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Abstract

Several applications can benefit from recording information about the places a mobile
entity visits and the length of time it spends there (e.g., shoppers, employees, buses,
portable equipment, autonomous robots). This paper presents our approach to
recording spatio-temporal presence information in a secure and inviolable way using a
Distributed Ledger Technology. We implemented this solution as a middleware service
that uses Complex Event Processing on smartphones to record beacon-smartphone
proximity data in a blockchain efficiently. We have built upon the previous version of
our service to include access control to the stored information. We analyzed the impact
of this addition on the service’s performance and observed that it introduced very little
overhead while significantly increasing user privacy. Furthermore, we compared the
effect of using different blockchain technologies on overall service performance and
characterized scenarios where using either IoTeX or Ethereum can be suitable for this
type of application.

Keywords: Blockchain, Presence information, Internet of Things, Mobile things,
Middleware

Introduction
As a large portion of modern business and our social lives encompasses mobility, the
places visited by people, goods, and vehicles become testimonials of our activities, goals,
state of well-being, and even our intentions. The recent explosion of movable smart Inter-
net of Things (IoT) devices was a key component to the formation of the Internet of
Mobile Things (IoMT) [1, 2], turning the information about previous, current, and future
positions of these devices into valuable knowledge in our modern economy.
Plenty of applications can benefit from recording spatio-temporal information about

the current and previously visited places of mobile entities, be they employees, vehicles,
portable machines, or autonomous robots. A few examples are task force and employee
control, supply chain management, asset management, logistics, hospital operations, and
public transportation.
In addition to that, to avoid manipulation, distortion, or fraud, some of these applica-

tions also require a permanent and inviolable record of places, when they were visited,
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and how long each visit took. For instance, some companies may need to prove irrefutably
that they serviced their clients at the correct place for a previously stipulated amount of
time or that the maximumwaiting time to be served has not exceeded the allowable limit.
Similarly, a public transport service may have to prove that it has complied with its sched-
ule, with each bus arriving and leaving each stop at the right moments. Furthermore, if a
company sends a group of employees to a remote professional training session, it might
want to check if some did not attend all the course modules.
Alternatively, consider the following service based on trustedmobility data that requires

near to real-time automatic reaction. At universities, there is a deep concern about the
privacy of employees. Therefore, the many security cameras installed around the depart-
ments’ facilities should begin recording only when they detect suspicious movements
among staff members. If an unauthorized staff member enters in a restricted access room
(e.g., the graduate studies office or the director’s office) and stays for more than the usual
period, a Distributed Ledger should then register this person’s presence in that room at
that time as a definitive and inviolable record. Only after that should the corresponding
cameras start recording in order to get other testimonial evidence. This online, reactive
IoT application requires the immutable logging to be as fast as possible so that video cam-
eras can start recording immediately after the movement and presence information is
secured.
Another reason for immutable recording of location data to be fast (that is, to have

small latency) is the case where the user changes location very frequently, and the exact
sequence of visited locations is needed. For instance, verifying if an employee followed
the work procedure as expected (e.g., a guard that periodically must check several gates
or doors at a factory).
To this end, we created a service for inviolable presence registration of mobile

agents. The implementation of the service uses a Distributed Ledger Technology
(DLT), which allows us to store and retrieve data while ensuring the integrity of the
location information it contains. We incorporated the service into the ContextNet
platform [3], an IoMT middleware that already implements two modes of presence
detection.
This paper is an extended version of [4]. We have further developed our service to

include a control access system for the stored presence data. With this system in place,
only the user who owns the data can retrieve the stored location information. We tested
the impact of this addition on the service performance and observed that it introduces
very little overhead while significantly increasing user privacy.
Moreover, we repeated our previous experiments using a different blockchain called

Ethereum [5] and analyzed the differences between this technology and IoTeX [6]. We
compared their performances for different settings of mobile entities and clients. Our
results show that, overall, Ethereum is more efficient than IoTeX, although presenting a
large variance in the measured transaction times.
This text is organized as follows: the “Fundamentals” section presents ContextNet

and its presence detection mechanisms and characterizes the concept of blockchain.
The “Inviolable presence registration service” section describes our registry service,
“Implementation and performance tests” section discusses our experimental results,
and “Challenges and opportunities” section discusses challenges and opportunities
for the creation of inviolable presence registration systems for mobile entities. The
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“Related work” section compares our approach to other studies related to this topic, and
the “Conclusion” section has our concluding remarks and possibilities for future work.

