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Abstract
This paper focuses on the computer side of human-computer interaction through
natural language, which is the domain of natural language generation (NLG) studies.
From a given (usually non-linguistic) input, NLG systems will in principle generate the
same fixed text as an output and in order to attain more natural or human-like
interaction will often resort to a wide range of strategies for stylistic variation. Among
these, the use of computational models of human personality has emerged as a
popular alternative in the field and will be the focus of the present work as well. More
specifically, the present study describes two machine learning experiments to establish
possible relations between personality and content selection (as opposed to the more
well-documented relation between personality and surface realisation), and it is, to the
best of our knowledge, the first of its kind to address this issue at both macro and micro
planning levels, which may arguably pave the way for the future development of more
robust personality-dependent systems of this kind.
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Introduction
Natural language generation (NLG) systems produce text from (usually) non-linguistic
input and are central to the development of realistic, psychologically plausible human-
computer communication that does not resort to pre-defined or ‘canned’ text. Appli-
cations include the generation of textual summaries from neonatal intensive care data
[1], patient history and nurse reports [2–4], personalised smoking cessation letters [5],
weather forecasts [6], dialogue and narrative text [7, 8], poetry [9], image captions
[10, 11], and many others.
The design of a NLG system often follows a general 3-stage pipeline architecture as

in [12], comprising document and sentence planning (also known as macro and micro
planning), and surface realisation. These components are illustrated in Fig. 1.
Starting from a high-level communicative goal of describing a given input meaning as

text, a typical NLG system will first build up a document plan that provides the set of
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Fig. 1 The NLG pipeline in [12]

contents (e.g. discourse objects and their semantic properties) to be presented in the out-
put and some form of high-level structure (e.g. content ordering, rhetorical relations)
Next, the document plan is refined into a series of abstract sentence representations in
which specific words are selected to express plan concepts (a task known as lexical choice
[12]), context-dependent referring expressions are fully specified, and concepts are com-
bined into abstract sentence units. Finally, sentence units are rendered in a target natural
language and structured according to an appropriate grammar formalism. For a detailed
discussion on this architecture, we refer to [12].

Customised natural language generation

NLG systemsmay in principle produce always the same fixed output text for a given input
meaning. However, systems that aim to generate text in a more natural or human-like
fashion will often implement a wide range of strategies to model some form of stylis-
tic variation. Among these, the use of computational models of human personality has
emerged as a popular alternative in the field.
Of particular interest for the present work, we will consider the use of the Big Fivemodel

of human personality [13] in NLG. The model is based on the assumption that differences
in personality are revealed by the way individuals express themselves in natural language
and, given its linguistic motivation, is not surprising that the Big Five model has been
applied to a wide range of studies in both natural language understanding [14–16] and
generation [17, 18] alike.
The Big Fivemodel comprises five fundamental dimensions of personality: extraversion,

agreeableness, conscientiousness, neuroticism, and openness to experience. To appreciate
the role of these personality traits in language production, let us consider the task of
producing a simple text description of an input scene as in Fig. 2.
In a situation of this kind, different human speakers may produce a large number of

alternative text descriptions. For instance, the following are examples of how the example
scene may be described by two speakers with different degrees of agreeableness.
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Fig. 2 A scene from GAPED [41]

speaker1 (higher agreeableness):
“It is the photo of a girl of around 12 and her brother, probably 6 years old. They are on
a dirt road. In the background it is possible to see vegetation, and in the front of them
there are some scattered wires for building fences. The girl wears a long brownish
dress with long sleeves, and red slippers. The boy wears a jumper and trainers.”

speaker2 (lower agreeableness):
“They are two children, a boy and a girl, who seem to be poor by the clothes they are
wearing, and who are in a place that seems to be rural because of the dirt road and
the bushes, and are close to rubbish and building materials.”

The two texts in this example are obviously different in a number of ways. At the sur-
face level, for instance, we notice that the speakers use different wordings to describe
the same pictorial element. This is the case, for instance, of the background vegetation
in the scene, described as ‘vegetation’ by speaker1 but described as ‘bushes’ by speaker2.
This difference—which is largely an issue of lexical choice—has been a primary focus in
personality-dependent NLG research [19], and it is consistent with the lexical motivation
at the very core of the Big Five model [13].
Lexical choice is however only one among many differences between the two exam-

ple descriptions. In particular, we notice that the two speakers chose to select different
contents to appear in these text descriptions. Thus, for instance, speaker1 seems some-
what more focused on the two main human characters in the scene and uses more colour
information than speaker2. From a NLG perspective, differences in meaning as in these
examples are not surface realisation issues, but rather semantic content selection (CS)
decisions to be dealt with at the early stages of the pipeline architecture.
The distinction between wordings and meanings is of course debatable. For instance,

are ‘small’ and ‘short’ simply different wordings to describe the same meaning (i.e. the
boy’s height in the picture), or do they actually convey different meanings? Leaving
these difficulties aside, however, the distinction between text semantics and sur-
face form is crucial for practical NLG, and it is central to the present study on
personality-dependent CS.
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Objectives

