Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6
https://doi.org/10.1186/513173-020-00100-8 - JOU rnal Of,the
Brazilian Computer Society

RESEARCH Open Access

MylynSDP — Process - aware artifact
filtering based on interest

lvens Portugal?" ®, Toacy Oliveira'?, Paulo Alencar? and Donald Cowan?

*Correspondence:
iportugal@uwaterloo.ca Abstract

1 i i i e
Federal University of Rio de A software development process is used by software engineers to guide their activities
Janeiro, Av. Pedro Calmon, 550 -

Cidade Universitria, Rio de Janeiro, during all phases of the software product development. When executing a software
gﬁz?Je—?S?tw,ER/vzi;terloo - deyelopment process, software ehgineers may lose time and effort while searching for
UmvershyyAvenue West, Waterloo, artifacts or changing contexts. This happens, for example, when they need to search for
N2L 3G1, Canada a specific code file in a list of hundreds of files or when they interrupt an activity to

execute another but forget specific details and need to re-execute searches related to
the previous activity. This impacts their productivity negatively, because extra time and
effort are spent into non-productive work. Therefore, automated assistance is required
to mitigate or avoid these issues. The Degree of Interest (DOI) function infers an
element’s importance in a context, helping software engineers to handle many
artifacts. Mylyn, an Eclipse IDE plugin, uses a DOI function on Java documents to assist
programmers when looking for code documents during development. However,
Mylyn’s DOI function is limited to the implementation phase of software processes and
relies on manual task creation. This paper presents MylynSDP, a software Process-aware
extension to Mylyn’s DOI function. MylynSDP’s DOI function infers an artifact’s
importance during an activity and filters uninteresting artifacts, reducing the time
taken to search items and improving productivity. Mylyn code was augmented, and an
evaluation study was performed. Seven subjects executed a software process with
many artifacts. Exercise times were recorded for productivity analysis. Subjects
answered a Technology Acceptance Model (TAM) questionnaire. New task and artifact
creation wizards link tasks and artifacts to specification activities and artifacts,
respectively. A new interaction event handles context creation, and the DOI function
was extended to other software process phases. Exercise time reduction shows a
productivity increase. TAM questionnaire answers show a positive overall willingness to
adopt MylynSDP and provide evidence that using a DOI function in different software
process phases increases productivity. This work advances the state of the art in
software engineering by providing additional methods to support artifact search and
discovery, context change management, and artifact relevance mechanisms.

Keywords: Software development process, Software process specification, Software
process execution, Mylyn, DOI function, Task context

. © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
@ Sprlnger Open which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
— credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:/creativecommons.org/licenses/by/4.0/.

http://orcid.org/0000-0002-8091-5977
mailto: iportugal@uwaterloo.ca
http://creativecommons.org/licenses/by/4.0/

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6 Page 2 of 35

Introduction

Software development is a complex task. Besides implementing the logic that governs
the function of computer software, there are many other challenges including incomplete
user requirements, changes in specifications, and inter- and intra-team communication
issues [15, 19, 58]. These challenges contribute to the likelihood of errors and, as a result,
increase the chances of software failure. Depending on the software, a failure can be costly
and even life-threatening [1, 21, 64]. For these reasons, both academic and business orga-
nizations focus on avoiding software failures. Research on avoiding errors in software has
shown that the use of a software development process usually leads to improvement in
the quality of the final software product [5, 22, 59].

Software development processes originated from the notion of the software lifecycle,
which was a concept from the 1960s and 1970s that described the lifetime of a software
project [23]. The main objective of the software development process is to guide the
work of software engineers during the development of a software product towards the
improvement of the quality of the final deliverable [46]. This result is achieved by defin-
ing a common set of policies, structures, procedures, activities, and artifacts that must be
followed or manipulated when developing software [23].

Once a software development process is specified, the software engineers effectively
perform the activities of the process following a given order and select, open, read, edit,
and close suitable software artifacts [8, 20]. Software artifacts are documents manipulated
to complete the execution of an activity, such as requirement specifications, bug reports,
use cases, or source code [6, 9, 28]. Depending on the organization and the way it man-
ages software processes, software artifacts can be located in the file system or in a shared
repository [45]. Software engineers have several ways to search and access artifacts. The
most common ways are to search manually, (i) by looking into folders in a hierarchical
structure and opening documents as needed; (ii) by doing a query search using natu-
ral language [63] or a regular expression [26], and browsing through the search result;
or (iii) by skimming through a summary of the software artifacts, which is most use-
ful for documentation artifacts [41]. Software artifact searching is a significant concern
among practitioners and researchers because as the software process advances, the num-
ber of software artifacts increases [2, 39, 53]. As an example, the Rational Unified Process
(RUP)! specification describes more than 100 types of artifacts, which means that soft-
ware engineers executing a RUP-based software process would normally deal with a large
number of artifacts, especially in the latter half of a software project.

Managing several software artifacts during the execution of a software process increases
the complexity of the process and is likely to lead to more errors as the software engineers
could become confused [43]. For example, a software engineer that needs to access a
test case document and a requirement document to validate a requirement may find it
difficult if he or she has to browse manually through hundreds, perhaps thousands, of
software artifacts. Even if an automatic search can be performed, some complications may
arise: documents may have changed names, or been updated to a new version, leading to
searches without meaningful results.

Three problems can be identified with respect to software artifact management.
First, searching and accessing software artifacts affect a software engineer’s productivity

http://www.ibm.com/software/rational

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6 Page 3 of 35

because effort is being expended on a secondary task, rather than focusing on the primary
activity of creating error-free software. The artifact search problem is a major problem
faced by software engineers as it is error-prone and can be time-consuming [2]. Generally,
software engineers perform a search for suitable artifacts to execute a particular activity.
The set of suitable artifacts is, in most cases, a subset of all available software artifacts.
This subset of relevant artifacts for the execution of an activity is defined as the context
of that activity [32, 35].

Second, in addition to the artifact search problem, software engineers frequently face
the context change problem [40, 48]. This problem arises when they need to interrupt the
execution of an activity and start a new activity probably with a higher priority leading to
a context change. During a context change, a software engineer often forgets the details
of the first activity because of the interruption. Moreover, he or she will need to perform
another search for suitable artifacts when he or she decides to return to the first activity.

A third problem relates to relevance of an artifact to a given activity when software engi-
neers handle several software artifacts. It is difficult to define the relevance or importance
of an artifact to the execution of an activity to build support for software engineers [18,
42] as each activity has its own set of suitable artifacts, and each of these artifacts evolves
with time, by having its name changed, or being split, merged, or even deleted.

These three issues of searching, context change, and relevance lead to the following set

of research questions (RQs):

RQ 1. How can a search for software artifacts be supported to maximize a software
engineer’s productivity?

RQ2. How can context changes be supported while maximizing a software engineer’s
productivity?

RQ 3. How can an approach be defined that addresses the relevance or importance of
software artifacts?

In this paper, we propose a mechanism based on artifact relevance to aid a software
engineer’s productivity in artifact search and activity context change. Here, one’s produc-
tivity is a function of the number of artifacts produced and the time. Improvements to
productivity can be done either by increasing the number of artifacts produced at each
unit of time or by reducing the time it takes to produce a given number of artifacts. The
mechanism described in this paper chooses the latter way. The proposed relevance mech-
anism consists of an extension of Mylyn’s [30] DOI function, is called MylynSDP, and
allows the DOI function to deal with software process phases other than implementation.
An evaluation study has been performed to assess the concepts discussed in this paper.

Mylyn is an Eclipse plugin that assists programmers by filtering out less important
Java code documents based on their interaction with the files during the execution of
a task. The more a Java file is used in a task, the higher its likely relevance. How-
ever, Mylyn’s DOI function has some limitations. As the function was designed for the
implementation phase of a software development process, it does not take into account
details found in artifacts used at other phases of software development, such as mod-
eling or testing. Further, because Mylyn is restricted to the implementation phase, it
is not possible to recommend artifacts in all other phases of software development
processes. Therefore, programmers lack support to assist them in finding artifacts of
interest in these remainder phases. Another limitation is that tasks must be manually

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6 Page 4 of 35

defined, since there is no underlying software process to support task creation. Mylyn
has some restrictions in this regard, including (i) an explicit software development
process based on activities and artifacts is not supported by the tool; (ii) the ini-
tial contexts of the tasks are not explicitly defined; (iii) the DOI function cannot take
advantage of the explicit relationships between activities, artifacts, and initial task con-
texts; and (iv) programmer productivity can be significantly compromised when the
DOI function cannot automatically support process-related activities (e.g., task creation,
artifact search).

MylynSDP’s DOI function expands the task x Java code document relationship with the
activity x artifact one. Based on the original Mylyn’s DOI function, the new MylynSDP’s
DOI function assigns an interest value with each artifact associated with an activity. For
each activity, MylynSDP then filters out uninteresting artifacts based on their interest
value. Thus, the new DOI function makes the most interesting elements for an activity
easily accessible for software engineers. The main difference from the original function
is that the new DOI function has the ability to calculate each artifact’s interest value
and filter them based on the software development process and on the interactions with
the artifacts performed by the software engineer. It should be noted that an artifact can
be related to different activities and can have a different interest value for each associ-
ated activity. The MylynSDP’s DOI function calculates the interest value according to the
activity in execution.

Similar to the original function, MylynSDP’s DOI function saves the context of an activ-
ity (i.e., the activity itself and its related artifacts). By saving the context, MylynSDP’s DOI
function aids software engineers when a context change takes place. Later, the previous
activity context can be retrieved quickly and effortlessly, which allows software engineers
to continue their work from the point where they had stopped. The use of a DOI func-
tion can help software engineers to be more productive by allowing them to focus on
effective work and not on additional and unnecessary work such as searching for suitable
artifacts [31].

This paper is organized as follows. The “Related work” section presents related work. In
the “MylynSDP” section, MylynSDP and the new DOI function are introduced, described,
and explained. The “Evaluation study” section contains the details of the case study. The

“Conclusion and future work” section concludes this work and discusses future work.

Related work

The approach described in this paper is related to three research areas: (i) artifact search
and discovery, (ii) context change management, and (iii) artifact relevance mechanisms.
To create MylynSDP and its DOI function for these areas, our research investigates how
frameworks deal with artifacts. Descriptions of related research are discussed in the next
subsections.

Artifact search and discovery
A useful approach for discovering artifacts related to an activity is their traceability. Gen-
erally, the main objective of a traceability approach in software engineering is to analyze
change, maintenance, and evolution effects that could happen to a software product dur-
ing its lifecycle [60]. By doing this analysis, software engineers aim to improve the quality
of the final software product.

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6 Page 5 of 35

Traceability is also important in comparing new and known software requirements,
aiding in artifact reuse, and serving as a basis for software testing and inspection [60].
Thus, artifact traceability may be used for clear communication between users and devel-
opers, as well as for improving documentation and increasing the chances of software
acceptance [60]. According to [61], the best way to improve software artifact traceabil-
ity is by using a traceability matrix to represent the relationship between activities and
artifacts. Nevertheless, the use of such a traceability matrix has disadvantages. First,
the spreadsheet that holds the information is usually created manually, which often
requires a substantial amount of time. Second, minimal computer support in creating
the matrix increases the chances of failure or inaccurate information. Third, gathering
the data in the matrix, even when automated, may require considerable time given the
sheer number of artifacts and activities in a software process. Finally, software process
flexibility indicates that new artifacts may be created or activities may be re-executed,
thus adding new information thereby requiring matrix reprocessing and additional
time [60].

A second approach is the use of a process-centered software engineering environ-
ment (PSEE). Some research effort in the 1980s focused on the specification of a public
interface to be used as the basis for the construction of software engineering environ-
ments (SEE). Projects such as the Portable Common Tool Environment (PCTE) [10] were
created as a way to reduce the cost of building software engineering tools. Since then,
research in the area resulted in the construction of many different software engineering
tools, including process-centered software engineering environments. A PSEE is formally
defined as a software engineering environment in which there is an explicit definition
of the process to be followed during software development [24]. PSEEs usually allow the
modeling and execution of software processes, as well as their improvement. The use
of a PSEE also enhances the communication between stakeholders, the reuse of some
parts of the process, the automatic collection of data to generate reports, and the control
and improvement of software processes [3, 38]. Thus, the research focused on looking
for suitable PSEEs that could help software engineers searching for a large number of
artifacts.

