
RESEARCH Open Access

ScrumOntoBDD: Agile software
development based on scrum, ontologies
and behaviour-driven development
Pedro Lopes de Souza1* , Wanderley Lopes de Souza1 and Luís Ferreira Pires2

* Correspondence: plsouza@
estudante.ufscar.br
1Department of Computing, Federal
University of São Carlos, São Carlos,
SP, Brazil
Full list of author information is
available at the end of the article

Abstract

When developing a Learning Management System (LMS) using Scrum, we noticed
that it was quite often necessary to redefine some system behaviour scenarios, due
to ambiguities in the requirement specifications, or due to misinterpretations of
stories reported by the Product Owners (POs). The definition of test suites was also
cumbersome, resulting in test suites that were incomplete or did not at all comply
with the system requirements. Based on this experience and to deal with these
problems, in this paper, we propose the ScrumOntoBDD approach to agile software
development, which combines Scrum, ontologies and Behaviour-Driven
Development (BDD). This approach is centred on the concepts and techniques of
Scrum and BDD and focuses on the planning and analysis phases of the software life
cycle, since the BDD tools currently provide little support to these phases, while
most of the problems during the LMS development were found exactly there. We
claim that our approach improves the software development practices in this
respect. Furthermore, ScrumOntoBDD employs ontologies in order to reduce
ambiguities intrinsic to the use of a natural language as a BDD ubiquitous language.
In this paper, we illustrate and systematically evaluate our approach, showing that it
is beneficial since it improves the communication between members of an agile
development team.

Keywords: Agile Software Development, Scrum, BDD, Ontologies, Learning
Management Systems, Medical Education, Active Learning Methodologies, Problem-
Based Learning

Highlights

� An approach to agile software development that minimises communication

problems amongst members of a development team, by combining Scrum,

ontologies and BDD

� An illustration of the proposed approach using a software product developed for

the Education domain

� A systematic evaluation of the proposed approach using Action Research

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of the
Brazilian Computer Society

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10
https://doi.org/10.1186/s13173-021-00114-w

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-021-00114-w&domain=pdf
http://orcid.org/0000-0002-4538-7590
http://orcid.org/0000-0001-8645-4393
http://orcid.org/0000-0001-7432-7653
mailto:plsouza@estudante.ufscar.br
mailto:plsouza@estudante.ufscar.br
http://creativecommons.org/licenses/by/4.0/

Introduction
In agile software development approaches, requirements and solutions evolve through

collaboration between customers and developers. In this research, we focused on two

of these approaches, namely Scrum [59] and Behaviour-Driven Development (BDD)

[44]. Scrum prescribes sprint reviews, which are meetings involving the development

team and the Product Owner (PO) to plan and evaluate sprints, while BDD prescribes

the definition of usage scenarios (behaviour specifications) upfront as a way to better

understand what the software is supposed to do, i.e., its ‘behaviour’.

Ontologies have been recognised as useful artefacts in the analysis and design of In-

formation Systems (IS) in various application domains, such as Languages, Engineering,

Health, and Education. According to [21], an ontology can impact an IS in a temporal

dimension, depending on whether it is applied at design time or runtime, and in a

structural dimension, depending on the IS components it affects, i.e., application pro-

grams, databases, and user interfaces.

This work has been motivated by our experience with the development of a Learning

Management System (LMS) called EAMS-CBALM1 [57] that, differently of current

LMSs like Moodle [40], was developed to support active learning methodologies, such

as Problem-Based learning [51], and Practice-Based Learning [7] at the Medicine

Programme of the Federal University of São Carlos (UFSCar), Brazil. EAMS-CBALM

was developed using Scrum, and during its development, it was quite often necessary

to redefine some system behaviour scenarios, and consequently the Product Backlog

(PB) items, due to misunderstanding of the stories reported by the PO. The definition

of test suites was also cumbersome, resulting in test suites that were incomplete or did

not comply at all with the system requirements.

In a Systematic Literature Review (SLR), we identified initiatives that used BDD to

improve software development in general, like [34, 48, 61, 64]. These initiatives tend to

be limited to the definition of a specific ubiquitous language for a given application do-

main, whereas we aimed at applying BDD in combination with Scrum. In another SLR,

we identified initiatives that used ontologies to improve agile software development,

like ([33, 35, 36, 62]. Most of these initiatives propose a process or approach to com-

bine ontologies with some agile software methodology, while we aimed at employing

ontologies in a broader context, starting from a reference ontology for a given domain,

and gradually specialising it so that this ontology could be used in the agile software

development for that domain. Finally, we aimed at exploiting the combination of

Scrum, BDD and ontologies to improve software development. To the best of our

knowledge, this has not been investigated before.

In order to devise solutions to the problems we experienced during the EAMS-

CBALM development, in our work, we aimed at answering the following main research

questions:

RQ1: How can the communication between POs and developers be improved?

RQ2: How can the ambiguities intrinsic to using natural languages to report user

stories be reduced?

1EAMS-CBALM stands for ‘Educational and Academic Management System for Courses Based on Active
Learning Methodologies’.

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 2 of 45

Based on the results of our literature reviews discussed above, we realised that the

combined application of BDD, Scrum and ontologies might produce appropriate an-

swers to our research questions, which resulted in our two main hypotheses:

H1: Combining BDD with Scrum can improve communication between POs and

developers.

H2: Employing ontologies can reduce the ambiguities intrinsic to using natural lan-

guages to report user stories.

In [66], we verified the first hypothesis (H1), by developing a case study in the con-

text of the EAMS-CBALM, where we employed a ubiquitous language for the Educa-

tion domain together with BDD scenarios and acceptance tests in order to allow the

PO to follow and properly communicate with the developers throughout the develop-

ment process. In [67], we verified the second hypothesis (H2) by developing another

case study in the context of the EAMS-CBLAM, where we employed domain ontologies

to describe the UFSCar Medicine Programme in order to reduce the ambiguities caused

by using a natural language as a ubiquitous language. In this paper, we generalize and

combine our findings from both studies, by defining a novel approach called ScrumOn-

toBDD that combines Scrum, Ontology and BDD, so that both hypotheses are covered.

The detailed definition of the approach and its rigorous evaluation are the main contri-

butions of this paper.

The remainder of this paper is organised as follow: The Background section is the

third section of this work; the ScrumOntoBDD approach section presents the approach

to agile software development; the Application example section illustrates ScrumOn-

toBDD with an application example related to the EAMS-CBALM development; the

Evaluation section describes an experimental analysis of ScrumOntoBDD, aiming at

showing the validity of our hypotheses; the Related work section discusses some related

work, grouped according to the SLRs we carried out; finally, the Conclusions section

gives our concluding remarks, and directions for future work.

Background
Since our approach combines Scrum, Behaviour-Driven Development (BDD) and on-

tologies, in this section, we briefly introduce these techniques and their main

characteristics.

Scrum

Nowadays, it is difficult to predict how a software system should evolve, since market

conditions and customer needs change rapidly, and new technologies constantly

emerge. Agile development methods have been proposed to help software developers

deal with these problems [2]. The well-known agile methods include Extreme Program-

ming [4], Crystal [9], Adaptive Software Development [26], DSDM [70], Feature Driven

Development [49], and Scrum [59] that is one of the most popular agile software devel-

opment methods. Scrum emphasises the interactions between users and developers,

mainly when the requirements are established and selected as user stories, in order to

obtain a fast delivery and a satisfactory quality of the product. Most of the clarification

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 3 of 45

and details regarding the product under development are obtained during these inter-

actions, allowing product adaptations to be done quickly, thus avoiding bottlenecks and

delays and reducing the likelihood of unsatisfactory results.

In Scrum, the units of work are divided in sprints, which can last between a

week and a month, the period in which the developers create an increment of the

product to be delivered to the customer. According to [56], Scrum is a framework

for organising and managing team work, and its practices involve specific roles,

events and artefacts (see Fig. 1).

The development of a product by employing Scrum may involve one or more Devel-

opment Teams (DT), each one composed of people that play at least the following

three Scrum roles:

a) Product Owner (PO), who can be designated by the costumer, is responsible for

what will be developed and in what order, and for tracking product development;

b) Scrum Master (SM) is responsible for promoting and supporting Scrum by helping

the team understand its theory, practices, rules, and values; and

c) Scrum Team (ST) is composed by professionals responsible for delivering at each

sprint a usable increment of the product requested by the customer.

During the Scrum development cycle, the following main artefacts are produced:

a) Product Backlog (PB) is a prioritized list of requirements stated as user stories,

broken down (grooming) into a set of features, which reflects the PO vision of the

product to be created;

b) Sprint Backlog (SB) is a list containing a subset of PB items, followed by the tasks

to be performed for each item, which the ST believes and commits to complete on

that sprint; and

c) Product Increment (PI) is a potentially shippable increment of the product,

representing part of the PO’s product vision, which is produced by ST at the end

of sprint execution, and can be released to the customer.

Fig. 1 Scrum roles, events, and artefacts (adapted from [56])

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 4 of 45

In order to produce these artefacts, the following main events take place:

a) Sprint Planning is a meeting involving SM and ST for planning the work to be

performed in that sprint, which can last a maximum of 8 h for a 1-month sprint or

less for shorter sprints;

b) Sprint Execution, where the ST guided by the SM performs the needed tasks to get

the selected features done, and to produce a potentially shippable PI;

c) Daily Scrum is a ST 15-min meeting held every day of the sprint for planning the

work within the next 24 h, which allows for optimizing team collaboration and per-

formance as the work produced since the last daily scrum is scrutinized, and

sprint’s next work is predicted;

d) Sprint Review is a DT meeting held at the end of the sprint, which can last a

maximum of 4 h for a 1-month sprint or less for shorter sprints, for inspecting the

PI produced on that sprint, and for adapting the PB if needed; and

e) Sprint Retrospective is a meeting held after the Sprint Review and prior to the next

Sprint Planning, which can last a maximum of 3 h for a 1-month sprint or less for

shorter sprints, where the DT inspect itself and create an improvement plan to be

applied during the next sprint.

Scrum defines roles, artefacts and events that structure the development process from con-

ception to implementation. Scrum can be also used as a container of other development tech-

niques and practices that can be applied in each sprint to produce the PI [59]. We exploited

this particular possibility in our work, by prescribing how BDD and ontologies can be applied

to improve communication in Scrum-based development.

Behaviour-Driven Development (BDD)

Test-Driven Development (TDD) [3] is a software evolutionary development method-

ology, based on short development cycles, in which automated tests are described be-

fore to the production of code. Acceptance Test-Driven Development (ATDD) [31] is a

TDD variation, where software development is driven by acceptance tests, which are

used to represent stakeholder’s requirements.

Behaviour-Driven Development (BDD) [44] is an agile software development method-

ology that is considered as an evolution of TDD and ATDD, whose fundamental

principle is: “stakeholders and developers should refer to the same system in the same

way”. For achieving this goal, a ubiquitous language is required that is understandable

by all those involved in system development [15], and enables teams to produce execut-

able granular specifications of the system’s behaviour and testing [13].

Six main characteristics of BDD were identified in [65]: ubiquitous language, iterative

decomposition process,user story and scenario templates, automated acceptance testing

with mapping rules, readable behaviour-oriented specification code, and behaviour-

driven at different phases. Using these characteristics, [65] also analyses seven of the

main BDD tools: NBehave [43] and JBehave [28]; MSpec [41] and RSpec [54]; StoryQ

[71]; Cucumber [11]; and SpecFlow [69]. Based on this analysis, we decided to concen-

trate on JBehave, since it covers most of the BDD characteristics defined in [65] and

has appropriate support and tooling.

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 5 of 45

However, BDD is a relatively novel and evolving methodology, and as such it still

lacks a clear definition and common understanding. According to [65], the seven BDD

tools analysed focus mainly on the implementation phase of a software project, provide

limited support for the analysis phase, no support for the planning phase, and no sup-

port for the Ubiquitous Language Definition. Okolnychyi’s study [46] analysed five BDD

tools (some different from [65]) and concluded that only Concordion [10] supports the

Creation of a Ubiquitous Language, but does not support a Predefined Ubiquitous

Language.

Starting from [65], we did a SLR of BDD-related work, and an analysis of the current

BDD toolkits. Figure 2 shows the BDD process depicted using the Structured Analysis

and Design Technique (SADT) diagrammatic notation [55].