Fundamentals
Presence detection in ContextNet

ContextNet [3] is a distributed scalable cloud-mobile-edge middleware composed of the
Core and theMobile-Hub (or simply M-Hub) [1]. The Core is an extensible set of cloud-
based microservices, such as a peer-to-peer, scalable publish/subscribe communication
infrastructure. The M-Hub is an extensible microservice framework for Android devices
(e.g., phones and low-cost Systems on a Chip (SoCs)) that serves as a connectivity hub for
smart IoT devices.
In its current version, the M-Hub provides Internet connectivity to any Bluetooth Low

Energy (BLE) device that is within its communication range and supports Complex Event
Processing (CEP) [7] as a means of local processing on edge devices. Moreover, it allows
the discovery, configuration, and registration of any BLE beacon (e.g., iBeacon/Eddystone)
using the web or a remote mobile device. These beacons are devices that periodically
broadcast short-range advertisement signals, expecting nearby smart devices (e.g., smart-
phones) to detect them through a wireless scan and map their identifiers to a meaningful
name or coordinate.
To turn the values attributed to beacons into real-world coordinates, we need to assign

each of them a symbolic location name or a physical coordinate, typically in a cloud-based
external database. Due to their small size and weight, we can embed BLE beacons into
wristbands, ID badges, or small tags attached to any equipment (mobile or not), furniture,
wall, or ceiling.
In our case, we chose to detect mobile beacons by instrumenting indoor spaces with

M-Hubs running on small SoCs (with BLE and Wi-Fi interfaces) attached to ceilings or
walls. All M-Hubs have a list of allowed beacon IDs that they will consider while ignoring
any other BLE device emitting beacon advertisements for pairing. The BLE technology
gives beacons a range of advertisement coverage between 10–50 m, which is dependent
on the transmission power of its IEEE 802.15.1 radio. So, to fit the advertisement range
of each beacon to our application’s needs, we configured each beacon to use a specific
transmission power to adjust its reachability. Finally, ContextNet’s proximity detection
service also performs beacon signal disambiguation based on the radio frequency (RF)
signal strength whenever more than one M-Hub detects a beacon. This way, we can build
found() and lost() entries in the mobility log.
In addition to the beacon-based positioning, the ContextNet middleware system also

supports mobile entities’ positioning using geo-locations and geo-fences. In this case,
it uses its GroupDefiner service [8], which allows the developer to specify an arbitrary
set of geo-fences in the form of a convex polygon of (lat,long)-coordinates. Then, for
each geo-reference (e.g., GPS or cell network position) received from the M-Hubs, the
GroupDefiner will check to which (one or many) registered polygon the mobile entity
belongs and will retrieve the corresponding region-ID.

Complex event processing

To improve the effectiveness and accuracy of presence detection using beacons, we must
compare, filter out, correct, and summarize beacon signals. To this end, ContextNet’s
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M-Hub features a full-fledged ESPER Complex Event engine [9] that can process contin-
uous queries in the form of Event Processing Language (EPL) rules over the stream of
arriving beacon signals.
Such continuous queries typically define a sliding observation window of events over

which the rules’ patterns are checked. For example, a rule can determine that if in the
same 15-s window, only one advertisement of strength up to −100 dB is received from
a beacon B1, then this beacon has moved out of the M-Hub’s vicinity. Also using CEP
rules, any M-Hub, say H1, can map a sequence of subsequent confirmations of a beacon’s
proximity into initial found(H1,B1) and lost(H1,B1) events, which are the ones
then sent to the service at the Core.

Blockchain

Blockchain is a DLT for recording information into an encrypted chain of blocks so that it
can never be modified or forged. Although it has been used as the public ledger for some
cryptocurrencies like Bitcoin, it has a wider concept [10].
To employ a blockchain, we must first create a network with all computing nodes

interested in using it. When a node executes a transaction, it uniquely signs it, thus ensur-
ing the operation’s integrity, and then transmits it to its peers. The transmission block
contains valid transactions and references the previous block of the chain using the cor-
responding hash. If at least one of these conditions is not met, the block is rejected.
Otherwise, the nodes add the block to their chain, updating the transactions. This pro-
cess guarantees the immutability of the data because changing a block requires changing
all previous blocks.
There are two types of blockchain: public and private [10]. Themain difference between

