of the ten
tests resulted in Increasing Trend. Similarly, from 210 unities (MSA) in the degradation
scenario, SID revealed a significant increase for 198 MSAs.
We justify this rationale as just one single intervention is made to improve or deteri-

orate the application, so it must affect the series in a unique change-point. Conversely,
Improvement Scenario and Increasing Trend will be computed when there is at least one
test resulting in Increasing Trend and none resulting in Decreasing Trend. The opposite
case (Degradation Scenario and Decreasing Trend) occurs when there is at least one test
resulting in Decreasing Trend and none Increasing Trend. Finally, we count as No Trend
only when all ten tests result in No Trend, i.e., it has no statistical significance.
Based on the contingency table for each scenario, we used the chi-square test of inde-

pendence to verify how correlated are the intended evolution scenarios (Improvement or
Degradation) and the result of the Cox-Stuart test for trend analysis (results in Table 3).
We do not consider the SCF metric for testing the experiment’s hypotheses due to

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 14 of 35

Table 2 Contingency tables for all scenarios

Metrics

Scenarios

Small Medium Large

Impr.1 Degr.2 Impr.1 Degr.2 Impr.1 Degr.2

SID Decreasing trend 73 5 60 12 25 40
No trend 16 0 80 0 113 3
Increasing trend 121 205 70 198 72 167

SDD Decreasing trend 64 11 73 27 79 28
No trend 14 0 85 2 112 3
Increasing trend 132 199 52 181 19 179

ADCS Decreasing trend 132 18 82 67 75 100
No trend 16 9 89 9 109 6
Increasing trend 62 183 39 134 26 104

SCF Decreasing trend 174 210 117 210 97 210
No trend 29 0 85 0 111 0
Increasing trend 7 0 8 0 2 0

1Impr. = improvement evolution scenario
2Degr. = degradation evolution scenario

its anomalous behavior (monotonic-decreasing no matter the scenario), which is also
reflected in Table 2.
Table 3 also presents the Cramer’s V measure. We use it in association with the chi-

square test as the latter is sensitive to large sample sizes. The Cramer’s V measures the
correlation between two nominal variables (architectural evolution scenario and detected
trends) for each coupling metric as an interval between zero (no association) and one
(strong association). We consider rejecting the null hypothesis when the chi-square test
(p-value <0.05) and the Cramer’s V statistic (ϕc > 0.5) result in a significant association.
Therefore, we could not reject H0 in the scenarios: SID metric with small MSAs and

SDD metric with small MSAs. Except for these two combinations of metrics and scenar-
ios, we can reject H0 and accept the H1 for the other 10 combinations (metrics x MSA
size). The SDD metric for large graphs shows great results since Cramér’s V points to
a strong correlation (0.78). The SID metric also has good results, mainly for large and
mediumMSAs. The ADCS metric seems to work appropriately for all MSA sizes.
The presented results warn us regarding the use of the SCF metric and to validate the

use of statistical trend calculations. Ourmethodwill replicate the same analysis procedure
in the last step of SYMBIOTE, which corresponds to the analysis of coupling metrics.

Table 3 Experiment results per metric

Metrics
Graph size

Small Medium Large

SID Chi-square test 96.92 173.13 145.53
Chi-square p-value 9.0e−22 2.5e−38 2.5e−32

Cramér’s V 0.48 0.64 0.59

SDD Chi-square test 65.01 171.76 256.91
Chi-square p-value 7.6e−15 5.0e−38 1.6e−56

Cramér’s V 0.39 0.64 0.78

ADCS Chi-square test 148.36 118.98 142.62
Chi-square p-value 6.1e−33 1.4e−26 1.1e−31

Cramér’s V 0.59 0.53 0.58

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 15 of 35

Threats to validity

We have no empirical evidence whether the model we used to create and evolve the graph
structures used in the experiment resembles the graph structures of real MSAs. However,
we do have evidence on this for other types of software. In architectural terms, the main
difference is that MSAs have an extra level of abstraction (services).
In the wild scenario, several problems can occur together, and there may be problems

that can cancel each other’s effects. However, the controlled use of architecture smells in
this experiment gives us the advantage of isolating the causes of metrics deterioration.
The trend analysis is effective but does not take into account level changes in a time

series, and can cause misinterpretations when this occurs. We mitigate this by using
several intervals for a single evolution so that we could detect multiple change points.
Finally, the chi-square test is sensitive to large sample sizes like the one we have in the

experiment design considering the number of replications. Thus, it may impose a threat to
conclusion validity. However, we associated the Cramér’s V statistic to support the effect
size analysis. Besides, the chi-square test statistic represents the independence magni-
tude, from which we can highlight the difference across the three metrics, corroborating
the results in Table 3 and discussion.

The SYMBIOTEmethod
In this section, we present the SYMBIOTE method for monitoring the evolution of
microservice-based systems using coupling metrics between services (overview in Fig. 4).
This methodwas proposed by Apolinário and de França [9], but we havemade somemod-
ifications to improve the method and apply it in a real case. In the following subsections,
we explain the whole method, including the chosen approaches to collect and analyze the
metrics and we will highlight small changes proposed in this paper.

Approach for collecting metrics

The proposed method is based on the coupling metrics SID, SDD, SCF, and ADCS.
To calculate all of them, we need to build a directed graph, in which nodes represent
microservices and edges represent the dependencies between them. Nonetheless, discov-

Fig. 4 Overview of the proposed method

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 16 of 35

ering every dependency between services in an MSA is a complicated task. Two potential
approaches for generating this graph are static and dynamic analysis.
The static analysis uses only the source code as input and a tool to transform this code

into an abstraction to be manipulated. However, in the case of service coupling metrics,
it is not easy to identify all remote calls. There are several ways to implement a service
call (invocation) in different programming languages. For instance, in Java using REST-
ful1 services, it is possible to call services using low-level native APIs of the language to
establish connections, sending HTTP requests, and handling HTTP responses. However,
we can also use high-level APIs implementing the Java API for RESTful Web Services, or
we can use a framework like Spring Boot that has more than one different abstraction for
consuming services. Remote calls may be through Inversion of Control and Dependency
Injection mechanisms, annotations, configuration files, polymorphism, dynamic binding,
and other alternatives. In other words, extracting coupling metrics only via static analy-
sis means restricting the analysis to particularities of a given programming language or
platform. This way, it would weaken the accuracy of the dependencies between identified
services and the capacity of developing a platform-independent approach.
Alternatively, dynamic analysis potentially discovers dependencies more accurately.