The BDD analysis phase starts by identifying the most expected system behaviours,

which are derived from the business outcomes to be produced by the system. Based on

these business outcomes, feature sets are defined, where each feature set can contain

subsets, and indicates what should be accomplished to achieve a specific business out-

come. This initial analysis may be sufficient for a first implementation, even if import-

ant system behaviours are yet undisclosed. However, as new behaviours are revealed,

the whole process illustrated in Fig. 2 can be performed again, thus characterizing the

iterative decomposition process described in [65].

Features and their acceptance criteria are expressed through user stories and describe

the interactions between a user and the system. A user story should elucidate the user’s

role in this story, the feature desired by the user, and the benefit gained by the user if

the system provides the desired feature. Due to different contexts, a user story may

have different versions that will lead to different story instances, called scenarios, which

in turn should describe specific contexts and outcomes of this user story. A scenario

Fig. 2 BDD process in SADT

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 6 of 45

describes how the system that implements a given feature should behave when it is in a

main context, with possible additional contexts that could be represented by additional

conditions. When an event happens (e.g., a system entry), the scenario’s result can be

one or more actions that change the state of the system or produce some system

output.

BDD user stories and scenarios follow the predefined templates described in [45] by

employing a simple ubiquitous language. Figure 3 shows a BDD template.

According to these templates, a User Story is described with a Title, a Narrative and

a set of Scenarios representing the Acceptance Criteria. The Title provides a general

description of the story, making reference to a feature that this story represents. The

Narrative is divided in three clauses: (i) In order to describe an activity to be per-

formed by a user; (ii) As a correspond to the role played by the user on that story; and

(iii) I want to show the benefit obtained by the user once the activity is performed. The

Acceptance Criteria are defined through a set of Scenarios, each one with a Title and

three main clauses: (i) Given to provide main context that could be represented by a

system state; (ii) When to describe a specific event that will trigger the Scenario; and

(iii) Then to present the main outcome that could be an action for changing the system

state. Each one of these clauses can include an And statement to provide multiple con-

texts, events and/or outcomes. Each statement in this representation is called a step.

A BDD acceptance test is an executable specification of the system behaviour, which

verifies the interactions or behaviours of objects rather than their states. The produced

scenarios are translated into tests that guide the implementation. A scenario is com-

posed of several steps, where each step is an abstraction that represents the three ele-

ments of a scenario: context, event and action. The meaning of these elements is that

in a particular case of a user story or context C, when the event X happens, the system

response should be Z. Each step is mapped to one test method, and the scenario passes

only if all its steps pass. Each step follows the TDD’s process: red, green, and refactor-

ing to make it pass. Since in BDD all scenarios must be executed automatically, the ac-

ceptance criteria must also be imported and analysed automatically. The classes that

implement the scenarios read their specifications, which are written in the ubiquitous

language, and execute them. Therefore, the mapping between scenarios and testing

code needs to be explicitly defined.

In BDD, the code must be readable, contain the specification, describe the behaviour

of the objects and be part of the system documentation. The classes and methods

Fig. 3 BDD templates for user stories (adapted from [45])

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 7 of 45

names must be sentences, and the names of the methods must indicate their function-

ality. Mapping rules assist in the production of readable behaviour-oriented code and

ensures that classes and methods names are the same as user story titles and scenarios,

respectively. In addition, these names make use of the ubiquitous domain-specific lan-

guage defined in the project.

Ontologies

The term ontology first appeared at a computer-related conference in 1967 [38]. Ontol-

ogies have been used in Computer Science as artefacts that formally capture conceptu-

alizations, so that the objects and concepts that form these conceptualizations are

properly represented and supported [19]. These conceptualizations correspond to some

real-world phenomena of interest, which have to be observed or possibly acted upon.

An ontology as an artefact needs to be represented with an ontology language [5], and

it specifies the concepts and their relationships necessary for its purpose and domain,

introducing in this way a vocabulary and the formal constraints that apply to the ele-

ments that make sense in the real world [20]. Ontologies have been used with benefits

in areas like Databases, Information Systems, Artificial Intelligence and Software Engin-

eering [63].

Ontology classification

Guarino [21] classifies ontologies according to their generality and dependence levels

as follows:

a) Top-level ontology, also called upper or foundation ontology, describes general

concepts (e.g., Object, Property) that are independent of a particular domain;

b) Domain ontology describes the vocabulary related to a generic domain (e.g.,

Medicine, Course) by specializing terms introduced in the top-level ontology;

c) Task ontology describes the vocabulary related to a generic task (e.g., Diagnosing,

Lecturing), by also specializing terms introduced in the top-level ontology; and

d) Application ontology describes concepts depending on a particular domain and task

(e.g., the roles played by domain entities while performing the activity of given a

lecture), which are specializations of the related ontologies.

A top-level ontology aims at supporting semantic interoperability among domain on-

tologies, by providing a common basis for formulating definitions. The reuse and main-

tenance of systems supported by domain ontologies usually requires a merge of these

ontologies, and if they are derived from the same high-level ontology, this merging can

be performed automatically. Figure 4 shows the classification proposed in [21].

Unfortunately, most of the available domain ontologies are not derived from the same

top-level ontology. Moreover, different domain perceptions, different usage intentions,

and different languages, give rise to specific application ontologies in the same domain

that are often incompatible. In order to deal with these problems, application ontol-

ogies can be constructed from a domain reference ontology.

We use the Higher Education Reference Ontology (HERO) proposed in [79] to illus-

trate the concept of domain ontology. This ontology was defined to achieve consensual

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 8 of 45

knowledge of the university domain and to be shared and reused among several stake-

holders. HERO describes several aspects of the university domain, such as

organizational structure, staff, and income, which can be used to derive more elaborate

domain ontologies for higher education. Figure 5 illustrates the key concepts of the

HERO ontology.

Ontology languages and tools

Several languages have been developed for ontology formal description, allowing the

knowledge representation related to specific domains, and often including reasoning rules

for processing this knowledge. Most of this effort has been spent to develop ontology lan-

guages for the web, and since the web is decentralized, such languages should enable the

definition of several vocabularies and their evolution. As stated in [22], “a Semantic Web

language must describe meaning in a machine-readable way. Therefore, an ontology lan-

guage needs not only to include the ability to specify vocabulary, but also the means to

formally define it in such a way that it will work for automated reasoning.”

Web Ontology Language (OWL) [74] was defined in 2001 as an extension of Resource

Description Framework (RDF) [75], which evolved from other ontology languages that

existed at that time. We decided to use OWL for specifying our ontologies in our work

since OWL is the W3C standard ontology language for the Semantic Web, is used by a

large community in many contexts and has appropriate tool support. Figure 6 depicts

an excerpt of HERO ontology in OWL, showing some key concepts of this ontology.

When starting out the development of an ontology either from scratch or by reusing

existing ontologies, one needs appropriate tools. Ontology tools are useful in the de-

sign, implementation and maintenance phases of the ontology life cycle, helping to ac-

quire, organize and visualize domain knowledge before and during the ontology

development. In particular, ontology editors allow users to manipulate, inspect, browse

and code ontologies. Special attention has been given in recent years to the Semantic

Web editors responsible for creating and manipulating ontologies [1].

Protégé [42] was developed by the Stanford Center for Biomedical Informatics Re-

search at the Stanford University School of Medicine, and allows users to create,

Fig. 4 Ontology classification (adapted from [21])

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 9 of 45

visualize, manipulate and save ontologies in several formats, such as RDF, RDF Schema

(RDFS) [76] and OWL. We used Protégé [50] in our work because it is a widespread

platform recognized for its scalability and extensibility, which provides a tool set for

building domain models and knowledge-based applications with ontologies. Further-

more, it is a free and open-source platform that has been continuously improved by

Stanford University. According to [24], Protégé is a killer application, since it is a highly

transformative technology that creates new markets and behaviour patterns. Figure 7

shows screenshot of the HERO ontology in Protégé, with the class hierarchy on the

left-hand side and a graphical representation of this hierarchy on the right-hand side.

Fig. 5 Key concepts of the HERO ontology (adapted from [79])

Fig. 6 Excerpt of HERO ontology in OWL

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 10 of 45

ScrumOntoBDD approach
Based on our experience with Scrum in a software development project, we developed

the ScrumOntoBDD approach, which uses Scrum as container and applies BDD and

ontologies to improve the communication between POs and developers and to reduce

the ambiguities intrinsic to using natural languages to report user stories. This section

presents this approach by discussing each of its main roles and activities.

Overview

Figure 8 gives an overview of the ScrumOntoBDD approach in a SADT diagram, where

each rectangle represents a main activity of this approach, and an icon on the left-hand

side of an activity represents an activity input, on the right-hand side of an activity rep-

resents an activity output, at the top of an activity represents a resource employed in

this activity, and at the bottom of an activity represents a role of the Development

Team (DT) in this activity.

The main ScrumOntoBDD activities are Creating Domain Application Ontologies

(CDAO), Extracting Application Requirements (EAR), Building Product Backlog (BPB),

Defining Sprint Backlog (DSB), Executing Sprint (ES), and Sprint Review and Retrospect-

ive (SRR). CDAO and EAR can be performed in parallel with some possible overlap. ES

can be performed several times until a given PI is achieved, and after SRR is performed

and the PI is accepted, a new sprint backlog is defined. The sprint review and sprint

retrospective were combined in a single activity since they are performed in sequence

Fig. 7 Protégé screenshot of the HERO ontology

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 11 of 45

and involve all DT. The Shippable Product (SP) is complete after all PB items have been

processed successfully.

The inputs and outputs of these activities are Application Domain Documents

(ADD), User Stories in Natural Language (USNL), Ubiquitous Language Termin-

ology (ULT), Application Scenarios (AS), System Behaviours (SBe), Feature Sets (FS),

BDD User Stories and Scenarios (BDDUSS), Selected BDDUSS and Product Incre-

ment (PI). The main resources used to perform these activities are Ontology Lan-

guages (OL), Ontology Tools (OT), Domain Reference Ontologies (DRO), Business

Process Modelling Techniques (BPMT), BDD, BDD Tools (BDDT), Programming

Languages (PL), Programming Tools (PTo) and Sprint Records and Annotations

(SRA). DT should be multidisciplinary, and team members should play the follow-

ing roles:

a) Domain Expert (DE) is responsible for sharing his/her knowledge of the application

domain, and for transferring the necessary information to create the ontologies and

to capture the application requirements;

b) Ontology Engineer (OE) is responsible for creating, manipulating and evaluating the

domain application ontologies, and also for assisting the formalization of

knowledge and of software requirements;

c) Software Engineer (SE) is responsible for tracking the entire software life cycle,

ensuring the proper working according to the application requirements, and the

generation of quality artefacts; and

d) Product Owner (PO), Scrum Master (SM) and Scrum Team (ST) play the

corresponding Scrum roles, but SM and ST must be able to apply BDD and BDD tools.

Creating Domain Application Ontologies (CDAO)

The CDAO activity can start from an existing reference domain ontology or build a do-

main application ontology from scratch. In the former case, the reference domain

ontology must be gradually specialized to obtain an ontology that covers a terminology

Fig. 8 ScrumOntoBDD overview

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 12 of 45

(ubiquitous language) that is appropriate for the development of the intended applica-

tion. Table 1 summarizes the inputs, outputs, resources, roles and the main tasks of this

activity.

Extracting Application Requirements (EAR)

The EAR activity starts by identifying the customer needs, the objective, scope and sce-

narios of the application. These scenarios are then described using a Business Process

Modelling Technique (BPMT) [72], such as UML activity diagram, Business Process

Model Notation (BPMN) [47] or flowchart, to represent the key application require-

ments. Based on this description, the main software functions are defined, and the sys-

tem behaviours and features are described. Table 2 summarizes the inputs, outputs,

resources, roles and the main tasks of this activity.

Building Product Backlog (BPB)

The BPB activity starts by defining the user stories and scenarios that will be initially

stored in the PB, using the ubiquitous language, the application scenarios, and the sys-

tem behaviours and features. These items must be formally specified, by means of an

ontology model that employs BDD templates, and they should be also listed in a prior-

ity order for implementation, building a formally described PB. Table 3 summarizes the

inputs, outputs, resources, roles and the main tasks of this activity.

Table 1 Inputs, outputs, resources, roles and tasks of CDAO activity

Inputs • Application Domain Documents (ADD)
• User Stories in Natural Language (USNL)

Outputs • Ubiquitous Language Terminology (ULT)

Resources • Ontology Languages (OL)
• Ontology Tools (OT)
• Domain Reference Ontologies (DRO)

Roles • Ontology Engineer (OE)
• Domain Expert (DE)
• Product Owner (PO)

Tasks (a) Search ontologies to select or create a DRO for the application domain;
(b) Successively specialize DRO based on application domain characteristics;
(c) Validate the created domain application ontologies; and
(d) Extract the main ULT from these ontologies.