them relates to who is entitled to participate in the network, execute the consensus pro-
tocol, and keep the shared data. Public blockchains are entirely open, and anyone can
join their networks and access their public transactions. In this case, the network typi-
cally has an incentive mechanism to get more participants to use it. Private blockchains,
on the other hand, require permission to access the information contained in the chain.
Therefore, it is possible to limit the parties allowed to make transactions, be present in
the network, and write new blocks in the chain.
As there is no central authority to validate transactions, a blockchain needs a mecha-

nism to reach a decentralized consensus. There are currently two important models for
this: Proof-of-Work (POW) and Proof-of-Stake (POS) [10]. Bitcoin [11], Ethereum [5],
and almost all cryptocurrencies use the POW model. This model requires computers
to “mine” cryptocurrency by solving complex mathematical problems. For every solved
problem, these mining computers are rewarded with some cryptocurrency. As an alter-
native to POW, POS was conceptualized around making mining fairer. It is used by
cryptocurrencies such as PIVX [12] and Nxt [13]. In these cryptocurrencies, the system
randomly chooses miners, so no energy is wasted by using computers to solve compli-
cated mathematical problems. Consequently, instead of mining, users can invest directly
in the coins. Ethereum is in the process of migrating to this system.
In a Delegated Proof-of-Stake (DPOS) system [10], a community of block producers and

staked users agree to a specific set of rules to create a technological democracy. Every wal-
let that contains coins can participate in validating transactions and forming a consensus.
Thus, the more coins in a wallet, the more coins it will eventually receive. The wallets can
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also vote for representatives, which validate transactions, form a consensus, and are paid
for their efforts through the system.
In our previous study [4], we chose IoTeX [6] as the blockchain that stores the loca-

tion information in our system. Using DPOS, IoTeX is a high-throughput, instant system
with reduced transaction costs. Furthermore, it is a privacy-based blockchain with a
lightweight system architecture specifically designed for various IoT industries. However,
we required additional IoTeX tokens to execute the experiments using the current imple-
mentation of our service. Given that the system we used to receive these tokens [14] was
not available during the testing period of the new features, we decided to switch to a
better-known network with a broader community.
We chose Ethereum [5] for this task, as it is a platform that provides users with the

capacity to create their own decentralized applications using Solidity, a language that
enables the development of code with varying levels of complexity. Moreover, Ethereum is
based on smart contracts, allowing two unknown people to do business without needing
a central agent. The terms are programmed in the contract, which is then executed, fulfill-
ing the defined conditions and without human interference, thus reducing the negotiation
costs.

Inviolable presence registration service
Presence logs of mobile entities should be capable of being invalidated, as they give infor-
mation about movement events and traces of the real world. Thus, it is only natural to
develop an inviolable presence registration service using blockchain for mobile entities in
environments such as rooms, bus stops, shops, among others. To do that, we use M-Hub,
the ContextNet component that serves IoMT applications, to interact with sensors and
actuators built into smartphones and embedded in smart things. By combining M-Hub
with a blockchain network, we ensure that these interactions between smart things can
be stored safely and distributedly. With a blockchain-based distributed computing plat-
form and operating system featuring smart contract functionality such as Ethereum, we
can also create a control access system for retrieving the stored data.
Either by finding nearby BLE beacons or comparing the geo-location obtained by

a GPS with geo-fence limits, the M-Hub is the element of our infrastructure that
associates a symbolic location to a mobile entity (either itself or a person/machine
passing by with a beacon). Figure 1 shows the possible ways in which we locate/track
mobile entities.
The M-Hub uses CEP filters that define when an entity enters or leaves a location or

geospatial region. As it is necessary to distinguish each user, their identity has to be pro-
tected in some way. We attached the user’s identification through the phone device ID.
Unlike a user name or identification number, this piece of information is not related
directly to the individual. Also, only the device owner would easily have it, making it diffi-
cult to associate the mobile device with the user. The phone device ID can also be hashed
to make it difficult for others to identify individuals.
The system identifies the current location and waits some time before defining a point

as a mobile entity. Initially, we considered using the mean of the positions, but this mea-
sure is sensitive to sample values, thus being best suited for situations where data is
uniform. Therefore, using themean could delay ormake it impossible to define themobile
entity’s location, as it would be necessary to obtain the same point in all samples of that
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Fig. 1 Immutable presence registration service using blockchain in the Core for both positioning using
beacons (left) and geo-locations (right). This figure shows the possible ways in which we locate/track mobile
entities

