Bertieri et al. Journal of the Brazilian Computer Society (2021) 27:5 JO urn a| Of th e
https://doi.org/10.1186/s13173-021-00106-w - .
Brazilian Computer Society

RESEARCH Open Access

Check for
updates

Development and validation of a safe
communication protocol compliant to
railway standards

Duccio Bertieri” @, Andrea Ceccarelli', Tommaso Zoppi', Innocenzo Mungiello?, Mario Barbareschi? and
Andrea Bondavalli’

* Correspondence: duccio.bertieri@
:m'\ﬁ.it .
‘ﬁgfﬁrg?cinb;’rvhe/'ras‘tgegag;éfeanii Railway systems are composed of a multitude of subsystems, sensors, and actuators
Viale Morgagni 65, 50134 Florence, that exchange datagrams through safety-critical communication protocols. However,
Italy the vast majority of these protocols rely on ad hoc interlacing mechanisms and
Full list of author information is . . . . .
available at the end of the article safety codes which raise the heterogeneity and complexity of the overarching
railway system. Therefore, Rete Ferroviaria Italiana, the company who is in charge of
managing the Italian railway network, coordinated the definition of the Protocollo
Vitale Standard (Standard Vital Protocol). This protocol is inspired to, and compliant
with, the communication protocols adopted for the European Train Control System
(ETCS) (SUBSET, UNISIG, 037, Euroradio FIS, version 2.3. 0; SUBSET, UNISIG, 098, RBC-
RBC safe communication interface, 2007), and it is meant to become the standard
layer to enable safe communication between components of the ltalian railway
system. This paper reports our experience in the design, implementation, verification,
and validation of the Protocollo Vitale Standard in compliance with the European
safety standards for railway systems. We first defined a safety plan and a verification
and validation plan, which guide the design, development, verification, and
validation activities as required by safety standards. Guidelines of such plans have
been followed strictly until completion of the work, which concludes with the
provision of a safety case where all safety evidences are summarized. Noticeably, we
(i) selected appropriate safety mechanisms, (i) verified the software design, (iii)
implemented the software in compliance with code metrics and coding rules, (iv)
conducted tests to validate the protocol against its functional and performance
requirements, and ultimately (v) devised all relevant documentation and a safety
case which summarizes the evidences needed for certification.

Abstract

Keywords: Railway, Communication protocol, Safety, Security, Safety integrity level,
Verification and validation, CENELEC

Introduction

Safety-critical systems must adhere to appropriate guidelines to ensure that safety re-
quirements are met. In fact, following the definition of safety, i.e., avoidance of cata-
strophic failures [1, 2], any misbehavior shall not lead to fatalities, severe injuries, or

. © The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
@ Sprlnger Open permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
— original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-021-00106-w&domain=pdf
http://orcid.org/0000-0003-1779-6677
mailto:duccio.bertieri@unifi.it
mailto:duccio.bertieri@unifi.it
http://creativecommons.org/licenses/by/4.0/

Bertieri et al. Journal of the Brazilian Computer Society (2021) 27:5 Page 2 of 26

major damages to the environment [3, 4]. In other words, a safety-critical system must
be able to mitigate and manage potential catastrophic failures. In addition, security
breaches or vulnerabilities could also lead to unsafe behaviors; therefore, safety-critical
systems may also be required to guarantee security, often with a particular accent on
integrity of information. Safety standards typically define a safety integrity level (SIL) [5,
6], that sets qualitative and quantitative constraints that must be met to ensure the safe
behavior of a target component or system. Matching the requirements of a desired
safety integrity levels mean that a specific set of processes and techniques have been
applied through the lifecycle of the system, and such application is documented by a
specific list of work products.

Safety standards for the railway domain

In the railway domain, different devices, actuators, or control systems need to cooper-
ate with each other to provide safe functionalities. In order to be actually approved and
deployed in Europe, railway systems and protocols must be designed, implemented,
verified, and validated in compliance with the CENELEC standards. Noteworthy, safety
of communication for electronic and electrotechnical equipment in the railway is regu-
lated by the CENELEC EN-50159 [7]. In addition, standards CENELEC EN-50126 [6],
EN-50128 [8], and EN-50129 [9] describe the required processes and techniques for
the entire lifecycle of system, software, and hardware.

Interlacing and communications

When these devices are placed in different locations, they must communicate remotely
through appropriate transmission systems such as LAN, WAN, or GSM-R [10]. The
data sent over the transmission system is often critical, containing information that will
be used to perform safety-related activities e.g., changing the state of a rail switch. Con-
sequently, such components or subsystems cannot rely on basic protocols developed
for the exchange of non-critical information as TCP/IP [11], as they do not offer suffi-
cient safety guarantees. Protocols to be exercised in a safety-related environment
should comply with the standards that are defined for the specific domain. Typical pro-
tocols that take part to the deployment of a railway system are Euroradio [12], used for
the GSM-R transmission system in the European Train Control System (ETCS) level 1
[13], and the protocol which manages communications between Radio Block Centres
(RBCs) [14], servers in charge of continuously transmitting to trains their speed limit
and the movement authority.

Our contribution

This paper documents our experience in the design, implementation, verification, and
validation of software for the railway domain. We show how to follow applicable stan-
dards, motivate key choices, and show several outcomes of V&V activities. The overall
process is applied to the Protocollo Vitale Standard (PVS), a communication protocol
that provides a safe interface between railway actuators, sensors, and control systems.
The protocol was specified by Rete Ferroviaria Italiana (RFI, the company who manages
the Italian railways) as a standard communication protocol built upon existing—albeit
heterogeneous—protocols as [12, 14]. Our work is based on [6, 7] and follows the



Bertieri et al. Journal of the Brazilian Computer Society (2021) 27:5 Page 3 of 26

lifecycle described in the CENELEC standards, starting from the Software Requirements
phase up to the step 6.B—Software Validation, but does not account for further steps,
which are currently managed by the owner of the case study. In order to be applied
into railway systems, PVS should conform to SIL4, which is the highest SIL defined by
CENELEC standards. We devised a verification, validation (V&V) and safety plan that
describes, among others, techniques for software architecture, design specification, im-
plementation, and test specification and execution. This paper extends the work in
[15], where we provided a preliminary explanation of activities performed during the
project’s lifecycle. Instead, this work depicts the whole process and set of techniques
and methodologies applied to develop the protocol. Relevant additions include (i) a re-
vised architecture specification, (ii) a detailed dynamic analysis including the resulting
coverage analysis and related discussion, (iii) conclusive results on static analysis and
related discussion.

Paper structure

This paper is structured as follows: “Control systems and railway standards” section de-
scribes relevant systems in the railway domain, along with applicable standards. “Speci-
fication of Protocollo Vitale Standard” section describes the main design patterns,
strengths, weaknesses, and range of applicability of the PVS. The “Verification, valid-
ation, and safety plan” section expands the V&V plan and the safety plan that describe
the documents to be produced and the techniques selected for each phase. The applica-
tion of such techniques is detailed in “Architecture specification” and “Design specifica-
tion” sections, letting “Verification and validation activities” section report on code
metrics and testing. Performance analyses are expanded in “Performance analysis of the
protocol” section, while “Concluding remarks” section concludes the paper.

Control systems and railway standards

In this section, we report on control systems that are relevant for European railways,
alongside with a summary of the CENELEC standards which provide prescriptive
guidelines.

Railway systems
The realization of the European Railway Traffic Management System (ERTMS, 0) re-
quires the deployment and interaction of heterogeneous devices, sensors, actuators and
embedded systems, often with human interactions, e.g., the train driver. Among the dif-
ferent components, the Station Control Systems (SCSs) provide computer-based inter-
locking to (i) manage the interactions between trains and physical devices, e.g.,
semaphores, railway switches, as well as (ii) connecting the train with peripheral or cen-
tral control systems. To avoid collisions, trains periodically ask the movement authority,
which grants or denies authorization to move forward through their route. The Radio
Block Centers (RBCs) instead are trackside units that interact with central offices and
SCSs to provide feedbacks through the GSM-R network [14].