In dynamic analysis, if all services of an application are known, the monitoring of the
requests between services allows us to extract their dependencies. This type of analysis
consumes more resources because it depends on the entire application running. Also,
running a test suite that covers all dependencies between services is vital to success.
It becomes critical since there are no guarantees that existing test suites have enough
coverage in most of the current applications.
Given the advantages and disadvantages of these approaches, we selected the dynamic

analysis, since it is a more comprehensive solution, potentially achieving higher accuracy
for the construction of the dependency graph. It does not depend on particular program-
ming languages or frameworks. Considering this decision, we understand this technique
runs without source code instrumentation to facilitate its practical application.
The next sections detail the five steps of the SYMBIOTE. The first three steps are

performed for each application release in the case of executing it in retrospect.

Step 1: Distributed tracing

Usually, each microservice in an MSA has its source code repository. As each microser-
vice may also have its continuous deployment pipeline, we need to deploy the entire
application first, run the integration tests, so that we can gather the data required to
calculate the coupling metrics. That is the reason for assuming staging as the target
environment for the metric collection step.
In Fig. 4, the integration pipeline (code-build-test cycle) of each microservice builds

this component as a deployment unit for the staging environment. In this environment,
we monitor all service requests to capture calls between services and build their depen-
dency graph. For this, we use a service mesh platform. Also, we successfully tested another
approach based on sniffing HTTP packets inside a Kubernetes cluster network, capable
of detecting asynchronous communication using message queues in a publish-subscribe

1Services following the architectural style REST (Representational State Transfer)

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 17 of 35

style. Other methods could be used as long as it can recognize services and discover their
dependencies.
Microservices can be deployed as containers directly in Virtual Machines, or in a

container orchestrator. For each service deployed in the staging environment, we trans-
parently inject an interceptor (also called sidecar proxy) that is part of the service mesh
framework architecture, with no instrumentation required in the microservice source
code. The sidecar proxy intercepts all incoming and outgoing requests for a service.
Figure 5 shows the microservices communicate exclusively with their interceptor that, in
turn, interacts with each other, logging all request-response information to a distributed
tracing system. Tracing information is fundamental to identify dependencies between
microservices dynamically.

Validation of the approach for collectingmetrics

Due to the complexity of collecting metrics dynamically, we describe the scenario we
developed for a feasibility study of this solution. The intention is to test the extraction
of the information needed to build the dependency graph and to identify the limitations
of the adopted approach. We use a strategy in which no instrumentation is required in
the source code to verify the feasibility of tracking all interactions between services in an
environment in which a microservice-based application runs.
The test scenario (Fig. 5) uses the following technologies:

• Docker: in general, microservices are deployed into a containerized environment.
Docker is one of the most popular container technology used in software
development practice. Figure 5 presents an example (sample application) where each
service (transaction-generator, compute-interest-api, account-database, and
account-summary) is encapsulated into a Docker container, which is deployed into a
Kubernetes POD (a group of one or more containers) managed by a Kubernetes
Cluster.

Fig. 5 Scenario for collecting service metrics

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 18 of 35

• Kubernetes: it is a tool to orchestrate containers and to manage applications and
deployments. Kubernetes have also been widely used in the software industry. It is
not mandatory to use Kubernetes for the method proposed in this work, but it is part
of our testing scenario for integration with Istio.

• Istio: it is a service mesh platform used to manage distributed applications. We have
chosen Istio because it requires no instrumentation in the source code to work, but
as already mentioned in the “Step 1: Distributed tracing” section, it is possible to use
another solution based on network sniffing. Istio Control Plane is the component
responsible for collecting all service requests sent by interceptors (sidecar proxy
services comprising the Istio Data Plane component).

• Jaeger: it is an open-source distributed tracing system used to consume the calls
between services (tracing information) stored on Istio and made available through a
REST API.

We set up an environment with these tools, and we used a sample application avail-
able at GitHub [45]. In Fig. 5, we can see this application composed of their microservices
deployed in this environment. We deployed this application in a Kubernetes cluster. For
each microservice in the staging environment, we inject the sidecar proxy transparently.
The solid arrows (1, 3, and 7) represent communication between them. The dashed
arrows represent the sidecar proxies’ communication with the Istio Control Plane that
feeds the distributed tracing. This way, they communicate exclusively with their sidecar
proxy that, in turn, interacts with other sidecars, sending all request-response information
to the Istio Control Plane.
Therefore, Istio can collect the information we need to assemble a dependency graph

across the microservices from this example application. The dashed arrows (2, 4, 6, 8)
in Fig. 5 represent the dependency information sent from proxies to Istio Control Plane.
This sample application is straightforward enough to evaluate the pathway to obtain the
required information to calculate the metrics. The Jaeger plugin installed in Kubernetes
provides this information.

Step 2: Application test execution

After deploying into a staging environment, integration test cases are executed. The test
suite needs to ensure coverage for all dependencies between services. During the exe-
cution of the tests, the service mesh framework captures all communications between
services and sends them to a distributed tracing system. Therefore, this is an intermedi-
ate step in the SYMBIOTE, whose sole purpose is to capture the application’s behavior in
terms of dependencies between services.
Applications should have a test suite with adequate coverage to ensure their quality. For

SYMBIOTE, we are assuming this suite exercises all remote calls among the services. If
the application has no such test or tests have partial coverage, SYMBIOTE can only work
by collecting data from production.

Step 3: Dependency graph generation

After executing integration tests, the distributed tracing system will have stored all calls
between services. This information can be represented as a dependency graph for each
deployed version. Figure 6 shows the dependency graph of the microservice applica-

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 19 of 35

tion used to test the environment described in Step 1: Distributed tracing section and
illustraded in Fig. 5.
This step can be automated by querying the requests performed during the tests. For

instance, Jaeger exposes an API available returning this request data in JSON format. If
using a network sniffer, it requires a parser to extract the information from a log file.
Each dependency graph instance should be stored to keep track of its evolution over

time. For describing graphs, we suggest using the DOT language [46]. The dependency
graphs from the past releases are input for the collection of metrics.

Step 4: Calculating metrics

From the dependency information, basic AIS and ADS metrics are calculated for each
microservice. Based on this, we calculate the SID, SDD, and ADCS metrics. Although
the results of the experiment alert us to the usefulness of the SCF metric, we decided
to include it again in our suite of metrics (unlike what was proposed in the original
paper) since the experimental units may not represent all possible architecture configu-
rations and evolution paths. For the SCF calculation, we only need the total number of
dependencies and the total number of services.
As an example, we calculate the metrics of the sample application depicted in Fig. 5.

Table 4 presents the microservice metrics AIS and ADS, and Table 5 shows the metrics
for the whole application calculated for this sample scenario.