observation period to make sure that it is completely correct. Mode [15], in turn, repre-
sents the most frequent value of a dataset, and to define it, we observe how often a value
appears. By doing so, we analyze the positions received during that period and define the
current location by the most recurring. Consequently, we use a continuously calculated
mode of the positions, and the system only sends another message if the entity appears in
a new filtered position. This way, we reduce the amount of unimportant data sent.
The mobile nodes that contain an M-Hub send this filtered information to a manager

node (Fig. 2), which then adds the data to a queue to be sent to a blockchain, thus reduc-
ing the latency of the blockchain’s process of inserting a new data item. We call this part
of our approach, the Block Node (B-Node). Additionally, with this B-Node, we can send
location data asynchronously. After an established period, which can vary according to
the B-Node’s response, this filtered information will be sent to the blockchain, not inter-
fering with the submission of new data. This approach makes the service more agile and
allows multiple data to be sent concurrently to the blockchain.
The B-Node was developed to allow the use of various blockchains, as it only defines

signatures of methods and properties. Each blockchain implements the practical behavior
of themethods. If using another blockchain is necessary, it is possible to do so by changing

Fig. 2 Block Node sending scheme. This figure shows the steps contained in the Block Node to aggregate
and send data to the blockchain
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only the component that interacts directly with the blockchain network. The rest of the
B-Node would already be ready for use. Furthermore, the B-Node includes a contract
that can be used if the chosen blockchain requires a smart contract to interact with the
network (e.g., Ethereum).
The B-Node uses the Ethereum blockchain to send multiple messages without suffering

lengthy delays. This is possible due to the smart contract mechanism that facilitates the
process by allowing messages to be grouped into one before being sent. The smart con-
tract executes the process of identifying messages sent in bulk in a unique identifier. The
message sent to the blockchain has the entity identification, the user location, the times-
tamp, and a message that defines whether the user has left or entered the place. The fact
that we are working with individual messages facilitates the search for stored information;
however, it is still costly to examine the entire chain looking for the corresponding data.
Written in Solidity, the smart contract code deployed on the Ethereum network con-

tains three methods for interacting with the stored data, as illustrated in Fig. 3. The
setData method receives as a parameter the String to be sent to the network and the
userID created from the phone ID hash. It stores this information and generates a unique
transactionID by combining the user ID and the current time of the transaction. We also
create a link between userID and transactionID, thus shaping an access control system
where only the owner of the data can retrieve their own location information. We prefer
to store the data using hash maps since this structure reduces the cost of searching for the
stored data in getData. We also created the getTransactions method to return all
the stored transaction IDs for a specific user. The user sends their ID, and the smart con-
tract generates the corresponding hash. We use this hash to retrieve the data, and with
that, we can control who accesses the stored information.
Combining the B-Node service with the ContextNet middleware provides a way to

identify an entity’s presence at a place or region and measure how long it stayed at a
place. This information is sent via M-Hub to a blockchain network, thus ensuring the
immutability of the information. As a result, it is possible to build location-based services
that register the position and the period that a mobile entity, such as a robot, drone, or
human, stayed in that location.

Fig. 3 Diagram of the interactions with the blockchain in the proposed service. This diagram describes the
interactions between the mobile entity, the Block Node, the blockchain, and the user



Leal et al. Journal of the Brazilian Computer Society            (2021) 27:1 Page 8 of 15

Implementation and performance tests
The experiments described in this section aim to explore the concept presented in this
paper by observing the efficiency of identifying an entity’s position and sending, adding,
and retrieving this stored inviolable information.