Currently, two ERTMS functional levels implement different communication strategy
between trains and control systems. In ERTMS Level 1, trains communicate with the
Balise Transmission System (BTM) [16], which relies on rail beacons called Eurobalises



Bertieri et al. Journal of the Brazilian Computer Society (2021) 27:5 Page 4 of 26

that measure speed and location and provide them as telegrams to trains as soon as
they pass by. As it can be seen in Fig. 1, ERTMS level 2 is instead a digital radio-based
system, where data are handled by the RBCs. With this configuration, eurobalises are
considered reference points for correcting distance measurement errors. Since radio
transmission systems are susceptible to a number of problems related to security as-
pects and integrity of data, ERTMS level 2 forces devices and subsystems to adopt the
Euroradio FIS [12] (Euroradio Functional Interface Specification). This enables commu-
nications between critical components to be carried out in accordance to the safety
standards specified by the Category 3 (open networks) of EN50159 [7].

However, while Euroradio FIS is a requirement for Over-The-Air communication,
there are no unified standards to protect communications between other entities e.g.,
between actuators and interlocking. Therefore, each manufacturer devises its own
protocol and deploys it wherever it is needed. The lack of a unique safe communication
protocol was the pilot reason for the definition of the Protocollo Vitale Standard (PVS)
specification, which generalizes the Euroradio protocols and is intended to be applied
in all the communications in the Italian railway system. For example, PVS can act as
safe and secure channel for the communication between RBCs and the SCS, or more in
general to interlace various control/signalling systems produced by different

manufacturers.

Applicable standards

Safety-critical systems need to be designed, developed, and deployed in compliance
with standards, which provide appropriate guidelines. Focusing on the railway domain,
the CENELEC EN50126 [6] standard defines the safety integrity levels (SILs) and the
corresponding lifecycle for hardware-software systems. The standard defines activities
to be performed through the lifecycle, ranging from System Definition to Operation
and Maintenance. As a result, several documents are produced, such as (i) the hazard
log, where all the possible situations that might lead to damage to the health of people,
properties, or the environment (hazards) are listed alongside with countermeasures and
mitigations; (ii) the safety requirements document, which reports actions to reduce the

Fig. 1 ERTMS level 2. https://www.rfiit/it/Sicurezza-e-tecnologie/tecnologie/ccs/ertms.html



https://www.rfi.it/it/Sicurezza-e-tecnologie/tecnologie/ccs/ertms.html

Bertieri et al. Journal of the Brazilian Computer Society (2021) 27:5 Page 5 of 26

severity and the probability of occurrence (risk, [5]) associated to each hazards; (iii) the
safety plan, which guides resources management, the activities, and the responsibilities
involved to reach a given SIL, and (iv) the safety case, which provides evidence that ac-
tions required in the safety plan were correctly executed and safety measures are effect-
ive and in place.

When the system contains (or is) software, compliance should also be met with the
EN50128 [8], which focuses on the development of software for railway control and
protection systems. Among others, the standard drives the definition of a verification
and validation plan (V&V Plan), which specifies all the activities prior, during and after
the design and development of the system. EN50128 expands on a wide set of tech-
niques to be applied during the development lifecycle, which can be selected according
to the desired SIL.

In addition, also interactions and communications between system components
should be strictly regulated to avoid unsafe situations. To such extent, EN50159 [7] de-
scribes how to manage and protect safety-related communications depending on the
underlying transmission system and its characteristics. EN50159 identifies accidental
and malicious threats to safety-related communications and recommend possible

countermeasures.

Specification of Protocollo Vitale Standard

The Protocollo Vitale Standard (PVS) is a communication protocol that lays over the
ISO/OSI Transport and implements the Session and Presentation ISO/OSI levels [17].
Both TCP and UDP transport mechanisms are supported by this protocol, which de-
fines slight variations of its structure to perfectly suit either of the two. Overall, PVS is
a light protocol that can wrap communications between (i) Station Control Systems
(SCSs), (ii) SCSs and RBCs, and (iii) SCSs and Graphical Elaboration Assembly (GEA).
While protocols [12, 14] are tailored for their respective domains, they may not be
portable to a slightly different context. As an additional merit, PVS can deal with both
Category 1 (closed transmission system, e.g., private LAN) and Category 3 (open trans-
mission system, e.g., public Wi-Fi) transmission systems as specified in [7].

PVS layers

The reference architecture of the PVS (see Fig. 2) is designed [18] as a stack composed
by three mandatory layers, plus an optional one used to provide additional crypto-
graphic functionalities. In this way, the PVS can deal with both Category 1 (closed net-
work) and 3 (open network) transmission systems, providing defences against (i) data
corruption, (ii) resequencing, repetition, insertion, delay, and deletion of packets, and (iii)
masquerade in compliance with EN50159 [7]. Each layer has different responsibilities:

e Safe application interface layer (SAI): manages the data flow between the
application and other PVS layers by applying several defense mechanisms, namely
(i) sequence number, that protects against resequencing, repetition, insertion, and
deletion, and (ii) execution cycle, that ensures “freshness” to shield against delay

attacks.



Bertieri et al. Journal of the Brazilian Computer Society (2021) 27:5 Page 6 of 26

' Safety i
: Related E
E Application Equipment
: Process '
= !
! t
1

' (] S O Sy G %, - 1
1 ! 1 1
1 1 1 1
N 1 I
1 : : :
b il o
1

- Safety Related i 1
'y Transmission |
b Process 1
' ) SL T
! Lo
' Access | |
o Protection | |
o APL Process |
O o oo i '
e

Non Trusted
ALE Transmission

Transmission System

E / \l System ;

Fig. 2 Reference architecture of PVS [18]

o Safety layer (SL): placed between SAI and APL layers, it ensures message integrity
through non-cryptographic safety code and authenticity by means of a node
identifier, called nSAcePID.

e Adaptation and redundancy management layer entity (ALE): manages redundancy
(for availability purposes) by operating on two physical communication links and
guarantees correct interfacing with the underlying transport mechanism, either
TCP or UDP.

e Access protection layer (APL—optional): required only when dealing with Category
3 (open) transmission systems; it provides access protection through AES [19] and
AES-CMAC [20] cryptographic algorithms.

The communication is cyclic with configurable period, which is set independently for
each device: typically, railway devices range from 250 to 500 ms. Each producer must
periodically send the information according to its own cycle time, which will be proc-
essed by the conmsumer. Symmetrically, each consumer must acquire cyclically, accord-
ing to a period independent of the producer’s cycle, the information sent by the
producer. When an application wants to send user_data, the bytes flow goes through
the protocol stack in Fig. 3 where each layer wraps the message by adding its header/



Bertieri et al. Journal of the Brazilian Computer Society (2021) 27:5 Page 7 of 26

Safety process | User Data
SAl | SAl header | User Data APPDU
SL SL header APPDU Safety SAPDU
ﬁ code
APL Safety Code APLPDU
SAPDU cifrato

ALE ALE header APLPDU ALEPKT

Communication ALEPKT Communication

Transmission system header footer TPDU

Messages exchanged
between sub-systems

Sub-system A | Sub-system B
al

Fig. 3 Information flow through the protocol stack during messages send [18]

footer information. When receiving, each layer in reverse order decapsulates the mes-
sage by removing either header/footer and then forwards the unwrapped data to the
upper layer.

When the communication does not need cryptography, APL can be omitted. Moreover,
in Fig. 2 ALE is depicted externally of the “safety related equipment” area meaning that
this layer can be deployed on a remote (non-safe) device because it does not have safety
requirements. For such reason, a means other than shared memory must be provided to
realize the communication between ALE and the other layers of the protocol stack.