Step 5: Analysis of collected metrics

The main modification from the original method to the one in this article is the analysis
of the collected metrics.We realize that the interpretation of Gini-basedmetrics (SID and
SDD) must be different from ADCS and SCFmetrics. Therefore, we decided to clarify the
rationale for this analysis and changed the architectural degradation warning mechanism.
This step is based on the result of the experimental analysis of the coupling metrics

(see the “Analysis of service coupling metrics” section). Based on the metrics collected
over time, we can analyze how they evolve. We aim to identify variation in these metrics

Fig. 6 Example of a generated dependency graph

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 20 of 35

Table 4 ADS and AIS coupling metrics per microservices

Microservice AIS ADS

Transaction-generator 0 1

Compute-interest-api 1 1

Account-database 2 0

Account-summary 0 1

that typify violations of architectural principles, such as low coupling. The initial focus
of this work was to identify changes that can have a negative effect, that is, when cou-
pling increases. However, positive variations (decreasing coupling) can also occur and
engineers usually plan for them. Therefore, SYMBIOTE supports software engineers to
track the (positive or negative) effects of architectural changes on the coupling between
services when analyzing the behavior of the metrics and their trends.
For the two Gini-based metrics (SID and SDD), the interpretation is the same: values

closer to zero mean an even coupling distribution among microservices. In contrast, val-
ues closer to one say the opposite, i.e., the coupling distribution among microservices
varies a lot. However, it is not possible to qualify an upward or downward trend for these
metrics w.r.t. improvement or degradation. The main reason for that regards the level of
coupling at the beginning of the trend. For instance, if an evenly distributed and high cou-
pling is observed in the beginning of an upward trend, it may be the case the coupling is
improving since few services are reducing coupling in the next releases; on the other hand,
if a evenly distributed and low coupling is observed in the beginning of an upward trend, it
may be the case the coupling is degrading since few services are now concentrating more
dependencies in the next releases.
For the ADCS and SCF metrics, an upward trend represents a bad indicator, and a

downward trend could be good for the architecture. ADCS metric measures the density
of edges in the graph, so a downward trend also means improved coupling and an upward
trend coupling deterioration, as fewer edges represent lower coupling between services.
The SCF metric measures the ratio between existing and possible dependencies between
microservices; therefore, it is similar to ADCS in meaning but different in its numeric
values. SCF is also more sensitive to the inclusion and exclusion of services. Therefore,
the interpretation of the SCF variation is the same as for ADCS.
We use the Cox-Stuart test to analyze trends for the collectedmetrics. This test is simple

and useful for trending detection. We set α = 0.5 and p − value < 0.05 (confidence
interval of 95%). For each metric of an application, we calculate the trend and classify it
into decreasing, increasing, or no trend.
Individual analysis of the values of a metric can lead to misunderstandings about the

actual behavior. Therefore, the SYMBIOTE takes into account the joint analysis of the
metrics. The method generates a monitoring alert when three out of the four metrics
indicate a significant trend, considering any (upward or downward) trend for SID and
SDD, and only upward trends for ADCS and SCF. Notice that the development team still

Table 5 Coupling metrics for the sample application

SID SDD ADCS SCF

0.58 0.25 0.75 0.25

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 21 of 35

can observe isolated trends for each metric, but no alerts will be emitted, due to possible
increase in false positives for architectural degradation.

Architectural analysis monitoring

The proposed method is entirely automated. A repository stores information about
dependencies and calculated metrics. Whenever new information reaches the repository,
it triggers an event that a dashboard tool consumes through APIs. Also, we propose a
dashboard containing:

• Metrics evolution charts: this element contains three Run Charts (one for each
metric: SID, SDD, ADCS, and SCF). The x-axis represents the releases of the
application, and the y-axis shows the values of the calculated metrics. By the charts, it
is possible to visualize the behavior of each metric throughout the software evolution.
When the Cox-Stuart test detects a trend, the data series is highlighted (for instance,
with a different color). If there is evidence of architectural degradation, it displays an
alert message on this element.

• Dependency graph visualization: graphic of the dependency graph representing the
application’s latest release. Service names can filter the graph, and it is possible to
zoom in and out for better visualization. It is also possible to browse the nodes
(services). When selecting a service, it presents a table with individual values for ADS
and AIS in each release.

• Individual ADS and AIS values: this element consists of two summary tables for the
ADS and AIS metrics, respectively. Each table contains the top five services with the
highest metric values in the last releases in decreasing order.

This way, software architects and developers can monitor the information to make
informed architectural decisions when demanded.

Method evaluation
The experiment with artificially generated data allowed the evaluation of the coupling
metrics and gaining knowledge for the development of the SYMBIOTE analysis method.
However, real applications can be different from the simulations produced in the experi-
ment. Therefore, in this section, we report the retrospective application of the method in
a real case. This evaluation has the purpose of verifying the effectiveness of the method
under a real scenario. Besides, it has the potential to generate future improvements to the
proposed method.

Selecting a real case

Although we recognize the existence of public available MSA repositories, some hin-
drances cannot be disregarded. Recent work has shown some barriers. Aderaldo et al.
[47] identified an existing gap of repeatable empirical research in microservices due to
the low availability of microservice applications to the Software Engineering research
community. Zhou et al. [27] and Jamishidi et al. [8] report the gap of benchmark sys-
tems reflecting the characteristics of real microservice systems. In [28], the authors create
a dataset of MSA open source projects. Most of the applications in this dataset are
demo or toy projects. Furthermore, a suitable case for evaluating the proposed method
demands:

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 22 of 35

1. To be a real case
2. To have at least 10 stable releases to be able to detect trends and variations in

metrics, besides, unstable releases do not allow to perform dynamic analysis
3. Being an active project, as our experience with some projects (SiteWhere,

Spinnaker, OpenEBS, Lelylan, Magda, and others) shows the deployment of this
kind of system is almost unfeasible without minimum support, which also hinders
dynamic analysis

When choosing a real case, we take into account a search for the top projects with
the keyword “microservices” on the GitHub platform and also lists already compiled in
research papers [28] [47] [48]. Based on the above criteria and also considering factors
such as its complete documentation and use by large companies, we chose the Spinnaker
[49] application.

Spinnaker

Spinnaker is an open-source tool for managing continuous software deliveries. It has
features for application-level and deployment-level management. Further details of the
Spinnaker can be found at [49]. Further details on the Spinnaker environment and
configurations used in this validation can be consulted at [50].

Architecture

Figure 7 presents all nine services that integrate Spinnaker in the latest version. Green
and gold boxes are components considered external to the application. This diagram was
useful to verify that our integration tests (the “Integration tests” section) were able to
perform all possible dependencies between services.
The deck component represents the system UI and is not considered a microservice.

The gate service implements the API Gateway design pattern on Spinnaker. Note it has
outgoing dependencies for all other services. Orca is the service responsible for the
orchestration within the application, i.e., it coordinates the execution of the other services.
The clouddriver service is responsible for the integration with cloud provider services.
Front50 is responsible for the persistence of the entities representing Spinnaker’s key con-
cepts. Rosco is responsible for producing VM images for the various supported cloud
providers. The igor service integrates Spinnaker with Continuous Integration tools such
as Jenkins and Travis. Echo is an event router and scheduler to trigger continuous integra-
tion pipelines. The fiat service implements the Spinnaker authorization mechanism, and
Kayenta is responsible for automating the canary analysis feature.