Experimental setup

In our experiments, we measured the latency of the service transactions on a local
280-megabit network. Except where stated otherwise, the reported results represent the
average transaction time of 5 executions for IoTex and 30 executions for Ethereum, along
with their respective standard deviations and margins of error calculated with a confi-
dence level of 95% usingMicrosoft Excel 2013. This disparity in the number of executions
is due to the difficulty in obtaining more tokens for the IoTeX transactions, as explained
in the “ Blockchain” section. For the communication between the mobile entities and the
Block Node, we used version 2.7 of the Contextnet middleware.
We employed an indoor location dataset collected by PUC-Rio students and professors

that contains the time series generated by beacons deployed in real-world office environ-
ments. To simulate the movement of mobile entities, we used a mobile node (MN) and
a stationary node within the ContextNet Scalable Data Distribution Layer (SDDL) core
network architecture [3]. This stationary node of the SDDL core acted as a server pro-
cessing node capable of processing application messages from the MN (according to an
application-specific logic) and sending messages back to the mobile node.
This information is sent to the Ethereum Testnet. This Testnet is an alternative

Blockchain that acts as a global testing environment in which developers can obtain and
spend ether with no real value on a very similar network to the regular Ethereum network
(also calledMainnet). Although similar, a Testnet has fewer validation nodes compared to
the regular network. This kind of alternative to the Mainnet allows developers to exper-
iment with new code and solutions. In doing so, they are not “disturbing” the regular
network, nor are they forced to use tokens that have real value. We decided to use it
instead of the Mainnet because it allows us to run tests on Ethereum without worrying
about the amount we would be spending. To use a Testnet, we need to create a wallet and
obtain free tokens to send a smart contract that works as an interface between the queue
and the blockchain. This contract, written in Solidity, has two functions: adding the new
data and getting the stored information.With this structure, we were able to send location
data asynchronously to the blockchain.
In the IoTeX experiments, we sent the information to the official IoTex Testnet [16],

and we used the official SDK, IoTeX Antenna [17], written in Java, to facilitate the smart
contract deployment and the interaction with its functions. In the case of the Ethereum
experiments [18], we sent the information to Ropsten, which is an Ethereum Testnet [19],
and we used the official software development kit, Web3j [20], also written in Java.

IoTeX vs. Ethereum

By changing the employed blockchain from IoTeX to Ethereum, we were able to execute
our previous test scenarios [4] using this technology and compare the two approaches.
In the first experiment, we varied the waiting period in the queue that retains the loca-

tion data before sending them to the blockchain. Starting at 5 min and increasing the
waiting time by increments of 1 min, our goal was to study the latency of a transaction
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that inserts a new registry. To speed up the process, we sent a new message every 15 s
and increased the transaction time until we reached a 12-min wait time. We chose not to
use the access control system to see how the B-Node would perform with the increase of
data and provide a fairer comparison between the two tested blockchains. Figure 4 shows
these results.
From the graph, we can see that while IoTeX’s average transaction time grows logarith-

mically with the wait time, Ethereum’s stays approximately constant. However, due to the
large variance in the times obtained for Ethereum, the difference only starts to be statis-
tically significant from the point of an 8-min wait time onward. The fact that only the
Ethereum tests present a large number of outliers indicates that this issue is related to the
performance of the Ethereum Testnet rather than to the proposed service.
Based on these results, we can consider that the insertion operation is efficient in both

blockchains, with Ethereum being the most suitable approach for cases with large wait
times and IoTeX being the most suitable option for cases where the wait time is below 8
min and more predictable execution time is required.
In the second experiment, we fixed a 5-min waiting period.We increased the number of

mobile nodes that are concurrently trying to insert a new registry in the system to analyze
how this would affect this operation’s latency. Figure 5 illustrates these results.
Once again, we can consider both blockchains to be efficient, as IoTeX’s transaction

time grows slightly below linear-scale, and Ethereum’s continues to be approximately con-
stant. Nonetheless, in this scenario, only the results for the case where one mobile node is
executing the operation are statistically similar, with Ethereum outperforming IoTeX by
1.61 to 3.13 times when more mobile nodes are employed.
We note that the process of transaction verification used by Ethereum for the insertion

operation helps justify its better performance. With this mechanism, there is no need to

Fig. 4 Comparison between IoTeX and Ethereum average transaction times for different wait times (lower is
better, error bars were calculated with a 95% confidence interval). This graph compares the average
transaction time of the IoTex and Ethereum implementations for a scenario where the waiting time on Block
Node is being increased
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Fig. 5 Comparison between IoTeX and Ethereum average transaction times for a different number of mobile
nodes (lower is better, error bars were calculated with a 95% confidence interval). This graph compares the
average transaction time of the IoTex and Ethereum implementations for a scenario where the number of
mobile nodes is being increased

wait for the transaction to be completed, as a local node validates the transaction. More-
over, the sender is given a hash that serves as a guarantee that the transaction will be
confirmed by the network later.