The main objective of the present work is to show that, in personality-dependent NLG
systems, personality traits of the target speaker may influence not only surface realisation,
but also content selection. In other words, we would like to show that personality traits
affect not only ‘how we say it’ (at the surface level) but also what we actually choose to say
in the first place (at a deeper semantic level.)
Moreover, we also would like to show that the use of personality information enables

a CS model to make more accurate predictions at both macro and micro planning lev-
els. To this end, we shall consider two instances of the CS task: the more coarse-grained
kind of CS performed at the document planning stage of the NLG pipeline, hereby called
an instance of discourse-level CS, and the more fine-grained CS task performed at the
microplanning stage to produce referring expressions in a particular point in the dis-
course (e.g. ‘the girl’, ‘she’, ‘the tallest child’), hereby called reference-level CS (known in the
NLG field as the referring expression generation (REG) task.)
In Fig. 2, an example of discourse-level CS task would consist of deciding which char-

acters or objects should be mentioned in a text description. In the NLG architecture,
discourse-level CS is generally driven by the communicative goals provided as an input to
the system (e.g. the goal of describing a picture according to a given personality profile.)
An example of reference-level CS, on the other hand, would consist of providing an

unambiguous referring expression to enable the identification of a particular target (e.g.
‘the girl on the left’.) This task is driven by the need to produce uniquely identifying refer-
ring expressions - often in the form of definite descriptions as in this example - of the
intended target in a particular context (e.g. by taking into account both the visual scene
and/or the entities mentioned in the recent discourse.)
Although discourse- and reference-level CS arguably address a similar underlying issue,

in what follows the two tasks are discussed separately in two independent experiments.
In both cases, however, the experiments make use of controlled text produced by a single
group of speakers, as provided by a corpus of text descriptions labelled with personality
information about their authors.
The rest of this paper is structured as follows. The “Related work” section briefly

addresses existing work in NLG content selection from both macro and micro plan-
ning perspectives. The “Experiment 1: Personality-dependent discourse-level CS” section
presents the experiment in personality-dependent discourse-level CS, from data col-
lection to model design and evaluation. The “Experiment 2: Personality-dependent
reference-level CS” section follows a similar structure to address the second experiment,
devoted to personality-dependent reference-level CS. The “Final remarks” section draws
a number of conclusions and hints at future work.

Related work
Examples of personality-dependent NLG systems are few, and even when a system does
address the issue of how personality information may be embedded in language gener-
ation the focus is usually on the surface realisation or lexical choice tasks rather than
content selection. Among the existing studies of this kind, the PERSONAGE system
[20] and its extensions are, to the best of our knowledge, the most complete examples
of text-generating systems that take personality information into account. PERSON-
AGE and a few other examples of personality-based NLG are briefly reviewed in the
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“Content selection for document planning” section from a macro planning perspective.
This is followed by a more detailed discussion regarding the micro planning task of
Referring Expression Generation (REG) in “g” section.

Content selection for document planning

Given a mass of usually non-linguistic input data, content selection as performed in the
macro planning stage of the NLG architecture - hereby called discourse-level CS - con-
sists of selecting the meanings to be represented as text in the subsequent stages of the
system pipeline [21]. The issue of personality-dependent discourse-level CS is however
little discussed in the NLG literature, perhaps based on the observation that models
such as the Big Five [13] are largely focused on the relation between personality and
word choice.
The work in [20] introduces PERSONAGE, a first attempt to develop a fully-functional

personality-dependent NLG system in the restaurant recommendation domain. PER-
SONAGE supports a range of stylistic variations that may be controlled by personality
information provided as an input. The work focuses on the effects of the Big Five
Extraversion trait over the output text, and investigates how differences in personality are
perceivable by human readers.
PERSONAGEmakes use of machine learning methods to map personality traits to gen-

eration decisions that affect the output text. Most of the resulting variation is related to
sentence structuring and word choice. For instance, the system favours the generation of
longer sentences with a higher number of negations, and uses more tentative words when
an introvert profile is selected.
Since the input to the system consists of user-determined communicative goals, con-

tent selection is mainly focused on structuring the given input in order to maximise
the perception of differences in system personality. Generation decisions that may vary
along the Extraversion dimension include degree of verbosity, number of repetitions and
concessions, among others.
Many subsequent studies were developed as extensions of PERSONAGE. These include

a wide range of improvements on the system architecture and support to additional per-
sonality traits [17], and its application to other domains such as gossip generation [22],
computer game dialogues [23], creative writing [24], storytelling [25], gesture generation
[26] and customer feedback generation [18], among others. Generally speaking, however,
the relation between personality and content determination is not the focus of any of
these studies.

Content selection for referring expression generation

A second and much more fine-grained form of content selection is the case of content
selection for referring expression generation (REG), which is performed at the micro
planning stage of the NLG pipeline. REG is concerned with the generation of uniquely
identifying definite descriptions (more generally known as referring expressions) of a
given target object, so that the generated descriptions resemble those that would have
been produced by human speakers. For instance, let us consider the goal of describing the
target o4 in Fig. 31.

1Stimulus images courtesy of Michael J. Tarr, Center for the Neural Basis of Cognition and Department of Psychology,
Carnegie Mellon Univ. Funding provided by NSF award 0339122.
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Fig. 3 An example of referential context built from Face Place images [49]. Object labels o1..o6 were added
for ease of discussion

Given a target object that we intend to describe, and a context set containing a number
of distractor objects (i.e. the other characters in the example scene), the goal of a REG
algorithm is to select the contents to compose an unambiguous description of the target
object, either in atomic (e.g. ‘the dark man’, ‘the guy with a pony tail’) or relational [27]
form (e.g. ‘the man below a girl on the left side’.)
Referring expressions are ubiquitous in text, and although in this example we use a

visual context for ease of discussion, REG algorithms are actually required to generated
every referring expression that occurs in the text, including, for instance, references to
any discourse object with respect to the set of objects recently mentioned in an ongo-
ing conversation (e.g. ‘the problems what we discussed yesterday’, ‘the second and third
ones’, ‘these issues’ ). Reference-level CS is therefore a mandatory task in any sufficiently
complex NLG system and, accordingly, a well-studied research topic in the field [28, 29].
The choices of which facts are selected to make a uniquely identifying description are