Connection establishment

In terms of handling of the connection, the most important role is played by the safety
layer entity: when establishing a connection, the safety layer activates entity authentica-
tion, a handshake where two devices exchange (i) a nonce, (ii) the initial sequence
number, (iii) execution cycle, and (iv) device identifier. In Fig. 4, the initial state of the
safety layer is marked as IDLE: here, the safety layer is waiting for connection establish-
ment requests. When a request arrives and the handshake is performed correctly, the
safety layer goes through WFAU3 and WFRESP in case of an incoming connection es-
tablishment request, through WFTC, WFAR whenever an outgoing connection request
arrives. In both cases, a correct handshake leads the safety layer entity in the DATA
state, where the two devices can finally exchange safety-related messages. The



Bertieri et al. Journal of the Brazilian Computer Society (2021) 27:5 Page 8 of 26

Outgoing connection establishment Incoming connection establishment

Sa-CONN.reg T-CONN.ind

(+AU1 SaPDU)

| i
T_CONN.conf T-DATA.ind
(+AU2 SaPDU) (+AU3 SaPDU)

DI SaPDU
Sa-DISC.req

T-DATA.ind
+AR SaPDU)

Sa-CONN.resp

— normal transition

. DT SaPDU or HP SaPDU
abnormal transition

Fig. 4 States taken by the safety layer [12] during connection establishment

occurrence of one or more errors during the handshake or the exchange of data mes-
sages cause a transition to the IDLE state, which is therefore the safe state of the PVS.

Verification, validation, and safety plan
The first steps for the realization of a safe system according to the railway standards
are the definition of a V&V and safety plan. The plan describes the steps to be fulfilled
during the realization of the PVS to comply with applicable standards, to ultimately en-
sure a proper planning of activities which are adequate to reach the target SIL. Since
the PVS is essentially software, we refer to the lifecycle of the CENELEC EN-50128 [8].
We explored such standard to define the documentation plan, which enlists the various
documents to be produced at different stages of the design, implementation, validation,
and deployment of a component or a system. Table 1 reports the documentation plan
tailored to PVS, highlighting the document name and number, as well as tracing the
document with respect to the involved EN50128 activities. It is worth remarking that
our list of documents is a subset of all the lifecycle documents described in [8] (page
66, Table A.1), as our activity focuses only on the software requirement specification,
architecture specification, design and implementation and verification and validation,
while requirements definition, integration, deployment, and decommissioning are left
out.

In compliance with [8] and according to the documentation plan shown in Table 1,
the activities performed during the lifecycle’s phases and reported in the V&V and
safety plan are the following:

e Planning: description of the documentation plan, scheduling of the verification and
validation activities and selection of the techniques or methodologies that must be
adopted to obtain the target SIL during each of the development phases.



Bertieri et al. Journal of the Brazilian Computer Society (2021) 27:5 Page 9 of 26

Table 1 Documentation plan for PVS

Document Document name CENELEC EN-50128 phase

number

4 Software verification plan Planning

5 Software validation plan Planning

6 Software requirements specification Software requirements

7 Overall software test specification Software requirements

9 Software architecture specification Architecture and design

10 Software design specification Architecture and design

11 Software interface specification Architecture and design

14 Software architecture and design verification report  Architecture and design

15 Software component design specification Component design

16 Software component test specification Component design

17 Software component design verification report Component design

18 Software source code and supporting Component implementation and

documentation testing

19 Software component test report Component implementation and
testing

20 Software source code verification report Component implementation and
testing

24 Overall software test report Overall software testing/final
validation

25 Software validation report Overall software testing/final
validation

27 Release note Overall software testing/final
validation

e Software requirements: description of the software system to be developed

considering both functional and non-functional requirements, development of the
test plan to be followed during the verification phase.

e Architecture and design: definition of the software architecture to specify the

software elements composing the system, the relations among them, their
properties and their tasks. Definition of the software design to clarify the
implementation activity to the development team with respect to what defined in
the software architecture specification document, definition of the software
interface for the interaction with the system and verification of the system
architecture and design with respect to the verification validation and safety plan.
Component design: description of the design of each architecture’s component,
specification of the tests for each component and verification of the component
design.

Component implementation and testing: implementation of the components,
definition of the source code documentation, verification of the tests performed for
each component, and of the source code produced.

Overall software testing/final validation: reporting on the overall test performed
over the software system and final validation of all the activities performed during
the system development.

For each of the phases above, except for the planning phase which requires the draft-

ing of the safety and V&V plan itself, in the safety and V&V plan we defined the



Bertieri et al. Journal of the Brazilian Computer Society (2021) 27:5 Page 10 of 26

techniques adopted to manage the safety and reach the target SIL, described the meth-
odologies to be followed during the phase execution and scheduled the activities
needed to release the final product. In the following section, we will report on the de-
tails about each of those project’s phases, which, for simplicity, will be divided on
“Architecture specification” section, “Design specification” section, and “Verification

and validation activities” section.

Architecture specification
The standard [8] suggests methodologies and techniques to be applied for architecture
specification, depending on the target SIL. PVS needs to comply with SIL4, therefore,
according to Table A.1 of [8] we chose to adopt defensive programming, error detect-
ing codes, fully defined interfaces, structured methodology, and modeling, which are
summarized in Table 2. Software architecture was specified through the ISO/IEC
10746-1 Open Distributed Processing (ODP-RM) [17], a structured methodology which
requires the use of five different viewpoints, each of them covering different aspects
such as the definition of the general SW architecture, the data-flow between the SW
modules, the specification of the Protocol Data Unit(s) (PDUs), and interfaces.
Modeling techniques allow describing ODP-RM through (i) structure diagrams for the
description of the SW architecture, (ii) a state-transition diagram to describe the behavior
of the protocol, and (iii) sequence diagrams to describe the sequence of actions taken dur-
ing the communication between two devices. We will expand briefly each of the ODP-
RM points of view in “Enterprise viewpoint” section to “Technology viewpoint” section.
In this way, we will also debate on the items of Table 2 that are yet to be discussed: defen-

sive programming, error detecting codes, and fully defined interfaces.

Enterprise viewpoint

Enterprise viewpoint specifies the role and responsibilities of (i) actors involved in the
system and (ii) the external environment. It explains the relations between the system’s
component and the internal and external interfaces. We hereby expand the general
PVS architecture depicted in Fig. 5, which builds on the following entities:

Table 2 Techniques [8] selected for the development of software architecture

Technique Description Implementation
Structured Use of precise and intuitive notation to promote the quality of ODP reference model
methodology  software development by focusing attention on the early parts of [17]
the lifecycle
Modeling Use of precise and field-specific graphical formalisms to provide a Sequence, state-
complete description of the system and its parts transition, and structure
diagrams
Fully defined ~ Complete definition of both internal and external interfaces of each  Detailed description of
interfaces SW module interfaces for each SW
module
Defensive Detect anomalous control flow, data flow, or data values Acceptance/credibility
programming checks, control flow
monitoring
Error detecting  Detect errors in sensitive information by, e.g,, Hamming, cyclic, or Cyclic redundancy code
codes polynomial codes

The three columns report respectively the technique name, a brief description of the technique, and the actual
technique implementation



Bertieri et al. Journal of the Brazilian Computer Society (2021) 27:5 Page 11 of 26

'
'
ed: i ion Primitive e
'
'

safety_related equipment Monitor '
1 B
<<interface>>

'
'
'
'
'
'
'
'
'
'
. .
'
- LFSR Layer
'
: 2
interface | | : | ,
. SAl cod mod | |
operations '
' sAl ‘ @ I sL l od '{ APL \(
' - e .
' y
' !
' i :
' ! i
'
'
'
'
'
'
'
j
'
'

Receive( )
Disconnect( )

Connect( )
PVSlib
D 7

Send()
interface

dataout data in

{abstract}
TransmissionSystem

Fig. 5 Software Architecture of the PVS [18]. The numbers identify entities: (1) monitor; (2) layer; (3) SAl; (4)
SL; (5) APL; (6) ALE; (7) PVSIib

1) Monitor: according to the Software Architecture/Design Specification (documents
9 and 10 in Table 1) this module checks the correct evolution of the control flow
to provide defensive programming by implementing control flow monitoring, as it
can be seen in Table 2;

2) Layer: the module that implements features shared amongst layers;

3) Safe application intermediate layer: the module that implements all the
functionalities of SAL SAI int mod is relevant for the closed network configuration,
while open networks add the SAI cod mod and LFSR (linear shift register, produce
pseudo-random numbers series) blocks to the picture;

4) Safety layer: implements all the functionalities of SL, using CRC module to perform
cyclic redundancy check calculations (error detecting codes: cyclic redundancy check,
from Table 2).