Environment

Setting up an environment to deploy Spinnaker requires performing a series of tasks. Due
to the hardware requirements (18 GB of RAM and a 4 core CPU) to run the Spinnaker,
we deployed it on the Google Cloud Platform (GCP), as in Fig. 8. We installed Spinnaker
in its distributed mode, which is the recommended mode for deployments in production.
This environment followed the model proposed in the Spinnaker documentation2.
Although there are several ways to install Spinnaker, such as using Helm charts, the

Spinnaker documentation strongly recommends using the Halyard tool for any type
of deployment. Halyard is a command-line tool developed in Java that is responsible

2https://spinnaker.io/docs/setup/install/providers/kubernetes-v2/gke/

https://spinnaker.io/docs/setup/install/providers/kubernetes-v2/gke/

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 23 of 35

Fig. 7 Spinnaker components

for Spinnaker’s configuration and deployment activities. When deploying to apply the
SYMBIOTE method, we chose to install Halyard on a VM (Fig. 8) created on the GCP.
In addition to the VM in Google Compute Engine (GCE), we are using Google Iden-

tity and Access Management (IAM) users, roles and permissions, and Google Compute
Storage (GCS) for Spinnaker to create and manage buckets. We also used the Google
Kubernetes Engine (GKE) to create the cluster on which we installed Spinnaker, Istio, and
Kiali (these 2 latest are requirements for the SYMBIOTE method).

Configuration

To configure the basic deployment of a version of Spinnaker, several steps were necessary.
We have followed all the configuration steps described in the Spinnaker documentation.
Much of the additional configuration was required so that we could run the integra-
tion tests that exercise dependencies between services. The most significant complexity
of Spinnaker validation was installing and configuring Spinnaker itself. Specifically for
SYMBIOTE, we installed Istio and Kiali which have simple installation procedures for the
Kubernetes environment. We did not perform performance tests to check if there is any
impact on Spinnaker execution when Istio and Kiali are deployed, but we did not detect

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 24 of 35

Fig. 8 Spinnaker deployment environment overview

any problems of this type during this validation. Ideally, SYMBIOTE should be run in a
test or staging environment and therefore an eventual decrease in performance should
not be a serious problem.

Integration tests

The integration tests in Spinnaker aims to make the services carry out all possible com-
munications with each other. We aim not testing the system’s functionalities, but only a
minimum set that allows us to generate a complete dependency graph. We defined and
implemented some manual testing scenarios to achieve our goal because we did not find
any integration tests in the public Spinnaker repositories.

Releases

We selected Spinnaker versions from major release 1 (first stable release) to deploy and
extract dependency graphs. From it, we selected minor releases starting from 6 to 22
(the latest version when the evaluation was performed). An important aspect to justify
not going back further is a practical reason: older releases have limited documentation,
including their deployment steps, since the Spinnaker team only supports the last three
versions. This way, we avoid working with those past versions to not introduce additional
confounding factors. Initially, we intended to get the full number of versions (considering
major, minor, and bug fix releases). However, at a first glance, we noticed that bug fix
releases did not make structural changes (no coupling-related changes); this explains why
we moved to minor releases only. Then, we intended to analyze all minor releases. So,
the decision to start with minor release 6 was based on the fact that we identified in the
release changelog that minor release 7 was the only one that had a change in the number
of services (addition of 1 new service) and we needed to analyze if themethod was capable
of identifying this in our analysis. We always took the latest patch within a minor release.
Table 6 lists all the releases used.

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 25 of 35

Table 6 Spinnaker releases used

Version number Release date

1 1.6.2 2018-07-26

2 1.7.8 2018-08-29

3 1.8.7 2018-09-28

4 1.9.5 2018-10-01

5 1.10.14 2019-03-01

6 1.11.13 2019-05-01

7 1.12.14 2019-07-08

8 1.13.12 2019-07-29

9 1.14.15 2019-09-16

10 1.15.7 2019-12-03

11 1.16.7 2020-03-09

12 1.17.10 2020-04-03

13 1.18.12 2020-05-26

14 1.19.14 2020-08-13

15 1.20.7 2020-07-22

16 1.21.4 2020-08-13

17 1.22.1 2020-08-31

Collected metrics

For each release listed in Table 6, we configure, deploy, and execute the integration tests.
Istio telemetry captures the dependencies, and the Kiali tool provides this information
visually (all graphics are available at GiHub repository [50]) and also through an API
RESTful. We transformed the JSON output from the Kiali API to the DOT language.
Based on this DOT files, we reuse the tool that extracts and calculate metrics created for
the experiment reported in the “Analysis of service coupling metrics” section.
After that, we created an R script to perform the trend analysis and generate graphs to

visualize the evolution of each of the metrics.
All artifacts used for applying the SYMBIOTE in Spinnaker are available at a public

repository [50].
We compared the graphs from the last release (1.22) with the Spinnaker architecture

available in the online documentation to verify the coverage of our integration tests. We
can see the difference found in Fig. 9 (blue dashed edges are the difference), which shows
that our method could find more dependencies than those illustrated in Fig. 7. We believe
the documentation may be out of date or the illustration refers to a more logical view of
architecture, not highlighting dependencies that are not part of this view. Anyway, this
shows that our strategy of collecting dependencies is adequate.

Results

Table 7 contains information about the 17 releases of Spinnaker analyzed using the SYM-
BIOTE method. The number of services only changes once (from 8 to 9), when in version
1.7 the team added the kayenta service. Dependencies vary from 21 (version 1.6) to 27
(version 1.22), representing an increase of 28.6%. Regarding measures, the values of the
last release are almost always higher than those of the initial release. The SCF metric val-
ues present a slightly different behavior in this regard since its initial and final values are
the same, with a initial downward variation and then upwards.

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 26 of 35

Fig. 9 Dependencies of release 1.22 emphasizing the difference (dashed blue edges) to the architecture
specification

In order to evaluate and present some ways of using the method, we performed two
types of analysis for Spinnaker. First, we used a single interval that contains all 17 releases
(from version 1.6 to 1.22), and in the second, we performed an analysis for eight release
intervals of length 10. Figure 10 presents the trend analysis results for one single interval
containing a total of 17 releases. Therefore, in this first analysis, the SYMBIOTE method
issued an alert for indications of architectural degradation, as the metrics SID, ADCS, and
SCF (three out of four) indicate an upward trend in the metrics values throughout all 17
releases.
Second, Table 8 presents a summary of the trend analysis for each release interval, as

well as the output of the SYMBIOTE method. For the first two intervals, SYMBIOTE did
not detect any signs of architectural degradation (NO in column Alert), because metrics
SID, SDD, and SCF did not detect any type of trend for interval 1, and, in interval 2,