largely determined by its referential context, and REG is largely driven by the need to
prevent ambiguity within such context while avoiding the generation of overly long or oth-
erwise redundant descriptions. More formally, reference-level CS task takes as an input
a target r to be distinguished from a set of distractor objects within a given context C.
Objects are usually modelled as sets of properties represented as (attribute-value) pairs,
as in (ponytail-yes.) The goal of a REG algorithm is to produce a set L of properties that are
true of r such that L distinguishes r from every distractor in C [28]. The output descrip-
tion L may be subsequently realised as a definite or indefinite description. For instance,
an output description, L = {gender-male, ponytail-yes} could be realised as ‘the guy with
a pony tail’.
One of the best-known approaches to REG is the Incremental algorithm in [30]. In

this approach, attributes are considered for selection according to a domain-dependent
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list of preferences P and provided that they are discriminatory, that is, provided that the
selected attributes rule out at least one distractor object in the context. When an attribute
a is selected, the corresponding distractor objects are removed from C. For instance,
selecting a property (gender-male) rules out all distractor objects whose gender is female.
The algorithm terminates when C becomes empty or when all attributes in P have been
attempted.
The incremental approach and many of its successors are generally concerned with the

generation of a single, fixed description for the given input. By contrast, more recent
approaches as in [31, 32] have addressed the issue of human variation in REG as well.
These methods, however, rely on a set of pre-recorded examples of referring expression
produced by every speaker under consideration and take as an input a unique identifier
of the target speaker to generate highly specialised descriptions. As a result, speaker-
dependent REG may be of limited practical use unless suitable (linguistic) training data is
available.
One possible way of adding human variation to the output descriptions generated by

a REG algorithm without resorting to a large among of linguistic examples as training
data is by assuming that personality may play a role in the content selection of refer-
ring expressions as well. Based on this observation, the study in [33] addressed the issue
of how personality may affect referential overspecification, that is, the use of additional
information in the referring expression beyond what is strictly required for disambigua-
tion (e.g. the affective information (upset) in ‘the guy with a pony tail, who looks upset’ is
redundant.) The study however falls short of providing a full personality-dependent REG
algorithm, focusing instead on the question of how to modify a description previously
generated by a standard REG approach to accommodate a certain level of personality-
dependent variation, and we are not aware of other personality-dependent studies that
have addressed the issue of reference-level CS in more detail.

Experiment 1: Personality-dependent discourse-level CS
This section addresses the issue of how a given input scene may be described by speak-
ers with different personality types. From a semantic representation of a scene as in Fig. 2
(i.e. objects and their properties), discourse-level CS should in principle contemplate two
questions: deciding which objects should be mentioned (e.g. whether to mention the girl,
the boy, or possibly both) and deciding which facts (or semantic properties) about these
objects should be selected (e.g. whether to mention the fact that the girl seems sad, or
the fact that her shoes are red). For reasons to be discussed in the next section, how-
ever, in what follows, we pay no regard to the former, and we will focus instead on the
computational task of selecting object properties.
The current approach to discourse-level CS makes use of supervised machine learning

methods to select scene properties based on a target personality. After data prepara-
tion, a series of classifiers are built from training data to predict whether each individual
property should be selected. Next, individual predictions made by every classifier are
combined to produce a set of properties that represents the semantic contents of a possi-
ble text description of the input scene. These steps are discussed individually in the next
sections.
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Data

The present work makes use of the b5 corpus [34] of Brazilian Portuguese texts produced
by participants in a controlled data collection task. The texts were elicited in a number
of communicative tasks and subsequently labelled with Big Five scores obtained from a
BFI-44 personality inventories [35] filled in by the participants themselves. The corpus
has been previously taken as the basis to a number of studies in personality recognition
[36–39] and author profiling [40] from text. In what follows, we will focus on the b5-text
(sub)corpus of scene descriptions.
The b5-text dataset was primarily collected for the study of issues of personality-

dependent content selection and surface realisation. The data consist of scene descrip-
tions elicited from visual stimuli taken fromGAPED [41], a collection of images classified
by valence and normative significance, which are designed so as to arouse different
degrees of emotional response. An example of one such image was presented in the
previous Fig. 2.
Data collection made use of ten stimulus images with degrees of valence in the 3–54

range as provided by GAPED. For each image, participants of an in-person data collection
task were requested to describe everything that they could see in the scene, as if helping
a (hypothetical) visually-impaired friend. The text descriptions labelled as speaker1 and
speaker2 in the “Introduction” section are translated examples of actual instances of the
b5-text corpus. Notice however that, since the underlyingmeanings change across scenes,
each image is to be treated independently in our experiments, that is, the text descriptions
in the corpus effectively make ten unrelated datasets. Thus, for instance, the observation
that a particular scene shows a smiling person is in principle unrelated to the observa-
tion that there is a smiling person in another, or even in the same scene. The two smiles
simply represent two different facts, and the use of ten unrelated input scenes is simply
an attempt to increase the likelihood of finding effects of personality on content selec-
tion, which may be easily influenced (or even determined) by perception. In particular, we
notice that certain objects may be more salient—and possibly more prone to mention—
than others and that visual salience alone may obscure any effects that personality might
have on content selection. Thus, given that perception skill levels may vary across indi-
viduals, trying to establish beforehand which single scene might be more indicative of
differences across multiple personality types would have been unhelpful.
The b5-text corpus comprises 1510 scene descriptions produced by 151 participants.