Access control system performance

In our second set of experiments, we evaluated the performance of the new feature we
implemented in our service, the access control system.
In the first experiment, we measured the time of a data insertion transaction with and

without the access control mechanism. We set a 10-min waiting period in both cases. We
observed an average transaction time of 42.27 s (with a ± 8.96 s margin of error) without
the access control system and of 40.37 s (±6.71 s margin of error) with it. Therefore,
there was no statistically significant impact on the average transaction time due to the
mechanism’s introduction, indicating the efficiency of the function defined in the smart
contract.
Figure 6 is a histogram showing how the results are distributed in 20-s intervals. By

analyzing the histogram, we see that the interval with most results obtained without the
system (30%) was between 0 s (inclusive) and 20 s (non-inclusive), while the interval with
most results with the system (33%) is 20 s (inclusive) and 40 s (non-inclusive). Given the
high variability of Ethereum insertion transaction times, this indicates that the control
access system introduced very little overhead to the transaction times.
In the second experiment, we tested the access control system’s impact on the transac-

tion times of a data retrieving task. With five executions of the task with and without the
mechanism, we observed the same distribution of values (always either 4 or 5 s). Again,
this indicates that the mechanism did not introduce significant overhead to our service.
The short transaction time compared to the insertion task is due to how we stored the

data. We employed a hash map where the transactionID is the key used to retrieve the
information. Hash maps tend to present good performance when storing large sets of
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Fig. 6 Histogram of Ethereum transaction times with and without the access control system. This graph
compares the impact on the transaction time of inserting new data in a system with and without the access
control system

data, especially when the keys are unknown until the run time or when dealing with a
single type of key and a single type of value.
In the third experiment, we analyzed our service’s performance, including the access

control mechanism, where there are multiple simultaneous requests to retrieve data. We
tested for 10, 20, and 30 simultaneous accesses, and then from 100 to 500 accesses in
increments of 100 users. Figure 7 illustrates these results.
We see that there is no statistically significant difference between the results, with aver-

age transaction times ranging between 4.7 and 6.1 s, indicating that the service scales
well for multiple simultaneous consults. This result shows how a decentralized approach

Fig. 7 Ethereum average transaction times for a different number of simultaneous user accesses (lower is
better, shaded area represents the standard deviation, error bars were calculated with a 95% confidence
interval). This graph compares the impact on Ethereum average transactions caused by increasing the
number of users simultaneously consulting data
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is useful for aspects beyond security. Each node in the Ethereum network has a copy of
the state, and each node independently verifies the state’s authenticity as blocks arrive
and transactions are processed locally. The getData method is a view function that, by
definition, is read-only. These types of functions ensure that the state is not changed. As
there is no attempt to change the state, the network is not even consulted during these
calls. Therefore, any node can explore and inspect the state without any additional assis-
tance from the network, significantly reducing the transaction time, given that no mining
is required.

Challenges and opportunities
Security

The basic concept of blockchain is that every transaction is recorded in blocks. This trans-
parency has enabled several cybercriminals to be caught, as it is possible to track the
history of transactions that are forever written in the blockchain. Still, the transparency
of this data is not always desired due to privacy concerns. For example, in Europe, the
General Data Protection Regulation (GDPR) states that everyone has the right to revoke
their consent at any time and permanently access or delete all types of information they
have previously agreed to share. This raises the question: how does this fit in with the per-
manent blockchain registry? Once data has been added to the chain, it cannot be removed
or changed.
In this context, blockchain-based services must create mechanisms to protect their

users’ data. In our case, the system controls access by using the personal device IDs to
identify and store the mobile entities. To not suffer from improper exposure, the user’s
identity must be stored carefully.

Positioning accuracy

GPSs and other Global Navigation Satellite Systems face difficulties typical of any radio
broadcast, given that being between large buildings and metallic structures can disturb
the reception of the signal or a smartphone’s ability to get the location information. Also,
a low-quality device with a slow processor or weak receiver can significantly disrupt the
navigation. Beacons can also present problems, as there may be momentary failures while
connecting to mobile entities. For a system that needs the location of entities to identify
and send the data to the blockchain, these problems can affect the stored information’s
reliability.