Table 2 Inputs, outputs, resources, roles and tasks of EAR activity

Inputs • Application Domain Documents (ADD)
• User Stories in Natural Language (USNL)

Outputs • Application Scenarios (AS)
• Feature Sets (FS)
• System Behaviours (SBe)

Resources • Business Process Modelling Techniques (BPMT)

Roles • Software Engineer (SE)
• Scrum Master (SM)
• Domain Expert (DE)
• Product Owner (PO)

Tasks (a) Identify customer needs and application characteristics;
(b) Draw up AS;
(c) Define the main software functionalities; and
(d) Draw up FS and SBe.

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 13 of 45

Defining Sprint Backlog (DSB)

The DSB activity starts with a sprint planning meeting for defining which PB items will

be implemented in that sprint. After that, the tasks to be performed for each one of

these items must be described, and the work to accomplish them must be planned.

Table 4 summarizes the inputs, outputs, resources, roles and the main tasks of this

activity.

Executing Sprint (ES)

The ES activity starts with a daily meeting for analysing the work done until then and plan-

ning the work to be done on that day in order to implement the selected user stories and sce-

narios. During this activity, these scenarios must be translated into BDD acceptance tests to

guide the implementation. ES can last several days until a given PI is obtained. Table 5 sum-

marizes the inputs, outputs, resources, roles and the main tasks of this activity.

Sprint Review and Retrospective (SRR)

The SRR activity starts with a DT meeting for inspecting the PI produced on the current sprint.

This meeting is followed by another one for retrospection, and for creating an improvement

plan to be applied on the next sprint based on the SRA gathered during the current sprint. The

Table 3 Inputs, outputs, resources, roles and tasks of BPB activity

Inputs • Ubiquitous Language Terminology (ULT)
• Application Scenarios (AS)
• Feature Sets (FS)
• System Behaviours (SBe)

Outputs • BDD User Stories and Scenarios (BDDUSS)

Resources • Ontology Languages (OL)
• Ontology Tools (OT)
• BDD
• BDD Tools (BDDT)

Roles • Ontology Engineer (OE)
• Domain Expert (DE)
• Product Owner (PO)
• Software Engineer (SE)
• Scrum Master (SM)

Tasks (a) Define User Stories and Scenarios (USS) using ULT, AS, FS, and SBe;
(b) Formally specify the defined USS by means of a User Story and Scenario ontology that employs
BDD templates; and
(c) List the specified BDDUSS in a priority order thus building the Product Backlog.

Table 4 Inputs, outputs, resources, roles and tasks of DSB activity

Inputs • BDD User Stories and Scenarios (BDDUSS)

Outputs • Selected BDD User Stories and Scenarios (Selected BDDUSS)

Resources • Ontology Languages (OL)
• Ontology Tools (OT)
• BDD
• BDD Tools (BDDT)

Roles • Ontology Engineer (OE)
• Domain Expert (DE)
• Product Owner (PO)
• Software Engineer (SE)
• Scrum Master (SM)

Tasks (a) Select the BDDUSS of the Backlog to be implemented; and
(b) Define the tasks and work for implementing the Selected BDDUSS.

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 14 of 45

only resource needed for the SRR activity is the SRA, but the participation of the entire DT is

required, including the OE and the DE, since it may be necessary to adapt the PB. Table 6 sum-

marizes the inputs, outputs, resources, roles and the main tasks of this activity.

Application example
In this section, we illustrate our approach with an example taken from the EAMS-

CBALM development. We start with a short introduction of the application context in

which EAMS-CBALM is expected to operate, and we show how each activity pre-

scribed in our approach has been performed to obtain a PI that supports one specific

EAMS-CBALM requirement, namely the Instrument Types Registration requirement of

the EAMS-CBALM Evaluation Management module.

Application context

Different teaching-learning processes may be involved in education, and they can occur

anytime and anywhere [8]. Most Brazilian universities still employ traditional teaching-

learning methods based on frontal lectures in their education programmes. The Medi-

cine Programme of the Federal University of São Carlos (UFSCar) was established in

2006 and has been developed to brake with this tradition, by following a socio-

constructivist educational approach, with a competence-oriented pedagogical

programme, and employing active learning methodologies, such as Problem-Based

Learning [51] and Practice-Based Learning [7]. Educational activities in the UFSCar

Medicine Programme have been designed based on the constructivist spiral depicted in

Fig. 9. These activities have learning triggers, which are problems simulating or

Table 5 Inputs, outputs, resources, roles and tasks of ES activity

Inputs • Selected BDD User Stories and Scenarios (Selected BDDUSS)

Outputs • Product Increment (PI)

Resources • Programming Languages (PL)
• Programming Tools (PTo)
• BDD
• BDD Tools (BDDT)

Roles • Software Engineer (SE)
• Scrum Master (SM)
• Scrum Team (ST)

Tasks (a) Obtain BDD acceptance tests for the Selected BDDUSS; and
(b) Perform the tasks to implement the Selected BDDUSS thus producing a Product Increment (PI).

Table 6 Inputs, outputs, resources, roles and tasks of SRR activity

Inputs • Product Increment (PI)

Outputs • Shippable Product (SP)

Resources • Sprint Records and Annotations (SRA)

Roles • Software Engineer (SE)
• Scrum Master (SM)
• Scrum Team (ST)
• Ontology Engineer (OE)
• Domain Expert (DE)
• Product Owner (PO)

Tasks (a) Inspect the produced PI and adapt the PB if needed; and
(b) Inspect the DT and create an improvement plan for the next sprint.

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 15 of 45

portraying the daily activities to be exercised by the graduates of this programme.

These triggers activate the movements of the constructivist spiral by encouraging stu-

dents to reflect and stimulating them to develop their capacities. From each learning

trigger, the students traverse all these movements, starting by identifying the problem,

then formulating explanations, preparing learning questions, looking for new informa-

tion, building new meanings and finally evaluating the process.

The Reflective Portfolio (RP) is a tool for recording and monitoring student activities

that is often used in courses that employ active learning methodologies, since it is a

flexible and evidence-based instrument that motivates the students to perform continu-

ous reflection, and collaborative learning analysis [80]. In the UFSCar Medicine

Programme, a reflective portfolio is used in all student activities, both internal and ex-

ternal (outside the university campus).

In the early years of the programme, RPs were not at all automated, i.e., they were re-

corded 100% on paper. This has triggered the Ubiquitous Computing Group (UCG) of

UFSCar to launch the electronic reflective portfolio project [17]. EAMS-CBALM has

been developed as a spin-off of this effort, in partnership with the UFSCar Department

of Medicine (DMed), the Teaching and Research Institute (TRI) of the Sírio-Libanês

Hospital (SLH), and a software house.

EAMS-CBALM has been developed using Scrum in a project that took 1 year, during

which weekly meetings were held at the software house in São Carlos-SP for the plan-

ning and analysis of its different phases. These meetings involved the UCG/UFSCar co-

ordinator, the developer team coordinator of the software house, two POs designated

by TRI/SLH, and a PhD student. Monthly meetings were held at TRI/SLH to present

the PIs coming out of the sprints, involving the participants of the software house

meetings and TRI/SLH members directly or indirectly related to the project. In

addition, the PhD student participated in the courses offered by DMed /UFSCar and

TRI/SLH to observe the teaching-learning process of these courses.

During the software house meetings, the POs reported stories, informally in Portu-

guese, describing what the user activities to be supported by EAMS-CBALM. From

these stories, system requirements were then captured and specified also informally in

Portuguese. Using these requirement specifications, the software house development

Fig. 9 Constructivist spiral

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 16 of 45

team defined system behaviour scenarios and implemented the screen prototypes for

these scenarios, which were presented and discussed at the next meeting. These meet-

ings totalled 109 h, through which the CBALM teaching–learning process was under-

stood, and the functional and non-functional system requirements were defined, as well

as the system architecture.

The EAMS-CBALM has two main functional modules: the academic module and the

pedagogical module. The academic module allows its users to register the programme

structure, the CBALM community and the curriculum. Since this module is less rele-

vant to our illustration, we refrain from discussing it in more detail.

Figure 10 illustrates the pedagogical module, which stores the curricular structure of

each class (school year) of each course previously recorded in the academic module.

The educational actions are programmed in the pedagogical module, giving rise to the

educational environment in which students and teachers perform and record their ac-

tivities. The planning of an educational action starts with preparation of meetings,

where each meeting corresponds to a movement of the constructivist spiral, and ends

with the preparation of evaluations.

EAMS-CBLAM allows students and teachers to discuss through forums, exchange

text documents, images, and video and audio fragments, create individual or collabora-

tive documents, store and retrieve document versions, and share the knowledge pro-

duced by other students and teachers. All these resources contribute to the

development of student capabilities, leading to more knowledge production. EAMS-

CBALM has some other interesting features (e.g., data visualization), but we refrain

from discussing them in more detail here since they are not relevant to our illustration.

During the EAMS-CBALM development, the Evaluation Management module (sub-

module of the pedagogical module) generated the most controversies between PO and

developers. This module supports 14 functional requirements, and especially the sce-

narios of the Instrument Types Registration requirement have been redefined several

times, but the final implementation of this requirement did not fully satisfy the PO.

Fig. 10 EAMS-CBALM pedagogical module

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 17 of 45

Therefore, we selected this module and this specific requirement as the example to il-

lustrate ScrumOntoBDD.

Problem description

The student evaluation process of the UFSCar Medicine Programme [73] is more com-

plex than the traditional evaluation processes based on a final exam and/or a project/

assignment. The evaluations in this programme are performed by all people involved in

the educational activities, expressing their perceptions, indicating the relevant aspects,

and aspects that need to be improved, reworked or replaced. Two evaluation types are

defined in this process, namely formative and summative evaluations, and their possible

results are satisfactory, needs improvement and unsatisfactory. A student who does not

reach a satisfactory result must undertake an improvement plan proposed by the

teacher, and after that be re-evaluated. Evaluations are consolidated by applying the fol-

lowing instrument types:

a) Performance Assessment of the Teaching-Learning Process (PATLP): Formative

evaluation, where the teacher (respondent) evaluates student. A PATLP has three

steps: teacher evaluation, classmate evaluation and improvement plan (if

necessary);

b) Reflective Portfolio (RP): Formative and summative evaluation. The monitoring of

each student’s portfolio by the teacher is part of the formative assessment. The

summative evaluation refers to its preparation and presentation according to pre-

established delivery dates that must be recorded into the system;

c) Written Examination (WE): Summative evaluation. Each WE consists of questions

defined by the teacher, answered by the student, and then assigned by the teacher.

Each question is individually analysed in order to determine the student progress.

All questions must have a satisfactory result for the student to pass the WE.

Questions that failed to get a satisfactory result are considered as progress deficit

and are worked out in the next WE;

d) Progress Test (PT): Formative and summative evaluation. A PT consists of

multiple-choice questions. The teacher monitors the performance of each student

in a PT as part of the formative assessment. A PT is also summative because the

students’ presence at a PT gives them already a satisfactory result;

e) Objective and Structured Evaluation of Professional Performance (OSEPP):

Summative evaluation. Instead of answering questions like in a WE, the students

act in clinical cases and are evaluated by the teacher. The OSEPP evaluation is

similar to the WE evaluation;

f) Problems-Based Exercise (PBE): Formative evaluation. A PBE assesses the student’s

individual ability to study and identify health needs, formulate patient and family

problems, and propose a healthcare plan for a particular context and problem

situation.”

In the sequel, we consider the goal of obtaining a shippable PI for the Instrument

Types Registration requirement of the EAMS-CBALM Evaluation Management module

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 18 of 45

to illustrate our approach. For this purpose, we show how the activities prescribed in

the ScrumOntoBDD approach can be applied to achieve this goal.

CDAO for the UFSCar Medicine Programme

Based on HERO key concepts shown in Fig. 5 and according to the higher education areas de-

scribed by the Brazilian National Council for Scientific and Technological Development (CNPq),

we extended this reference ontology in order to describe the general organisation of the Brazilian

universities. Figure 11 shows this extension with the CNPq major educational areas.