WebAPSEE [54] is a PSEE whose objective is to provide automatic support for soft-
ware development process management. The PSEE maintains three key structures: a
modification control module to register all changes to the process being executed,
an artifact meta-data repository, and an artifact versioning repository. WebAPSEE
allows software engineers to upload artifacts to its repository and set which arti-
facts will be visible to which member of the software development team. By doing
this, WebAPSEE simplifies the work of some software engineers dealing with soft-
ware process execution by avoiding the display of an excessive amount of informa-
tion. However, the artifact allocation process is manual, which can take time and be
error-prone.

MoDErNE [36, 37, 47] is a PSEE that improves model-driven development (MDD)
[57] process specification and enactment. It contains two modules: Process Editor, which
uses UML notation for modeling MDD processes, and Process Executor, which exe-
cutes the MDD process in a semi-automated way, showing task status and displaying
reminders to software engineers. Spider-PE [49] is a PSEE that aims to assist software

organizations in the implementation of the capability maturity model integration for

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6 Page 6 of 35

development (CMMI-DEV)2. The project defines its own language for process execution,
xSPIDER_ML, and is divided into three components: Management, Process Manage-
ment, and Process Execution. The first module is responsible for importing an XML
file containing the process model. The second module monitors the process and checks
whether the process adheres to good practices described in CMMI-DEV. The third mod-
ule allows software engineers to allocate resources and executes the process. The work
in [27] describes a change-aware PSEE aimed at managing changes systematically. The
project achieves that by introducing three constructs: a Process Dependency Graph
(PD@), a Change Observer process, and a Change Analyzer component. The first one
is used to represent dependencies among running processes instances. The second one
identifies changes and updates the PDG. The third one reasons on the PDG and extracts
the impacts of these changes. Note that, in all three approaches, artifacts are manually
assigned to activities during process modeling, which is time-consuming and highlights
the lack of an automated approach.

Context change management

One project dealing with the management of document contexts in an activity-centric
manner is the Presto Project [16], from the Xerox Palo Alto Research Center (PARC). The
underlying assumption is that the structures of the hierarchical schemes used to orga-
nize documents are rigid and not suitable for the more fluid nature of everyday practices.
Therefore, scientists at Xerox PARC came up with a new approach to document manage-
ment that aims to provide users with new ways of organizing, structuring, managing, and
interacting with document collections. The focus is not where in the system the document
is located, but to what it is related, such as projects, tasks, and meetings. The goal was
to build a document system organized around document properties, so that users could
group documents associated with a particular event based on the context of an activity.
The main drawback of this approach is that the system required people to categorize their
entire collection of files manually.

TaskTracer [17] is a system aimed at categorizing user’s events while they execute some
general tasks. The system then uses this data to build a profile for the task. The main goal
is to help workers during the process of interruption discovery, which is the moment an
interruption occurs in the execution of a general task because of a switch between tasks.
TaskTracer adopts the idea that workers organize their work into discrete units, usu-
ally called tasks. Therefore, TaskTracer collects information about user interaction with
Microsoft Office, Visual Studio, and Internet Explorer applications during an ongoing task
and builds a task profile. When users return to a task they have previously interrupted,
TaskTracer can restore all applications being used for that task. However, at the initial
stage of data collection, users have to specify manually which tasks they are doing, mean-
ing that there is not an automated support for software development processes and their
activities.

The UMEA [29] scheme uses a project-centered approach to help workers in the
retrieval of suitable documents, as well as helping with the context change problem.
UMEA, which stands for User-Monitoring Environment for Activities, makes a clear dis-
tinction between the file system, a hierarchically organized storage system of information

Zhttps://cmmiinstitute.com/cmmi/dev

https://cmmiinstitute.com/cmmi/dev

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6 Page 7 of 35

and documents, and the desktop, a workspace where documents and applications nec-
essary to accomplish a task can be placed to make them easily accessible. While taking
this organizational principle into consideration, UMEA creates the concept of project
spaces, where documents related to a particular project are placed to separate them from
non-relevant documents. Project Spaces, which are the same concept as activity contexts,
are automatically built based on user interactions with Microsoft Office documents. The
history of interactions is saved, so that UMEA can manage which files are related to a par-
ticular project. Once a user needs to change projects, all open windows are saved; thus,
the user can continue to work from the point where he or she left. UMEA’s approach to
the management of task contexts is similar to TaskTracer’s approach. The main difference
is that UMEA can work in a background mode, which is transparent to the user. The main
deficiencies of the UMEA software are that projects, which are similar to activities, must
be manually defined, and UMEA is limited to Microsoft Office documents.

Artifact relevance mechanism

The work in [62] describes the use of regression analysis [12] to identify domain-
dependent predictors of file importance. The authors retrieve common files used in an
academic environment (e.g., homework assignments) and use domain information (e.g.,
due date) to predict the importance of the file. Although the regression function correctly
identifies homework assignments close to the due date as the most important ones, the
choice of these domain-dependent predictors is strongly dependent on domain experts,
which hinders the development of an automated approach.

The work in [35] describes a method called FDA to calculate an artifact’s relevance with
respect to an artifact context. The name of the method is based on the three parameters
that are used in the calculations: frequency, duration, and age. As expected, frequency
relates to the rate of use of an artifact based on the number of interaction events, duration
describes the amount of time in seconds that all interaction events took, and age is the
time passed since the last interaction with artifact a. When using FDA, the relevance of
an artifact a for a task ¢ is calculated as shown in Eq. (1), where i is the type of interaction
events. One major drawback of this method is the use of the age in the denominator.
Depending on the task, some artifacts such as diagrams may be used for inspection and
have no interaction event detected. After some time, the denominator will be so large that
the artifact may be considered less important, even though it is not.

Fratai) - Dur(a.i
Rel(a, t) = Z rq(“AZe(a,?)r(“ 9 1)

Degree of Interest (DOI) trees [11] are used in an Attention-reactive User Interface
(AUI) to calculate the user’s interest in the items being displayed. The assumption is that,
for many tasks, information can be structured hierarchically and therefore can be dis-
played using a tree, where tree nodes are data items (e.g., nested folders in a file browsing
application). The authors hypothesize that some data items are on the focus of the user
(e.g., when the item is selected) and should be displayed, whereas other data items can
be hidden. This idea is based on the combined use of Focus and Context Trees described
in [25]. The work in [25] calculates the interest value of a data item using Eq. (2). In the
equation, the Intrinsic Importance of a data item present in a tree node is the distance
from that node to the tree root and the Distance from a focus node is the number of tree

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6 Page 8 of 35

nodes that should be traversed in a path from the node with the item to the node with the
focus item. The difference between the trees described in the two works is that a DOI tree
considers that data items present in sibling nodes, i.e., they have the same distance from
a focus node and the same parent, can be ordered and, therefore, receive a different DOI
value based on this order. The concept of a Degree of Interest (DOI) is further explored
by the project Mylyn in the domain of software development.

DOI of a node = Intrinsic Importance — Distance from a focus node. (2)

Mylyn [30] is a plugin for the Eclipse Integrated Development Environment (IDE) that
helps programmers improve their productivity. Mylyn is the result of research by scien-
tists at the University of British Columbia, in Canada. According to the Mylyn’s official
page®, Mylyn is downloaded one million times per month on average, making it the most
popular IDE tool for application lifecycle management (ALS). Mylyn’s goal is to help pro-
grammers focus their work on the code related to a task. This is achieved using Mylyn’s
Degree of Interest (DOI) function. Mylyn’s DOI function filters Java classes, methods, and
variables based on programmers’ interaction events that indicate how interesting these
classes, methods, and variables are to the task currently being executed. In addition, the
DOI function saves the context of a task, which allows programmers to continue their
work later in the case of a task execution interruption. The Mylyn project was essential to
the development of MylynSDP, and so Mylyn’s interface and architecture are explained in
some depth in the following subsections.

Interface

Mylyn has Eclipse views for storing all Java projects (Fig. 1 (a)), code problems list (Fig. 1
(b)), code outline (Fig. 1 (c)), and available tasks (Fig. 1 (d)). Mylyn starts with the creation
of a task. The programmer uses Mylyn’s Task Creation wizard and fills in data about the
new task such as its name, observations, and deadline. When finished, Mylyn displays
the new task on the task view. No initial task context is created. Following task creation,
the programmer starts a Java code document creation, by creating a Java class. He or she
uses Eclipse’s class creation wizard to set the new class name and link it to a suitable Java
package. As the programmer interacts with classes, some classes become more interesting
than others.

As an example of the use of Mylyn, consider a large software project being developed.
Java projects and code files are displayed in the view on Fig. 1 (a). Suppose a programmer
needs to code a new functionality. To do this, the programmer invokes a Task Creation
wizard and creates a task with a particular title (say “Add new button”). The new task is
then displayed in the view on Fig. 1 (d). The new task can be toggled on or off to indicate
whether the programmer is working on that task. If a task is active (toggled on), every
interaction that the programmer has with the files, such as selecting, opening, or editing a
file, is captured by Mylyn. These interactions will later be used to discover the most inter-
esting code files for the task, namely its task context. At some point during development,
Mylyn’s DOI function filters out some files that it deems not interesting for the current
task from the view on Fig. 1 (a). This assists the programmer on focusing only on the most
interesting files.

3https://www.eclipse.org/mylyn/

https://www.eclipse.org/mylyn/

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6

806 Java - lipse.mylyn.context. i i i ntext.java - Eclipse 3
- e o R B o P e o) o P A A e [Yo)| 29| 2 smate fs0ebug 4 plug-in Development i
|2 Package Explorer 52 =0 [3) InteractionCont 8¢ | [J) DegreeOfinteres |3) ContextCorePlug 1J) LocalContextSto = e] Task List 53 i = |
5 % - & * Copyright (c) 2084, 2009 Tasktop, Technologies and others.[] ¢ e |x 2|9
¥ 1 org.eclipse.mylyn.commons.notifications-feat package org.eclipse.mylyn.internal.context.core;

-
>3 org.eclipse.mylyn.commons. notifications-stul

P 5} org.eclipse.mylyn.commons.notifications.core
» i org.cclipse.mylyn. commons.notifications.feec oo
S8l cepecipsmmibymshaidroniin

#import java.util.Arraylist;[]
poeEd Y Find P AP Acivate..