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 27 of 35

Table 7 Spinnaker coupling metrics

Version Services Dependencies SID SDD ADCS SCF

1.6.2 8 21 0.2678571 0.4583333 2.625000 0.3750000

1.7.8 9 23 0.2608696 0.5410628 2.555556 0.3194444

1.8.7 9 22 0.2525253 0.5252525 2.444444 0.3055556

1.9.5 9 23 0.2608696 0.5410628 2.555556 0.3194444

1.10.14 9 23 0.2608696 0.5410628 2.555556 0.3194444

1.11.13 9 24 0.2500000 0.5370370 2.666667 0.3333333

1.12.14 9 24 0.2500000 0.5370370 2.666667 0.3333333

1.13.12 9 23 0.2608696 0.5314010 2.555556 0.3194444

1.14.15 9 25 0.2755556 0.4977778 2.777778 0.3472222

1.15.7 9 25 0.2755556 0.4977778 2.777778 0.3472222

1.16.7 9 26 0.2991453 0.4957265 2.888889 0.3611111

1.17.10 9 26 0.2991453 0.4957265 2.888889 0.3611111

1.18.12 9 26 0.2991453 0.4957265 2.888889 0.3611111

1.19.14 9 26 0.2991453 0.4957265 2.888889 0.3611111

1.20.7 9 26 0.2991453 0.4957265 2.888889 0.3611111

1.21.4 9 27 0.3127572 0.4855967 3.000000 0.3750000

1.22.1 9 27 0.3127572 0.4855967 3.000000 0.3750000

despite the SCF metric indicating an upward trend, SID and SDD metrics have indicated
no trend. For intervals 3 to 8, the method issued an alert for the indication of architectural
degradation, as the metrics SID, ADCS, and SCF showed an upward trend.
For each of themetrics, we also analyzed the intervals that had themost notable changes

(either upward or downward). For these intervals, we investigated what were the main
dependency changes that caused the fluctuations in the metrics values. For all of them,

Fig. 10 Coupling metrics evolution for Spinnaker’s 17-releases interval

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 28 of 35

Table 8 Spinnaker coupling metrics analysis for release intervals

Interval Begin End SID* SDD* ADCS* SCF* Alert

1 1.6.2 1.15.7 N N U N No

2 1.7.8 1.16.7 N N U U No

3 1.8.7 1.17.10 U N U U Yes

4 1.9.5 1.18.12 U D U U Yes

5 1.10.14 1.19.14 U D U U Yes

6 1.11.13 1.20.7 U D U U Yes

7 1.12.14 1.21.4 U D U U Yes

8 1.13.12 1.22.1 U D U U Yes

*D downward trend, N no trend, U upward trend

we were able to find the relationship between architectural changes and variations in the
values of the metrics. For example, we will detail this investigation for the SID metric
below.
Figure 11 shows the SID evolution for the 8 intervals of 10 releases each. We can see

an upward trend for this metric, except for the first 2 intervals (SID Evolution-1 and 2).
We can also notice that, until version 1.12, the SID metric did not present great variation.
However, in the interval starting at 1.13 and ending at 1.16, there was a greater variation
of this metric. Undoubtedly, the changes made between 1.13 and 1.16 are decisive for the
upward trend in the metric. Analyzing the changes between the dependency graph in this
release interval (see Fig. 12), the fiat service received two additional incoming edges (fiat
AIS went from 2 to 3) and igor service received one additional incoming edge (fiat AIS
went from 4 to 6). Considering the AIS average went from 2.5 to 2.8 in the same interval,
fiat and igor services concentrated more input edges, thus explaining the increase in the
value of the SID metric, i.e., the service importance is more unbalanced.

Fig. 11 SID metric evolution for Spinnaker

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 29 of 35

Fig. 12 Differences between releases 1.13 and 1.16

Discussion

The results of the application of SYMBIOTE in a real scenario shows the selected metrics
can reveal the targeted coupling aspects. This way, when investigating the most signif-
icant variations of the metrics, we always explain them with the changes that occurred
in the application architecture. For instance, metrics such as ADCS and SCF, which
measure edge density in the graph, support the observation of the low coupling archi-
tectural principle. Furthermore, the SID and SDD metrics can be useful for identifying
known architecture smells as MegaService, Hub-like Dependency, etc. (the “Architec-
ture smells” section), in which there is a concentration of responsibilities on few nodes,
disregarding principles such as Single Responsibility.
The trend analysis strategy by release interval allows software architects or engineers

to take a snapshot of different moments in the software evolution. As we could observe
in the Spinnaker case, the method did not detect any signs of architectural degradation
in the first eleven releases analyzed when considering at least three metrics. However, the

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 30 of 35

increase in edge density in the graph from the twelfth release analyzed made the method
alert for signs of architectural degradation. That is, in the first releases, even though
ADCS and SCF metrics presents an increasing coupling, the method has not yet consid-
ered it as an indication of architectural degradation. This corroborates with our statement
that not every increase in coupling can be considered an architectural degradation, but
we get more confident when various coupling symptoms accumulate over time.
In Spinnaker, ten releases is the minimum interval length for which the SYMBIOTE

method is able to detect trends. Below that, the method always indicates “No Trend.”
That is, very small release intervals are not enough for the method to detect trends.
Furthermore, it is important to highlight this trend analysis is performed in a project prac-
ticing Continuous Delivery, where releases are shorter in time and amount of changes.
So, the minimum interval may be different depending on the frequency of releases. In
any case, a minimum number of releases shall be required. In the future, the method
could adopt another statistical method for analyzing trends and this minimum number
of releases could be different. However, in the context of CSE, in which releases are fre-
quent, this minimum number should not be a problem, since frequent releases contain
fewer changes.
SYMBIOTE aims to be used as an instrument for decision-making, since in Soft-

ware Engineering practice there may be trade-offs between architectural principles and
software requirements, mainly those related to scalability and following certain design
patterns. For instance, certain patterns increase coupling between services. In Spinnaker,
we canmention the API Gateway pattern implemented by the gate service, which depends
on all the other eight Spinnaker services. In other words, the ADS measure for this ser-
vice is very large when compared to the other services, which means the SDD measure
has also a high value because it reveals an irregular distribution of the ADS metric among
all services.
The SCF metric has a different behavior in Spinnaker when compared to what we

observed in the experiment with artificially generated data, in which the SCF metric
would always decrease. The reason for this is the evolution model used in the previous
experiment always assumes an increase in the number of nodes, while in Spinnaker the
number of nodes increases only once (add 1 service in version 1.7).
The explanation of the SDD behavior needs further consideration. Though all other

metrics are trending upwards, it trends downwards. The first consideration is the SDD
value for the last release (0.4855967) is greater than for the first one (0.4583333). Another
consideration is that this metric presents a significant increase from release 1.6 to 1.7
because a new service is introduced (with ADS = 0) and the gate and orca services (which
already have the largest ADS in the application) increase their ADS by 1, thus unbalanc-
ing the distribution of the ADS metric. Throughout evolution, the dependencies added
mostly vary in source nodes than in target nodes, i.e., a few increase their AIS (worsening
the SID) while the ADS is better distributed (improving the SDD).
One of the possible causes for the increase in dependencies between Spinnaker services

may be the responsibilities of the services are increasing, and the team may be avoid-
ing the creation of other services. Another possibility is that architects have postponed
some dependencies. For example, the authorization service (fiat) received several incom-
ing edges throughout evolution, which may indicate that some services only started to
have an authorization mechanism after some releases.