We then applied the concepts shown in Fig. 11 to define an ontology that represents

all the programmes offered by UFSCar. Figure 12 depicts an excerpt of this ontology in

OWLViz (a Protégé plugin) that shows the 8 CNPq large educational areas and focuses

on the 10 UFSCar programmes in the Health Sciences area, including the Medicine

Programme.

Based on the UFSCar Medicine Programme curriculum description [73], we specia-

lised the UFSCar ontology and obtained the UFSCar Medicine Programme ontology.

Figure 13 shows an excerpt of this ontology, focusing on the programme structure, and

Fig. 14 shows another excerpt of the same ontology, focusing on the learning method-

ology, some of the educational activities and the steps of the constructivist spiral.

Evaluation Process ontology

Based on the student evaluation process summarised in the Problem description sec-

tion, and in accordance with [18], we defined the terminology (names, adjectives and

Fig. 11 HERO key concepts with CNPq major education areas

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 19 of 45

verbs) to be formally represented in the Evaluation Process ontology of the UFSCar

Medicine Programme in terms of concepts, attributes and relations. This ontology is

the main Ubiquitous Language Terminology (ULT) used in the development of the

EAMS-CBALM Evaluation Management module. Figure 15 shows an excerpt of this

ontology, where (i) classes EducationalActivity and EvaluationProcess model the con-

cept of CurricularActivity in the Programme; (ii) each EducationalActivity starts with

one or more meetings. A Meeting has the participation of students and teachers with

specific Roles and triggers a LearningTrigger; (iii) each LearningTrigger transverse the

ConstructivistSpiralSteps and ends with an EvaluationProcess; and (iv) an Evaluation-

Process is consolidated by applying EvaluationInstruments.

Figure 16 shows an excerpt of the Evaluation Process ontology of the UFSCar Medi-

cine Programme, focusing on the evaluation instrument types, and showing the PATLP

instrument and the relationships between its actors. All instrument types of the

programme have been defined in this ontology in a similar way.

Ontology validation

We assessed the quality of our ontologies according to the structural and functional di-

mensions [18]. Structural validation considers the ontology logical structure, focusing

on its syntax and formal semantics. Protégé offers several ontology verification tools for

detecting inconsistencies and redundancies in ontologies. We used the reasoners

Fig. 12 UFSCar ontology in OWLViz

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 20 of 45

FaCT++, HermiT and Pellet to verify our ontologies, and we discovered no inconsisten-

cies nor redundancies.

Figure 17 shows an example of structural validation, where FaCT++, Hermit and Pel-

let have successfully processed the Evaluation Process ontology in 890, 2125, and 568

ms, respectively. The current version of this ontology bears an amount of 358 axioms,

Fig. 13 UFSCar Medicine Programme ontology: programme structure

Fig. 14 UFSCar Medicine Programme ontology: constructivist spiral steps and educational activities

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 21 of 45

182 of them being logical axioms, 42 classes, 24 object properties, 9 data properties and

0 individuals.

Our functional assessment focused on usage evaluation by domain experts, user

satisfaction, task assessment and topic assessment. During development, our ontol-

ogies were assessed in collaboration with the PO to verify their structure, their re-

strictions, relations between concepts and the attributes of their concepts. The PO

also assessed their compliance with some predefined criteria, such as completeness,

reliability and recognition level of the objects, and concepts supported by the

ontology. These criteria have been updated according to the PO suggestions.

EAR for EAMS-CBALM

The following user story was reported by the PO during the EAMS-CBALM develop-

ment concerning the Instrument Types Registration requirement:

“In order for the programme coordinator to carry out a student evaluation, the six in-

strument types have to be previously registered. This requirement is needed because the

Fig. 15 Evaluation Process ontology root classes (left) and Meeting class relations (right)

Fig. 16 Evaluation Process ontology with PATLP

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 22 of 45

evaluation form heading changes according to the employed instrument. When regis-

tering an instrument, the system must keep the following information: name, acro-

nym and the relationship between who responds to the evaluation, who evaluates

and who is evaluated. This last information is crucial since in conjunction with the

curricular activity it defines which form type is applied when registering an

evaluation.”

Based on this user story, we identified application scenarios and specified them in a

UML use case diagram. Figure 18 shows an excerpt of this use case diagram. Based on

these application scenarios, we identified the following feature set: Visualize Instrument

Type, Add Instrument, Edit Instrument Type and Create Evaluation Format. Figure 19

shows the Add Instrument feature, where one of its expected system behaviours is spe-

cified using a BDD notation.

BPB for EAMS-CBALM

The BDD scenario template is similar to an extended finite state machine [14] and

was formally defined through Protégé OWL ontology in [62]. An excerpt of this

ontology is shown in Fig. 20. This ontology describes concepts used by platforms,

models and artefacts of interactive systems, allowing User Interface (UI) elements

and its behaviours to be described in order to specify scenarios and to support

Fig. 17 Results of processing the Evaluation Process ontology: FaCT++ (top), HermiT (middle) and
Pellet (bottom)

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 23 of 45

acceptance testing. A scenario that runs in a given UI is represented as a transi-

tion, and states represent the original and resulting UIs after a transition occurs,

respectively. Scenarios in the transition have at least one or more conditions, one

or more events, and one or more actions, which are represented by the given, when

and then clauses, respectively. In order to formally specify the user stories of the

PB using ontologies and BDD templates, a User Story and Scenario ontology

should be defined using a similar state-based model.

Although BDD user stories and scenarios follow the templates described in [45] and

illustrated in Fig. 3, BDD tools generally do not strictly follow these models. For ex-

ample, JBehave [28] supports a slightly different user story template and the same sce-

nario template, which are shown in Fig. 21.

Six scenarios were defined in our user story example, one for each instrument type.

Figure 22 illustrates the state-based model we defined for the EAMS-CBALM User

Story and Scenario ontology. This example deals with the registering of the PATLP in-

strument type.

The ontology presented in [62] is domain-independent, since it allows behaviours

to be described in terms of actions on UIs through interaction elements in a sce-

nario that is not bound to a specific domain. Therefore, the specific business be-

haviours of our user story example still had to be specified, since most of them

Fig. 18 Excerpt of the UML use case diagram for the Instrument Types Registration requirement

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 24 of 45

employ the domain terminology derived from the Evaluation Process ontology.

Hence, we had to map terms from this ontology to a user interaction (e.g., click,

selection), and to define steps for each one of these interactions. Figure 23 shows

an excerpt of the EAMS-CBALM User Story and Scenario ontology that deals with

the registration of the PATLP instrument type.

Fig. 19 Feature example for the Instrument Types Registration requirement

Fig. 20 OWL ontology for the BDD scenario template (from [62])

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 25 of 45

DSB for EAMS-CBALM

BDD prescribes that acceptance tests have to be defined before the selected BDD User

Story and Scenario (BDDUSS) is implemented. Since it is possible to reuse the steps of

the User Story and Scenario ontology in multiple testing scenarios, in the DSB activity

scenarios for acceptance testing can be defined, which are applied later in the ES activ-

ity, mitigating in this way the misinterpretation of feature sets in this activity. However,

the user stories and scenarios described using the ontology language (OL) first have to

be translated to the language supported by the BDD tools (BDDT). Depending on the

used ontology tools (OT) and BDDT, tools that support to this mapping may be avail-

able. In this application example, we defined a script that reads the OWL file that de-

scribes the User Story and Scenario ontology, and selects all BDD scenarios and its

corresponding steps. Then, a JBehave textual story file is created and filled in with the

appropriate information using the JBehave scenario template. This textual story file has

been used later to structure all acceptance tests related to the scenarios defined in this

file. Figure 24 shows an excerpt of the User Story and Scenarios OWL file and its map-

ping to a JBehave textual story file.

ES for the Selected BDDUSS of EAMS-CBALM

Two main tasks must be performed in this activity: (1) define BDD acceptance tests for

the selected BDDUSS of EAMS-CBALM; and (2) implement the selected BDDUSS.

Acceptance tests for the selected BDDUSS

JBehave allows acceptance tests to be structured according to its textual story file. This file

was created in the DSB activity and contains the main behaviours of the feature set to be

tested. Additional scenarios may be inserted if the SE believes it is necessary to complement

the acceptance test suite. There are six sets of acceptance tests in our user story example, one

set for each instrument type to be registered, and the most relevant excerpts of the JBehave

acceptance test code for the PATLP instrument type registration are shown in Fig. 25.

Fig. 21 JBehave user story and scenario templates

Fig. 22 State-based model for the PATLP instrument type registration

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 26 of 45

Fig. 23 User Story and Scenario ontology for the PATLP instrument type registration

Fig. 24 Mapping of the User Story and Scenario ontology to a JBehave textual story file

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 27 of 45

JBehave uses the @Given, @When and @Then annotations to relate scenario

specification clauses to Java methods, and the Java class that implements these

methods should extend the Steps class. JBehave allows the scenario to be exe-

cuted as a JUnit test [29]. The link between the JBehave executor framework

and the textual scenarios is provided by the Embeddable class definitions. This

class extends class JUnitStory, and its name can be mapped to the textual story

filename.

Implementation of the selected BDDUSS of EAMS-CBALM

This task corresponds to the second phase of ES activity, in which the BDD acceptance

tests guides the implementation. After the implementation passes the acceptance tests

of the selected BDDUSS, we can assert that all requirements have been fulfilled. A

readable behaviour-oriented code can be obtained since the ubiquitous language ter-

minology of the application has been used in all ScrumOntoBDD activities. Figure 26

depicts this with excerpts of the JBehave implementation code for the Instrument

Types Registration requirement. In this code, the names of the class and methods em-

ploy the EAMS-CBALM ubiquitous language terminology.

Fig. 25 Excerpt of the acceptance tests generated for the PATLP scenario

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 28 of 45

The complete JBehave implementation code corresponds to the PI that implements

the Instrument Types Registration requirement. Nevertheless, this code must be

inspected by the DT before being delivered to the client.

SRR for EAMS-CBALM

An SRR activity that led to a PB adaptation was related to the Instrument Types Regis-

tration requirement. During the DT meeting of this SRR activity, the PO reported:

“In addition to the student evaluation, the UFSCar Medicine Programme also contem-

plates the teacher evaluation, mainly when the latter is playing the facilitator or pre-

ceptor role in a curricular activity. In this case, similar instruments to those employed to

evaluate students are also employed to evaluate teachers. For example, the PATLP in-

strument is also employed for teacher evaluation, but with different relationships be-

tween the involved actors: the respondent and appraiser is the student, and the

appraisee is the teacher.”

Based on this report, the Evaluation Process ontology illustrated in Fig. 16 was ex-

tended to include teacher evaluation. The PB item related to the Instrument Types

Registration requirement then was adapted for encompassing both student and teacher

evaluations. Figure 27 shows an excerpt of the Evaluation Process ontology with the

Fig. 26 Excerpt of the Instrument Types Registration requirement implementation

Fig. 27 Evaluation Process ontology with extended PATLP

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 29 of 45

extended PATLP instrument type representing student, facilitator and preceptor

evaluations.

Evaluation
In our evaluation of ScrumOntoBDD, we aimed at confirming the two hypotheses

posed in the Introduction section, concerning communication improvement and reduc-

tion of ambiguities, respectively. In this evaluation, we applied Action Research [27],

which is a form of empirical research targeted to practice improvement. This section

justifies our choice of using Action Research (AR) and describes the experimental ana-

lysis we performed to confirm our hypotheses, demonstrating in this way the benefits

of ScrumOntoBDD for practice.

Action research

Haneef [23] points out that research can be theoretical (conceptual) or practical, and

two major categories of practical research are empirical research and developmental or

problem-solving research. The former is evidence-oriented and focuses on data collec-

tion, where the researcher mainly tries to describe and theorise about some phenomena

rather than develop or prescribe solutions to a problem, while the latter is utility-

oriented or solution-oriented, where the researcher focuses on the development or pre-

scription of artefacts that should become an integral part of the acquired knowledge.

Design Research (or Design Science) and Action Research (AR) [27] are two represen-

tatives of developmental (problem-solving) research, and they are both suitable for

evaluating a development approach like ScrumOntoBDD. Besides that, we have decided

to apply AR in this evaluation because it stresses practice improvement and the partici-

pation of practitioners in the experimentation.