¥ (5 Uncategorized

jons test: * bautbor Mik Karsten “ XML Import)
» i org.eclipse.mylyn.commons.notifications.ui * Gauthor Shawn Minto 5 Transform the h.
P13 org.cclipse.mylyn.commons.cepositories-feat * Gauthor Dayid Green bug 257977 islnteresting = Monitor class names cha...
> G org.eclipse.amylyn.commns.epostioricasstul v i

= iy 5 < : ¢ A new type: Specification
> G oco Aclgas iAo reI s s public class InteractionContext implements IInteractionContext { = el g
S org.eclipse.mylyn. repositorics. " " ¢ A

Eorecpsembim commons cepores p orivate Stsing BordieTnenetftses Verify the Number of Int

» i org.eclipse.mylyn.commons.repositories.http. private finol List<InteractionEvent> interactionHistory;

» izl org.eclipse.mylyn.commons.repositories.tests £ outline % =8

b org.eclipse.mylyn.commons.repositories.ui private final Map<String, InteractionContextElement> elementMap; SERE e N T

¥ iorg.eclipse.mylyn.commons:screenshots) I, 206 3

5 e el COmnans SOk earurs private final MapeString, IInteractionElements landmarkMap; & orgeclipse.mylyn.internal.con'
= : v® interactionContext

¥ i org.eclipse.mylyn.commons.sdk.util

son

5 handleldentifier - 5
* The last clement that wos odded to this context.
%

> i org.aclipse. mylyn.commons.soap
» 3 org.eclipse.mylyn.commons.team:
» i org.cclipse.mylyn.commons.tests
» g org.eclipse.mylyn commons.ul

» i org.eclipse.mylyn.commons.ui.te
> borg.eclipse.mylyn.commons.warkbench 2 Z

- g e st e private InteractionContextElement lastEdgeNode;

= interactionHistory
F clementdtap :
F landmarkMap
activeNode : In
lastedgetvent
lastEdgeNode
contentLimitedTo

private InteractionContextElement activeNode;

private InteractionEvent lastEdgeEvent;

P 5 org.eclipse. mylyn.context-feature
P 15 org.eclipse.mylyn.context-site

nrdvinbe, Shndan mrkerbl ZmtbedTas

iz org.eclipse.mylyn.context.core £ Problems 53 e
:E;‘”"E'"‘ Dependencies 436 errors, 5,357 warnings, 0 others (Filter matched 200 of 5793 items)
@srec

Description = |Resource Path Location Type
¥ @ Errors (100 of 436 items)
¥ & Warnings (100 of 5357 items)

¥ £ org.eclipse.mylyn.context.core
» (1] AbstractContextContributor.java
» [AbstractContextlistener java
» [3] AbstractContextSteuctureBridge java
» [1) ContextChangetvent java
» [3) ContextComputationStrategy java
¥ 151 ContextCore.java

Writable smartinsenn | 2:1

Fig. 1 Mylyn's interface

Technical details and DOI function

The Mylyn plugin implementation is divided into more than 30 Java projects, each con-
taining more than 10 Java packages and even more Java classes. To simplify the overall
understanding of Mylyn, Fig. 2 exposes the main classes and their relationships to one of
the key Java projects that constitutes Mylyn. Class properties and methods are omitted for
clarity. At the top of the figure, the class ContextCorePlugin is the one that specifi-
cally deals with Mylyn’s ability to handle Java classes, user interactions, and interest values.
On the left, the InteractionContextScaling class stores the interest contribution
that each interaction event will add to a class’ interest value at the moment of the interac-
tion. The management of events, classes, and classes’ interest values is performed by the
InteractionContextManager class, which also stores data about task contexts. The
class can be seen in the middle of the figure. Below, the InteractionContext class
represents a task context and it may have one or more InteractionEvent classes,
i.e., interaction events. Finally, task contexts contain elements (e.g., classes, methods,
and variables), represented by the InteractionContextElement class, and each of
these elements has its own related Degree of Interest function, or an instance of the
DegreeOfInterest class, displayed at the bottom of the figure.

As mentioned earlier, Mylyn's DOI function calculates an interest value for elements of
aJava project by monitoring the programmer’s interactions with the code. A class’ interest
value increases according to the number of interactions the class receives and decreases
based on the total amount of interactions performed by the programmer in any class. To
calculate the interest value, the DOI function gathers some data about each interaction
event performed on the classes, methods, and variables already created. Table 1 shows
the main data collected from these interactions.

Page 9 of 35

Portugal et al. Journal of the Brazilian Computer Society

(2020) 26:6

<<Interface>>

linteractionContextScaling

iy

ContextCorePlugin

InteractionContextManager

1 [

InteractionContextScaling

-memberName

InteractionEvent

CompositelnteractionContext

<<Interface>>

linteractionContextManager

<<Interface>>

linteractionObject

o
|
l

InteractionContext

<<Interface>>

linteractionElement

CompositeContextElement

<<Interface>>

IDegreeOfInterest

CompositeDegreeOfinterest

InteractionContextElement

Fig. 2 Mylyn's class diagram

|
DegreeOfinterest

Table 1 Interaction event data. Adapted from [32]

Data

Description

Time
Kind
Origin
Handle

The time when the event occured.
The type of event occurred (Table 2).

Identity of the tool that caused the event (e.g., new class wizard, keyboard).

An identifier for the target element.

Page 10 of 35

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6 Page 11 of 35

Mylyn’s DOI function recognizes five types of interactions: Selection, Editing, Com-
mand, Propagation, and Prediction. Each is briefly explained in Table 2. Table 2 also shows
the scores each interaction contributes to a particular class’s interest value.

Mylyn calculates the interest value of a class ¢ according to Egs. (3) and (4). First, as
shown in the summation of Eq. (3), it sums the contributions given by each interaction
events e whose target is the class ¢; then, it subtracts a decay value. This decay value is
calculated based on the number of interactions that were performed since the creation of
the artifact. Its calculation is shown in Eq. (4). The function curr_event() returns a number
representing the ordinal number of the most recent interaction event, and the function
create_event(c) returns a number representing the ordinal number of the event performed
at the creation of class c. As a consequence, the difference of these two numbers is the
number of events performed since the creation of class c. The decay_constant is a weight
on this difference that helps calculate the final decay value.

This is a description of how the interest value changes during class creation and manip-
ulation. Table 3 provides a small but correct example of how Mylyn’s DOI function
calculates the interest value for an arbitrary class called ClassA. The first line of the
table states that the first interaction was a selection on ClassA. The second line of the
table represents the next 10 interactions, which were of the type selection performed on
classes other than ClassA. Note that the class was selected two times (i.e., in interactions
#1 and #12). Therefore, its interest value is innitially calculated as 2 selections x 1 = 2.
However, since a class’s interest value decreases according to the number of interac-
tions performed over time, a decay value has to be subtracted. In this example, the
decay value is (current interation—first interaction on class) x decay_constant. Mylyn uses
decay_constant = 0.017. Thus, decay_value = (22 — 1) x 0.017 = 0.357 needs to be
subtracted from Classa’s interest value according to Eq. (4). In the end, the class’s final
interest value is 2 — 0.357 = 1.643 according to Eq. (3), which is positive, meaning that
this class is still interesting for the task being executed.

InterestValue(c) = <Z count(c,e) - contrib(e)) — (decay_value(c)) (3)

e

decay_value(c) = (curr_event() — create_event(c)) - decay_constant (4)

Although Mylyn’s DOI function positively affects programmers on the improvement
of their productivity (an experimental study can be found in [32]), it has three major
disadvantages. The first is that it does not account for characteristics of artifacts used at
other phases of software development, including frequency of use or file type; the second
is the lack of support for other phases of software development, such as modeling or

Table 2 Interaction event type. Adapted from [32]

Interaction

Event type Contribution Description

Selection 1.0 Interaction that occurs by selecting files with mouse or keyboard.
Editing 0.7 Interaction that occurs when editing files.

Command 1.0 Operations such as saving or compiling.

Propagation 1.0 Interaction that occurs when other elements are indirectly affected by

another interaction event.
Prediction 1.0 Capture of potential future interaction.

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6 Page 12 of 35

Table 3 An example of Mylyn’s DOI function calculating the interest value for a class. Most recent
interaction at the bottom

Index Quantity Event Target

#1 1 Selection ClassA
#2-#11 10 Selection Other classes
#12 1 Selection ClassA
#13-#22 10 Selection Other classes

testing; the third is that tasks may be manually defined. That would not happen if Mylyn’s
DOI function considered a software development process, since process’s activities could
be translated into Mylyn tasks. Thus, it can be said that Mylyn’s DOI function is not

process-aware.

MylynSDP

In the previous section, we have described several related works that attempt to assist
software engineers, or just regular users, in dealing the problems related to artifact search,
context change, and artifact relevance, which were described in the first section. After
each description, we briefly discussed some drawbacks. We now summarize these draw-
backs to motivate the introduction of our solution, MylynSDP. All projects show some
manual functionality that should be automated. The traceability matrix is manually cre-
ated, whereas PSEEs and the Presto Project have a manual allocation of artifacts (files) to
activities. Activities in TaskTracer, UMEA, and Mylyn are manually defined based on the
user’s needs at the time of their creation. Lastly, Mylyn focuses on the development phase
of software development. We therefore aimed at developing an approach that solves the
artifact search, context change, and artifact relevance problems by automatically creating
activities and artifacts, defining their relationships (allocation of artifacts to activities),
and provides support for other phases of a software development process. Solving these
issues was the main driver for introducing our MylynSDP approach described in this

section.

Concept description

Overview

In this section, MylynSDP (Mylyn + software development process) [50—52], a process-
aware and intent-based artifact filtering approach, is described. MylynSDP is an extension
of the Mylyn software and is an Eclipse plugin. MylynSDP, which added new functionality
to Mylyn, has as its primary role to help software engineers in any phase of software devel-
opment in the areas previously described, namely artifact search and discovery, context
change management, and artifact relevance. MylynSDP therefore is not restricted to the
implementation phase of a software development process (with the search of code files)
and is able to assist software engineers in other phases such as requirements and testing
(with the identification and search of use case and test case documents). It extends the
DOI function and introduces the awareness of a software process. This software process
is assumed to be the one the software engineer or the organization is already using. It con-
tains a rich set of information that, when inspected by MylynSDP, will be used to assist
software engineering during tasks. In general, MylynSDP works as illustrated in Fig. 3.

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6 Page 13 of 35

After creating activities and artifacts, a software engineer performs the activities by inter-
acting with the artifacts (Fig. 3 (1)). While activities are performed, MylynSDP calculates
interest values for artifacts with the DOI function based on the interactions that happen
and on the relationship “activities x artifact” present in the software process (Fig. 3 (2)).
Interest values are used to determine which artifacts should be highlighted. Since artifact
interest values are activity-specific, i.e., calculated based on the activity being executed,
a second software engineer that works on the same project is able to execute a different
activity and benefit from MylynSDP features (Fig. 3 (3)). Currently, MylynSDP is intended
to be used by software engineers individually, who may share the same workplace. How-
ever, there are other initiatives aimed at the study of software artifact manipulation in a
collaborative approach [44].

Based on how Mylyn works, MylynSDP associates an interest value for each artifact in
an activity context. This value calculation is based on the software engineer’s interaction
with artifacts and also on the underlying software process. All information is saved in
a separate file for later context reconstruction. The main part of MylynSDP is its DOI
function, because it is responsible for interest calculations for each artifact in each activity
context. A detailed description is presented in the following paragraphs and sections.

MylynSDP deals with three areas: artifact search and discovery, context change manage-
ment, and an artifact relevance mechanism. To help in search and discovery, MylynSDP’s
novelty is that it bases its execution on the underlying software process to map which
artifacts are related to a particular activity, and thus assumes that those artifacts are
more interesting when executing that activity. Furthermore, artifacts that are not inter-
esting to the current executing activity might be omitted from the software engineer’s
view in a similar way that Mylyn omits Java code documents, helping him or her to
focus on more relevant artifacts. MylynSDP’s novelty on context change management
is related to introducing and saving a new type of interaction in the history of interac-
tions of a context for future reference and context reconstruction. Thus, every time a
software engineer changes context, information about the initial importance of artifacts
for each activity of the software development process is saved alongside all information
about the software engineer’s interactions. The third area is the artifact relevance mech-
anism. MylynSDP’s novelty is a new formula to calculate artifact interest values based
on the software engineer’s interaction and the underlying software project. Just as in

O D Artifact 1
®
@) ¥
)
Software Engineer 1 MylynSDP
D Artifact 2

Software Process

Task 1 —-- Artifact 1
Task 2 --- Artifact 2

Software Engineer 2

Fig. 3 MylynSDP functionality

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6 Page 14 of 35

Mylyn, the more interaction with an artifact, the larger is its interest value. An artifact’s
interest value decreases gradually based on the number of interactions that has been per-
formed, especially those whose target is not the artifact in question. In addition, other
mechanisms such as the Saving mechanism and the Restore mechanism described in the
“Architecture” section help the DOI function to calculate interest values correctly. All of
MylynSDP’s components are explained in subsequent sections.

During development, some naming conventions have been defined. Software engineers
often use the term “activity” to name each unit of work to be performed in the current
software process specification. MylynSDP uses the same term to refer to units of work in
the specification of a software process. However, during the execution of a software pro-
cess, an activity can be performed more than once. In addition, each activity related to
the execution of the software process may have its own set of required artifacts needed to
finish its execution. For these reasons, during the execution of software processes, activi-
ties are instantiated into “tasks.” Although an activity can be executed several times, and
thus deploy several tasks, a single task belongs to only one activity.