However, given the nature of the underlying language production task, in which partic-
ipants were instructed to describe all objects in each scene, differences in personality
are not truly reflected in their choices of scene objects, and the few existing differences
across speakers are insufficient for our current purposes. For that reason, our work will
disregard the issue of which scene objects (which are usually realised as nouns in the
text) are to be selected and will focus instead on the choices of facts (or semantic prop-
erties) about these objects (which are usually realised as adjectives.) Thus, the present
experiment should be more appropriately described as a first step towards more compre-
hensive (personality-dependent) document planning studies rather than a fully functional
CS module.
An investigation of content selection choices gives rise to the question of how to define a

content unit, that is, which semantic properties should be modelled based on the existing
text. As discussed above, we shall focus on properties that are realised in surface form
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Table 1 Properties with 20 or more occurrences in each set of scene descriptions

Scene # Adjective-noun pairs

01 6
{red-sandals (46), brown-dress (37), long-dress (26),

blue-pants (22), tall-girl (22), older-girl (22)}

02 4
{black-canvas (74), white-bucket (65), large-bucket (30),

small-child (28)}

03 5
{fat-lips (89), white-bedspread (59), red-details (56),

red-lips (29), black-baby (22)}

04 2 {black-person (75), raised-arms (35)}

05 8
{sitting-people (38), green-coat (38), white-hair (28),

white-trainers (25), sitting-lady (24), blue-coat (21), red-coat 20, black-shirt (20) }

06 8
{pink-bedspread (79), blue-blanket (74), blue-coat (67), dirty-coat (55),

black-baby (54), dirty-clothes (32), sick-child 29, dark-skin (19)}

07 0 {-}

08 5
{black-man (111), blue-cap(35), barbed-wire (25), green-shirt (24),

short-hair (22)}

09 9
{yellow-shorts (51), plaid-shorts (45), blue-shirt (37), barefoot-man (36),

elderly-man (34), crossed-legs (29), grey-shorts (28), red-tiles (28), purple-hat (21)}

10 4 {dry-grassland (40), elderly-woman (30), red-pants (30), red-hat (22)}

as adjectives (e.g. ‘red’, ‘sad’). More specifically, in order to keep the necessary distinction
in meanings across scenes and across subjects within the same scene (e.g. the property
of ‘being dark’ has different meanings in ‘dark hair’ and ‘dark skin’), each adjective in the
text corpus is labelled with a unique identifier representing its underlying concept and the
associated subject (a head noun or its pronoun substitute), as in, e.g. ‘dark_hair’. Tuples of
this kind make the input semantic properties to our model.
In order to obtain the list of properties represented in a given text description, a combi-

nation of automatic and manual2 annotation tasks was performed. First, adjective-noun
and adjective-pronoun pairs were extracted from the text descriptions of every scene
with the aid of the PALAVRAS syntactic parser of Portuguese [42]. This was followed by
manual revision to correct common parsing errors (e.g. adjectives attached to the wrong
head) and also to replace pronouns for their actual noun antecedents (e.g. ‘they’ may be
replaced by ‘shoes’). Next, nouns denoting the same concept (e.g. ‘shoes’ and ‘trainers’)
were clustered together when applicable. Clustering was generally straightforward as it is
usually clear from the scenes which pictorial elements are referred to in each text descrip-
tion. Finally, all adjective-noun pairs with fewer than 20 occurrences in the dataset were
discarded.
From the ten stimulus images, a set of 51 properties above the minimum (20) thresh-

old were identified. These properties are listed in Table 1, accompanied by their actual
number of instances (between brackets). In the case of scene 7, we notice that all existing
properties fell below the minimum, and for that reason, this scene will be disregarded.
In this dataset, in which several classes barely reach the 20-instance minimum, we

notice that data sparsity is a major concern. Moreover, as discussed in the previous
section, we are aware that we may not necessarily find (major) personality effects on con-
tent selection for every scene. These issues will be further discussed in the “Evaluation”
section.

2Performed by two annotators and subsequently revised by a third judge.
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Finally, text descriptions were divided into training and test sets in a balanced 80:20 split
so that descriptions produced by every speaker appeared in both subsets. As a result, 1200
training descriptions and 300 test descriptions were created. Personality scores associated
with each description were obtained from the b5-text corpus as discussed in [34].

Models

We envisaged a discourse-level CS model—hereby called PersonalityDoc—based on a
series of classifiers that takes as an input a scene conveying a set of objects D and their
properties, a target object r for which a property p is known to be true, and a target Big
Five profile b. The output is a prediction of whether p should be selected as part of a text
description of D as uttered by a speaker of personality b.
Individual classifiers were built for each of the 51 domain properties under consider-

ation as defined in the previous section. Thus, for instance, one classifier is intended to
predict whether to select the smiling-girl property in a given context, another predicts
whether to select red-shoes and so forth. In all cases, the set of learning features consists of
the scene and semantic property identifiers (which in turn correspond to adjective-noun
pairs), and the five scalar values representing the personality scores of the target speaker.
Learning instances were computed as follows. For every text description of every

scene, a positive instance of class p is created whenever p occurs in a text, and
a negative instance of class p is created otherwise. We notice that the resulting
dataset is prone to class imbalance, with an average 2:1 negative-positive instance
ratio.

Evaluation

Assessing PersonalityDoc is complicated by the fact that no similar systems are immedi-
ately available for use as a baseline. However, given that our dataset is heavily imbalanced,
we will use this to our advantage and evaluate PersonalityDoc against a majority class
baseline.
Both models were built using linear support vector machine (SVM) with optimal

parameter values obtained by performing grid search on the training dataset. The choice
for SVM was motivated by the relatively small size of the current dataset and by positive
results obtained in related tasks [43].
As a means to address the issue of class imbalance, PersonalityDoc makes use of the

Synthetic Minority Over-sampling Technique SMOTE [44] with k=5 nearest neighbours.
The majority class model, on the other hand, does not make use of oversampling since
this would result in a much weaker baseline. The comparison between these two models
gives rise to the following research hypothesis:

h1: The use of personality information about a target speaker enables a document-level CS
model to select document contents that resemble more closely the choices made by humans if
compared to a similar model that does not have access to personality information.