5) Access protection layer: implements all the functionalities of APL through the
modules AES-CMAC [20] and AES which provide implementation of the
homonymous algorithms.

6) Adaptation layer management entity: implement all the functionalities of ALE

7) PVSlib: provides external interfaces to simplify the interactions of the application
layer with the protocol.

Figure 5 highlights connections between the layers SAI, SL, and APL with the “ed”
lines, realized through shared memory. This notation points out how layers SAI, SL,
and APL communicate each other using the interfaces identified as “encapsulation/de-
capsulation primitive.” More precisely, each of the SAL SL, and APL layers define (i) an
encapsulation primitive, which will be invoked from the upper layer when sending mes-
sages and adds the layer-specific header information, and (ii) a decapsulation primitive,
which lower layers invoke when receiving messages to verify the correctness of the



Bertieri et al. Journal of the Brazilian Computer Society (2021) 27:5 Page 12 of 26

layer-specific header dataframes. Layers SL and ALE are instead connected by a “TCP”
line between their attributes Fake_ALE and Fake_SL. The dashed green rectangle shows
how layer ALE could be placed on a remote machine: as a consequence, the communi-
cation between ALE and SL is realized through a TCP connection, set up during the
initialization of the protocol stack and managed by entities Fake ALE and Fake_SL.

Information viewpoint

Information viewpoint elaborates upon the structure and dataflow exchanged between
components. To such extent, we specified format, structure, and size of the different
PDUs to be exchanged between the PVS layers in the different protocol phases identi-
fied by the SL state in Fig. 4. When sending a message through PVS, the User Data
crosses the layers SAIL, SL, and APL using the encapsulation primitive. After APL en-
capsulation, the packet is sent by the SL::Fake ALE and received by the ALE:Fake SL
via TCP through the connection established between the two entities during hand-
shake. When ALE has added its header information, the message can be sent to trans-
port OSI layer.

Computational viewpoint

The system can be seen as an ensemble of objects which exchange data through the
interface functions and specification of actions taken by these objects during system’s
operative phase. This description includes—but not limits to—generation and verifica-
tion of safety code, execution cycle and sequence numbers, and more generally send-
ing/receiving algorithms for each layer of the protocol stack. The description of such
sending/receiving algorithms causes layer interfaces to be fully defined.

Engineering viewpoint

The engineering viewpoint constitutes the most detailed perspective over the system,
considering support functions intended to guarantee non-functional properties e.g., se-
curity or safety. These aspects are addressed through acceptance/credibility checks (de-
fensive programming: acceptance/credibility checks, from Table 2), control flow
monitoring, and cycle redundancy check (CRC).

Acceptancelcredibility checks (left part of Fig. 6) have been implemented by checking
inputs, intermediate values, and outputs of all the functions through conditional con-
structs inside each of the SW modules identified during architecture specification.

Control flow monitoring (right part of Fig. 6) includes the software entity monitor,
which observes the execution flow with respect to some predefined paths. In a nutshell,
the monitoring of the control flow works as follows. The monitor holds primitives, each
corresponding to a specific protocol phase (connection establishment, sending and re-
ceiving messages, or disconnection) and points to the initial primitive of the current
phase. When a layer calls a primitive, it notifies the execution of such primitive to the
monitor through the signature transfer function. Then, the monitor verifies the correct-
ness of the evolution of the control flow through the signature checking process, check-
ing if the signature of the primitive transferred by the process conforms to
expectations. If either of the checks above fail, they are notified to the application



Bertieri et al. Journal of the Brazilian Computer Society (2021) 27:5 Page 13 of 26

Perform Computation
Calling Primitive

Signature transfer
Signature checking

Notify to the
Failure application

Acceptance/
Credibility Check

Resume
Computation

Failure
Notify to the
application

Fig. 6 Acceptance/Credibility Check and Control Flow Monitoring Diagrams
A\

causing connection to close and letting the safety layer entity to return to its initial
IDLE (safe) state.

The 64-bit CRC instead ensures integrity of the messages. The choice of CRC with
respect to other error detection codes was carried out as CRC is considered proven-in-
use for the railway domain [12, 14]. Moreover, as described in [21, 22], the usage of a
64-bit CRC with an adequate generator polynomial (e.g., Jones [23]) lowers the prob-
ability of collisions i.e., same CRC assigned to different dataframes. Polynomial selec-
tion is guided by the Hamming distance (HD) [23] that is defined as the number of bits
two dataframes differ. Knowing the minimum HD for specifics dataframes lengths
allow us to estimate the probability of undetected errors (Pub) using the following for-
mula [22]:

n
Pud(e) ~ Zf::mm (2Lr) *(1 - 6)” - 1(6)5 (1)
where

€ : bit error rate of the physical mean (e.g., optic fiber, Wi-Fi);
n : codeword size;

e 7 : code size;
d

min © minimum HD for selected polynomial and dataword size

The formula (1) allows to estimate the probability of undetected errors for a CRC
that uses the selected polynomial. In our case, considering as physical mean a plastic
optic fiber with 10 GB/s speed and a supposed BER of 107*° [24], a maximal dataframes
size of 65,000 byte and a minimum HD of 6, we get

e=10"1° » = 65008, r = 8 and d,,;, = 6 and we obtain Puae) =10~ BL575,

Multiplying this value by the maximal supposed throughput of messages and compar-
ing the result obtained against the target tolerable hazard rate per hour (THR), we ob-
tain Py~ 1077°% = 17! Considering that SIL4 requires the failure rate to be less
than 1077, the selected CRC is plenty sufficient under all expected operating conditions,
also in case different channels are used and consequently different parameters values
are set.



Bertieri et al. Journal of the Brazilian Computer Society

(2021) 27:5

Technology viewpoint

Lastly, the technology viewpoint considers the physical characteristic and assumptions
of use (AoU) of the target platform where PVS will be deployed. Our three AoU are
mandatory requirements for all the operating systems on which the PVS software will
execute: (i) target platform must support multithreading: this is required because our
implementation of the protocol requires the execution of multiple thread needed for
example to handle the execution cycle or to trigger event-specific handling actions; (ii)
target platform must run a POSIX-compliant OS: PVS may execute on multiple plat-
form, and consequently POSIX compliance is a natural choice to improve portability.
For this reason, we implemented different layers of the Protocol Stack by using POSIX
features like thread and time source management; (iii) target platform must provide
TCP/IP networking support: since it is the de-facto standard for communications, we
lay PVS on top of the TCP/IP stack.

Design specification

The concepts and the methodologies defined in the previous section have been detailed
during design specification phase, which for each SW module specifies: the scope of the
module, the signature of the functions, the interfaces and the data structures. The tech-
niques selected from [8] for this phase are listed in Table 3.

As pointed out by Table 3, during design specification, we adopted a modular ap-
proach in order to implement the architecture’s components depicted in Fig. 7. This
technique requires to decompose the software in small parts easy to understand and
analyze. Following such design technique, we were able to fully define each software
component in terms of interfaces and related parameters. Each of these components
has been specified using different modeling techniques, such as the structure diagram
of Fig. 7, where all the software components and their relations are identified.

We selected and applied one of the widespread coding standards for safety-critical
applications: MISRA C 2012 [25]. Such coding standard specifies a number of guide-
lines categorized as rules, requirements that are precisely defined and can be enforced

solely by analysis of the source code and directives, that instead may not be precisely

Table 3 Techniques selected for design specification [13]. The three columns report respectively
the technique name, a brief description of the technique, and its implementation

Technique Description Implementation

Modular approach  Decomposition of a software into small Definition of different SW modules
comprehensible parts in order to limit the complexity  depending on functionalities
of the software needed.