A similar situation happens with artifacts. In an object-oriented system, artifacts rep-
resented in a software process specification act like a class, whereas artifacts manipulated
during the execution of software processes perform as instances of this class. Thus, it is
said that software process artifacts are types of the artifacts available to the execution of
the software process. The difference from the “activities x tasks” relationship, though,
is that the name “artifact” is used for both elements: the software process specification
artifact and the execution artifact.

The MylynSDP interface is divided into three views (Fig. 4): artifact, task, and working
area. The artifact view (Fig. 4 (a)) holds all existing artifacts of the current project, regard-
less of their location in the system. The task view (Fig. 4 (b)) displays tasks to be executed
during the software process and includes ongoing tasks, as well as finished tasks. The task
view is also where software engineers can start or finish the execution of a task, by click-
ing a button on the side of the name of the task. Finally, the working area view (Fig. 4 (c))
is where the contents of the artifacts can be created, queried, and edited. There are not
major modifications to the views when comparing to Mylyn.

MylynSDP has several steps. It starts by importing a software process specification,
which tells MylynSDP the activities and artifacts to be created, as well as their relation-
ship. In our evaluation study, the software process specification used is a BPMN process
created in the Bizagi BPMN Modeler* and exported as an XML file. Once the specifica-
tion is obtained, the software engineer is able to create tasks and artifacts based on the
activities and artifacts of that specification. While tasks and artifacts are being created,
MylynSDP’s DOI function grades artifact relevance with regard to a task if the two are
related. Finally, the more an artifact is manipulated, the greater its interest for the current
task.

As an example of the use of MylynSDP, consider a large software project being devel-
oped. Usually, a software development process has been specified with activities and
artifacts. Suppose that the first activity on this process is “Create Use Case Documents”
and that it consumes artifacts of the type “Use Case Specifications” to produce artifacts

of the type “Use Case Documents” This software development process is then imported

“https://www.bizagi.com/en/platform/modeler

https://www.bizagi.com/en/platform/modeler

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6 Page 15 of 35

Fig. 4 MylynSDP's interface

to MylynSDP so that the framework can identify activities and artifacts. After importing,
the software engineer can create artifacts and tasks based on the artifacts and activities
of the software process. When creating a new artifact or task, the software engineer is
queried about the type of the artifact or task, which links it to a process artifact or activ-
ity. New artifacts, such as use case documents, code files, or test cases, will be displayed
in the view on Fig. 4 (a), and new tasks are shown in the view on Fig. 4 (b). Tasks can be
toggled on or off to indicate whether the software engineer is working on it. When a task
becomes active (toggled on), MylynSDP and its DOI function can filter out artifacts that
are not interesting to the task based on the software process. Further interactions with
the remaining artifacts will help shape this task’s context. These ways in which MylynSDP
is used assist on focusing only on the most relevant artifacts used in specific projects.
Note that the use of MylynSDP during the execution of a software development process
is similar to the use of Mylyn during development. The main differences are in the need
to import a software process before use, in the association of project artifacts to process
artifacts and project tasks to process activities, and in the calculations made by the DOI

function.

Context creation

The process of creating task contexts starts whenever a new task is created; this procedure
is illustrated in Fig. 5. As previously explained, when a task is created by the software
engineer, it is then associated with an activity from the software process specification
(Fig. 5 (1)). As a result of that association, the DOI function is able to ask MylynSDP
to identify what specification artifacts are related to the activity being analyzed (Fig. 5
(2)). Once the DOI function is provided with this information, it can look for execution
artifacts that originated from those specification artifacts (Fig. 5 (3)). This final set of
execution artifacts is then considered relevant to the context of the task being created.
As a final action, MylynSDP’s DOI function needs to increase the interest value of these
relevant execution artifacts to make sure they will take part in the context of the task being

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6 Page 16 of 35

Specification

L7

Atf.D AtfE

e
=9
>

x
a3,
w

ik

: Execution
o | o
ask

T Atf. A1 Atf. A2 Atf. A3 Atf. D1 Atf. D2
Atf. B1 Atf. B2 Atf.Cl1 Atf. E1 Atf. E2

Fig. 5 MylynSDP’s path to a context creation. The top of the figure shows a software process specification
with its activities (top left) and related artifacts (top right). The bottom half displays a software process
execution and its tasks (bottom left) and artifacts (bottom right). Relationships between elements (e.g.,
activities and artifacts) are made implicit for clarity

created. For that reason, the DOI function performs a special interaction event called
Specification. This interaction event is explained in the next section.

Interactions
Once initial task contexts are created and the software process is being executed, artifacts
will be manipulated. Each interaction with an artifact is mapped by the DOI function,
which is then able to infer the importance of an artifact in relation to a particular task. In
addition to Mylyn’s original interactions, MylynSDP’s DOI function supports a new type
of interaction called Specification (Table 4). This new type of interaction is necessary to
handle the case when an execution artifact that is being created is relevant to the task
currently executing. In this case, the new artifact should receive a high interest value at the
moment of creation. As the new artifact has not yet been manipulated, the DOI function
performs a specification interaction event to increase this artifact’s interest value.
Another example of the use of the new interaction event is when a new task is being
created and some of the existing artifacts are relevant to its execution. This set of execu-
tion artifacts has not been manipulated during the execution of the new task because the
task has just been created. In this case, the DOI function should assign a high value of

Table 4 MylynSDP’s new interaction event type

Interaction

event type Contribution Description

Specification 50 Supports tasks' initial context creation.

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6 Page 17 of 35

interest for these artifacts to assure they will not be removed from the context easily. This
is done by automatically performing a specification interaction over the suitable artifacts.

Tool and architecture

Wizard

To create tasks and artifacts in MylynSDDP, the software engineer makes use of wizards.
There are two new wizards: the Task Creation wizard and the Artifact Creation wizard.
Figure 6 shows the Task Creation wizard. This wizard is a modified version of the Mylyn’s
Task Creation wizard, where there is a field (“Type”) to describe the activity related to
the task. A task must also have a name (“Identify and Draft Requirements” in the figure),
which can be different from the name of the associated activity. The field for a task name
did not undergo major modifications.

The Artifact Creation wizard, shown in Fig. 7, enables the software engineer to create a
file with any extension by leveraging the Eclipse file creation mechanism. This totally new
wizard has an option to import an artifact that has already been created in MylynSDP.
After naming the new artifact, the software engineer then associates it with one of the
artifacts recognized in the software process specification (using the field “Type” in the
foreground window). As tasks and artifacts are created, Mylyn’s DOI function has the data
for building initial task contexts.

0.0 0 Java - Identify and Draft Requirements v
=T [0-@r [N [# @ [@S 5~ =

(Q Quick Access ; J B] [Resource g}JJava’
& | 7] Identify and Draft Requirements $2 l S & e
2 @ Task Local |EElv & &

§ f Identify and Draft Requirements ‘
L= x

status: (®) Incomplete () Complete Created: Jan 8, 2013 Completed: -

v Attributes
Category: 'Uncategorized JZ]
ﬁ Type: Identify and Draft Requirements L[E

WRL: | | &y

Private

Scheduled: Uan 6, 2013 E Due: |Choose Date [¥] Estimate: |0 \3\

o} Private(@ Context{

Fig.6 The Task Creation wizard

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6
8.0.6, New
Select a wizard — L_
8.0 0 New Artifact |
Artifact
Wiirds:—J Creates a New Artifact |.8.0.6 New Artifact
type filter text
Set the Type of the Artifact
»EC/CH+ Enter or select the parent folde
» (= Connection System Project 1
[g=1a' Type: Iteration plan [¥]
> &Git - Vision document
> & Java e Spstentroject Use cases
¥ (& MySpacce Test Cases.
Glossary -
¥ & Plug-in Development Use cases model
> (&SN Worklist
> & Tasks Iteration plan
» (= TestCategory Software requirements
P (= User Assistance Risk list

Project plan

‘ ® ﬁ File name: | Interaction Plan |

Advanced >>

acksss | 8Nex o e Canceloss]

Fig. 7 The Artifact Creation wizard. The wizard has three steps (shown from the background window to the
foreground window)

Architecture

Mylyn’s original source code is comprised of more than 200 Java projects, and even more
Java classes. Some parts of the code were inspected when implementing MylynSDP. To
explain the MylynSDP code, it has been divided into four parts, based on functionality,
namely: the Software Process Specification Import mechanism, the Restore mechanism,
the Saving mechanism, and the DOI function.

Software Process Specification Import mechanism

The Software Process Specification Import mechanism is responsible for importing
software processes, as its name implies. It is the first mechanism to be used when deal-
ing with MylynSDP, since a software process specification should be imported before any
other interaction. This totally new mechanism imports software processes in three steps.
First, it processes an XML file (containing the software process specification) to gather
information about activities and artifacts. Second, it copies the software process specifi-
cation (i.e., the actual information about activities and artifacts) to the Eclipse workspace
for later use (e.g., to check available activities when creating tasks). Third, it transforms
the XML file to a format that the underlying Mylyn software can understand, so it is able
to continue the importation and create the space needed for the management of tasks and
artifacts.

Restore mechanism

The Restore mechanism expands the way Mylyn deals with context recovery by saving
new task and artifact properties, such as their names and types. Moreover, the Restore
mechanism saves the relationship between activities and tasks, as well as the relationship
between software process specification artifacts and execution artifacts, which is not done

Page 18 of 35

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6 Page 19 of 35

by Mylyn. By doing this, the DOI function is able to identify which artifacts initially belong
to a particular task context based on the software process specification that was imported
earlier.

Saving mechanism

The Saving mechanism saves all interactions made by a software engineer along with
the interest contribution for each interaction. When the DOI function wants to calculate
the interest value for a particular artifact in relation to the current task, it consults the
interaction history file deployed by the Saving mechanism. Modifications made to this
mechanism are small and mainly related to the ability of saving a new type of interaction
in the interaction history.

DOI function

The Degree of Interest (DOI) function is the mechanism used to calculate the interest
value of each artifact during the execution of a particular task. The calculation is based
on the imported software process specification and on the interactions performed by a
software engineer. Similar to how Mylyn works, an artifact’s interest value is increased
whenever that artifact is subject to an interaction. Along with that artifact’s interest value
increasing, other artifacts’ interest values are decreased by a small amount. Every inter-
action event has an ordinal number associated with it. The comparison between (i) the
ordinal number associated with the most recent event and (ii) the ordinal number related
to the interaction event performed at the creation of the artifact allows the DOI function
to calculate the actual interest value, as well as the decay value, for an artifact at runtime.
A concrete example of how the DOI function calculates the interest and decay values is
provided at the end of this subsection.

Some Mylyn classes shown in Fig. 2 were changed. Figure 8 illustrates those changes
by highlighting them. The class InteractionContextScaling had the interest
decrease parameter modified from 0.017 to 0.2 to filter out unnecessary artifacts with less
interactions. As explained in the next paragraph, the modification of the decay param-
eter is made to take into account the number of interactions with the different types
of software artifacts (e.g., code files, use case documents). Moreover, the refresh rate
was updated so MylynSDP’s views may reflect changes rapidly. Note that a new type of
interaction was introduced, and a few changes were made to InteractionEvent and
InteractionContext classes. The DegreeOfInterest class had its interest cal-
culation changed. The first modification is related to the ability to increase the interest
value according to the Specification interaction event. The DOI function’s second modifi-
cation allows the first interactions to be of higher importance than the others. The details
of the DOI function’s implementation are provided next.