This hypothesis will be verified by comparing the contents selected by Personality-
Doc with the contents selected by the majority class baseline from the same input. We
expect that, on average, the contents selected by PersonalityDoc will resemble human
choices more closely than those selected by the baseline as measured by mean Dice
coefficients [45].
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Table 2Mean precision (P), recall (R), and F1-measure (F) 10-fold cross validation results on training
data, per scene

Majority class baseline Personality-dependent CS

Scene Classes P R F P R F

01 6 0.81 1.00 0.89 0.83 0.99 0.90

02 4 0.67 1.00 0.80 0.82 0.99 0.90

03 5 0.69 1.00 0.81 0.79 0.98 0.88

04 2 0.57 1.00 0.72 0.79 0.99 0.87

05 8 0.82 1.00 0.90 0.82 1.00 0.90

06 8 0.67 1.00 0.79 0.79 0.98 0.88

08 5 0.80 1.00 0.89 0.81 0.99 0.89

09 9 0.76 1.00 0.86 0.78 0.99 0.87

10 4 0.80 1.00 0.89 0.81 0.99 0.89

Mean 5.1 0.73 1.00 0.84 0.80 0.99 0.89

Best F1 results are highlighted

Classification results

Before discussing the actual CS results in the next section, we start by assessing the pre-
dictions made by the individual classifiers using 10-fold cross validation over the entire
dataset. Results obtained by the baseline and personality-dependent models (except for
scene 07) are shown in Table 2.
From these results, we notice that, on average, personality-based CS outperforms the

baseline method in most contexts under consideration, or it is at least equally effective. A
more detailed view of the same data is presented in Table 3, in which results for the most
frequent properties of each of the nine sets of scene descriptions are presented next to the
number of positive and negative instances of each class.
Once again, we notice that personality-dependent classifiers generally outperforms the

majority class baseline for most input scenes and properties.

Content selection results

Table 4 presents mean Dice scores obtained by PersonalityDoc and baseline models
applied to the generation of the test descriptions for each of the nine input scenes in the
corpus.
From these results, we notice that overall Dice scores obtained ny PersonalityDoc are

higher than those obtained by the baseline model. The difference is significant according
to a Wilcoxon signed rank test (W =-5127, z =-5.57, p <0.001). The use of personal-
ity information about a target speaker enables the CS model to select property sets that
resemble more closely those that would be selected by humans. This offers support to
hypothesis h1.

Experiment 2: Personality-dependent reference-level CS
In this section, we further this issue of personality-dependent CS by zooming into the
content selection task of individual referring expressions, as in ‘the guy with a ponytail’,
‘the dark-skinned man who looks upset’, and so on. This issue is the domain of the refer-
ring expression generation (REG) NLG subtask, addressed in the micro planning stage of
the NLG pipeline [12].
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Table 3Mean precision (P), recall (R), and F1-measure (F) 10-fold cross validation results on training
data for the most frequent properties per scene

Majority class baseline Personality-dependent CS

Scene Property Inst.+/− P R F P R F

01 red-sandals 46/105 0.70 1.00 0.82 0.82 0.96 0.88

01 brown-dress 37/114 0.76 1.00 0.86 0.86 0.99 0.92

01 long-dress 26/125 0.83 1.00 0.91 0.84 0.98 0.90

02 black-canvas 74/77 0.51 1.00 0.68 0.81 0.99 0.89

02 white-bucket 65/86 0.57 1.00 0.73 0.76 0.98 0.86

02 large-bucket 30/121 0.80 1.00 0.89 0.86 1.00 0.92

03 fat-lips 89/62 0.56 1.00 0.71 0.77 0.99 0.87

03 white-bedspread 59/92 0.62 1.00 0.76 0.74 0.99 0.85

03 red-details 56/95 0.54 1.00 0.78 0.75 0.99 0.85

04 black-person 75/76 0.52 1.00 0.69 0.84 0.97 0.90

04 raised-arms 35/116 0.62 1.00 0.76 0.73 1.00 0.84

05 sitting-people 38/113 0.75 1.00 0.86 0.86 0.96 0.81

05 green-coat 38/113 0.75 1.00 0.86 0.77 1.00 0.87

05 white-hair 28/123 0.81 1.00 0.90 0.77 1.00 0.87

06 pink-bedspread 79/72 0.52 1.00 0.68 0.79 0.99 0.88

06 blue-blanket 74/77 0.51 1.00 0.68 0.83 0.97 0.89

06 blue-coat 67/84 0.56 1.00 0.71 0.77 0.99 0.87

08 black-man 111/40 0.72 1.00 0.84 0.86 0.96 0.91

08 blue-cap 35/116 0.77 1.00 0.87 0.72 1.00 0.84

08 barbed-wire 25/126 0.83 1.00 0.91 0.85 1.00 0.92

09 yellow-shorts 51/100 0.54 1.00 0.70 0.75 0.98 0.85

09 plaid-shorts 45/106 0.70 1.00 0.82 0.80 0.99 0.89

09 blue-shirt 37/114 0.75 1.00 0.86 0.77 0.97 0.86

10 dry-grassland 40/111 0.74 1.00 0.85 0.83 0.99 0.90

10 elderly-woman 30/121 0.80 1.00 0.89 0.83 0.99 0.90

10 red-pants 30/121 0.80 1.00 0.89 0.75 1.00 0.86

Mean 51/100 0.68 1.00 0.80 0.80 0.99 0.88

Best F1 results are highlighted

Table 4Mean Dice coefficients and standard deviation per input scene

Baseline PersonalityDoc

Scene Mean SD Mean SD

01 0.00 0.00 0.27 0.32

02 0.00 0.00 0.16 0.30

03 0.42 0.35 0.42 0.35

04 0.00 0.00 0.30 0.41

05 0.00 0.00 0.14 0.24

06 0.25 0.28 0.32 0.24

08 0.56 0.41 0.34 0.29

09 0.00 0.00 0.35 0.28

10 0.00 0.00 0.21 0.32

Mean 0.14 0.12 0.28 0.31

Best results are highlighted
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The current experiment will once againmake use of supervisedmachine learningmeth-
ods to select properties based on a target personality. Unlike the discourse-level CS
experiment, however, in the present case, we go one step further and use the selected
properties in an actual REG algorithm in order to generate personality-dependent object
descriptions.