According to [32], in AR the work is partitioned into stages and can involve several

cycles. Figure 28 shows the canonical AR cyclic process [27], which consists of five

phases:

1. Diagnosing, in which a problem is identified or defined;

Fig. 28 Action Research cycle (adapted from [27])

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 30 of 45

2. Action Planning, in which alternative courses of action to solve a problem are

considered;

3. Action Taking, in which a course of action is selected;

4. Evaluating, in which consequences of an action are studied;

5. Specifying Learning, in which general findings are identified.

Although [27] acknowledges that AR projects may differ in the number of phases that

is carried out for solving a problem, in our evaluation, we applied a cyclic approach that

follows the canonical AR cyclic process shown in Fig. 28. Furthermore, it is quite com-

mon in AR to perform the AR cycle multiple times until a problem solution is reached.

In our validation, we used AR to carry out an experimental analysis of ScrumOntoBDD

because the AR cyclic process is guided by the collaborative and continuous learning

principles and requires a cooperative and participative involvement of the researcher(s)

and the actors in the evaluation experiment.

Objective, setting and participants

The main objective of this experiment has been to evaluate if ScrumOntoBDD both im-

proves communication between PO and developers (hypothesis H1) and reduces the

ambiguities intrinsic in using natural languages to report user stories (hypothesis H2).

For this experiment, we choose a usage scenario of the UFSCar Medicine Programme

to be supported by EAM-CBALM that is similar to the scenario used to illustrate Scru-

mOntoBDD in the Application example section, so that we could reuse most of the on-

tologies already defined and validated. This usage scenario is supported by the EAMS-

CBALM Evaluation Management module and is related to a more comprehensive func-

tional requirement, namely the Create People Performance Evaluation Format

requirement.

The following people participated in this experiment:

� Participant 1: PO involved in the EAMS-CBALM development, who also played the

DE role since she was a teacher of the UFSCar Medicine Programme;

� Participant 2: PhD student involved in the EAMS-CBALM development, who

played the SE role;

� Participant 3: MSc student involved in the EAMS-CBALM development as an ob-

server, who is the first author of this paper and was the AR researcher who played

all the other roles defined in ScrumOntoBDD.

Besides these participants, an AR expert contributed to the preparation and analysis

of a semi-structured interview, which was employed in the Evaluating and Specifying

Learning phases of the AR cycles. All these participants signed The Written Informed

Consent Form.

Experimental analysis

Since we wanted to compare the development of a same usage scenario with two differ-

ent approaches (using Scrum and using ScrumOntoBDD), our experimental analysis

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 31 of 45

consisted of two AR cycles: a first AR cycle using Scrum, and a second AR cycle using

ScrumOntoBDD. This is similar to the approach reported in [39].

Our research questions RQ1 and RQ2 have been directly derived from the prob-

lems we faced in the EAMS-CBALM development, which have been discussed in

the Introduction section. In order to simplify the presentation of our experimental

analysis approach, we refer to these problems through the acronyms RQ1 and RQ2

(their corresponding research questions), using them to denote the input of the ex-

perimental analysis, and consequently of the Diagnosing phase of the first AR

cycle. The evaluation of hypotheses H1 and H2 is a direct consequence of the ana-

lysis of the data collected in the semi-structured interview. Therefore, we use ‘H1

and H2 evaluation’ to denote the output of the experimental analysis, and conse-

quently of the Specifying Learning phase of the second AR cycle. Figure 29 illus-

trates these two AR cycles with their phases.

In order to have PO and SE-independent views of this experiment, we performed it

twice: first involving Participant 1 and Participant 3; and then involving Participant 2

and Participant 3. The AR phases in each cycle were performed as follows:

a) Diagnosing defines the problem to be investigated by the experiment, which is

represented by the research questions RQ1 and RQ2 for the first cycle;

b) Action Planning starts by choosing the EAMS-CBALM usage scenario and the Ap-

plication Domain Documents (ADD) for this experiment, which are the same for

both cycles, followed by planning Scrum activities for the first cycle, and ScrumOn-

toBDD activities for the second cycle;

c) Action Taking, for the first cycle, is the execution of the Scrum activities for

achieving an implementation of the EAMS-CBALM usage scenario, which was

performed by the software house, and for the second cycle is the execution of

the ScrumOntoBDD activities for achieving another implementation of the

same EAMS-CBALM usage scenario, which was performed by the AR

researcher;

Fig. 29 AR cycles of experimental analysis

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 32 of 45

d) Evaluating a semi-structured interview performed in both cycles and conducted by

Participant 3, where the interviewee was Participant 1 in the first experiment and

was Participant 2 in the second experiment; and

e) Specifying Learning is the analysis of the data collected in the interview, which in

the first cycle was a feed for the Diagnosing phase of second cycle, and in the

second cycle was the output of the whole experiment, i.e., the evaluation of

hypotheses H1 and H2.

Action planning

The EAMS-CBALM usage scenario for the Create People Performance Evaluation For-

mat requirement was extracted from a user story reported by the PO during the

EAMS-CBALM development. Based on this user story and the ADD [73], the activities

for both AR cycles were planned. Figure 30 gives an overview of this planning, and it

should be highlighted that the Screen Prototypes (SPr) activity was included in Scrum

by the software house.

Action Taking

Except for the SPr activity in cycle 1 and for the CDAO activity in cycle 2, all activities

were performed both cycles, and the only difference between them is in the way they

Fig. 30 Activities in the Action Planning phases of the AR cycles

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 33 of 45

performed. In the following paragraphs, we discuss how each of these activities was

performed in each cycle.

The first task of the EAR activity was the same for both cycles, i.e., identification of

the application scenarios for the Create People Performance Evaluation Format require-

ment by means of a UML use case diagram. The EAR activity of cycle 2 had a second

task since the approach prescribes the use of BDD, namely the definition of a feature

set for the Create People Performance Evaluation Format requirement based on the ap-

plication scenarios described in the UML use case diagram.

Most of the ontologies created for illustrating ScrumOntoBDD have been reused,

adapted or extended in the CDAO activity of cycle 2 of this experiment. For instance,

the Evaluation Process ontology from the Evaluation Process ontology section was ex-

tended to support the description of the Create People Performance Evaluation Format

requirement.

In the BPB activities of cycle 1, the PB items were informally specified using tables,

while in cycle 2, they were formally specified using ontologies. SPr activity was included

in cycle 1 because it was widely used by the software house throughout the EAMS-

CBALM development, and was not included in cycle 2 because we wanted to assess its

usefulness since we were considering to include it in ScrumOntoBDD.

The ultimate goal of ES activity in both cycles is to obtain an implementation of the

selected PB item. However, in cycle 2, the Acceptance Tests Generation task prescribed

by the use of BDD was performed before the actual Implementation task. Figure 31 (left

side) shows an excerpt of the implementation obtained in cycle 1 by the software house

during the EAMS-CBALM development, while on the right side shows an excerpt of

Fig. 31 Excerpts of implementations obtained in cycle 1 (left side) and cycle 2 (right side)

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 34 of 45

the implementation obtained in cycle 2 by the AR researcher. These implementations

correspond to the PIs to be analysed in the SRR activities of these cycles. Although

both implementations have similar structural code, they have different names for clas-

ses, attributes and methods. Since cycle 2 uses ScrumOntoBDD, its code terminology is

closer to the application domain. Therefore, this implementation is expected to be eas-

ier to understand for the participants. Figure 31 shows implementation excerpts of the

same PB item from both cycles, illustrating similar structural code. However, the ex-

cerpts from cycle 2 (right side) have the application domain terminology in the classes,

attributes and methods names.

Evaluating

We applied semi-structured interviews, also known as flexibly structured interviews [6],

to evaluate each cycle since these interviews allow the interviewee to more freely report

on her experiences and more freely articulate her thoughts about them. These inter-

views follow a predefined script of subjects to be addressed with the interviewee by

means of open questions. For example, to assess the interviewee’s participation in the

implementation of the Create People Performance Evaluation Format requirement, in

the Evaluating phase of the first AR cycle, the following main question and sub-

questions were asked: “What was your participation in the development of the Create

People Performance Evaluation Format software requirement?”; “How would you de-

scribe the steps in which you participated more actively?”; and “Would you point out

steps that were most critical in terms of defining system requirements? (If so, which

ones?)”. In total, 7 main questions and 15 sub-questions have been asked in each inter-

view, but these questions unfolded into more sub-questions.

The interview with Participant 1 (PO) was held on 6 August 2018 in two sections

with a total duration of 1 h 45 min 50 s, and with Participant 2 (SE) the day after in a

single section of 1 h 45 min 14 s. These interviews were audio-taped with the partici-

pants’ consent. Each interview consisted of two parts, corresponding to each AR cycle

(cycles 1 and 2) of the experiment, respectively. In the first part (cycle 1), the AR re-

searcher presented and illustrated the Scrum activities employed by the software house

for developing this system with the implementation of the Create People Performance

Evaluation Format requirement of EAMS-CBALM, which resulted in the product cur-

rently being tested in the UFSCar Medicine Programme. The interviewee then provided

comments on the AR presentation, regarding her participation in the EAMS-CBALM

development and the Scrum method employed in this development. Furthermore, the

AR researcher encouraged the interviewee to provide additional remarks, clarifications,

and criticism about these matters. In the second part (cycle 2), the AR researcher pre-

sented and illustrated the ScrumOntoBDD activities with the implementation of the

same EAMS-CBALM requirement. Similarly, the interviewee commented on the pres-

entation, and the AR researcher encouraged the interviewee to provide more com-

ments, evaluate the ScrumOntoBDD activities and compare them with the activities in

cycle 1, also taking into account the interviewee’s professional experience.

These audio-taped interviews were fully transcribed in Portuguese using conventional

writing. The interview transcripts were inductively reduced by seeking what emerges as

important and of interest, then analysed and interpreted in the following sequential

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 35 of 45

Table 7 Main results of the cycle 1 Evaluating phase

Product Owner (PO) Software Engineer (SE)

Focus on the application development Focus on the development methodology

Advantages Disadvantages Advantages Disadvantages

Agility due to
weekly meetings

Lack of more systematic "records"
that could give more visibility to
the different development phases

Using agile
software
development
methodologies like
Scrum

Scrum distributes roles and
activities to team members, but
does not explain how to
implement these activities
Lack of a formal methodology that
facilitates the communication with
the user and with the developer

Using screen
prototypes

Lack of development team
experience

Using screen
prototypes

Division into non-testable sub-tasks
throughout the process
Need for more frequent meetings
during the requirements gathering
phase

Software that
“handles the
Medicine
Programme
needs”

Lack of openness for more
effective collaboration, not taking
advantage of PO meaningful
prior experience

Not testable with a real data set

Discontinuity and very delayed
testing

Lack of development team
experience

Lack of openness for more
effective collaboration, not taking
advantage of SE meaningful prior
experience

Discontinuity and very delayed
testing

Table 8 Main results of the cycle 2 Evaluating phase

Product Owner (PO) Software Engineer (SE)

Focus on the application development Focus on the development methodology

Advantages Disadvantages Advantages Disadvantages

Phase for defining a common
language between user and
developer

Does not use screen
prototypes
Probably the usual POs will
have understanding
difficulties

Use of formal
methodology to
complement Scrum

Longer
development
process

Use of “records” that give
visibility to the development
phases and enable the PO
collaboration on those phases

Need for an additional actor,
the Ontology Engineer, and
likely an increase of the
system cost

Use of “records” that
facilitate the
communication with the
user

Does not use
screen prototypes
Probably the
usual POs will
have
understanding
difficulties

Possibility of better result with
less code repair

Likely increase in system
development time

Better communication
with the developer, and
consequent increase in
productivity

Likely reduction of code
repair

Probably better cost/
benefit ratio

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 36 of 45

process [60]: seeking connections and repetitions among excerpts; noting them; label-

ling them by descriptive words or expressions; and grouping them by building inter-

pretative categories. Finally, the selected excerpts were arranged according to their AR

cycles and to the main results of this analysis. This entire process was performed by

hand without employing any software tools. The complete English translation of each

one of these excerpts, followed by its original transcription, are presented in [68].

Specifying Learning

We present our conclusions here based on the main results obtained from the analysis

done in the Evaluating phases, which are summarized in Tables 7 and 8.

Tables 7 and 8 show that the PO comments and evaluations mainly focused on as-

pects and issues related to the development process of a product that fulfils the user

demands. In contrast, the SE comments and evaluations mainly focused on aspects and

issues related to the software development methodologies employed in cycles 1 and 2.