Note that some artifacts are more used than others and this impacts the calculation of
the interest value. For example, code documents may be opened and edited for a long
time, and use case documents may be opened once for a quick inspection. In contrast
with Mylyn, MylynSDP deals not only with code files but also with other software arti-
facts such as use case documents and test cases. Therefore, its DOI function should
try to accommodate these new interaction behaviors. Figure 9 guides our discussion on
how to deal with these new behaviors and how to define a new decay parameter. The

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6

ContextCorePlugin

<<Interface>> <<Interface>>
linteractionContextScaling linteractionContextManager
1) InteractionContextManager A\
[Y I
L [

InteractionContextScaling

<<Interface>>

linteractionObject

4 A CompositelnteractionContext
|
|
|
|
|

H

. <<Interface>>
InteractionContext nerace

linteractionElement

=
- -

InteractionEvent CompositeContextElement

<<Interface>> .
nterace InteractionContextElement

IDegreeOfinterest

L

CompositeDegreeOflInterest

DegreeOfinterest

Fig. 8 MylynSDP’s class diagrams. Classes highlighted were subject to significant modifications

original Mylyn’s DOI function requires several interactions to happen before it starts fil-
tering out artifacts. Consider an artifact that has been selected once (see the line with
circles in Fig.9a). According to Mylyn’s DOI function, the artifact’s interest value, which
has the value 1 so far, will decrease at a rate of 0.017 at each new interaction, regard-
less of the target of the interaction. Note that this artifact’s interest value is negative

Page 20 of 35

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6

[Sa]
)

= ——f(z) =1-0.017(z — 1)
Sy flz)=2—0.017(z — 1)
S e f(z) =5—0.017(x — 1)

=S
|
ni]

w
[

Interest contribution

1 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Total number of interactions

-
=)

(a) An example of how the original Mylyn’s DOI function calculates artifact interest.

- 5 =
3 B—g ——flz)=1-02(xz—1)
=47 - flz)=2-02(zx—1)
Cgl S —— f(z) =5—0.2(z —1)
= B
< 5 | B
81 te e
g e B
0 +— t =+ + t t t + + + t — + o
12 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Total number of interactions

(b) An example of how a modified Mylyn’s DOI function calculates artifact interest.

10 5.
5 T ——f(z)=(5+1)—-02(z—1)
;_:\.8 8 flz)=(5+2)—-02(z—-1)
g [5 —a— f(z) = (5+5) — 0.2(z — 1)
B R -
< 4 *(\)___\ﬂ - =)
2 Ny !
5) \G_S. =]
= - e . 8
0 : : z — = : : — z |
| 5 10 15 20 25 30 35 40 45 50 3339 60

Total number of interactions

(c) An example of how MylynSDP’s DOI function calculates artifact interest.

Fig. 9 An example of how different versions of a DOI function calculate artifact interest

after 60 interactions. The other two lines in Fig.9a show that more than 119 interac-
tions are required to filter out an artifact that has been involved in an interaction twice,
and almost 300 interactions are required to filter out an artifact that was involved in
only five interactions. This implies that it takes a substantial number of interactions
for Mylyn to update task contexts and this may not be desirable for all types of soft-
ware artifacts. Because the filtering out process for different artifacts heavily depends
on the decay parameter, MylynSDP modifies this parameter from 0.017 to 0.2 so that
task contexts do not require neither too many nor too few interactions to be updated.
Figure 9b shows what happens when the decay parameter is changed to 0.2. In this case,
6 interactions would be required to filter out an artifact that was involved in an inter-
action once (see the line with circles in Fig. 9b). This change to the decay parameter
sped up the decay considerably. The other two lines in this figure also exhibit the same

Page 21 of 35

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6 Page 22 of 35

effect by showing that 11 and 26 interactions are required to filter out artifacts that were
involved in an interaction twice or five times, respectively. Because in Fig. 9a too many
interactions and in Fig. 9b too few interactions were needed to filter out an artifact, we
decided to investigate a middle ground solution. This solution moves the curve of inter-
est decay up by a constant (see Fig. 9¢). This constant is the Specification interaction
event contribution value calculated at the creation of any artifact, which is 5. In this
case, 31 interactions would cause an artifact interest value to be negative if the artifact
was involved in an interaction only once, and 51 interactions would be required to filter
out artifacts that involved in five interactions. This is how the MylynSDP’s DOI function
ensures that uninteresting artifacts are quickly filtered out while preserving interesting
artifacts.

The MylynSDP DOI function pseudo-algorithm is presented in Listing 1. It is
divided into three main parts: event registration, partial interest value calculation,
and decay value calculation. Whenever an interaction happens targeting an arti-
fact, a method (not shown in the figure) is called to register the event. Its work
is to increment a counter of selections, editions, or any other interaction event
type. Later, when needed, the DOI function calls the getValue() method to
retrieve the interest value for an artifact in relation to the running task context.
Listing 1 Mylyn's DOI function pseudoalgorithm.

function getValue () {

double value = 0
value = calculatePartiallnterestValue ()
value = value — calculateDecayValue ()

return value

function calculatePartiallnterestValue () {
double value = 0

value = value + (numSelections x getConstantSelection ())
value = value + (numEdits x getConstantEdits ())

value = value + (numCommands x getConstantCommands ())
value = value+(specificationBoolxgetConstantSpecification ())

return value

function calculateDecayValue () {
double decayValue = 0
double numberOfInteractions=eventCount—eventCountOnCreation
return numberOfInteraction * getConstantDecay ()

The getValue () method calculates a partial interest value (line 3) and then sub-
tracts a decay value (line 4) from this partial interest value. The main modifications from
Mylyn’s DOI function are in each of the two other methods. Interest value calculations are

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6 Page 23 of 35

initiated in the method named calculatePartialInterestValue (). The method
calculates the number of occurrences of a particular type of interaction times a constant
associated with that type of interaction (i.e., its contribution to the interaction value).
This is done for selection (line 10), edition (line 11), and command (line 12) interac-
tion event types that already exists in the original Mylyn. For instance, if a particular
artifact has been selected five times, its partial interest value is 5 x 1 = 5, because
selection contributions are worth one each. The new Specification event is captured by
the specificationBool variable. The variable is a zero-or-one value that indicates
if the artifact initially belongs to the current task context based on the software pro-
cess specification. If this is true, then the value five is added to the artifact’s interest
(line 14). The value five is the contribution made by the Specification interaction event.
The value is arbitrary and was reached after testing the code and calibrating it. The
calculateDecayValue () method is then called to calculate an offset of the interest
value, referred to as the decay value in a way similar to how Mylyn does it. The decay
value of a particular artifact is based on how many interactions were performed in that
task context since the creation of that artifact (see Eq. (4)). As explained earlier, the num-
ber of interaction events performed since the creation of a particular artifact (line 21) is
multiplied by a decay constant (line 22). The novelty, in the case of MylynSDP, relates
to the inclusion of the number of Specification interactions and the new decay constant
in the calculations. An example may clarify these calculations. Suppose an artifact was
created during interaction #10 and five other interactions happened to other artifacts,
meaning that the most recent interaction event is #15. The decay value is now calcu-
lated as (15 — 10) x 0.2 = 1. This value is the result of the calculateDecayValue ()
method to the getValue () method (line 22) as that artifact’s decay value. Finally, the
getValue () method calculates and returns the interest value for a particular artifact in
a task context (line 5).

MylynSDP usage starts with either the creation of a task or the creation of an artifact.
When creating a task, a software engineer uses the MylynSDP Task Creation wizard and
names the new task. At this point, no initial task context has yet been created. By the time
the software engineer associates the new task with an activity from the software process
specification, the DOI function searches for artifacts that should belong to the new task
context, based on the software process specification, assuming that one has been previ-
ously imported. Once these artifacts are found, the DOI function performs a Specification
interaction event on them, which increases their interest value, and creates the initial task
context.

Artifact creation starts with the use of the MylynSDP Artifact Creation wizard. After
providing a name for the artifact, the software engineer needs to associate it with one
of the artifacts present in the software process specification. If a task is active at this
moment, it means that the new artifact is relevant for the task. In that case, the new arti-
fact receives a Specification interaction event and its interest value is increased by five. An
example of the new interest calculation is shown in Table 5. Suppose a software engineer
creates an artifact Artifact A using the appropriate wizard. After setting its proper-
ties, the artifact’s interest value is 5. Now suppose that the software engineer performs a
series of interaction events on other artifacts, as illustrated in Table 5. In this example, the
interest value is the sum of the contributions of the Specification and the Selection events;
thatis, (1x5)4(2x 1) = 7. Following the example, the decay value is calculated as follows:

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6 Page 24 of 35

Table 5 An example of MylynSDP’s DOI function calculating the interest value for an artifact. Most
recent interaction at the bottom

Index Quantity Event Target

#1 1 Specification Artifact A
#2 1 Selection Artifact A
#3-#12 10 Selection Other classes
#13 1 Selection Artifact A
#14-#23 10 Selection Other classes

((23—1) x0.2) = 4.4. Thus, the final interest value of that artifactis (1 x5)+(2x1)—((23—
1) x 0.2) = 2.6, which is positive, meaning that it is still of interest for the current task’s

execution.

Evaluation study

An evaluation study was conducted to assess the results of the use of MylynSDP and its
DOI function. The case study involved several subjects who were asked to perform tasks
from a real software development process with the help of MylynSDP, and a questionnaire
in which opinions about the use of the DOI function were gathered. The impact of the
MylynSDP’s DOI function has on the execution of a software development process is
evaluated by the extra functionality that Mylyn does not include. This section presents
more details about the evaluation study design, execution, results, and validity.

Overview

In this paper, we describe the benefits of the use of DOI function in the implementation
phase of a software development process and the likelihood that these benefits could be
applied to the whole software process. To understand the implications of the use of DOI
function in practice, it was decided to perform an evaluation study and investigate the use
of a DOI function in the management of artifacts during an execution of a software devel-
opment process. Note that each contribution described in the previous section, namely
the use of a predefined software development process, the changes of the wizards, the cre-
ation of the Specification interaction event, and the use of a new decay value, is required
for defining the new DOI function in MylynSDP. Therefore, all of these contributions have
to be taken into account and their impact is analyzed as a whole in our evaluation study,
which includes an assessment of productivity improvement. The study focused mainly on
a software engineer’s productivity. We define productivity as being the number of artifacts
produced at each unit of time. We believe that by reducing the amount of time spent in
non-productive work (i.e., searching artifacts to start a task or in consequence of a context
change), software engineers may have more time to perform productive work, generate
more artifacts, and be more productive. According to [55], this study is of an exploratory
nature because the intention is to discover the consequences of the use of DOI function
and generate insights and new hypotheses. Based on the classification in [33], the study
adopted a positivist research perspective as it follows the classic research model based
on evidence that measures variables, tests hypotheses, and draws inferences. This study
conforms to a fixed design process as characterized in [4], which means that parameters
such as interview questions and data analysis procedures are defined at the beginning of

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6 Page 25 of 35

the study and do not change as the study develops. This evaluation study is intended to
address the following question:

e What is the impact of the use of DOI function in managing artifacts in the execution
of a software development process?

To answer this question, it was decided to use subjects to simulate the execution of
a software development process in a laboratory setting. Running a simulated study in a
laboratory allows scientists to gather data better from the subjects, but the setting also
decreases the reality of the study. For that reason, it was decided to use a real software
development process with real artifacts. The software process that served as the case
study comes from the SIGA-EPTC project®, whose objective is to allow the management
of academic data, such as student and professor profiles, teaching rooms, grades, and
academic transcripts, originating from public federal educational institutions in Brazil.
The software process, which can be seen in Fig. 10, describes activities from the mod-
eling and specification phases of software development, where requirements are turned
into concrete design documents and database entities. There are more than 300 artifacts
to be used during the execution of the software process and they have different nature:
use case descriptions, requirements and test case documents, SQL scripts, and class and
database diagrams. During the execution, software engineers are expected to access a
list of previously gathered requirements and business rules, and read and turn them into
specifications and screen designs. Specification and screen design documents can then be
used to create class diagrams, by identifying important nouns, verbs, or other elements,
and test cases, by analyzing the scope of specifications and reasoning on what is outside
it. Specifications documents, class diagrams, and screen designs are then used to create a
database and SQL scripts.

The evaluation study was performed with seven software engineering students, six
Ph.D. students, and one M.Sc. student, who were enrolled in the PESC/COPPE software
engineering program at the Federal University of Rio de Janeiro, Brazil. Five subjects
reported professional experiences in industry that ranges from 4 months to 10 years work-
ing with software development. Some subjects have worked with software process design
in industry for 1 year up to a decade. Two subjects have taught courses on software pro-
cess design in the academic environment for at least one term, and another subject has
studied software processes in his or her doctorate degree.