Components Well-defined interfaces and behaviour with respect to  Fully defined interface, parameter
the software architecture and design number limit

Modelling Use of precise and field-specific graphical formalisms Control flow, state-transition and

Design and coding
standard

Strongly typed
programming
language

to provide a complete description of the system and
its parts.

To ensure a uniform layout of the design documents
and the produced code, enforce consistent
programming and to enforce a standard design
method which avoids errors.

Reduce the probability of faults by using a language
which permits a high level of checking by the
compiler

structure diagrams

MISRA C 2012 coding standard
[25], adequate coding styles

Subset of the standard C99: MISRA
C 2012 coding standard [25]

Page 14 of 26



Bertieri et al. Journal of the Brazilian Computer Society (2021) 27:5

Monitor

Layer_util |<}, ............................
import
AN ; :

import import

1

PVSlib

im;:)on im;;nn :
v [ & ] ,
‘ SAl Layer ‘ ‘ Safety }—14| Fake_ALE ‘ APL ‘ ‘ ALE ‘
Layer - .
AN AN : import 1
_____ import  import_____ import
; i : AES- Fake_SL
| 7 CMAC
SAl int K}-impot  SAlcod CRC import
mod mod AV
import AES

\/

LFSR

Fig. 7 Structure diagram representing the software components specified during design specification

defined and may require reference to documentation, functional requirements or sub-
jective judgement to check the compliance of the source code.

The compliance of the source code with the MISRA coding standard helps the pro-
grammer to prevent undefined behaviors which can arise from an incorrect use of the
programming language. Moreover, it ensures the production of a high-quality code
which will be easier to understand, to debug and to test.

In general, MISRA C 2012 requires the use of a subset of the standard C99 along with
adequate coding styles [26] (e.g., avoiding libraries such as “stdio.h” to prevent the large
number of unspecified, undefined and implementation-defined behaviors associated
with streams and file I/O). This contributes to a strongly typed programming language,
as MISRA C 2012 [25] requires, among other rules, to explicitly re-define types, e.g., 4,
8, 16-bit integers (Directive 4.6: typedefs that indicate size and signedness should be
used in place of the basic numerical types) to be sure of the storage size needed by
arithmetic variables on different architectures.

In some cases, the programmer could intentionally violate one or more rules or dir-
ective. For example, it could allow the value of a composite expression to be assigned to
an object of wider essential type to avoid sub-optimal compiler code generation (viola-
tion of Rule 10.6) and obtaining a better performance. In such cases, a deviation must
be provided, defining:

The guideline(s) being violated;

The circumstances in which the violation is acceptable;

The reason why the deviation is required;

Background information to explain the context and the language issues;

S e

A set of requirements to include any risk assessment procedures and precautions
which must be observed.

In addition to the MISRA coding standard, we selected code metrics and correspond-
ing thresholds that should be checked while developing the C source code of PVS. We
choose some of the most acknowledged code metrics in software engineering based on



Bertieri et al. Journal of the Brazilian Computer Society (2021) 27:5 Page 16 of 26

documents [27, 28] and on oral interviews with domain experts. We ended up selecting
the metrics lines of code (LoC), cyclomatic complexity (CC), and number of parameters
(NoP), while thresholds were extracted from both the experience of practitioners of RFI
and on white papers available in the literature [28]. As a result, PVS functions should
not exceed 100 uncommented lines (LoC), while the cyclomatic complexity (CC) of
each single function should be lower or equal than 10. Finally, the Number of parame-
ters (NoP) should not be greater than 5. Together, such metrics and the respect of their
constraints favor a better software quality.

Verification and validation activities

To adhere with CENELEC standards, also verification and validation techniques and
activities (shown in Table 4) have been selected and performed in compliance with [8].
It is worth remarking that the software/hardware integration phase is out of scope in
our work as it will be privately managed by the owner of the case study. We detail in-
stead each one of techniques applied in Table 4 and in the following subsections that
expand on test coverage and static analysis.

Dynamic analysis, testing, and traceability
EN50128 [8] states that activities to be applied for dynamic analysis and testing are: (i)
test cases boundary value analysis (to detect the boundary values of the inputs of func-
tions), and (ii) equivalence classes and input partition testing, which selects the correct
inputs depending on correlations between input and outputs of each function. Those
activities allow deriving unit tests executed as white-box test, i.e., assuming knowledge
of the internal structure of functions, and functional tests to be instead executed as
black-box tests, i.e., without assuming any knowledge of the internals of functions.
Another white-box testing activity has been the structure-based testing, a testing tech-
nique that aims at exercising the largest number of sub-routines in the call graph
through an accurate selection of input values. The overall fest suite is composed 63 test
cases, partitioned as 19 functional test cases, 37 unit test cases and 7 structure-based
test cases. Each of these tests include also robustness tests defined by calling functions
with unexpected parameters, such as NULL pointers, or numerical overflows like

Table 4 Techniques selected for generic V&V Activities [8]

Technique  Description Implementation

Dynamic Verification of the software through execution  Test cases boundary value analysis, unit testing,
analysis and  and instrumentation of the software elements  performance modelling, equivalence classes and
testing input partition testing, structure-based testing
Functional/  To verify that the functional requirements are  Functional tests, boundary value analysis,
black-box satisfied equivalence classes and input partition testing
testing

Traceability ~ Ensuring that all requirements are properly met  Traceability matrix
and that no untraceable material has been

introduced.
Test coverage Verification of code coverage reached using Statement and compound condition
different criteria
Static Verification of the software through manual/ Boundary value analysis, control flow analysis
analysis automated analysis of the Software structure and walkthroughs/design reviews

The three columns report respectively the technique name, a brief description of the technique, and the actual
technique implementation



Bertieri et al. Journal of the Brazilian Computer Society (2021) 27:5

passing 16-bit integers as actual parameters (used during the function call) where the
formal parameters (defined in the function signature) were 8-bit integers (see the ex-

ample test case in Table 5).
For each test case, the approach is the following:

1. The test case is prepared. In addition to the general data such as the name of the

test, requirement and date, the necessary steps to perform the test are identified.

The functions called and the relationships between data and expected results are

specified.

2. The data sets to be provided as input to the test are identified.

The test script is written following the test case.

Table 5 An example test case showing the unit test of the CRC generation function

Test case ID  crc_ch1

Priority Medium

Description CRC generation function
Module Safety layer

Prepared
by

Reviewed/
updated

Tested by

Software
version

Test activities
SI. no. Step description
1 Definition of the input data

2 if the input data are plausibles:
« Computation of the CRC using an external tool and
comparation with the result obtained using the internal
function
otherwise:
« Verification of the correct error handling and report

Test data sets
Data type Data set 1

uint8_t input ={0,0,0,0,0,0,0,0}
input(];

uintlé_t  size=8
size;

Actual
results

Data type Data set 4

uint8_t input = NULL
input(];

uintl6_t  size=0
size;

Actual
results

Test case result

Date prepared

Date reviewed

Date tested

Expected results

The code obtained using the
external tool and the internal
function must be equals

Data set 2

input = {0xffff,
Ox(ffff, Oxffff, Oxffff}

size=4

Data set 5

input = {0,0,0,0,00,
0,0}

size=—1

Data set 3

input = {C"/0/,
o}

size=0

Data set 6

Data sets 2 and 4 are robustness tests that invoke the function with values bigger than expected (using 16-bit unsigned

integers in place of the 8-bit requested) and with NULL parameters

Page 17 of 26



Bertieri et al. Journal of the Brazilian Computer Society (2021) 27:5 Page 18 of 26

4. The test is executed. For each data set, the test result is marked as passed or failed
based on the correspondence between expected and actual results. When all data
sets produce the expected output, the test case is considered passed.