Data

Participants of the data collection task in [34] were also requested to produce a number
of referring expressions under controlled circumstances, resulting in the b5-ref corpus of
definite descriptions. The corpus was built by making use of a standard referential task—
of the kind commonly found in data collection tasks for REG (e.g. [46–48])—in which
participants were presented with a series of 12 referential contexts built from the Face
Place image database [49] as in the previous Fig. 3 andwere requested to uniquely describe
a particular target by completing a sentence in the form ‘The person highlighted in red is
the...’ for each scene.
Each context image displayed six human faces with various physical and affective traits.

Different situations of reference required participants to deal with various levels of ambi-
guity and properties with different degrees of salience (e.g. a scene containing a single,
prominent smiling person, or several characters with a similar hair style). For further
details, we refer to [34].
A corpus of 1822 word strings representing face descriptions was obtained. In

order to use the data in our current CS study, both input scenes and their descrip-
tions were semantically annotated by two judges according to a 27-attribute annota-
tion scheme corresponding to the most frequent information observed in the elicited
data.
Unlike the scenes in the b5-text domain considered in the previous experiment, we

notice that b5-ref referential contexts are considerably more homogeneous, that is, all
contexts depict human faces in a similar fashion. With few exceptions, the correspond-
ing descriptions are mostly limited to a small set of possible attributes (e.g. gender, race),
which in principle allows us to model a single set of more general properties for all con-
texts (as opposed to modelling scene-specific properties). For instance, a single attribute
smile is taken to represent any instance of smile (or lack of it) for any human character
in all the 12 contexts, which in turn enables the use of standard general-purpose REG
algorithms as in [30] and others as discussed below.
The values of certain attributes (e.g. gender, race) were obtained automatically from the

meta data available from Face Place [49]. Others, by contrast, were annotated by choos-
ing the value chosen by the majority of speakers was selected. Table 5 summarises the
ten most frequent attributes in the corpus. From these statistics we notice that gender
information is included in nearly all (94%) descriptions. This suggests that the role of
personality in selecting gender, if any, is comparatively small. For that reason, in the exper-
iment to follow, the gender attribute will always included in the generated descriptions
regardless of the input personality traits provided.
We notice also that both isYoung and eyebrows have only one possible value each.

Attributes of this kind—which have no discriminatory power (e.g. because all stimuli
images depicted people who have eyebrows and who are reasonably young)—are often
disregarded in standard REG [30, 50]. Given their ubiquity in real language use, however,
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Table 5Most frequent referential attributes found in the corpus descriptions

Attribute Possible values Instances

Gender {male,female} 1707

Race {asian,black,caucasian} 794

Smile {yes,no} 784

isYoung {yes} 705

hair.colour {dark,blonde} 633

hair.length {short,long } 434

Emotion {positive,negative,neutral} 266

eye.colour {light,dark} 191

Ponytail {yes,no} 174

Eyebrows {other} 156

these attributes will be kept as part of the present CS model, and we expect our REG
algorithms to handle them appropriately.
The annotated descriptions—which are represented as sets of attribute-value pairs—

were divided into training and test sets in a balanced fashion to ensure that descriptions
produced by every speaker appeared in both subsets in similar proportions. To this end,
20 random descriptions produced by every speaker were kept as training data, and the
remaining two descriptions were kept as test data. One thousand five hundred eighty-
two training descriptions and 240 test descriptions were obtained in this way, roughly
corresponding to a 83:17 split.

Models

We follow [32] and others and implement a machine learning REG model based on a
series of individual classifiers. More specifically, we built a binary decision-tree classi-
fier for every attribute under consideration (except gender, as discussed in the previous
section.) Thus, for instance, a classifier predicts whether to select the hair.colour attribute
in a given context, and a separate classifier predicts whether to select the smile attribute
and so forth. However, since many of the 27 possible attributes available from the b5-ref
corpus annotation (cf. the “Data” section) are infrequent, in what follows, we shall focus
on the subset of the ten most frequent attributes described in the previous Table 5, which
correspond to over 81% of all attributes that appear in this domain.
Each binary classifier—which decides whether a given attribute a should be selected

or not to appear in a referring expression under construction—may take as an input two
kinds of features, hereby called context and personality features. These are discussed in
turn as follows.
As in standard REG, the present work relies heavily on context features as an input.

Features of this kind are intended to represent the referential context within which the
communication is taking place and, accordingly, are computed from the underlying input
scene specification. In the present study, for every possible attribute of the target object,
two kinds of context features are computed: discriminatory power (as defined in [30]) and
average attribute frequencies.
Given an attribute a of the target object, discriminatory power represents the number

of distractor objects that would be ruled out should a be selected, and it is intended to
motivate the usefulness of selecting a for the purpose of disambiguation. For instance, in a
scene where all objects have the same colour, selecting the colour attribute would not help
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disambiguate the reference, that is, colour has zero discriminatory power in this context.
By contrast, in a scene that includes n objects whose colour is different from the colour of
the target object, the discriminatory power of colour equals n.
As a second kind of context feature, we also consider the average frequency of a in that

particular scene as seen in training data. Features of this kind are intended to model (in a
machine learning setting) context-dependent preferences not unlike the preferred list of
attributes parameter in the incremental approach [30] and may be thought of as a means
to model domain preferences that cannot be explained by the need to avoid ambiguity
alone. This may be the case, for instance, of the well-known human preference for colour
even in contexts in which colour has little or no discriminatory power [51].
Finally, in addition to the above context features, the present model also considers five

personality features representing the Big Five traits associated with the speakers who
produced each description. Each of these five features—extraversion, agreeableness, con-
scientiousness, neuroticism, and openness to experience—is modelled as a scalar value
obtained from the personality-labelled corpus (cf. the “Data” section).
For every training description L produced by a human speaker s in a context C, context

and personality features are combined to make a number of learning instances as follows.
Assuming that the model will be limited to the ten most frequent target attributes in the
domain as discussed in the “Data” section, the full feature set will consist of 25 features:
ten context features representing the discriminatory power of each target attribute (e.g.
the fact that gender rules out four (female) distractor objects), ten context features repre-
sent their average frequencies in the training data (e.g. modelling the fact that emotion is
the least frequently chosen attribute in this particular scene), and five personality features
representing the Big Five traits of the target speaker.