The evaluation study was divided into three sequential stages: training, exercises, and
the final questionnaire. The first stage was the training stage. Most of the subjects had
never seen MylynSDP or the software process. The aim of the training stage was to explain
to all the subjects the concepts of MylynSDP, its DOI function, and the details of the
software process and artifacts. Those details were the project, its activities and artifacts,
the nature of the project, the modules of the project, and the naming conventions for the
project’s artifacts. The training was performed in the form of a presentation, and subjects
were free to ask questions.

The second stage was the exercise stage, in which the execution of the software pro-
cess was simulated and each subject was asked to solve five common tasks. During the
execution of the tasks, subjects interacted with MylynSDP’s interfaces, as well as multi-
ple artifacts. The five exercises, which were executed as MylynSDP tasks, were created

Shttps://softwarepublico.gov.br/social/siga

https://softwarepublico.gov.br/social/siga

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6 Page 26 of 35

[y Te—

Fig. 10 Software process used on the evaluation study

based on the activities of the software process. Each exercise was designed to observe
the reaction of the subjects when executing common software engineering tasks, which
MylynSDP, along with its DOI function, was expected to help solve. The tasks included
the manipulation of artifacts such as a use case description or a glossary. Table 6 describes
each exercise and their goals. Comments left by subjects explain the difficulties they had
during the exercise and attempt to clarify the reasons why they took a particular decision
when interacting with MylynSDP.

The third stage was the final questionnaire. After being trained and interacting with a
simulated application of MylynSDP and its DOI function, subjects were asked to answer
a questionnaire about their experiences when dealing with MylynSDP. The questionnaire
is based on the Technology Acceptance Model (TAM) [13, 14], which consists of two
scales for two variables: perceived usefulness and perceived ease of use. Both variables are
considered fundamental determinants of user acceptance. According to [13], perceived
usefulness is related to one’s belief that a given technology will help him or her to per-
form a job better, whereas perceived ease of use refers to the degree to which one believes
that using a given technology will minimize effort. The questionnaire, which was com-
prised of 12 statements, had the first six statements related to perceived usefulness and
the remaining six statements related to perceived ease of use.

Table 7 shows the 12 statements. Each statement has seven possible answers (“I com-

” « ” « ” o«

pletely disagree,” “I partially disagree,” “I slightly disagree,” “I do not agree, nor disagree,’
“I slightly agree,” “I partially agree,” and “I completely agree”), which are used as a Likert
scale [34].

The Goal-Question-Metric (GQM) approach [7] defined for this evaluation study is as

follows:

Goal: To investigate the use of a DOI function during the execution of a
software development process focused mainly on, but not limited to,
the software engineer’s productivity.

Question: Does the use of a DOI function improve the software engineer’s
productivity during the execution of a software process?

Page 27 of 35

test case document and write a new test
case for a given use case based on the
specification of this use case. When the
subject is about to start writing, the subject
is presented with a new high priority
exercise. From that moment, subjects are
expected to update part of a particular SQL
script based on the syntax of other similar
SQL scripts. Subjects are then expected to
resume the previous exercise.

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6

Table 6 Evaluation study’s exercises

Exercise Description Purpose

1 Subjects are expected to locate a particular This exercise executes the activity “Describe UC”
use case document among many others and deals with the case in which low filtering is
and add a brief description for that use case. applied, because the software engineer has not

interacted enough with the artifacts.

2 Subjects are expected to locate a particular This exercise executes the activity “Describe UC”
use case document among others and and has as its goal to observe subject’s reaction
update its description by replacing when the task context is small enough to show
acronyms and abbreviations by their only a few artifacts to the software engineer.
respective expanded meanings. The latter is
described in another artifact named
glossary. Also, subjects should add an
explanatory note beside a particular
business rule present at one of the business
rule documents.

3 Subjects are expected to read a note left by This exercise executes the activity “Review UC
another software engineering asking the Description” and is designed to analyze what
subject to review a use case that is not subjects do when they do not find an artifact in a
initially part of the subject’s work. Subjects task context, either by incorrect filtering or by
should locate the corresponding use case incorrect software process modeling.
and fix any grammatical or typing mistakes.

4and5 Subjects are expected to locate a particular These exercises execute the activities “Create

Test Cases” and “Update DB” and simulate a
context change. During the execution of
exercise 4, the subject is presented with exercise
5, which is said to be high priority. Then, the
subject has to change the context of the task he
or she is performing.

Table 7 Evaluation study’s twelve statements

Number Statement

Using the DOI function in my job would enable me to accomplish tasks more quickly.

Using the DOI function would improve my job performance.

Using the DOI function in my job would increase my productivity.
Using the DOI function would enhance my effectiveness on the job.
Using the DOI function would make it easier to do my job.

I'would find the DOI function useful in my job.

Learning to operate the DOI function would be easy for me.

I'would find it easy to get the DOI function to do what | want it to do.

O 00 N OO0 1 b W N

My interaction with the DOI function would be clear and understandable.

o

I'would find the DOI function flexible to interact with.

It would be easy for me to become skillful at using the DOI function.

N

I'would find the DOI function easy to use.

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6 Page 28 of 35

Metrics: e Subjective opinion about their execution

o Time of the execution of each task

Note that although the study was focused on investigating productivity, which is defined
here as the number of artifacts produced at each unit of time, we measured the time of the
execution of each task and not the number of artifacts produced. The assumption is that
the less time to produce an artifact, the more artifacts can be produced per unit of time.

Based on this GQM, this evaluation study collected both qualitative and quantita-
tive data, which characterizes it as a mixed methods study. Moreover, as explained,
data was collected with the researcher’s observations and as a questionnaire. Both
methods are described as a direct method or first-degree techniques, since the
researcher and the subject were in contact and data is gathered in real time. The
use of a questionnaire to allow subjects to express their opinion about the use
of the DOI function is a type of interview usually classified as a single interview,
as opposed to a group interview. This interview had closed questions, because it
offers a limited set of answers, and used a fully structured approach, in which
questions were planned ahead of time and were asked in the same order for
all subjects.

This evaluation study took two measures to alleviate ethical concerns. Before the study,
every subject was made aware that data was gathered for research purposes and that
results from this study would be reported anonymously. Second, SIGA-EPCT granted
access to its software development process and artifacts for research purposes.

Analysis
Following the description of the evaluation study, we now analyze its results. Specifi-
cally, we investigate the impact of the DOI function on productivity, provide evidence for
an improvement, and discuss the questionnaire results. For example, we have compared
productivity in environments in which low and high filtering are applied (E1 and E2),
and provided evidence that MylynSDP’s high filtering capabilities improve productivity.
Additional supporting evidence for productivity improvement comes from the fact that,
for most subjects, the time taken to complete two tasks (E4/E5) using MylynSDP’s filter-
ing capabilities is similar to the time taken to complete one task (E1) that relies on low
filtering.

Table 8 shows the time each subject took to finish the proposed exercise. E1 and E2
were designed to observe the impacts on productivity that the introduction of the DOI
function had. The two exercises were relatively simple and similar, with the difference

Table 8 Execution times for subjects in each exercise

Subject E1 E2 E3 E4 and E5

S1 19min13s 13min09s 06 min42s 17min19s
S2 12min48s 06 min57s 04 min09s 1T min20s
S3 06 min40s 05min11s 05min03s 10min13s
S4 12min06's 06 min 56 s 05min36s 18 min 26s
S5 11 min15s 08 min 28's 04 min22s 21 min00s
S6 09 min41s 04 min 28's 03 min 04s 05min45s

S7 14 min20s 12min49s 07 min40s 14 min45s

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6 Page 29 of 35

that E2 included an advanced aid of the DOI function. One may note that all subjects
reduced the time to execute E2, mainly because of the DOI function assistance. However,
one skilled subject, S2, did not have a significant time reduction.

Additionally, it is worth to compare the execution times of exercises E1, and E4 and E5.
Subjects S1, S2, S6, and S7 were able to reduce the execution time from the first to the
two last exercises. This means that, after using the DOI function, one can execute two
exercises with the same time that one used to execute only one exercise. These results may
be influenced by external factors, such as the difficulty or length of the exercises. However,
E1 and E4 are believed to be similar, since subjects had to write document descriptions
based on other artifacts. Subjects who increased the execution time from E1 to E4 and
E5 did not leave any significant comments about it, and more studies should be done to
investigate the use of the DOI function when handling a context change.

The two previous comparisons show that the use of the DOI function in MylynSDP
assists software engineers to reduce their times when executing activities, leaving more
free time to start working on another activity. This also indicates that software engineers’
productivity is positively affected and improved with the use of the DOI function.

The results of the questionnaire are shown in Fig. 11. The values are the percentage
of answers given by the seven subjects in each statement. In general, results point to a
positive adoption of the concept of MylynSDP and its DOI function in all phases of a
software process execution. As can be seen, all percentages related to an “I completely
agree” answer are greater than 50%, except for statement #5, which also had a high rate of
acceptance. However, some points are worth mentioning.

In statement #6, one subject said that the DOI function might not be useful in his or
her work. The same subject left a comment at the end of the questionnaire explaining that
he or she was working on coding tasks strictly in his or her job when taking part on this
study and did not feel that the DOI function would useful in his or her work. Perhaps, the
changes made to the DOI function made it less suitable to that particular area of software
development, which can be assumed to be true when generalizing any concept.

Validation Study's Answers Percentage
M | Completely Disagree | Partially Disagree 1 Slightly Disagree 1 Do Not Agree, Nor Disagree
| Slightly Agree | Partially Agree M| Completely Agree
85.71% 85.71%
71.43% 71.43%
71.43% 71.43% 71.43% 71.43% 71.43%
57.14% 57.14%
42.86%
28.5 - 8.5 28
\ 8.57 28.5 24i57%
20% g 5; 1a. 14,
. 14 1988%
14.29% ° | 1 ~29{% 429
(3 3 a' : 14 T 1 Completely Agree
i l 0 0 0 5 r o8 o o o | !PertillyAgree
6 0 0 o 4 3 n° | l 0 ry ? .o L I Slightly Agree
-~ - -~ () o £ 100 Not Agree, Nor Disagree
= &) 0 0
) 7*' _*7 & & & : & & ‘ ‘ & g i 1 Slightly Disagree
P 7\,, _all e 7& & v . - <> < I Partially Disagree
SN 8 o
e & o 3 > ~* p &2 «° 1 ° T ,+7 . + I 1completely Disagree
gt o et a\zﬁ'\c i o e o 9 % —
o o 2 o Pl >
gt 3 e
o
Fig. 11 Evaluation study results. Numbers are in percentage

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6 Page 30 of 35

The second point to note refers to statement #8. One of the answers did not consider
the DOI function as being easy enough to use to accomplish what the software engineer
desired. The subject had difficulties with the Mac operating system’s interface, such as
scrolling, minimizing, and closing documents.

The third point to emphasize relates to the low score statement #1 received from one
of the subjects. Unfortunately, no explanation was left at the end of the questionnaire
regarding this evaluation, but the overall percentage of answers was high enough to cause
the low score to be considered an outlier.

The fourth point deals with statement #9. One of the subjects slightly disagreed that
the DOI function implemented in MylynSDP is clear and comprehensible. Although no
explanation was left in the comment section at the end of the questionnaire, one sug-
gestion was made. The subject suggests that filtering could be improved with the use of
keywords, either by looking for particular words in the name of the files and within their
contents or by tagging artifacts based on the needs of the software engineer.

Finally, the fifth point concerns statement #2, which deals with productivity. Two of the
subjects slightly agreed that the DOI function improves their productivity. Although it is
a positive result, no comments were left to explain the reasons for the lack of a higher

score.

Threats to validity

Three threats to external validity were identified. The first one is that, for convenience,
subjects of the evaluation study were software engineering graduate students who had a
close academic relationship with some of the authors. Some studies [56] investigate the
applicability of students in software engineering evaluation studies and conclude that the
differences between graduate students and professionals working in the field are minor.
Even though the subjects of this evaluation study have different levels of experience and
background in software engineering, the representatives of this population may not be
ideal for a complete generalization of the study. The second threat is that the study had
seven subjects. Although some trends in the answers from the TAM questionnaire could
be observed and some conclusions could be drawn, it is known that seven is a low number
of subjects and this can affect the generalization of the results of the case study. The third
is that the software process used in the evaluation study may not be representative of
all possible cases found in the industry. For example, it does not include feedback flows.
Therefore, our results represent evidence of the benefits of the use of a DOI function on
a software engineer’s productivity, but more studies are required.