Table 7 shows that the difficulties identified in cycle 1 by both interviewees converge,

although their focus was different. These results corroborate with our assumption that

the exclusive use of Scrum method in cycle 1 would reveal communication issues be-

tween the PO and DT, insofar as information is lost in EAR and BPB activities. Firstly,

the interaction between PO and DT was almost always in natural language and through

texts, and all information extracted from the user stories are described exclusively using

BPMT. Secondly, informally specified requirements were then mapped to PB items,

which are also usually described informally or semi-formally. Table 7 also shows issues

concerning long application development time and the lack of openness of the DT to

collaborate with the PO and SE, although both had significant prior experience in their

respective roles. Even though the interviewees agree that the main cause of significant

delays in the PI releases was due to most tests being insufficient and noncontinuous

throughout the software development, they pointed out other factors that should be

taken into account. The PO emphasizes the complexity of the requirements related to

the UFSCar Medicine Programme evaluation system as a factor to be considered, but

for the SE, the adopted method and the DT lack of experience are also relevant factors

to be considered.

From the results in Table 7 and the considerations above, we can conclude that in

cycle 1, there is enough evidence that the use of plain Scrum neither improves communi-

cation between POs and developers nor reduces ambiguities intrinsic in using natural

languages to report user stories. With the exception of the screen prototypes, which

both interviewees pointed out to be an effective resource in the communication be-

tween PO and DT, all remaining comments confirmed the problems related to RQ1

and RQ2.

Table 8 shows that interviewees’ opinions converge concerning the possibilities cre-

ated by ScrumOntoBDD to overcome the problems identified in cycle 1. The Scru-

mOntoBDD characteristics that are considered to be the most advantageous are the

ability to define a common language between users and developers by employing ontol-

ogies and BDD, the generation of artefacts (“records”) that give visibility to each phase

of software development (which can also improve the communication and PO collabor-

ation with the DT); and reduction of the total time spent repairing software bugs. The

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 37 of 45

lack of screen prototypes was indicated as a drawback in ScrumOntoBDD, which is

understandable since it was considered a major benefit in cycle 1 by both inter-

viewees. Table 8 also shows that the interviewees converge also when it comes to

the ScrumOntoBDD drawbacks. The first drawback concerns possible difficulties of

less experienced or less available POs to understand the formalism adopted in this

approach, while the second one concerns the additional time required to define the

ontologies, and the higher cost of having an additional actor, i.e., the Ontology En-

gineer (OE). Nevertheless, both interviewees indicate the potential of ScrumOn-

toBDD to obtain better results in terms of cost–benefit. The SE insists on the

potential significant reduction of time spent in the software development process

as a whole, due to the smaller number of errors she believes would be made when

using this approach.

From the results in Table 8 and the considerations above, we conclude that in cycle

2, there are strong evidences that our research hypotheses H1 and H2 both hold for Scru-

mOntoBDD, i.e., that combining BDD with Scrum can improve communication between

PO and developers, and employing ontologies can reduce the ambiguities intrinsic in

using natural languages to report on user stories.

Table 9 Systematic Literature Reviews summary

Systematic Literature Review 1 (SLR1) Systematic Literature Review 2 (SLR2)

Main
question

How BDD or its ubiquitous language can be
used to improve agile software development?

How ontologies can be combined with agile
methods to improve software development?

Data
sources

ACM Digital Library: http://portal.acm.org/
IEEEXplore: http://ieeexplore.ieee.org/
Scopus: https://www.scopus.com/
CAPES portal: http://www-periodicos-capes-gov-br.ezl.periodicos.capes.gov.br/

Canonical
search
query

((BDD) OR (Behaviour-Driven Development) OR
(ubiquitous language)) AND ((agile
development) OR (Scrum) OR (eXtreme
Programming))

((ontology) OR (ontologies) OR (taxonomy) OR
(terminology)) AND ((agile development) OR
(Scrum) OR (eXtreme Programming) OR (BDD)
OR (Behaviour-Driven Development))

Inclusion
criteria

Abstract refers to BDD or ubiquitous language
in agile software development

Abstract refers to ontologies or taxonomies in
agile software development

Title, keywords or abstract refers to a study to
classify other papers or is a SLR on BDD or
ubiquitous language in agile software
development

Title, keywords or abstract refers to a study to
classify other papers or is a SLR on ontologies
in agile software development

Title or keywords match the terms from the canonical search query

Paper was published not longer than 6 years ago (from the SLR starting date)

Exclusion
criteria

Paper is not about improving agile software
development with BDD tools or ubiquitous
language (primary studies)

Paper does not discuss ontologies and/or how
they were developed (primary studies).

Paper lacks details on the tools and methods
used or developed (primary studies)

Paper lacks a method for software development
(primary studies).

Repeated or duplicated studies. The most complete and comprehensive study has been
considered (primary and secondary studies).

Papers focuses on other domains than Education, Software Engineering and Heath (primary and
secondary studies).

Statistics 279 Studies found
83 Studies filtered with inclusion criteria
6 Studies selected with exclusion criteria

163 Studies found
79 Studies filtered with inclusion criteria
7 Studies selected with exclusion criteria

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 38 of 45

http://portal.acm.org/
http://ieeexplore.ieee.org/
https://www.scopus.com/
http://www-periodicos-capes-gov-br.ezl.periodicos.capes.gov.br/

Related work
To perform both SLRs, we used the State of the Art through Systematic Review

(StArt) tool, which supports the planning protocol steps proposed by [16]. The

first SLR aimed at investigating how BDD and its ubiquitous language have

been used to improve agile software development, particularly Scrum. The sec-

ond SLR aimed at investigating how ontologies have been combined with agile

software methodology such as BDD and Scrum in order to improve software de-

velopment. Table 9 gives the main question, the data sources, the queries, in-

clusion and exclusion criteria and the statistics of the results for each SLR.

BDD in software development

The rising popularity of BDD has spurred research to apply it in different do-

mains [13]. Since currently available BDD tools give little or no support to the

planning phase, most of the BDD-related developments we found in our SLR

define a specific ubiquitous language for a given application domain.

Rocha [52] reports on an experiment in which BDD and TDD have been applied to

Software Engineering teaching. This experiment was carried out during the Software

Engineering Laboratory course of a Bachelor programme in Computer Science and In-

formation Systems at a Brazilian university. Based on the results of this experiment, the

authors argue that BDD helps in the integration of different contents of this course, en-

abling a better understanding of the problems to be solved and bringing benefits for

student learning.

Lubke [34] presents a platform for integrating systems responsible for land registra-

tion in Switzerland. The goal is to reduce process execution time between systems and

also the communication time between POs. In order to model executable integration

processes between various systems and to develop test cases to validate these processes,

the authors used BDD and Business Process Model Notation (BPMN) as the ubiquitous

language for defining test case models (scenarios). BPMN was chosen because this lan-

guage was known by the POs. By combining BDD with BPMN scenarios, the authors

found improvements in communication between developers, users and investors, which

contributed significantly to the more agile development of the platform.

Oruç [48] proposes a tool to facilitate the creation of scenarios for testing web ser-

vices. This tool uses BDD in conjunction with the ubiquitous language Gherkin [78] to

dynamically generate test scripts. These scripts are run in JMeter, which is a test tool

to analyse and measure the performance of web applications [30]. The authors claim to

achieve two benefits with this tool: because Gherkin is a domain-specific language, it al-

lows any domain expert to create and run web service tests even without software

knowledge; and developers do not need to write unit tests manually, since JMeter auto-

mates the execution of the automatically generated tests.

Silva [61] proposes an approach based on BDD to support the automated assessment of

artefacts along the development process of interactive systems. A formal ontology model

is defined for describing concepts used by platforms, models and artefacts that compose

the design of interactive systems, allowing in this way a wide description of UI elements

and their behaviour to support testing activities. In addition, the approach proposes im-

provements to how teams should write requirements for testing purposes. Once described

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 39 of 45

in the ontology, the behaviours can be reused freely to write new scenarios in natural lan-

guage, providing test automation in BDD and decreasing manual coding.

Soeken [64] presents a methodology to assist developers carrying out the BDD steps.

This methodology proposes a design flow where the developer engages in a dialog with

a computer program in an interactive way. This dialog contains the user story, and this

program processes each spoken sentence and generates the step definitions and code

blocks (classes, attributes and methods) of each user story scenario. Some natural lan-

guage processing tools are explored, and a case study illustrates the application. Rather

than going manually through the established BDD steps, this methodology suggests

some scenario skeletons to facilitate test refinement and implementation.

The main difference between our work and the work mentioned above is that our

work not only applies BDD to software development, but also exposes the benefits of

using BDD in combination with Scrum. Moreover, our case studies were developed for

the education domain, more specifically for courses based on active learning method-

ologies. In our SLR, we have not been able to find this specific combination of tech-

niques (BDD and Scrum) in software development in the education domain.

Ontologies in software development

Ontologies have been used in Computer Science and Software Engineering. Most of

the work related to ontologies we found in our SLR propose a process or an approach

to combine ontologies with some agile software methodology, in order to improve soft-

ware development.

Machado [36] proposes an agile process that associates practices of Software Engin-

eering, Ontology Engineering and Scrum to improve the collaboration between soft-

ware and ontology engineers. This process provides a set of guidelines for defining

activities, tasks, roles and artefacts to develop ontology-based software. OntoSoft was

applied for developing an ontology-based application to map and recommend real es-

tates. This paper synthesizes the main results obtained in the development of a PhD

project, and its complete description can be found in [37].

Lin [33] presents an approach to help team members perform more efficiently their

daily tasks according to a specific process. This approach is based on the K-CRIO

ontology for business processes modelling and on a multi-agent system for providing

intelligent assistance to workers.

Lucassen [35] proposes the Quality User Story (QUS) framework for ensuring the

quality of agile requirements expressed as user stories. QUS contains 13 criteria that

determine the quality of user stories in terms of syntax, semantics and pragmatics.

Based on QUS, the Automatic Quality User Story Artisan (AQUSA) tool was built to

detect QUS quality criteria violations and to improve user stories.

Silva [62] introduces an ontological model to support scenario description and to test

functional requirements of interactive systems. This model was developed based on

BDD principles, describing user behaviours when interacting with UI elements in a

scenario-based approach. Once described in the ontology, behaviours can be freely

reused to write new scenarios in natural language, providing test automation. A case

study is presented for the flight tickets e-commerce domain, where ontology-based

tools were used to support the assessment of evolutionary prototypes and final UIs.

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 40 of 45

The main difference between the work discussed above and ours is that we use ontol-

ogies in a broader context, starting from a reference ontology for a given domain, and

gradually specialising this ontology so that it can be used in the agile software develop-

ment for that domain. The other developments concentrate on the collaboration

among software engineers and ontology engineers, modelling the Scrum development

process, and/or extracting semantic information to improve user stories and to auto-

mate testing.

Finally, our work proposes an integrated approach that combines three techniques,

namely Scrum, ontologies and BDD, to improve agile software development. To the

best of our knowledge, this combination has not been investigated before.

Conclusions
This section presents our concluding remarks, discussing the main contributions and

limitations of our work and giving directions for future work.

Contributions and limitations

The main motivation for doing this research came from the problems we observed dur-

ing the EAMS-CBALM development using Scrum, namely that quite often it was ne-

cessary to redefine some system behaviour scenarios and their corresponding PB items

due to misunderstanding of the stories reported by the PO, and that the definition of

test suites was cumbersome, resulting in test suites that were incomplete or did not

comply with the system requirements. These problems triggered two research ques-

tions, which we answered in the MSc project of the first author, namely (RQ1) “How

can the communication between POs and developers be improved?” and (RQ2) “How

can the ambiguities intrinsic to using natural languages to report user stories be

reduced?”.

The main contribution of our work was the development of the ScrumOntoBDD ap-

proach, which combines Scrum, Ontology and BDD to address the problems we identi-

fied and consequently to answer our research questions. Based on these research

questions and using our approach, we have defined two main hypotheses: combining

BDD with Scrum can improve communication between PO and developers (H1); and

employing ontologies can reduce the ambiguities intrinsic in using natural languages to

report user stories (H2). An experimental analysis of ScrumOntoBDD was carried out

using Action Research, in order to get evidence that the two hypotheses hold when

employing this approach.

We verified H1 with a case study in the EAMS-CBALM context, in which a ubiquitous lan-

guage for the Education domain was defined together with BDD scenarios and acceptance

tests, allowing the PO to follow and properly communicate with the developers throughout

the development process. This work was reported in [66]. We verified H2 with another case

study also in the EAMS-CBALM context, in which domain ontologies were used to describe

the UFSCar Medicine Programme, in order to reduce the ambiguities caused by using a nat-

ural language as a ubiquitous language. This work was reported in [67].