Scalability

The scalability of a system is its ability to handle additional workloads. However,
blockchain networks are generally slow and inefficient [21]. The classic blockchain is
not scalable, as increasing the number of nodes in the network does not increase
the throughput of transactions. As a way to speed up this process, the Lightning
Network [22] was invented. This technique implements a smart contract script on
the network that opens private payment channels between one party and all other
parties with which they traded. In addition to the private payment channels, each
party has an open channel for the original blockchain. The parties can thus trade
with each other using private channels, and only the final outcome of the transac-
tion is passed to the blockchain. Nevertheless, this solution cannot be applied to the
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creation of inviolable presence registries, given that every transaction is essential in
this scenario.

Related work
Victor and Zickau [23] propose that geo-fences be defined in smart contracts as part
of Location-based Services (LBS) and that current geographical positions provided by
mobile users be evaluated on whether they are contained in the geo-fence or not. Their
approach utilizes well-established location encoding systems (e.g., geo-hashes and S2
cells) that transform polygons into a grid of cells, which in turn are stored in the smart
contract as a representation of the geo-fence. The authors evaluated these two location-
encoding systems in terms of the storage and processing costs in an Ethereum-based
smart contract implementation, identifying that the codification as S2 cells is much more
efficient. Using geo-fences to identify one’s presence is a common aspect between our
study and theirs. However, we store the already validated positioning data instead of
developing a smart contract to evaluate whether the position is in the geo-fence or not.
Brambilla, Amoretti, and Zanichelli [24] propose an approach for producing a proof of

location system, which are digital certificates that attest to someone’s presence in a par-
ticular geographic area. The authors identified that centralized verification approaches
proposed in the past are not satisfactory, as they can be a high risk to the user’s pri-
vacy. Their paper illustrated a completely decentralized, blockchain-based scheme that
guarantees location integrity and preserves user privacy. We also share the idea of a
blockchain-based system to prove the location of an entity. Nonetheless, we do not
include and share a chain with the data between the nodes, given that we use an
independent public network with the M-Hub connections.
Furthermore, Brambilla, Amoretti, and Zanichelli consider an LBS peer-to-peer net-

work with mobile nodes that are connected to the Internet and can interact with
neighboring nodes through short-range Bluetooth communication. In their paper, they
define two roles for the nodes in the network: prover and witness. A prover is a
node that wants to collect proofs of location from its neighbors, while a witness is
a node that has provided proof of location to the prover. Every peer is described by a
unique identifier, its public key, and can digitally sign information with its identifier’s
private key.

Conclusion
This paper discusses the need for a middleware-level service for inviolable presence regis-
tration of mobile entities. We present an approach to implementing it using a blockchain
as a Core service of the ContextNet middleware, taking advantage of its CEP capabilities
at the edge (i.e., the Mobile-Hubs) and the cloud (i.e., the Core). This type of service’s per-
formance is the cornerstone of the viability of some real-world mobility monitoring and
tracking applications, such as the one we are developing in our departmental rooms and
offices. Therefore, our experiments evaluate the efficiency of tasks such as storing and
retrieving inviolable information.
We have further developed our service compared to the initial minimum viable product

to include a control access system for the stored presence data. With this mechanism in
place, only the user who owns the data can retrieve the stored location information. We
observed that the mechanism introduced very little overhead to our service’s insertion
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and retrieval tasks. This is partly due to the data structure chosen, as hash maps allow us
to access the data directly if we have the permission and the transactionID.
We have also changed the blockchain technology employed from IoTeX to Ethereum,

as the more accessible tokens for the Ethereum Testnet allows us to execute a larger num-
ber of experiments. Our results indicate that, due to blockchain technologies’ current
characteristics and limitations, they can only be used for medium-sized presence regis-
tration applications, that is, only for a few hundred users with updates every 39 s or more.
Improving the service’s efficiency and increasing data registration capacity are essential
steps that we will explore in the future.
We point out that, although storing data in a blockchain is a cumbersome process with

potential high delay, there are ways to avoid these transaction time disruptions in the flow
of new data, such as putting these data in a queue before adding them to a blockchain. The
queue also allows us to manage how long we wait before sending a message, given that
it is possible to change this period. However, this process can have a negative impact on
the overall message sending (and data recording) time delay, as the wait time in the queue
impacts many messages, leading to each message’s wait time to be higher. Considering
the latency in a larger scale installation that includes the cloud and a message queue to
deliver the messages should be among the main next initiatives to be addressed.
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