In addition, subjects may have been subject to internal validity threats, where a factor
not identified by the researcher may affect the results of the study. Three internal validity
threats can be described. During the training stage of the evaluation study, all subjects
were introduced to the software process and the related software. Therefore, results of the
evaluation study can be affected because each subject is totally new to the project. Second,
most of the subjects complained about the naming convention used for the artifacts of
the software project simulated in the case study. Although they said it was confusing and
disorganized, nothing could be done to avoid this situation because a real software project
with its own details was used. Third, the evaluation study was conducted on an iMac. Six
of the seven subjects were not familiar with the Mac operating system, and they had minor
problems during the execution of the case study, such as minimizing a window or scrolling

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6 Page 31 of 35

with the mouse. These subjects were given quick instructions of how to perform such
actions, and these difficulties were not observed anymore. This minimizes the impact of
these difficulties on the final result.

Conclusion and future work

Conclusion

During the execution of a software process, activities are performed and artifacts are
manipulated to produce new artifacts. To execute a particular activity, a software engi-
neer searches suitable artifacts among several other non-relevant artifacts. The search
can be time-consuming, can be error-prone, and can lead to confusion. Moreover, if a
higher priority activity interrupts the execution of the current activity, a new search must
be performed to find the artifacts for the new activity, which may lead to more confusion.
In the end, the software engineer spends a substantial amount of time and effort in the
search for suitable artifacts for the activity execution that could be spent on the work he
or she is supposed to perform.

Apropos those problems, the solution of the Degree of Interest (DOI) function is
described as a mechanism that rates elements according to a predefined rule. A DOI func-
tion can aid software engineers to be more productive by grading artifacts of a software
process according to their relevance to the activity being executed. An implementation of
a DOI function is found in Mylyn, a plugin for Eclipse. However, Mylyn’s DOI function is
aimed only at the coding phase of a software process. This work then expands the DOI
function to allow it to help software engineers in all phases of a software process.

The main contributions of this work start with the expansion of Mylyn to consider an
underlying software process being executed. Two wizards for task and artifact creation are
introduced to collect information (e.g., the type) that can help to link tasks and artifacts to
their specification counterparts (activities and specification artifacts, respectively). More-
over, this work presents the new Specification interaction event, which is essential in the
management of activity contexts. Lastly, some adjustments on the DOI function formula,
including a new decay value, adapt it to a broader class of activities in a software pro-
cess execution that is not limited to implementation activities. The final implementation
is named MylynSDP.

An evaluation study has been conducted to analyze the positive and negative points
associated with this approach. Seven subjects were invited to interact with MylynSDP in
a simulated environment, and at the end of the study, they were asked to answer a TAM
questionnaire. Comparison between the time taken to complete study exercises showed
that as the project progresses, and software engineers interact more with artifacts, less
time is needed to complete tasks. The reduction is a result of the MylynSDP’s assistance
in artifact search and context change. Answers to the TAM questionnaire showed that
MylynSDP’s concepts and its DOI function are likely to be used by software engineers in
their work.

Future work

Some new features can be developed to improve MylynSDP’s DOI function and how it
works. A better log file can be deployed to be consulted later, either manually or by an
application, generating better reports of usage. The current log file displays a long list of
interaction events that happened during the execution of a task. Some of the entries in the

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6 Page 32 of 35

log file are grouped to speed up calculations when returning to a task. This log file can be
consulted to identify, for example, the most important files of the project, or a particular
document that has been used multiple times.

In addition, the DOI function’s grading mechanism can be improved to accept not
only interactions with documents, but also diagrams or images. Note that basic interac-
tions such as opening or closing an image file are currently captured by MylynSDP’s DOI
function. Here, it is desirable that a richer set of interactions is captured, such as color
change, rendering, or line drawing. This is valuable because at early phases of a software
development process, such as system design, diagrams are often used to express ideas.

An evaluation of the effort required to use MylynSDP compared to Mylyn could be
undertaken using quantitative or qualitative approaches. Quantitative approaches may
rely on time (e.g., work hours), the skill level of the software engineers, and the quality of
the task results. Qualitative approaches could be based on subjective assessments such as
questionnaires and surveys.

Also, change management is a critical research avenue. Processes may change dur-
ing execution and MylynSDP does not support this kind of change, and a new import
would be necessary. However, non-conflicting changes (e.g., adding a new activity without
changing previous relationships or flows) can be quickly identified by MylynSDP. Further-
more, activities and processes may have versions. Currently, an activity can be executed
as different tasks multiple times, but no further support is provided. To support process
versioning, a new process should be imported if a new version of the process is to be
used, and in this case, new versioning capabilities are required to further assist software
engineers during software process execution.

Moreover, it is interesting to allow the DOI function’s records to be consulted by
another DOI function to improve the filtering for software engineers that perform sim-
ilar tasks, or even to improve filtering for software engineers working at the same task.
For example, if two software engineers are working on two different tasks that came from
the same activity, it is reasonable to expect some overlap between these task contexts.
Research on this avenue may encourage collaboration within MylynSDP.

Abbreviations

ALS: Application lifecycle management; AUI: Attention-reactive User Interface; DB: Database; DOI: Degree of Interest;
CMMI-DEV: Capability maturity model integration for development; GOM: Goal-Question-Metric; IDE: Integrated
Development Environment; MDD: Model-driven development; PARC: Palo Alto Research Center; PCTE: Portable
Common Tool Environment; PDG: Process Dependency Graph; PSEE: Process-centered software engineering
environment; RUP: Rational Unified Process; SDP: Software development process; SEE: Software engineering
environment; TAM: Technology Acceptance Model; UC: Use case

Acknowledgements
Not applicable.

Authors’ contributions
Not applicable. The authors read and approved the final manuscript.

Authors’ information
Not applicable.

Funding
This work was supported by the CAPES Foundation and NSERC. We thank both organizations for their support and
investments in education and development of science.

Availability of data and materials
Not applicable

Competing interests
The authors declare that they have no competing interests.

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6

Received: 28 August 2019 Accepted: 8 July 2020
Published online: 10 August 2020

References

1.

2.

20.

21.

22.

23.

24.

25.

26.

27.

Abdul-Rahman H, Mohd-Rahim F, Chen W (2012) Reducing failures in software development projects: effectiveness
of risk mitigation strategies. J Risk Res 15(4):417-433. https://doi.org/10.1080/13669877.2011.634520

Afanaseva T (2019) Search of software artefacts based on the project quantitative characteristics. In: ACM
International Conference Proceeding Series, Association for Computing Machinery, vol Part F148261, pp 26-30.
https://doi.org/10.1145/3318236.3318252

Ambriola V, Conradi R, Fuggetta A (1997) Assessing process-centered software engineering environments. ACM
Trans Softw Eng Methodol 6(3):283-328

Anastas JW, Macdonald ML (1994) Research design for social work and the human services, 1st edn.. Jossey-Bass Inc,
San Francisco

Baharom F, Yahaya J, Deraman A, Hamdan A (2013) Software process certification: a practical model for maintaining
software quality. Int J Inf Process Manag 4(3):51-61. https://doi.org/10.4156/ijipm.vol4.issue3.5

Bai X, Huang L, Zhang H (2010) On scoping stakeholders and artifacts in software process. In: Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
6195 LNCS:39-51. https://doi.org/10.1007/978-3-642-14347-2_5

Basili V, Weiss D (1984) A methodology for collecting valid software engineering data. IEEE Trans Softw Eng
SE-10(6):728-738. https://doi.org/10.1109/TSE.1984.5010301

Bendraou R, Sadovykh A, Gervais MP, Blanc X (2007) Software process modeling and execution: the uml4spm to
ws-bpel approach. In: EUROMICRO 2007 - Proceedings of the 33rd EUROMICRO Conference on Software
Engineering and Advanced Applications, SEAA 2007, pp 314-321. https://doi.org/10.1109/EUROMICRO.2007.55
Bigliardi L, Lanza M, Bacchelli A, Dambros M, Mocci A (2014) Quantitatively exploring non-code software artifacts. In:
Proceedings - International Conference on Quality Software, [EEE Computer Society, pp 286-295. https://doi.org/10.
1109/QSIC.2014.31

Boudier G, Gallo F, Minot R, Thomas | (1989) An overview of pcte and pcte+. ACM SIGPLAN Not 24(2):248-257.
https://doi.org/10.1145/64140.65026

Card S, Nation D (2002) Degree-of-interest trees: a component of an attention-reactive user interface. In: Proceedings
of the Workshop on Advanced Visual Interfaces AVI, pp 231-245. https://doi.org/10.1145/1556262.1556300
Chatterjee S, Simonoff J (2013) Handbook of regression analysis. John Wiley and Sons. https://doi.org/10.1002/
9781118532843

Davis F (1989) Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q
Manag Inf Syst 13(3):319-339

Davis F (1993) User acceptance of information technology: system characteristics, user perceptions and behavioral
impacts. Int J Man Mach Stud 38(3):475-487. https://doi.org/10.1006/imms.1993.1022

Defranco J, Laplante P (2017) Review and analysis of software development team communication research. I[EEE
Trans Prof Commun 60(2):165-182. https://doi.org/10.1109/TPC.2017.2656626

Dourish P, Edwards W, LaMarca A, Salisbury M (1999) Using properties for uniform interaction in the presto
document system. In: Proceedings of the 12th annual ACM symposium on User interface software and technology -
UIST '99. ACM. https://doi.org/10.1145/320719.322583

Dragunov A, Dietterich T, Johnsrude K, McLaughlin M, Li L, Herlocker J (2005) Tasktracer: a desktop environment to
support multi-tasking knowledge workers. In: International Conference on Intelligent User Interfaces, Proceedings
IUl, pp 75-82. https://doi.org/10.1145/1040830.1040855

Drechsler A, Dérr P (2014) What kinds of artifacts are we designing? An analysis of artifact types and artifact
relevance in is journal publications. In: Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) 8463 LNCS:329-336. https://doi.org/10.1007/978-3-319-
06701-8_23

Drury-Grogan M, Conboy K, Acton T (2017) Examining decision characteristics & challenges for agile software
development. J Syst Softw 131:248-265. https://doi.org/10.1016/jjs5.2017.06.003

Eisty N, Thiruvathukal G, Carver J (2019) Use of software process in research software development: a survey. In: ACM
International Conference Proceeding Series, Association for Computing Machinery, pp 276-282. https://doi.org/10.
1145/3319008.3319351

Feng Y, Jones J, Chen Z, Fang C (2018) An empirical study on software failure classification with multi-label and
problem-transformation techniques. In: Proceedings - 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation, ICST 2018, Institute of Electrical and Electronics Engineers Inc., pp 320-330. https://doi.
org/10.1109/ICST.2018.00039

Fleming | (2016) Defining software quality characteristics to facilitate software quality control and software process
improvement. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802301-3.00003-X

Fuggetta A (2000) Software process: a roadmap. In: Proceedings of the Conference on The Future of Software
Engineering, ACM, New York, NY, USA, ICSE '00, pp 25-34. https://doi.org/10.1145/336512.336521

Fuggetta A, Ghezzi C (1994) State of the art and open issues in process-centered software engineering
environments. J Syst Softw 26(1):53-60. https://doi.org/10.1016/0164-1212(94)90095-7

Furnas G (1999) The fisheye view: a new look at structured files. In: Readings in Information Visualization: Using
Vision to Think. Morgan Kaufmann Publishers Inc., San Francisco. pp 312-330. isbn = 1558605339

Haiduc S, Bavota G, Oliveto R, De Lucia A, Marcus A (2012) Automatic query performance assessment during the
retrieval of software artifacts. In: 2012 27th IEEE/ACM International Conference on Automated Software Engineering,
ASE 2012 - Proceedings, pp 90-99. https://doi.org/10.1145/2351676.2351690

Hajmoosaei M, Tran H, Percebois C, Front A, Roncancio C (2015) Towards a change-aware process environment for
system and software process. In: ACM International Conference Proceeding Series, Association for Computing
Machinery, vol 24-26-August-2015, pp 32-41. https://doi.org/10.1145/2785592.2785596

Page 33 of 35

https://doi.org/10.1080/13669877.2011.634520
https://doi.org/10.1145/3318236.3318252
https://doi.org/10.4156/ijipm.vol4.issue3.5
https://doi.org/10.1007/978-3-642-14347-2_5
https://doi.org/10.1109/TSE.1984.5010301
https://doi.org/10.1109/EUROMICRO.2007.55
https://doi.org/10.1109/QSIC.2014.31
https://doi.org/10.1109/QSIC.2014.31
https://doi.org/10.1145/64140.65026
https://doi.org/10.1145/1556262.1556300
https://doi.org/10.1002/9781118532843
https://doi.org/10.1002/9781118532843
https://doi.org/10.1006/imms.1993.1022
https://doi.org/10.1109/TPC.2017.2656626
https://doi.org/10.1145/320719.322583
https://doi.org/10.1145/1040830.1040855
https://doi.org/10.1007/978-3-319-06701-8_23
https://doi.org/10.1007/978-3-319-06701-8_23
https://doi.org/10.1016/j.jss.2017.06.003
https://doi.org/10.1145/3319008.3319351
https://doi.org/10.1145/3319008.3319351
https://doi.org/10.1109/ICST.2018.00039
https://doi.org/10.1109/ICST.2018.00039
https://doi.org/10.1016/B978-0-12-802301-3.00003-X
https://doi.org/10.1145/336512.336521
https://doi.org/10.1016/0164-1212(94)90095-7
https://doi.org/10.1145/2351676.2351690
https://doi.org/10.1145/2785592.2785596

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6 Page 34 of 35

28.