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 31 of 35

In Spinnaker, most of the analyzed coupling metrics worsen throughout the evolution,
revealing the joint analysis of the metrics made by SYMBIOTE is useful and has a high
potential to diagnose common architectural issues related to tight coupling.
As an answer to our research question, we conclude that, based on the experiment

results and the evaluation in a real case, the continuous monitoring of the four adopted
coupling metrics and the trend analysis embedded in the SYMBIOTE method provide
an effective approach to identify meaningful architectural changes in microservice-based
application coupling, especially considering architectural degradation. Finally, this con-
clusion is limited to the scope of our observations, i.e., the scenarios represented by the
evaluation settings.
The worsening of the metrics may also confirm Lehman’s law, which states there is a

tendency for software quality to decline throughout its evolution. However, due to gen-
eralization limitations of this work, it is not possible to map the conditions in which the
method is more useful or more appropriate yet. Previous knowledge of architecture is also
necessary to be able to state categorically whether the evidence captured by SYMBIOTE
reflects a real situation of architectural degradation or a known technical debt. One future
work is to validate these results with the Spinnaker team and also to execute the method
in other real cases.

Limitations

The dependency between the orca service and kayenta in older releases could not be
reproduced by our tests, since we had problems related to the supported version of Kuber-
netes and GCP. However, we verified in the source code this dependency exists and
therefore we manually include it in the dependency graph before calculating the metrics.
Some scenarios of our integration tests do not run successfully due to quota limita-

tions in GCP or limitations related to version incompatibility between Spinnaker and
cloud providers, Kubernetes API. However, in all these cases, the execution was enough
to exercise calls between the services and capture the dependencies, even if errors occur.
Architectural degradation is not caused only by high coupling. However, the SYM-

BIOTE is unable to detect architectural degradation by factors other than this. For exam-
ple, source code smells internal to microservices may lead to other types of architectural
degradation that cannot be identified by the SYMBIOTE method.
Software engineers who want to track the values of the SID and SDDmetrics per release

should be careful with interpretations based only on the values. They are calculated using
the Gini coefficient and, therefore, values closer to zero not necessarily mean the architec-
ture is good. For instance, if the application is represented by a complete digraph (every
pair of nodes is connected by a pair of edges), the SID and SDD metrics will be 0, but
logically the architecture would be exactly what we want to avoid considering the cyclical
dependencies.
We have no guarantee that in the older versions the captured dependency graphs are

complete. However, when comparing versions, we realize this risk is reduced, as we do
not detect dependencies that disappear over the evolution without a valid reason.
Although the coupling metrics were evaluated in an experiment and SYMBIOTE was

successfully applied in a real case, we cannot ignore that we have generalization problems
in both studies. This implies that, in the wild, we can find microservice architectures with
different structures and evolution from the scenarios faced in this work.

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 32 of 35

One improvement opportunity to the SYMBIOTE regards the selection of trends detec-
tion methods robust enough to deal with fewer data points. Currently, we adopt the
Cox-Stuart, but we could not find any statistical limitation regarding the number of obser-
vations for this test identifying trends. However, for very small samples, the test has less
power. In the metrics experiment, the length of 12 data points was the minimum num-
ber of observations for which the Cox-Stuart method significantly identified a trend. For
any shorter data series, it was not able to detect trends. In the Spinnaker evaluation, we
started with the same length (12). However, as we had less releases, we decided to test
with a lower number of releases. And the minimum we found for this data set was 10
releases. The test could not detect trends for data series with nine or less data points,
no matter the setting. Our goal was to select a test that could point out possible trends
in the smallest possible release window, so that there is not a very large accumulation of
coupling issues. Considering these limitations, the paper points out both the root cause
analysis of what is causing the minimum number of data point variation and the possible
review of the trend test method as future work.
Being a tool to support decision-making, we believe that the impact of the occur-

rence of false positives (alerting architectural degradation when there is none) is reduced
since the responsible development team can assess before acting. In the case of false
negatives, the problem is the method ignoring the possible existence of an architectural
problem and the team not being alerted in time. Therefore, due to the generalization
problem, we cannot guarantee a lack of false negatives in the application of the method in
real cases.
Considering we are currently not aware of methods performing this type of analysis, the

use of this first version of SYMBIOTE should have more advantages than disadvantages
since its role is to alert about common coupling problems and that can be detected in
cases similar to those used in this work. If such coupling problems remain hidden in
software evolution, they can increase maintenance costs in the long term.

Conclusions
Our research goal was to investigate if we could propose an effective method to analyze
a coupling metrics suite over time to support the identification of signs of architectural
degradation. To achieve this, we developed the SYMBIOTE method to monitor coupling
in microservice-based architectures. First, we selected metrics from the literature and
defined a set of 4 metrics. After, we decided to use dynamic analysis to extract the metrics
from the applications. Subsequently, we conducted an experiment to verify the behavior
of the metrics and the analysis procedure used in this experiment fostered the analysis
(last step) in the SYMBIOTE method. Finally, we applied the method in a real case: a CD
tool named Spinnaker.
We have shown the strategy of extracting metrics dynamically is feasibly through a

proof-of-concept in a demo application and then again in a real application. Besides,
dynamic analysis is also more accurate and does not require code instrumentation. The
real-case evaluation has shown that trend analysis by release interval can be a powerful
tool for software development teams to monitor how software coupling evolves in certain
periods. Also, we realized there is a strong relationship between the changes impacting
coupling (which can be common causes of architectural degradation) and the changes in

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 33 of 35

trends of the metrics suite. The use of the four metrics together has more chance to dis-
cover coupling problems since three different aspects of coupling (afferent, efferent, and
density of connections) are covered.
Our work contributed to the empirical validation of metrics proposed in the literature

(ADCS and SCF); the proposition and validation of new coupling metrics for microser-
vices (SID and SDD based on the AIS and ADS metrics in the literature); the proposal
for a dynamic approach to collect metrics at runtime; the experimental results with artifi-
cially generated data indicate the potential of at least three out of four metrics (SID, SDD,
and ADCS showed good results); the application of themethod in a real case revealed that
SYMBIOTE can be very useful for decision-making, thus assisting Software Engineering
professionals in quality monitoring tasks. Therefore, we understand this work presented
some contribution to research in the field of microservice architecture, which is still in its
initial stages.
Future work includes developing a tool to support the SYMBIOTE, to evolve the

method in terms of selected metrics, to differentiate weak and strong dependencies
through weights according to the number of requests between services, to include
change-point analysis in the evolution series, to capture other types of dependencies (for
example indirect dependencies), to evolve the method to allow customizing architectural
degradation alerts, and to validate themethod’s usefulness with experienced professionals
in microservice architecture.