Some tests require a slightly complex procedure: both layers SAI and SL need, to
comply with their functional requirements, a pseudo-random number generator. Ran-
dom number generation has been unit tested as follows: (i) generation of a statistic
sample composed by a relevant quantity of random numbers; (ii) use of the ent [29] li-
brary to process the statistic sample, and (iii) evaluation of the statistic measures pro-
duced by ent, namely entropy, chi-square mean, arithmetic mean, monte carlo value for
P, and serial correlation coefficient. The analysis of the random number generation did
not reveal any weakness on the target platform, but it is recommended to repeat this
test when installing PVS on different platforms.

Another important aspect of dynamic analysis relative to functional testing is given
by traceability [8] that is usually satisfied by filling a traceability matrix, where each
functional requirement reported in [18] is linked to “called functions.” The traceability
matrix allows the identification of test cases which needs to be updated in case of
change in requirements and to track the overall test execution status.

Finally, the evaluation of test quality should be performed through code coverage,
considering two different coverage criteria. The two criteria applied in this project are
described below.

e Statement coverage: computes the fraction of the executed lines of code with
respect to their total. It is a relatively weak criterion since it does not account for
logical operators and control structures.

e Compound condition coverage: requires that each single condition in a decision
should be tested by assigning both the false and the true values

Test coverage

Test coverage reports on the amount of source code that was tested. Coverage depends on
specific criteria that can be set depending on the needs of the user and on the characteristic
of the system or software. Often, for each selected criteria a certain coverage threshold is set
beyond which the test campaign can be considered concluded, that is, the test stop condi-
tion. However, the stop condition for our testing activities does not rely on coverage values.
Instead, tests should be performed until the exhaustion of the inputs identified through the
boundary value analysis and the equivalence classes and input partition testing performed
in both dynamic and static analysis. Despite this, it is very useful to analyse coverage, be-
cause it gives an indication about how many behaviors have been examined.

Figure 8 reports on test coverage according to the selected criteria, detailing the re-
sults for each of the modules depicted in Fig. 5 (apart from the additional sub-module
layer_util, added to better modularize the entity layer during the design specification
phase).

Coverage is calculated through the tools Gcovr [30] and Lcov [31], which profile the
code and show code coverage using different criteria, ultimately providing human-
readable coverage reports in HTML format.



Bertieri et al. Journal of the Brazilian Computer Society

(2021) 27:5

100
90
80
70
60
50
40
30
20
10

0

O Statement

B Compound
Condition

¢ ¢ & P
\’b\\ (/((\ © \’b* (Qo é\o N

NIt Q7@ K

X/
>R S

NS D7
‘a’b. (,o ‘\/(\
P PP

Fig. 8 Statement and compound condition coverage computed with Gcovr

Noticeably, single coverage values in Fig. 8 rarely reach 100%, with an overall of
89% for statement coverage and 69.8% for compound condition coverage. Such
values are determined by the high presence of defensive code: code branches pro-
duced by conditional statements needed to check inputs and outputs for accept-
ance and credibility (acceptance/credibility check) or to verify the evolution of the
control flow (control flow monitoring), eventually triggering error handling rou-
tines. Given the complexity of designing test capable of cover such branches, we
decided to apply manual inspection to verify all the code that was not covered by
dynamic analysis.

Static analysis

Static analysis requires the semi-automated analysis of the source code using software
tools or manual inspections without executing the code. Compliance with SIL4 requires
[8]: (i) comtrol flow analysis, to check the evolution of the control flow, (ii) walk-
through/design reviews, to determine useless or buggy code through manual inspec-
tions; (iii) verification of satisfaction of coding rules and metrics, done through the use
of the static analysis tool Polyspace [32]. We will report about the control flow analysis
and walkthrough performed in the “Control flow analysis and walkthrough” section,
reporting also about the result of the evaluation of code metrics and coding rules in

“Code metrics” and “Coding rules” sections.

Control flow analysis and walkthrough

Since the monitor object already implements the dynamic control flow monitoring of
the whole PVS, we directly step into walkthrough/design reviews (as verification of the
control flow is actually a review of the behavior of the Monitor). We asked a colleague,
with no knowledge on the project, to act as auditor. He reviewed the flow of execution
of the PVS when used in a typical procedure consisting of configuration, connection,
sending, receiving and disconnection. This allowed reviewing all the functions imple-
mented (tracked with a checklist). The auditor filled the “Comment” column of Table 6

which address MISRA Directives and Table 7, which points to good practices of

Page 19 of 26



Bertieri et al. Journal of the Brazilian Computer Society (2021) 27:5 Page 20 of 26

Table 6 Extract of the walkthrough report on MISRA directive. Table’s columns contain in order:
directive number, directive class, description of the rule and auditor's comment about the rule

Directive Class Description Comment

1.1 Mandatory Any implementation-defined behavior on  The description of the implementations
which the output of the program depends Followed a pattern that made it easier to
shall be documented and understood understand its content and goals

2.1 Mandatory All source files shall compile without any No errors or warnings during compilation.
compilation errors

3.1 Mandatory All code shall be traceable to documented Most of the requirements names are
requirements reused in the code; it is easy to trace

everything to its original requirements.

44 Advisory  Sections of code should not be No commented code found.
“commented out”

45 Advisory  Identifiers in the same name space with |dentifiers are self-explanatories, no ambi-
overlapping visibility should be guity found.
typographically unambiguous

46 Advisory  Typedefs that indicate size and signedness ~ Functions use raw integers to indicate a
should be used in place of the basic state/type.
numerical types

4.7 Mandatory If a function returns error information, then There is error handling in all the functions
that error information shall be tested related to the protocol, haven't seen any

tests to prove their efficiency.

4.8 Advisory  If a pointer to a structure or union is never Pointers have their object implementation
dereferenced within a translation unit, then hidden.
the implementation of the object should
be hidden

49 Advisory A function should be used in preference to Function-like macros are rare in the code
a function-like macro where they are
interchangeable

4.12 Mandatory Dynamic memory allocation shall not be Not found.
used

Table 7 Extract of the walkthrough report on selected coding/design rules

Rule Comment

A module/component shall have a single well-defined task or  They all are straightforward.
function to fulfill;

Connections between modules/components shall be limited Ok.
and strictly defined

Collections of subprograms shall be built providing several Done.
levels of modules/components;

subprograms shall have a single entry and a single exit only; Done.

Modules/components shall communicate with other modules/  Most of them share structured variables, and all
components via their interfaces. Where global or common the interfaces are used accordingly.

variables are used, they shall be well structured, access shall be

controlled and their use shall be justified in each instance;

All module/component interfaces shall be fully documented They are well described and documented

First column contains the rule description while the second contains auditor's comment



Bertieri et al. Journal of the Brazilian Computer Society (2021) 27:5 Page 21 of 26

software design/development [25], to eventually report violations of the described rules.
Tables 6 and 7 only report rules and practices that were deemed applicable for the
walkthrough. As can be seen from the “Comment” columns of Tables 6 and 7, the ana-
lysis did not find any violation.

Code metrics

The values of code metrics selected for the implementation of PVS, extracted by using
Polyspace [32], are reported in Table 8. The table reports metric values highlighting in
yellow the values that violate the constraints set by the V& V&S plan described in “De-
sign specification” section.