29.

30.

31

32.

33.

34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

52.

53.

54.

55.

56.

57.

58.

Hasan M, Stroulia E, Barbosa D, Alalfi M (2010) Analyzing natural-language artifacts of the software process. In: IEEE
International Conference on Software Maintenance, ICSM, pp 1-5. https://doi.org/10.1109/ICSM.2010.5609680
Kaptelinin V (2003) Umea: translating interaction histories into project contexts. In: Conference on Human Factors in
Computing Systems - Proceedings, pp 353-360. https://doi.org/10.1145/642611.642673

Kersten M (2007) Focusing knowledge work with task context. PhD thesis. University of British Columbia, Vancouver.
http://dx.doi.org/10.14288/1.0302110

Kersten M, Murphy G (2005) Mylar: a degree-of-interest model for ides. In: AOSD 2005: 4th International Conference
on Aspect-Oriented Software Development - Conference Proceedings, pp 159-168. https://doi.org/10.1145/
1052898.1052912

Kersten M, Murphy G (2006) Using task context to improve programmer productivity. In: Proceedings of the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, pp 1-11. https://doi.org/10.1145/1181775.
1181777

Klein H, Myers M (1999) A set of principles for conducting and evaluating interpretive field studies in information
systems. MIS Q Manag Inf Syst 23(1):67-94

Likert R (1932) A technique for the measurement of attitudes. Arch Psychol 22(140):55

Maalej W, Ellmann M, Robbes R (2017) Using contexts similarity to predict relationships between tasks. J Syst Softw
128:267-284. https://doi.org/10.1016/js5.2016.11.033

Maciel R, Gomes R, Magalhdes A, Silva B, Queiroz J (2013) Supporting model-driven development using a
process-centered software engineering environment. Autom Softw Eng 20(3):427-461. https://doi.org/10.1007/
5s10515-013-0124-0

Maciel R, Magalhdes Mascarenhas A, Gomes R, De Queiroz J (2014) Supporting model-driven development: key
concepts and support approaches. IGl Global. https://doi.org/10.4018/978-1-4666-6026-7.ch009

Matinnejad R, Ramsin R (2012) An analytical review of process-centered software engineering environments. https://
doi.org/10.1109/ECBS.2012.11

Meedeniya D, Rubasinghe |, Perera | (2019) Traceability establishment and visualization of software artefacts in
devops practice: a survey. Int J Adv Comput Sci Appl 10(7):66-76

Melo G, Alencar P, Cowan D (2019) Context-augmented software development in traditional and big data projects:
literature review and preliminary framework. In: Proceedings - 2019 IEEE International Conference on Big Data, Big
Data 2019, Institute of Electrical and Electronics Engineers Inc., pp 3449-3457. https://doi.org/10.1109/
BigData47090.2019.9006245

Moreno L (2014) Summarization of complex software artifacts. In: 36th International Conference on Software
Engineering, ICSE Companion 2014 - Proceedings, Association for Computing Machinery, pp 654-657. https://doi.
org/10.1145/2591062.2591096

Murakami N, Masuhara H, Aotani T (2014) Code recommendation based on a degree-of-interest model. In: 4th
International Workshop on Recommendation Systems for Software Engineering, RSSE 2014 - Proceedings,
Association for Computing Machinery, Inc, pp 28-29. https://doi.org/10.1145/2593822.2593828

Murphy G (2009) Attacking information overload in software development. In: SBES 2009 - 23rd Brazilian
Symposium on Software Engineering, p 15. https://doi.org/10.1109/SBES.2009.36

Omoronyia |, Ferguson J, Roper M, Wood M (2010) A review of awareness in distributed collaborative software
engineering Vol. 40. pp 1107-1133. https://doi.org/10.1002/spe.v40:12

Ossher J, Sajnani H, Lopes C (2012) Astra: bottom-up construction of structured artifact repositories. In: Proceedings -
Working Conference on Reverse Engineering, WCRE, pp 41-50. https://doi.org/10.1109/WCRE.2012.14

Osterweil L (1987) Software processes are software too. In: Proceedings - International Conference on Software
Engineering. Institute of Electrical and Electronics Engineers Inc., New York. pp 2-13

Pitangueira Maciel R, Magalhdes Mascarenhas A, Gomes R, De Queiroz J (2017) Supporting model-driven
development: key concepts and support approaches. IGl Glob. https://doi.org/10.4018/978-1-5225-3923-0.ch016
Ploesser K, Janiesch C, Recker J, Rosemann M (2009) Context change archetypes: understanding the impact of
context change on business processes. In: ACIS 2009 Proceedings - 20th Australasian Conference on Information
Systems. Monash University, Melbourne. pp 225-234

Portela C, Vasconcelos A, Oliveira S, Silva A, Elder S (2014) Spider-pe: a set of support tools to software process
enactment. In: Proceedings of the 9th International Conference on Software Engineering Advances

Portugal I (2014) Aiding software process execution with artifact filtering, degree of interest function and task
context. Master’s thesis. Federal University of Rio de Janeiro, Rio de Janeiro

Portugal IDS, Oliveira TC (2013) Introducing software process specification to task context. In: Proceedings of the
25th International Conference on Software Engineering and Knowledge Engineering, SEKE, Vol. 2013. Knowledge
Systems Institute Graduate School, Skokie. pp 22-25

Portugal IS, de Oliveira TC (2014) Using task contexts to improve software process execution. In: CIBSE 2014:
Proceedings of the 17th Ibero-American Conference Software Engineering. Universidad de la Frontera, Temuco,
Araucania. pp 109-122

Rastkar S, Murphy G, Murray G (2010) Summarizing software artifacts: a case study of bug reports. In: Proceedings -
International Conference on Software Engineering, vol 1, pp 505-514. https://doi.org/10.1145/1806799.1806872
Reis R, Lima Reis C, Schlebbe H, Nunes D (2002) Automatic verification of static policies on software process models.
Ann Softw Eng 14(1-4):197-234. https://doi.org/10.1023/A:1020509809235

Robson C, McCartan K (2016) Real world research, 4th edn. John Wiley & Sons, Inc, Hoboken

Salman |, Misirli A, Juristo N (2015) Are students representatives of professionals in software engineering
experiments?. In: Proceedings - International Conference on Software Engineering, [EEE Computer Society, vol 1, pp
666-676. https://doi.org/10.1109/ICSE.2015.82

Selic B (2003) The pragmatics of model-driven development. I[EEE Softw 20(5):19-25. https://doi.org/10.1109/MS.
2003.1231146

Sievi-Korte O, Beecham S, Richardson | (2019) Challenges and recommended practices for software architecting in
global software development. Inf Softw Technol 106:234-253. https://doi.org/10.1016/j.infsof.2018.10.008

https://doi.org/10.1109/ICSM.2010.5609680
https://doi.org/10.1145/642611.642673
http://dx.doi.org/10.14288/1.0302110
https://doi.org/10.1145/1052898.1052912
https://doi.org/10.1145/1052898.1052912
https://doi.org/10.1145/1181775.1181777
https://doi.org/10.1145/1181775.1181777
https://doi.org/10.1016/j.jss.2016.11.033
https://doi.org/10.1007/s10515-013-0124-0
https://doi.org/10.1007/s10515-013-0124-0
https://doi.org/10.4018/978-1-4666-6026-7.ch009
https://doi.org/10.1109/ECBS.2012.11
https://doi.org/10.1109/ECBS.2012.11
https://doi.org/10.1109/BigData47090.2019.9006245
https://doi.org/10.1109/BigData47090.2019.9006245
https://doi.org/10.1145/2591062.2591096
https://doi.org/10.1145/2591062.2591096
https://doi.org/10.1145/2593822.2593828
https://doi.org/10.1109/SBES.2009.36
https://doi.org/10.1002/spe.v40:12
https://doi.org/10.1109/WCRE.2012.14
https://doi.org/10.4018/978-1-5225-3923-0.ch016
https://doi.org/10.1145/1806799.1806872
https://doi.org/10.1023/A:1020509809235
https://doi.org/10.1109/ICSE.2015.82
https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1016/j.infsof.2018.10.008

Portugal et al. Journal of the Brazilian Computer Society (2020) 26:6 Page 35 of 35

59. Singh B, Gautam S (2017) The impact of software development process on software quality: a review. In:
Proceedings - 2016 8th International Conference on Computational Intelligence and Communication Networks,
CICN 2016, Institute of Electrical and Electronics Engineers Inc.,, pp 666-672. https://doi.org/10.1109/CICN.2016.137

60. Spanoudakis G, Zisman A (2005) Software traceability: a roadmap. World Scientific Publishing Co. https://doi.org/10.
1142/9789812775245_0014

61. Sundaram S, Hayes J, Dekhtyar A, Holbrook E (2010) Assessing traceability of software engineering artifacts. Requir
Eng 15(3):313-335. https://doi.org/10.1007/500766-009-0096-6

62. Wong K (2013) A domain-dependent approach to determining file importance. Simul Ser 45:1-6

63. Yan S, YuH, ChenY, Shen B, Jiang L (2020) Are the code snippets what we are searching for? A benchmark and an
empirical study on code search with natural-language queries. In: SANER 2020 - Proceedings of the 2020 IEEE 27th
International Conference on Software Analysis, Evolution, and Reengineering, Institute of Electrical and Electronics
Engineers Inc., pp 344-354. https://doi.org/10.1109/SANER48275.2020.9054840

64. Zhu YM (2017) Software failure mode and effects analysis. In: Failure-Modes-Based Software Reading. Springer.
pp 7-15. https://doi.org/10.1007/978-3-319-65103-3_2

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen®

journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

https://doi.org/10.1109/CICN.2016.137
https://doi.org/10.1142/9789812775245_0014
https://doi.org/10.1142/9789812775245_0014
https://doi.org/10.1007/s00766-009-0096-6
https://doi.org/10.1109/SANER48275.2020.9054840
https://doi.org/10.1007/978-3-319-65103-3_2

	Abstract
	Keywords

	Introduction
	Related work
	Artifact search and discovery
	Context change management
	Artifact relevance mechanism
	Interface
	Technical details and DOI function

	MylynSDP
	Concept description
	Overview
	Context creation
	Interactions

	Tool and architecture
	Wizard
	Architecture
	Software Process Specification Import mechanism
	Restore mechanism
	Saving mechanism
	DOI function

	Evaluation study
	Overview
	Analysis
	Threats to validity

	Conclusion and future work
	Conclusion
	Future work

	Abbreviations
	Acknowledgements
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