The main challenge we found during this work concerns the ScrumOntoBDD valid-

ation. Our hypotheses deal with the communication between POs and developers, and

we based our experiments on the development of EAMS-CBALM, which is a product

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 41 of 45

that has been developed by a software house. Unfortunately, we could not obtain any

statistical evidence for corroborating these hypotheses, due to the limited number of

participants in these experiments. This also forced the AR researcher to play several

ScrumOntoBDD roles on those experiments, which can be considered to be another

threat to the validity of the ScrumOntoBDD evaluation results. Therefore, for a more

systematic verification of our hypotheses, it would be necessary to define an experiment

involving the complete EAMS-CBALM development team, but that was not possible

because of their limited availability and the costs involved. This means that our Scru-

mOntoBDD evaluation aimed at finding evidence that our hypotheses hold when

employing this approach with a limited number of participants and with a single re-

quirement, and it is not as conclusive as it could have been if the whole development

team could participate and more requirements could be implemented.

In ScrumOntoBDD, an ontology is defined to serve as a ubiquitous language for the

whole project, but more specifically for the User Stories and Scenarios. In the applica-

tion reported in this paper, we used HERO as domain ontology, but when applying

ScrumOntoBDD in another application domain, an appropriate ontology should be

found or developed in activity CDAO (see Fig. 8). This means that ScrumOntoBDD is

general enough to be applied to other domains. For example, [53] describes a system

for monitoring patients with Non-Communicable Diseases (NCD), such as hyperten-

sion and diabetes, which was developed according to a bottom-up approach and

employing TDD. A similar system could be developed employing ScrumOntoBDD, a

top–down approach, starting from a reference ontology for the Health domain such as

the Disease Ontology [58] available at http://www.disease-ontology.org.

Future work

Firstly, we should consider extending the ScrumOntoBDD approach with the sugges-

tions of the experiment participants. For example, we can consider including the Screen

Prototype Generation task related to the SelectedBDDUSS item of the Backlog in the

Defining Sprint Backlog (DSB) activity, so that these screen prototypes can be validated

by the PO. If needed, this item could be adapted before being used as input in the next

activity, i.e., Executing Sprint (ES).

Secondly, a quantitative study of the ScrumOntoBDD approach could be performed

using an experimental methodology as the one presented in [77]. This study could in-

volve two development teams that would develop the same application separately in

two rounds: in the first round, a team would employ Scrum, and the other would em-

ploy ScrumOntoBDD; and in the second round, these approaches would be swapped.

Metrics like time spent on each development of the application and/or lines of code

could be then collected for further analysis and comparison. In addition, a qualitative

study involving the same development teams could be carried out to assess the users’

acceptance of the ScrumOntoBDD approach. In this case, assessment models such as

the Technology Acceptance Model (TAM) [12] and the Self-Assessment Manikin

(SAM) [25] can be used.

Finally, our description of the ScrumOntoBDD approach could be refined in order to

transform it into a process, by defining the activities and involved tasks in more detail,

such that they provide more concrete guidelines for the development teams. This work

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 42 of 45

http://www.disease-ontology.org

would have to be performed in close collaboration with a development team in order

to yield results that are really useful for practitioners.

Abbreviations
ADD: Application Domain Documents; AR: Action Research; AS: Application Scenarios; ATDD: Acceptance Test Driven
Development; BDD: Behaviour-Driven Development; BDDT: BDD Tools; BDDUSS: BDD User Stories and Scenarios;
BPB: Building Product Backlog; BPMN: Business Process Model Notation; BPMT: Business Process Modelling Techniques;
CBALM: Courses Based on Active Learning Methodologies; CDAO: Creating Domain Application Ontologies;
DE: Domain Expert; DMed: Department of Medicine; DRO: Domain Reference Ontologies; DSB: Defining Sprint Backlog;
DT: Development Team; EAMS-CBALM: Educational and Academic Management System for Courses Based on Active
Learning Methodologies; EAR: Extracting Application Requirements; ES: Executing Sprint; FS: Feature Sets;
H1: Hypothesis 1; H2: Hypothesis 2; HERO: Higher Education Reference Ontology; IS: Information Systems; NCD: Non-
Communicable Diseases; OE: Ontology Engineer; OL: Ontology Languages; OSEPP: Objective and Structured Evaluation
of Professional Performance; OT: Ontology Tools; OWL: Web Ontology Language; PATLP: Performance Assessment of
the Teaching-Learning Process; PB: Product Backlog; PBE: Problems-Based Exercise; PI: Product Increment;
PL: Programming Languages; PO: Product Owner; PT: Progress Test; PTo: Programming Tools; RDF: Resource
Description Framework; RDFS: RDF Schema; RP: Reflective Portfolio; RQ1: Research Question 1; RQ2: Research Question
2; SADT: Structured Analysis and Design Technique; SAM: Self-Assessment Manikin; SB: Sprint Backlog; SBe: System
Behaviours; ScrumOntoBDD: Approach based on Scrum, Ontology and BDD for agile software development;
SE: Software Engineer; SLH: Sírio-Libanês Hospital; SLR: Systematic Literature Review; SM: Scrum Master; SP: Shippable
Product; SPr: Screen Prototypes; SRA: Sprint Records and Annotations; SRR: Sprint Review and Retrospective; ST: Scrum
Team; TAM: Technology Acceptance Model; TDD: Test-Driven Development; TRI: Teaching and Research Institute;
UCG: Ubiquitous Computing Group; UFSCar: Federal University of São Carlos; UI: User Interface; ULT: Ubiquitous
Language Terminology; UML: Unified Modelling Language; USNL: User Stories in Natural Language; WE: Written
Examination

Acknowledgments
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPE
S)—Finance Code 001.

Authors’ contributions
PLS did all SLRs to support this work development. Furthermore, PLS designed, developed and implemented the
ScrumOntoBDD approach, all ontologies involved the approach and the evaluation model. Finally, PLS participated on
the preparation, creation and presentation of the published work. WLS supervised and aided on the SLRs, the design,
development and implementation of the published work. WLS also participated on the preparation, creation and
presentation of the published work. LFP aided on the design of the published work. LFP also supervised and revised
the preparation, creation and presentation of the published work. The authors read and approved the final
manuscript.

Funding
The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this
article: This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPE
S)—Finance Code 001.

Availability of data and materials
Not applicable

Declarations

Competing interests
The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Author details
1Department of Computing, Federal University of São Carlos, São Carlos, SP, Brazil. 2Faculty of Electrical Engineering,
Mathematics and Computer Science, University of Twente, Enschede, The Netherlands.

Received: 25 November 2020 Accepted: 22 April 2021

References
1. Alatrish E (2013) Comparison some of ontology editors. Int Sci J Manage Inform Syst 8(2):18–24
2. Beck K et al (2001) Manifesto for agile software development. www.agilemanifesto.org/. Accessed 5 Sept 2017
3. Beck K (2002) Test Driven Development: by example. Addison-Wesley, 240 pgs
4. Beck K (2012) Extreme programming explained: embrace change. Second edition, Addison-Wesley, 189 pgs
5. Berners-Lee T (2009) The Semantic Web as a language of logic. Available at https://www.w3.org/DesignIssues/Logic.

html#Crawf90. Accessed 14 May 2018
6. Bogdan RC, Biklen SK (2007) Qualitative research for education: an introduction to theory and methods. Fifth edition,

Pearson Education Inc, USA
7. Carlisle C, Calman L, Ibbotson T (2009) Practice-based learning: the role of practice education facilitators in supporting

mentors. Nurs Educ Today 29(7):715–721

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 43 of 45

https://www.agilemanifesto.org/
https://www.w3.org/DesignIssues/Logic.html#Crawf90
https://www.w3.org/DesignIssues/Logic.html#Crawf90

8. Chen GD, Chang CK, Wang CY (2008) Ubiquitous learning website: scaffold learners by mobile devices with information-
aware techniques. Comput Educ 50(1):77–90

9. Cockburn A (2004) Crystal Clear: a human-powered methodology for small teams. Addison-Wesley, p. 336
10. Concordion (2015). Available at https://concordion.org/. Accessed 26 Jan 2021
11. Cucumber (2014) Cucumber. Available at http://cukes.info/. Accessed 10 Oct 2016
12. Davis FD (1989) Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q

13(3):318–341
13. Diepenbeek M et al (2015) Behavior Driven Development for tests and verification. Tests and Proofs, Lectures Notes in

Computer Science (LNCS), Springer International Publishing AG, USA, Vol. 8570, pp. 61–77
14. El-Fakih K et al (2016) Distinguishing extended finite state machine configurations using predicate abstraction. J Softw

Eng Res Dev 4(1):26
15. Evans E (2003) Domain-driven design: tackling complexity in the heart of software. Addison-Wesley Professional, USA,

p. 529
16. Fabbri S et al (2016) Improvements in the Start tool to better support the systematic review process. In Proceedings of

the 20th International Conference on Evaluation and Assessment in Software Engineering (EASE'16), Association for
Computing Machinery, USA, paper 21, p. 05

17. Forte M et al (2013) A ubiquitous reflective E-portfolio architecture. Int J Med Inform 82(11):1111–1122
18. Gangemi A et al (2006) Modelling ontology evaluation and validation. Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 4011, pp. 140–154
19. Gruber TR (1995) Toward principles for the design of ontologies used for knowledge sharing. Int J Hum Comput Stud

43(Issues 5-6):907–928 Available at http://tomgruber.org/writing/onto-design.pdf .Accessed 20 Apr 2018
20. Gruber TR (2008) Ontology. Encyclopedia of Database Systems, Springer-Verlag, p. 04. Available http://tomgruber.org/

writing/ontology-in-encyclopedia-of-dbs.pdf. Accessed 20 Apr 2018
21. Guarino N (1998) Formal ontology and information systems. In Proceedings of 1st International Conference on Formal Ontology in

Information Systems (FOIS’98), N. Guarino (ed.), Frontiers in Artificial Intelligence and Applications, IOS Press, Vol. 46, pp. 3–15
22. Gutierrez-Pulido JR et al (2006) Ontology languages for the semantic web: a never completely updated review.

Knowledge-Based Syst 19(7):489–497
23. Haneef N (2011) Empirical research consolidation: a generic overview and a classification scheme for methods. Qual

Quantity Int J Method 47(1):383–410
24. Harith A, Kieron O, Nigel S (2005) Common features of killer apps: a comparison with Protégé. In Proceedings of 8th

International Protégé Conference, p. 04. Available at https://eprints.soton.ac.uk/260989/1/protege05-Alani.pdf. Accessed
29 May 2018

25. Hayashi ECS et al (2008) "Avaliando a Qualidade Afetiva de Sistemas Computacionais Interativos no Cenário Brasileiro".
Resultados do Workshop Usabilidade, Acessibilidade e Inteligibilidade Aplicadas em Interfaces para Analfabetos, Idosos
e Pessoas com Deficiência Usabilidade (in Portuguese), VIII Brazilian Symposium on Human Factors in Computing
Systems (IHC 2008), Brazil, pp. 55–62

26. Highsmith JA (2000) Adaptive software development: a collaborative approach to managing complex systems. Dorset
House Publishing, USA, p. 358

27. Järvinen P (2007) Action research is similar to design science. Qual Quantity 41(1):37–54
28. JBehave (2015) JBehave. Available at http://jbehave.org/. Accessed 19 Oct 2016
29. JUnit (2016) JUnit. Available at http://junit.org/junit4/. Accessed 14 Oct 2016
30. JMeter (2016) JMeter graphical server performance testing tool. Available at http://jmeter.apache.org/. Accessed 19 Dec 2016
31. Koskela L (2008) Test Driven: TDD and acceptance TDD for Java Developers. Manning Publications Co., p. 513
32. Lewin K (1988) Group decision and social change. The Action Research Reader, S. Kemmis (ed.), Deakin University Press,

Australia, pp. 47–56
33. Lin Y et al (2015) Multi-agent system for intelligent Scrum project management. Integrated Comput Aided Eng 22(3):281–296
34. Lubke D, Van Lessen T (2016) Modelling test cases in bpmn for behavior-driven development. IEEE Softw 33(5):15–21
35. Lucassen G et al (2016) Improving agile requirements: the Quality User Story framework and tool. Requirements Eng

21(3):283–403
36. Machado JB et al (2016) OntoSoft Process: towards an agile process for ontology-based software. In: Proceedings of

49th Hawaii International Conference on System Sciences, IEEE Computer Society, pp 5813–5822
37. Machado JB (2017) “OntoSoft: um processo de desenvolvimento ágil para software baseado em ontologia”. PhD’s thesis (in Portuguese).