REG algorithm

Based on the machine learning REG strategy discussed above, we envisage a simple
REG algorithm—hereby called PersonalityREG - that uses both context and personality
information to perform REG content selection. This is illustrated in Algorithm 1.

Algorithm 1 A REG strategy based on pre-trained classifiers.
1: functionMAKEDESCRIPTION(r, C, b)
2: L ← {}
3: A ← attributes(r)
4: for ai ∈ A do
5: v ← value(r, ai)
6: if Predicts[ ai, r,C, b]== True then
7: L ← L ∪ (ai, v)
8: return L

The algorithm takes as an input the target r to be described within a context C con-
taining a number of distractor objects and their properties represented as attribute-value
pairs and a target personality profile b. As an output, the algorithm returns a set of prop-
erties L representing a description of r that resembles what a human speaker with a
personality profile b would produce in the same situation.
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The above pseudo-code makes use of three auxiliary functions: attributes(), which is
meant to return the set of all possible attributes of an object (e.g. gender, hair.colour),
value(), which returns the value of a given attribute for the referred object (e.g. the value
‘blonde’ for the attribute hair.colour), and Predicts(), which invokes the relevant classifier
and estimates whether the given attribute would be selected by a human with personality
b or not in this situation.
The algorithm starts by making an empty output description L (line 2) and by obtaining

the set of attributes of the target (line 3). For every attribute, the corresponding classifier
is invoked (6) and if predicted, the content is selected for inclusion in L (7).
To illustrate the kinds of description obtained by this simple procedure, let us consider

the goal of generating a uniquely identifying description for the target o4 in the previous
Fig. 3. Assuming that the pre-trained classifiers would predict the selection of, e.g. gender,
race and smile only, the resulting description would take the form of a set of properties
L = <gender-male, race-black, smile-no>, which could be later realised as, e.g. ‘the black
man who looks serious’.
As in [32] and similar machine learning approaches to REG, we notice that the present

strategy does not explicitly check whether a given attribute is discriminatory. As a result,
the algorithm may end up including a certain amount of redundancy in the output
description. This was indeed the case of the previous example, in which the reference to
smile is redundant, and a shorter description (e.g. ‘the black man’) would suffice for dis-
ambiguation. Although our model does not disregard discriminatory power entirely (i.e.
discriminatory power values are implicitly modelled as learning features), this behaviour
contrasts purely algorithmic solutions [30] in which only discriminatory attributes are to
be selected. Allowing a certain amount of redundant information is however common
in human language production [51], and allowing the selection of non-discriminatory
attributes may be crucial in some (or perhaps most) domains, as illustrated by the case of
isYoung and eyebrows discussed in the “Data” section.

Evaluation

In order to assess the predictions made by PersonalityREG, we make use of three baseline
systems as follows. The first system is a straightforward implementation of the incremen-
tal approach in [30] that iterates over a pre-defined list of preferred attributes computed
from the training data. Despite its popularity in the REG field, however, we notice that
this baseline does not have access to the same information provided to the alternatives
under consideration and therefore cannot be expected to outperform them. Thus, the
incremental baseline is included in the present evaluation for illustration purposes only.
The second baseline system is a simplified version of PersonalityREG that does

not make use of personality information, and it is therefore similar to the machine
learning version of the Dale & Reiter incremental algorithm [30] discussed in the
“Content selection for referring expression generation” section. This model, hereby called
ContextREG, relies exclusively on context features provided by the input scene, and it
is intended to investigate the possible benefits of taking personality information into
account. As in the incremental approach, this strategy makes us of a list of preferred
attributes computed from the training data.
Finally, a third baseline system replaces the personality information in PersonalityREG

for a unique identifier of each speaker, which is a popular strategy in speaker-dependent
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REG (cf. the “Content selection for referring expression generation” section), and not
unlike [31] and others. This model, hereby called IndividualREG, is intended to inves-
tigate whether personality-dependent REG may outperform a highly personalised REG
strategy of this kind.
In all machine learning models, individual classifiers for each referential attribute

under consideration were built using Decision Tree induction. Given the small size and
sparsity of our training dataset, class imbalance was once again minimised by making
use of SMOTE [44] oversampling with k=5 neighbours. The three main models—
PersonalityREG, ContextREG and IndividualREG—give rise to the following research
hypotheses.

h2a: The use of personality information about a target speaker enables a REG model to select
referential contents that resemble more closely the choices made by humans in this task if
compared to a similar model that does not have access to personality information.

h2b The use of personality information about a target speaker enables a REG model to
select referential contents that resemble more closely the choices made by humans in this task
if compared to a similar model in which personality information has been replaced for the
explicit identifier of the target speaker.

Hypothesis h2awill be tested by comparing referring expressions (represented as sets of
semantic properties) generated by PersonalityREG with the same descriptions generated
by ContextREG. We expect that, on average, descriptions produced by PersonalityREG
will resemble human descriptions more closely than those generated by ContextREG.
Hypothesis h2b will be tested by comparing descriptions generated by PersonalityREG
with the same descriptions generated by individualREG. We expect that, on average,
descriptions produced by PersonalityREG will resemble human descriptions more closely
than those generated by IndividualREG.
Evaluation proper consists of generating every description found in the test data using

each of the three models separately and by comparing their output to the original
(human-produced) descriptions. As in the case of discourse-level CS, we once again mea-
sure the degree of overlap between system and human descriptions by computing Dice
coefficients [45].