Abbreviations
MSA: Microservice-based applications; SBS: Service-Based Systems; AIS: Absolute Importance of the Service; ADS:
Absolute Dependency of the Service; SCF: Service Coupling Factor; ADCS: Average number of directly connected service;
RCS: Relative Coupling of Service; RIS: Relative Importance of Service; SSC: System’s Service Coupling; ACS: Absolute
Criticality of the Service; SIY :Services Interdependence in the System; SID: Service Importance Distribution; SDD: Service
Dependency Distribution; SFN: Scale-Free Networks; REST: Representational State Transfer

Acknowledgements
Not applicable

Authors’ contributions
Both authors had an equal input in this paper. Both authors read and approved the final manuscript.

Funding
The work is supported by the Brazilian Agricultural Research Corporation (Embrapa) and the National Council for
Scientific and Technological Development (CNPq, Process Number 407478/2018-3).

Availability of data andmaterials
The source code, experimental results, and all generated data supporting the conclusions of this article are at [32].

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 8 March 2021 Accepted: 29 October 2021

References
1. Shahin M, Zahedi M, Babar MA, Zhu L (2018) An empirical study of architecting for continuous delivery and

deployment. Empir Softw Eng 24:1–48
2. Lewis J, Fowle M (2014) Microservices - a definition of this new architectural term. http://martinfowler.com/articles/

microservices.html. Accessed 01 Nov 2018
3. Bogner J, Fritzsch J, Wagner S, Zimmermann A (2018) Limiting technical debt with maintainability assurance – an

industry survey on used techniques and differences with service- and microservice-based systems. In: 2018
IEEE/ACM International Conference on Technical Debt (TechDebt). Association for Computing Machinery, New York.
pp 125–133

4. de Silva L, Balasubramaniam D (2012) Controlling software architecture erosion: a survey. J Syst Softw 85(1):132–151

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 34 of 35

5. Chen L (2018) Microservices: architecting for continuous delivery and devops. In: 2018 IEEE International Conference
on Software Architecture (ICSA). IEEE Computer Society, Los Alamitos. pp 39–397

6. Dragoni N, Giallorenzo S, Lafuente, AL, Mazzara M, Montesi F, Mustafin R, Safina L (2017) Microservices: yesterday,
today, and tomorrow. In: Present and Ulterior Software Engineering. Springer International Publishing, Cham.
pp 195–216

7. Engel T, Langermeier M, Bauer B, Hofmann A (2018) Evaluation of microservice architectures: a metric and
tool-based approach. In: International Conference on Advanced Information Systems Engineering. Springer
International Publishing, Cham. pp 74–89

8. Jamshidi P, Pahl C, Mendonca NC, Lewis J, Tilkov S (2018) Microservices: the journey so far and challenges ahead.
IEEE Softw 35(3):24–35

9. Apolinário DRDF, de França BBN (2020) Towards a method for monitoring the coupling evolution of
microservice-based architectures. In: Proceedings of the 14th Brazilian Symposium on Software Components,
Architectures, and Reuse (SBCARS ’20). ACM. https://doi.org/10.1145/3425269.3425273

10. Riaz M, Sulayman M, Naqvi H (2009) Architectural decay during continuous software evolution and impact of ‘design
for change’ on software architecture. In: International Conference on Advanced Software Engineering and Its
Applications. Springer, Berlin. pp 119–126

11. Binkley AB, Schach SR (1998) Validation of the coupling dependency metric as a predictor of run-time failures and
maintenance measures. In: Proceedings of the 20th International Conference on Software Engineering. IEEE
Computer Society, Los Alamitos. pp 452–455

12. Lindvall M, Tesoriero R, Costa P (2002) Avoiding architectural degeneration: an evaluation process for software
architecture. In: Proceedings Eighth IEEE Symposium on Software Metrics. IEEE Computer Society, Los Alamitos.
pp 77–86

13. Bogner J, Wagner S, Zimmermann A (2017) Towards a practical maintainability quality model for service-and
microservice-based systems. In: Proceedings of the 11th European Conference on Software Architecture:
Companion Proceedings. ACM, New York. pp 195–198

14. Alshuqayran N, Ali N, Evans R (2018) Towards micro service architecture recovery: an empirical study. In: 2018 IEEE
International Conference on Software Architecture (ICSA). IEEE Computer Society, Los Alamitos. pp 47–4709

15. Perepletchikov M, Ryan C, Frampton K (2005) Comparing the impact of service-oriented and object-oriented
paradigms on the structural properties of software. In: OTM Confederated International Conferences “On the Move
to Meaningful Internet Systems”. Springer, Berlin. pp 431–441

16. Perepletchikov M, Ryan C, Frampton K, Tari Z (2007) Coupling metrics for predicting maintainability in
service-oriented designs. In: 2007 Australian Software Engineering Conference (ASWEC’07). IEEE Computer Society,
Los Alamitos. pp 329–340

17. Bogner J, Wagner S, Zimmermann A (2017) Automatically measuring the maintainability of service- and
microservice-based systems: a literature review. In: Proc. of the 27th Int. Workshop on Software Measurement. ACM,
New York. pp 107–115

18. Sousa BL, Bigonha MAS, Ferreira KAM (2019) Analysis of coupling evolution on open source systems. In: Proceedings
of the XIII Brazilian Symposium on Software Components, Architectures, and Reuse (SBCARS ’19). Association for
Computing Machinery, New York. pp 23–32

19. de Toledo SS, Martini A, Sjøberg DIK (2021) Identifying architectural technical debt, principal, and interest in
microservices: a multiple-case study. J Syst Softw 177:110968. https://doi.org/10.1016/j.jss.2021.110968

20. Sampaio AR (2017) Supporting microservice evolution,” proc. - 2017. IEEE Int Conf Softw Maint Evol ICSME
2017:539–543

21. Mayer B, Weinreich R (2018) An approach to extract the architecture of microservice-based software systems. In: 2018
IEEE Symposium on Service-Oriented System Engineering (SOSE). IEEE Computer Society, Los Alamitos. pp 21–30

22. Kitajima S, Matsuoka N (2017) Inferring calling relationship based on external observation for microservice
architecture. In: Intl. Conf. on Service-Oriented Computing. Springer International Publishing, Cham. pp 229–237

23. Pinto AF, Terra R, Guerra E, São Sabbas F (2017) Introducing an architectural conformance process in continuous
integration. J Univ Comput Sci 23(8):769–805