As can be seen from the table above, some of the source files exceed the predefined
constraints. The file PVSIib.c violates cyclomatic complexity threshold, while constraints
on lines of code are violated in files monitor.c and aes.c. For number of parameters, we
have violations in the files PVSlib.c, sai_int_mod.c, sai_cod_mod.c, sai_layer.c, and safety_
layer.c. Those violations have been addressed during the finals V&V stages of the project
to check whether was possible or necessary to operate some changes on the modules de-
sign or implementation. Briefly, the considerations done on each of those violations are:

e Cyclomatic complexity: the values could be reduced defining sub-procedures that
execute some of the instructions executed by the functions under exam. However,
it was not considered necessary to make changes as the two functions were appro-
priately overhauled and tested; furthermore, their modification would not have
brought significant improvements in terms of simplicity or maintainability of the
code.

e Number of parameters: we did not make any change because during the design
specification phase, it was deemed appropriate to keep them unchanged for reasons
of logical consistency between the inputs and outputs produced by them.

e Lines of code: it has been observed that the tool [32] calculates the metric as the
difference between the brace that determines the start of the function and the brace

Table 8 Maximum value per file of the metrics extracted by Polyspace

| File I cC I LoC I NoP |
| Ifor-c | 5 | 21 | 2 |
| layer.c ‘ | 2 | [ 13 ‘ | 5 |
| cre.c ‘ | 5 | ‘ 27 ‘ | 2 |
| aes-cmac.c ‘ | 10 | l 49 ‘ | 5 |
| layer_util.c ‘ | 6 | [ 31 ‘ | 5 |
| monitor.c H 7 H 107 H 3 |
| apl_layer.c ‘ | 9 | l 44 ‘ | 4 I
| PVSlib.c I 11 I 47 I 8 |
| fake_alec || 9 I 80 I 4 |
| sai_int_mod.c ‘ | 8 | ‘ 58 ‘ | 7 |
| aes.c I 10 I 163 I 4 |
| sai_cod_mod.c ‘ | 10 | [ 70 ‘ | 9 |
| sai_layer.c ‘ | 10 | ‘ 63 ‘ | 7 l
| safety_layer.c ‘ | 10 | l 92 ‘ | 7 |

First column contains the file name, the others report respectively on cyclomatic complexity (CC), lines of code (LoC), and
number of parameters (NoP). Violations with respects to defined thresholds are in yellow



Bertieri et al. Journal of the Brazilian Computer Society (2021) 27:5 Page 22 of 26

that determines its end, also counting the empty lines necessary to improve
readability of the code. Therefore, the actual metric value for the functions of the
monitor.c file was less than the threshold set. The same does not apply to the aes.c
file. However, we did not modify its functions to avoid the insertion of bugs and
cause malfunctions of the algorithm.

Coding rules

Polyspace [32] finds violations to MISRA C:2012 coding rules, showing some false posi-
tive, that need to be manually dropped, alongside with violations that we do not con-
sider as defects. The final result of running Polyspace on the PVS source code is in
Table 9.

After attentive analysis of the violations identified and, on the opportunity to solve
them, we opted for motivating deviations. Each deviation describes: (i) the rule; (ii) the
use case that triggers the violation; (iii) the root cause for rule violation; (iv) the pos-
sible risks given by rule violation; (v) any possible alternative approach, and (vi) a verifi-
cation code to be used to check risks on different architectures. While aspects (ii) and
(v) cannot be shared due to confidentiality, Tables 10 and 11 show deviations respect-
ively for violations of rules 11.3 and 18.8. We do not report about each of the violations
identified in Table 9 as deviations are in any case consistent with what shown in Tables
10 and 11.

Performance analysis of the protocol

We conducted a performance analysis targeting throughput in terms of Kilobytes sent
and received per second between two remote machine and using three different setups: (i)
a normal C99 socket transmission, (ii) PVS closed network, and (iii) PVS open network.

Experiments execution

We created bash scripts that exercise PVS by executing the sending and the receiving
of 100 packets of different payload sizes, varying from 5 kB to 65 kB, that is the max-
imum payload allowed by the PVS. The underlying WLAN has a nominal bandwidth of
100 Mbps. Figures 9 and 10 have been generated by averaging the data collected during

Table 9 MISRA C:2012 violations purged by false positive and false defect. The table reports on
rule description and Number of violations inside the code

MISRA C:2012 rule N° of
violations

MISRA C:2012 11.3 (Required) A cast shall not be performed between a pointer to object type 88
and a pointer to a different object type.

MISRA C:2012 11.5 (Advisory) A conversion should not be performed from pointer to void into 24
pointer to object.

MISRA C:2012 11.6 (Required) A cast shall not be performed between pointer to void and an 4
arithmetic type.

MISRA C:2012 15.4 (Advisory)There should be no more than one break or go-to statement used 2
to terminate any iteration statement.

MISRA C:2012 18.8 (Required) Variable-length array types shall not be used. 33
Tot
151




Bertieri et al. Journal of the Brazilian Computer Society (2021) 27:5

Table 10 Deviation for MISRA rule 11.3

MISRA C:2012 11.3 (Required)

MISRA rule A cast shall not be performed between a pointer to object type and a pointer to a
different object type.
Motivation Code quality (decoupling between SW modules)
Executing a cast of a pointer to an object to a different object, the resulting pointer
Risks could be not correctly aligned. A non correct alignment could result in undefined
behaviour.

Verification method

It is possible to verify, for a target compiler and architecture, the correct alignement
of the pointer and the absence of problems due to undefined behaviour using the
following tests:

e Execute the entire PVS test suite;

e Verify the pointers size using the follwing test code:

if((sizeof(ptrl)) == (sizeof(ptr2))) {
return true; // safe

} else {
return false; // non safe

e Verify the alignment of the C struct(s) casted usgin the follwing test,
where it is used the alignof function defined in “stdalign.h” (C11
standard):

if(alignof(layer)==alignof(sai_layer)){
if(alignof(layer)==alignof(safety_layer)){
if(alignof(layer)==alignof(apl)){
if(alignof(sai_layer)==alignof(int_mod)){
if(alignof(sai_layer)==alignof(cod_mod)){
if(alignof(struct sockaddrs)==alignof(struct sockaddr_inx)){
return true; //safe

}
}
}
}

return false; //unsafe

e Verify the compiler specification, in case of use of a different compiler.

the execution of the 100 experimental runs for each of the 2 operational modes of PVS

and for a basic TCP socket. As expected, the open networks mode of PVS (Category 3

of [7]) has the lowest throughput. This can be explained considering that this oper-

ational mode of PVS embeds AES encryption and decryption, in addition to building or

checking a wider packet header. However, the throughput of approximately 300 kB/s is

appropriate considering the usual dimension of data exchanged between nodes in the

railway network.

Table 11 Deviation for MISRA rule 18.8

MISRA rule

MISRA C:2012 18.8 (required)
Variable-length array types shall not be used.

Motivation

Risks

Verification
method

Minimization of stack memory, used for the messages handling and the ease in the
definition of array sizes used to store the messages.

Variable-length array are implemented as variable size objects stored on the stack. Using
variable-length array it is very difficult to determine the stack memory required. Moreover, if
the size variable was negative or zero undefined behavior can occur. If a variable length
array must be compatible with another array type, the array sizes must be identical; other-
wise, an undefined behavior could occur.

The maximum stack memory used by the PVS during exchange of messages is calculable as
payload + header and therefore it is sufficient to make sure that the system is able to
manage this memory size.

Page 23 of 26



Bertieri et al. Journal of the Brazilian Computer Society (2021) 27:5 Page 24 of 26

5000
w
< 4000
=3
s 3000 P
Q ﬁ\. ==@=open network
& 2000
> =@ closed network
o
1000
TE basic socket
C—0—{—0C—0C—C— O
0
5 10 15 20 25 30 35 40 45 50 55 60 65
Payload (B)
Fig. 9 Receive throughput by using different operational modes of PVS and a simple TCP socket

Concluding remarks

In this paper we reported our experience in the implementation of software for safety-
critical systems. More in detail, we applied the CENELEC railway standards to deploy
the Protocollo Vitale Standard, a safe and secure communication protocol to interlace
various railway devices. We described the Protocollo Vitale Standard [18], examining
its structure, and then describing and motivating the techniques used for the design,
implementation and V&V processes.

The overall process complies with applicable CENELEC standards [6—8], which spe-
cify the software lifecycle and the V&V activities to be carried out before certification
and decommissioning. While standards EN50126 [6] and EN50159 [7] define the
process needed to specify the safety functions to be allocated to the Software, standard
EN50128 [8] focuses on technical requirements for the development of software, that
needs to adhere with a given safety integrity level (SIL).