Classification results

Before discussing the actual CS results, we start by assessing the predictions made by
the individual classifiers using 10-fold cross validation over the entire dataset. Results
obtained by using each of the three feature sets—context features only, speaker’s identi-
fiers, and personality information, respectively—are shown in Table 6.
Generally speaking, the personality-aware classifiers appear to outperform the alterna-

tives. This effect will be made more explicit when these classifiers are put to use as part
of the actual REG task discussed in the next section.

Content selection results

For each of the four REGmodels under evaluation—theContextREG, IndividualREG, and
Incremental baselines, and the proposed PersonalityREG model—Table 7 shows mean
Dice scores obtained in the generation of test descriptions referring to each input scene
in the corpus.



Ramos et al. Journal of the Brazilian Computer Society            (2020) 26:2 Page 18 of 21

Table 6 Precision (P), recall (R), and F1-measure (F) 10-fold cross validation results on training data

Context info Speaker ids Personality info

Class P R F P R F P R F

isYoung 0.56 0.50 0.52 0.34 0.60 0.48 0.50 0.66 0.58

Race 0.78 0.81 0.79 0.40 0.58 0.49 0.63 0.62 0.65

Emotion 0.68 0.57 0.62 0.55 0.82 0.64 0.70 0.83 0.73

Smile 0.70 0.65 0.69 0.38 0.64 0.50 0.58 0.65 0.60

Eyebrows 0.62 0.68 0.59 0.61 0.85 0.69 0.74 0.89 0.79

hair.colour 0.70 0.59 0.65 0.47 0.69 0.57 0.65 0.72 0.66

hair.length 0.69 0.79 0.72 0.52 0.78 0.59 0.66 0.75 0.67

Ponytail 0.86 0.98 0.87 0.81 0.89 0.83 0.89 0.91 0.89

eye.colour 0.68 0.76 0.72 0.60 0.82 0.67 0.78 0.89 0.81

Mean 0.70 0.70 0.69 0.52 0.74 0.61 0.68 0.77 0.71

Best F1 results are highlighted

Regarding hypothesis h2a (the use of personality information in REG), we notice that,
on average, PersonalityREG outperforms its personality-free counterpart ContextREG.
The difference is significant according to a Wilcoxon signed rank test (W =13618, z =
7.89, p <0.0001). The use of personality information about a target speaker enables
the REG model to generate descriptions that resemble more closely those produced by
humans. This offers support to hypothesis h2a.
Regarding hypothesis h2b (the use of personality information versus speaker’s identi-

fiers), we notice that, on average, PersonalityREG outperforms the speaker-specific strat-
egy IndividualREG. The difference is also significant (W =6104, z =4.08, p <0.0001).
The use of personality information about a target speaker for content selection is superior
the use of speaker’s identifiers. This offers support to h2b.

Final remarks
This paper has focused on the computer side of human-computer natural language inter-
action, addressing the issue of how the use of personality information may help the
development of more natural or human-like systems of this kind. The present study is

Table 7Mean Dice coefficients and standard deviation per input scene

ContextREG IndividualREG Incremental PersonalityREG

Scene Mean SD Mean SD Mean SD Mean SD

01 0.65 0.10 0.78 0.16 0.62 0.33 0.77 0.17

02 0.51 0.18 0.56 0.29 0.56 0.29 0.70 0.23

03 0.56 0.17 0.62 0.17 0.53 0.16 0.66 0.24

04 0.56 0.18 0.58 0.18 0.56 0.13 0.65 0.22

05 0.53 0.14 0.54 0.22 0.40 0.12 0.66 0.16

06 0.62 0.20 0.63 0.23 0.34 0.26 0.67 0.21

07 0.55 0.16 0.62 0.15 0.39 0.15 0.67 0.23

08 0.60 0.16 0.70 0.25 0.79 0.21 0.73 0.22

09 0.49 0.19 0.67 0.21 0.71 0.27 0.74 0.17

10 0.54 0.17 0.61 0.24 0.57 0.32 0.65 0.23

11 0.65 0.14 0.62 0.17 0.71 0.30 0.63 0.19

12 0.57 0.16 0.59 0.23 0.43 0.19 0.68 0.18

Mean 0.57 0.17 0.63 0.21 0.55 0.27 0.69 0.20

Best results are highlighted
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among the first to establish an (admittedly tentative) relation between personality and
content selection (as opposed to the more well-documented relation between personality
and surface realisation) and, to the best of our knowledge, is the first of its kind to address
this issue at both discourse (or macro planning) and reference (or microplanning) levels.
Using personality information to decide which contents (as opposed to which surface

forms) should appear in an output text opens a number of opportunities for customisable
NLG. At the discourse level, for instance, storytelling systems may be able to produce
narratives in which the very plot is driven by a target personality type, potentially making
them more compelling or engaging. Effects of this kind are of course more subtle at the
reference level, but personality may still play a similar role by reflecting the preferences of
a target audience when describing a particular entity (e.g. by focusing on positive features
of a character) Similar applications in education, advertisement and others may also be
envisaged.
Despite these opportunities, however, the scale of the present experiments are clearly

small, and we are aware that their results represent only a first step towards robust
personality-dependent CS. In particular, the present focus on machine learning does not
further the issue of which contents may be triggered (or favoured) by certain personality
types. An investigation of this kind—which remains currently unsupported by our overly
small datasets—is left as future work.
A second aspect of the present study that requires further development is the question

of how personality-dependent CS models of the kinds under discussion may actu-
ally affect a target user at the receiver end of an NLG system. Once again, previous
work in the field has shown that effects of this kind hold for personality-dependent
surface realisation and other NLG tasks, but it remains unclear to which extent
personality-dependent CS may have a similar effect. A study of this kind is also left as
future work.
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