24. Ntentos E, Zdun U, Plakidas K, Meixner S, Geiger S (2020) Assessing architecture conformance to coupling-related
patterns and practices in microservices. In: European Conference on Software Architecture. Springer International
Publishing, Cham. pp 3–20

25. Jenkins S, Kirk SR (2007) Software architecture graphs as complex networks: a novel partitioning scheme to measure
stability and evolution. Inf Sci 177(12):2587–2601

26. Ma S-P, Fan C-Y, Chuang Y, Lee W-T, Lee S-J, Hsueh N-L (2018) Using service dependency graph to analyze and test
microservices. In: 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), vol. 2. IEEE
Computer Society, Los Alamitos. pp 81–86

27. Zhou X, Peng X, Xie T, Sun J, Xu C, Ji C, Zhao W (2018) Benchmarking microservice systems for software engineering
research. In: Proceedings of the 40th International Conference on Software Engineering: Companion Proceeedings
(ICSE ’18). Association for Computing Machinery, New York. pp 323–324

28. Rahman DMI (2019) Taibi: a curated dataset of microservices-based systems. In: Joint Proceedings of the Summer
School on Software Maintenance and Evolution. CEUR-WS, Tampere

29. Vasa R, Lumpe M, Branch P, Nierstrasz O (2009) Comparative analysis of evolving software systems using the gini
coefficient. In: 2009 IEEE International Conference on Software Maintenance. IEEE Computer Society, Los Alamitos.
pp 179–188

30. Adnan SD (2019) Software evolution on azureus bit torrent software: a study on growth and change analysis. J Eng
Sci Technol 14:430–447

31. Xu K (2003) How has the literature on gini’s index evolved in the past 80 years?. Dalhousie University, Economics
Working Paper, Halifax

https://doi.org/10.1145/3425269.3425273
https://doi.org/10.1016/j.jss.2021.110968

Apolinário and França Journal of the Brazilian Computer Society (2021) 27:17 Page 35 of 35

32. Microservices Graph Generation tool and experiment results. https://github.com/daniel-apolinario/microservices-
graph. Accessed 02 Mar 2021

33. Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512
34. Wheeldon R, Counsell S (2003) Power law distributions in class relationships. In: Proceedings Third IEEE International

Workshop on Source Code Analysis and Manipulation. IEEE Computer Society, Los Alamitos. pp 45–54
35. Potanin A, Noble J, Frean M, Biddle R (2005) Scale-free geometry in OO programs. Commun ACM 48(5):99–103
36. Wen L, Dromey RG, Kirk D (2009) IEEE Trans Syst Man Cybern B (Cyberne) 39(4):845–854
37. Šubelj L, Bajec M (2012) Software systems through complex networks science: review, analysis and applications. In:

Proceedings of the First International Workshop on Software Mining. Association for Computing Machinery, New
York. pp 9–16

38. Jing L, Keqing H, Yutao M, Rong P (2006) Scale free in software metrics. In: 30th Annual International Computer
Software and Applications Conference (COMPSAC’06), vol. 1. IEEE. pp 229–235

39. Azadi U, Arcelli Fontana F, Taibi D (2019) Architectural smells detected by tools: a catalogue proposal. In: 2019
IEEE/ACM International Conference on Technical Debt (TechDebt). IEEE Computer Society, Los Alamitos. pp 88–97

40. Taibi D, Lenarduzzi V, Pahl C (2020) Microservices anti-patterns: a taxonomy. In: Microservices. Springer International
Publishing, Cham. pp 111–128

41. Bogner J, Boceck T, Popp M, Tschechlov D, Wagner S, Zimmermann A (2019) Towards a collaborative repository for
the documentation of service-based antipatterns and bad smells. In: 2019 IEEE International Conference on
Software Architecture Companion (ICSA-C). IEEE Computer Society, Los Alamitos. pp 95–101

42. de Freitas Apolinário DR, de França BBN Microservices dependencies graph generation tool. https://doi.org/10.
5281/zenodo.5101943

43. Richardson C Microservices.io website. https://microservices.io/. Accessed 15 Feb 2020
44. Law AM, Kelton WD, Kelton WD (2013) Simulation modeling and analysis, vol. 5. McGraw-Hill Education, New York
45. Build and deploy Java Spring Boot microservices on Kubernetes. https://github.com/IBM/spring-boot-

microservices-on-kubernetes. Accessed 02 Mar 2021
46. Graphviz - dot language site. https://www.graphviz.org/doc/info/lang.html. Accessed 19 Mar 2020
47. Aderaldo CM, Mendonça NC, Pahl C, Jamshidi P (2017) Benchmark requirements for microservices architecture

research. In: 2017 IEEE/ACM 1st International Workshop on Establishing the Community-Wide Infrastructure for
Architecture-Based Software Engineering (ECASE). pp 8–13. https://doi.org/10.1109/ECASE.2017.4

48. Márquez G, Astudillo H (2018) Actual use of architectural patterns in microservices-based open source projects. In:
2018 25th Asia-Pacific Software Engineering Conference (APSEC). pp 31–40. https://doi.org/10.1109/APSEC.2018.
00017

49. Spinnaker website. https://spinnaker.io/. Accessed 25 Oct 2020
50. Symbiote public repository. https://github.com/daniel-apolinario/symbiote. Accessed 02 Mar 2021

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://github.com/daniel-apolinario/microservices-graph
https://github.com/daniel-apolinario/microservices-graph
https://doi.org/10.5281/zenodo.5101943
https://doi.org/10.5281/zenodo.5101943
https://microservices.io/
https://github.com/IBM/spring-boot-microservices-on-kubernetes
https://github.com/IBM/spring-boot-microservices-on-kubernetes
https://www.graphviz.org/doc/info/lang.html
https://doi.org/10.1109/ECASE.2017.4
https://doi.org/10.1109/APSEC.2018.00017
https://doi.org/10.1109/APSEC.2018.00017
https://spinnaker.io/
https://github.com/daniel-apolinario/symbiote

	Abstract
	Keywords

	Introduction
	Background
	Related work
	Research method
	Analysis of service coupling metrics
	Goal and hypotheses
	Experimental design
	Graph structure
	Graph size
	Architecture smells
	Graph evolution scenario
	Microservice-related design patterns
	Metric trends
	Replications and procedure

	Experimental results
	Threats to validity

	The SYMBIOTE method
	Approach for collecting metrics
	Step 1: Distributed tracing
	Validation of the approach for collecting metrics

	Step 2: Application test execution
	Step 3: Dependency graph generation
	Step 4: Calculating metrics
	Step 5: Analysis of collected metrics
	Architectural analysis monitoring

	Method evaluation
	Selecting a real case
	Spinnaker
	Architecture
	Environment
	Configuration
	Integration tests
	Releases

	Collected metrics
	Results
	Discussion
	Limitations

	Conclusions
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