For the development of our safety-critical communication protocol, we started from
the structured methodology ODP-RM [17] to define and describe the system architec-
ture, where we applied various modeling formalism like structure diagrams, sequence
diagrams, block diagrams, and state machines to describe the system and selected tech-
niques needed to improve the system safety such error detecting codes (CRC), control
flow monitoring, and acceptance/credibility checks. In compliance with [8] and the
verification, validation and safety Plan, we implemented our software according to (i)
the MISRA C 2012 coding standard [25] and (ii) a set of software metrics to be
respected [27, 28].

The V&YV activities consisted then in a thorough revision of each activity done in the
previous phases, in the drafting and execution of unit, functional, and structure-based

N
3000
& 2500
[aa]
X 2000
5
a 1500 ==@=—open network
% O o PP _
3 1000 >= 00— o= -—0—0—o == closed network
= 500 o0 ——O——O————® basic socket
0
5 10 15 20 25 30 35 40 45 50 55 60 65
Payload (KB)
Fig. 10 Send throughput by using different operational modes of PVS and a simple TCP socket




Bertieri et al. Journal of the Brazilian Computer Society (2021) 27:5 Page 25 of 26

tests, and in the verification of compliance to coding standards and software metrics.
Ultimately, we conducted performance analyses to verity the sending/receiving through-
put of packets with both open/closed network operational modes of PVS.

As a last remark, we strongly believe that our experience in preparing, implementing,
verifying, and validating a software to be installed in safety-critical systems could be
used as reference for those who have to deal with safety requirements either for rail-
ways or for other domains (e.g., automotive, avionics), which share most of the V&V
items with respect to railway standards.

Acknowledgements
Not applicable.

Authors’ contributions
Entity of contribution and of involvement in technical research matches authors’ order. The author(s) read and
approved the final manuscript.

Funding
This work has been funded by RFI Rete Ferroviaria ltaliana S.p.A.

Availability of data and materials
Data is not available due to contractual IPRs.

Competing interests
The authors declare that they have no competing interests.

Author details
'Department of Mathematics and Informatics, University of Florence, Viale Morgagni 65, 50134 Florence, Italy.
Research and Development, Rete Ferroviaria ltaliana, Via Curzio Malaparte 8, 50145 Florence, Italy.

Received: 17 June 2020 Accepted: 24 January 2021
Published online: 02 March 2021

References

1. Avizienis A et al (2004) Basic concepts and taxonomy of dependable and secure computing. IEEE Trans Dependable
Secure Comput 1(1):11-33

2. Ceccarelli A, Zoppi T, Vasenev A, Mori M, lonita D, Montoya L, & Bondavalli A (2018) Threat analysis in systems-of-
systems: an emergence-oriented approach. ACM Transactions on Cyber-Physical Systems 3(2):1-24. USA.

3. Bhatti ZE, Roop PS, Sinha R (2016) Unified functional safety assessment of industrial automation systems. IEEE Trans
Industr Inform 13(1):17-26

4. Xie G et al (2017) Hardware cost design optimization for functional safety-critical parallel applications on heterogeneous
distributed embedded systems. IEEE Trans Industr Inform 14.6:2418-2431

5. IEC IEC61508 (2010) 61508 functional safety of electrical/electronic/programmable electronic safety-related systems.
International Electrotechnical Commission

6. CEI EN 50126. Railway applications - the specification and demonstration of Reliability, Availability, Maintainability and
Safety (RAMS), 2008.

7. CENELEC, EN50159 (2010) Railway applications-communication, signalling and processing systems - safety-related
communication in transmission systems [Report]: Standard.-[sl]. European Committee for Electro-Technical
Standardization

8. CENELEC, EN50128. Railway applications-communication, signaling and processing systems-software for railway control
and protection systems, 2011

9. CEI EN 50129 (2004) Railway applications - communication, signalling and processing systems - Safety related electronic
systems for signalling

10. Sniady A, Soler J (2012) An overview of GSM-R technology and its shortcomings. In: 2012 12th International Conference
on [TS Telecommunications. USA: [EEE; pp 626-629

11. Fall KR (2011) TCP/IP lllustrated, Volume 1: The Protocols, Addison-Wesley Professional, USA, ISBN: 9780321336316

12. UNISIG (2015) SUBSET-037 EuroRadio FIS. Version 3.2.0

13. Winter P et al (2009) Compendium on ERTMS. Eurail Press

4. SUBSET, UNISIG. 098, RBC-RBC safe communication interface, 2007.

15. Bertieri D, Zoppi T, Mungiello |, Ceccarelli A, Barbareschi M, Bondavalli A (2019) Implementation, verification and
validation of a safe and secure communication protocol for the railway domain. In: LADC 2019 9th American
symposium on dependable computing

16. Wang R, Zhao H-b, Wang S-m (2008) Research on uplink-signal simulator used for BTM test in balise system. J China
Railway Soc 30(6):46-50

17. Technical Committee ISO/IEC JTC 1/SC 7 (1998) ISO/IEC 10746-1:2009 Information technology — Open distributed
processing — Reference model: Overview — Part 1

18.  RFI (2017) Relazione Tecnica RFI DTCDNSSS RT IS 05 021 F. Protocollo Vitale Standard. Internal report (in Italian). Italy

19. PUB, NIST FIPS (2001) 197: advanced encryption standard (AES). Fed Inf Process Stand Publ 197(441):0311



Bertieri et al. Journal of the Brazilian Computer Society (2021) 27:5 Page 26 of 26

20. Song, Junhyuk, et al. The aes-cmac algorithm. RFC 4493, 2006.

21, Wolf J, Michelson A, Levesque A (1982) On the probability of undetected error for linear block codes. IEEE Trans
Commun 30(2):317-325

22. Franekova M, Rastocny K (2011) Modelling of disturbing effects within communication channel for safety-related
communication system. Adv Electr Electron Eng 6(2):63-638

23. Koopman P, Chakravarty T (2004) Cyclic redundancy code (CRC) polynomial selection for embedded networks. In:
International conference on dependable systems and networks, 2004. [EEE, pp 145-154

24, Loquai S et al (2012) 10-Gb/s pulse-amplitude modulated transmission over 1-mm large-core polymer optical fiber. IEEE
Photon Technol Lett 24(10):851-853

25. MISRA C:2012s (2013) Guidelines for the use of the C language in critical systems. MIRA Limited, Warwickshire

26. Coding Styles. gnu.org/prep/standards/standards.html#Writing-C

27. Rosenberg LH, Hyatt LE (1997) Software quality metrics for object-oriented environments. Crosstalk J 10(4):1-6

28. Exida Consulting LLC. C/C++ coding standard recommendations for IEC 61508, version V1, revision R2 (2011)

29. John Walker, Ent - a pseudorandom number sequence test program. http://fourmilab.ch/random/, 2008.

30. GCovr Library. https://gcovr.com/en/stable/

31. LCov Library. https://github.com/linux-test-project/Icov

32, Polyspace tool, Matlab. https://itmathworks.com/products/polyspace.html

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



http://gnu.org/prep/standards/standards.html#Writing-C
http://fourmilab.ch/random/
https://gcovr.com/en/stable/
https://github.com/linux-test-project/lcov
https://it.mathworks.com/products/polyspace.html

	Abstract
	Introduction
	Safety standards for the railway domain
	Interlacing and communications
	Our contribution
	Paper structure

	Control systems and railway standards
	Railway systems
	Applicable standards

	Specification of Protocollo Vitale Standard
	PVS layers
	Connection establishment

	Verification, validation, and safety plan
	Architecture specification
	Enterprise viewpoint
	Information viewpoint
	Computational viewpoint
	Engineering viewpoint
	Technology viewpoint

	Design specification
	Verification and validation activities
	Dynamic analysis, testing, and traceability
	Test coverage
	Static analysis
	Control flow analysis and walkthrough
	Code metrics
	Coding rules


	Performance analysis of the protocol
	Experiments execution

	Concluding remarks
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher’s Note