Graduate Program in Computer Science and Computational Mathematics (PPG-CCMC) of University of São Paulo, Brazil, p. 195
38. Mealy GH (1967) Another look at data. In Proceedings of Fall Joint Computer Conference, pp. 525-534. Available at

https://www.computer.org/csdl/proceedings/afips/1967/5070/00/50700525.pdf. Accessed 20 Apr 2018
39. Mejía-Gutiérrez R, Carvajal-Arango R (2017) Design Verification through virtual prototyping techniques based on

Systems Engineering. Res Eng Design 28(4):477–494
40. Moodle (2018) Moodle: community driven globally supported. Moodle Partners. Available at https://moodle.org/?lang=

en. Accessed 04 June 2018
41. MSpec (2008) MSpec. Available at https://github.com/machine/machine. specifications. Accessed 19 Oct 2016
42. Musen MA (2015) The Protégé project: a look back and a look forward. AI Matters, Association of Computing Machinery

Specific Interest Group in Artificial Intelligence 1(4):4–12, https://doi.org/10.1145/2557001.25757003. Available at https://
protege.stanford.edu/. Accessed 25 May 2018

43. NBehave (2011) NBehave. Available at https://github.com/nbehave/. Accessed 29 Jan 2017
44. North D (2006) Introducing BDD. Dan North & Associates. Available at http://dannorth.net/introducing-bdd. Accessed 5

Sept 2017
45. North D (2017) What’s in a Story?. Dan North & Associates. Available at https://dannorth.net/whats-in-a-story. Accessed 5

Sept 2017
46. Okolnychyi A, Fögen K (2016) A study of tools for behavior-driven development. Full-scale Software Engineering/Current

Trends in Release Engineering, Seminar Winter Term 2015/2016, Research Group Software Construction, RWTH Aachen
University, pp. 7–12

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 44 of 45

https://concordion.org/
http://cukes.info/
http://tomgruber.org/writing/onto-design.pdf
http://tomgruber.org/writing/ontology-in-encyclopedia-of-dbs.pdf
http://tomgruber.org/writing/ontology-in-encyclopedia-of-dbs.pdf
https://eprints.soton.ac.uk/260989/1/protege05-Alani.pdf
http://jbehave.org/
http://junit.org/junit4/
http://jmeter.apache.org/
https://www.computer.org/csdl/proceedings/afips/1967/5070/00/50700525.pdf
https://moodle.org/?lang=en
https://moodle.org/?lang=en
https://doi.org/10.1145/2557001.25757003
https://protege.stanford.edu/
https://protege.stanford.edu/
https://github.com/nbehave/
http://dannorth.net/introducing-bdd
https://dannorth.net/whats-in-a-story

47. OMG (2011) About the Business Process Model and Notation Specification 2.0. Object Management Group. Available at:
https://www.omg.org/spec/BPMN/2.0. Accessed 04 June 2018

48. Oruç AF, Ovatman T (2016) Testing of web services using behavior-driven development. In: CLOSER 2016 – In
Proceedings of 6th International Conference on Cloud Computing and Services Science, Vol. 2, pp. 85–92

49. Palmer SR, Felsing JM (2002) A practical guide to Feature-Driven Development. Prentice Hall, USA, p. 271
50. Protégé (2017) A free, open-source ontology editor and framework for building intelligent systems. Available at https://

protege.stanford.edu/. Accessed 20 Sept 2017
51. Rhem J (1998) Problem Based Learning an Introduction. Natl Teach Learn Forum, Vol. 8, No 1, p. 07. Available at http://

www1.udel.edu/pbl/deu-june2006/supplemental/NTLF-PBL-introduction.pdf. Accessed 5 Sept 2017
52. Rocha FG et al (2019) Agile Teaching Practices: Using TDD and BDD in Software Development Teaching. In Proceedings

of XXXIII Brazilian Symposium on Software Engineering (SBES 2019), Brazil, p. 10. Available at https://doi.org/10.1145/33
50768.3351799. Accessed 19 Jan 2021

53. Rodrigues RJS et al (2020) MyHealth: a system for monitoring non-communicable diseases. Advances in Intelligent
Systems and Computing, Vol. 1134, Chap. 58, pp. 439–444. Springer International Publishing. Available at https://link.
springer.com/chapter/10.1007%2F978-3-030-43020-7_58. Accessed 20 Jan 2021

54. RSpec (2016) RSpec. Available at http://rspec.info/. Accessed 19 Oct 2016
55. Ross DT (1977) Structured analysis (sa): a language for communicating ideas. IEEE Transact Softw Eng 3:16–34
56. Rubin KS (2012) Essential Scum: a practical guide to the most popular agile process. Addison-Wesley, USA, p. 482
57. Santos HF et al (2016) Augmented Reality Approach for Knowledge Visualization and Production (ARAKVP) in

Educational and Academic Management System for Courses Based on Active Learning Methodologies (EAMS–CBALM).
In Proceedings of 13th International Conference on Information Technology: New Generations (ITNG 2016), Advances in
Intelligent Systems and Computing, Springer International Publishing AG, Vol. 448, pp. 1113–1123

58. Schriml LM et al (2018) Human Disease Ontology 2018 update: classification, content and workflow expansion. Nucleic acids
research 47(D1):D955–D962 Available at https://academic.oup.com/nar/article/47/D1/D955/5165342. Accessed 20 Jan 2021

59. Schwaber K, Sutherland J (2017) The Scrum Guide™ - the definitive guide to Scrum: the rules of the game. Scrum.Org
and ScrumInc, p. 19. Available at https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.
pdf#zoom=100. Accessed 12 Mar 2018

60. Seidman I (2006) Interviewing as Qualitative Research: a guide for researchers in education and the social sciences.
Third edition, Teachers College Press, USA.

61. Silva T, Hak J-L, Winckler M (2016) Testing prototypes and final user interfaces through an ontological perspective for
behavior-driven development. Lecture Notes Comput Sci 9856:86–107

62. Silva T et al (2017) A behavior-based ontology for supporting automated assessment of interactive systems. In:
Proceedings of 11th International Conference on Semantic Computing, IEEE Computer Society, pp 250–257

63. Smith B, Welty C (2001) Ontology: towards a new synthesis. Second International Conference on Formal Ontology and
Information Systems, p. 07. Available at http://mba.eci.ufmg.br/downloads/recol/piii-foreword.pdf. Accessed 20 Apr 2018

64. Soeken M, Wille R, Drechsler R (2012) Assisted behavior driven development using natural language processing. Lecture
Notes Comput Sci 7304:269–287

65. Solis C, Wang X (2011) A study of the characteristics of Behaviour Driven Development. In Proceedings of SEAA 2011: 37th EUROMICRO
Conference on Software Engineering and Advanced Applications, IEEE Computer Society, ISBN 978-0769544885, pp. 383–387

66. Souza PL et al (2017) Combining Behaviour-Driven Development with Scrum for software development in the
education domain. In: Proceedings of 19th International Conference on Enterprise Information Systems (ICEIS 2017),
SCITEPRESS – Science and Technology Publications Lda, Vol. 2, pp 449–458

67. Souza PL et al (2018) Improving Agile Software Development with Domain Ontologies. In: Proceedings of 15th
International Conference on Information Technology: New Generations (ITNG 2018), Advances in Intelligent Systems
and Computing, Springer International Publishing AG, Vol. 738, Chapter 37, pp 267–274

68. Souza PL (2018) ScrumOntoBDD: an approach based on Scrum, Ontology and BDD for agile software development. MSc’s dissertation,
Graduate Program in Computer Science (PPG-CC) of Federal University of São Carlos (UFSCar), Brazil, p. 179

69. SpecFlow (2016) SpecFlow. Available at http://www.specflow.org/. Accessed 19 Oct 2016
70. Stapleton J (2003) “DSDM: business focused development”. Addison-Wesley, USA, p. 239.
71. StoryQ (2010) StoryQ. Available at http://storyq.codeplex.com/. Accessed 19 Oct 2016
72. TllyFy (2018) 9 Best business process modeling techniques (with examples). TllyFy. Available at https://tallyfy.com/

business-process-modeling-techniques/. Accessed 04 June 2018
73. UFSCar (2007) "Curso de Medicina - CCBS Projeto Político Pedagógico". Medicina UFSCar (in Portuguese), p. 139.

Available at: http://www.prograd.ufscar.br/cursos/cursos-oferecidos-1/medicina/medicina-projeto-pedagogico.pdf.
Accessed 12 Oct 2016

74. W3C (2012) Web Ontology Language (OWL). W3C Semantic Web. Available at https://www.w3.org/2001/sw/wiki/OWL.
Accessed 18 May 2018

75. W3C (2014) Resource Description Framework (RDF). RDF Working Group. Available at https://www.w3.org/2001/sw/wiki/
RDF. Accessed 22 Jan 2021

76. W3C (2014) RDF Schema 1.1. W3C Recommendation. Available at https://www.w3.org/TR/rdf-schema/. Accessed 22 Jan 2021
77. Wohlin C et al (2000) Experimentation in software engineering: an introduction. Kluwer Academic Publishers, USA
78. Wynne M, Hellesoy A (2012) The Cucumber Book: Behaviour-Driven Development for testers and developers. Pragmatic

Programmers LLC, Pragmatic Bookshelf, USA, p. 309
79. Zemmouchi-Ghomari L et al (2013) Process of Building Reference Ontology for Higher Education. In Proceedings of

World Congress on Engineering, Vol. III, p. 06
80. Zubizarreta J (2009) The learning portfolio: reflective practice for improving student learning. Second edition, John Wiley

& Sons Inc, USA, p. 354

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lopes de Souza et al. Journal of the Brazilian Computer Society (2021) 27:10 Page 45 of 45

https://www.omg.org/spec/BPMN/2.0
https://protege.stanford.edu/
https://protege.stanford.edu/
http://www1.udel.edu/pbl/deu-june2006/supplemental/NTLF-PBL-introduction.pdf
http://www1.udel.edu/pbl/deu-june2006/supplemental/NTLF-PBL-introduction.pdf
https://doi.org/10.1145/3350768.3351799
https://doi.org/10.1145/3350768.3351799
https://link.springer.com/chapter/10.1007%2F978-3-030-43020-7_58
https://link.springer.com/chapter/10.1007%2F978-3-030-43020-7_58
http://rspec.info/
https://academic.oup.com/nar/article/47/D1/D955/5165342
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf#zoom=100
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf#zoom=100
http://mba.eci.ufmg.br/downloads/recol/piii-foreword.pdf
http://www.specflow.org/
http://storyq.codeplex.com/
https://tallyfy.com/business-process-modeling-techniques/
https://tallyfy.com/business-process-modeling-techniques/
http://www.prograd.ufscar.br/cursos/cursos-oferecidos-1/medicina/medicina-projeto-pedagogico.pdf
https://www.w3.org/2001/sw/wiki/OWL
https://www.w3.org/2001/sw/wiki/RDF
https://www.w3.org/2001/sw/wiki/RDF
https://www.w3.org/TR/rdf-schema/

	Abstract
	Highlights
	Introduction
	Background
	Scrum
	Behaviour-Driven Development (BDD)
	Ontologies
	Ontology classification
	Ontology languages and tools

	ScrumOntoBDD approach
	Overview
	Creating Domain Application Ontologies (CDAO)
	Extracting Application Requirements (EAR)
	Building Product Backlog (BPB)
	Defining Sprint Backlog (DSB)
	Executing Sprint (ES)
	Sprint Review and Retrospective (SRR)

	Application example
	Application context
	Problem description
	CDAO for the UFSCar Medicine Programme
	Evaluation Process ontology
	Ontology validation

	EAR for EAMS-CBALM
	BPB for EAMS-CBALM
	DSB for EAMS-CBALM
	ES for the Selected BDDUSS of EAMS-CBALM
	Acceptance tests for the selected BDDUSS
	Implementation of the selected BDDUSS of EAMS-CBALM

	SRR for EAMS-CBALM

	Evaluation
	Action research
	Objective, setting and participants
	Experimental analysis
	Action planning
	Action Taking
	Evaluating
	Specifying Learning

	Related work
	BDD in software development
	Ontologies in software development

	Conclusions
	Contributions and limitations
	Future work
	Abbreviations

	Acknowledgments
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Author details
	References
	Publisher’s Note

