
Journal of the
Brazilian Computer Society

Nguyen et al. Journal of the Brazilian Computer
Society (2019) 25:10
https://doi.org/10.1186/s13173-019-0091-9

RESEARCH Open Access

Using weaker consistency models with
monitoring and recovery for improving
performance of key-value stores
Duong Nguyen1* , Aleksey Charapko2, Sandeep S. Kulkarni1 and Murat Demirbas2

Abstract

Consistency properties provided bymost key-value stores can be classified into sequential consistency and eventual
consistency. The former is easier to program with but suffers from lower performance whereas the latter suffers from
potential anomalies while providing higher performance. We focus on the problem of what a designer should do if
he/she has an algorithm that works correctly with sequential consistency but is faced with an underlying key-value
store that provides a weaker (e.g., eventual or causal) consistency. We propose a detect-rollback based approach: The
designer identifies a correctness predicate, say P, and continues to run the protocol, as our system monitors P. If P is
violated (because the underlying key-value store provides a weaker consistency), the system rolls back and resumes
the computation at a state where P holds.
We evaluate this approach with graph-based applications running on the Voldemort key-value store. Our experiments
with deployment on Amazon AWS EC2 instances show that using eventual consistency with monitoring can provide
a 50–80% increase in throughput when compared with sequential consistency. We also observe that the overhead of
the monitoring itself was low (typically less than 4%) and the latency of detecting violations was small. In particular, in
a scenario designed to intentionally cause a large number of violations, more than 99.9% of violations were detected
in less than 50ms in regional networks (all clients and servers in the same Amazon AWS region) and in less than 3 s in
global networks.
We find that for some applications, frequent rollback can cause the program using eventual consistency to effectively
stall. We propose alternate mechanisms for dealing with re-occurring rollbacks. Overall, for applications considered in
this paper, we find that even with rollback, eventual consistency provides better performance than using sequential
consistency.

Keywords: Predicate detection, Distributed debugging, Distributed monitoring, Distributed snapshot, Distributed
key-value stores, Rollback

Introduction
Distributed key-value data stores have gained increasing
popularity due to their simple data model and high perfor-
mance [1]. A distributed key-value data store, according
to CAP theorem [2, 3], cannot simultaneously achieve
sequential consistency and availability while tolerating
network partitions. Since fault tolerance, especially the
provision of an acceptable level of service in the pres-
ence of node or channel failures, is a critical dependability

*Correspondence: nguye476@cse.msu.edu
1Michigan State University, MI 48824 East Lansing, USA
Full list of author information is available at the end of the article

requirement of any system, network partition tolerance
is a necessity. Hence, it is inevitable to make trade-
offs between availability and consistency, resulting in a
spectrum of weaker consistency models such as causal
consistency and eventual consistency [1, 4–9].
Weaker consistency models are attractive because they

have the potential to provide higher throughput and
higher customer satisfaction. On the other hand, weaker
consistency models suffer from data conflicts. Although
such data conflicts are infrequent [1], such incidences will
affect the correctness of the computation and invalidate
subsequent results.

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-019-0091-9&domain=pdf
http://orcid.org/0000-0003-4894-5217
mailto: nguye476@cse.msu.edu
http://creativecommons.org/licenses/by/4.0/

Nguyen et al. Journal of the Brazilian Computer Society (2019) 25:10 Page 2 of 25

Furthermore, developing algorithms for the sequential
consistency model is easier than developing those for
weaker consistency models. Moreover, since the sequen-
tial consistency model is more natural, the designer may
already have access to an algorithm that is correct only
under sequential consistency. Thus, in this case, the ques-
tion for the designer is what to do if the underlying system
provides a weaker consistency or if the underlying sys-
tem provides better performance under weaker consistency
models?
As an illustration of such a scenario, consider a dis-

tributed computation that relies on a key-value store to
arrange exclusive access to a critical resource for the
clients. If the key-value store employs sequential consis-
tency and the clients use Peterson’s algorithm, mutual
exclusion is guaranteed [10], but the performance would
be impeded due to the strict requirement of sequen-
tial consistency. If eventual consistency is adopted, then
mutual exclusion is violated.
In this case, the designer has two options: (1) either

develop a brand new algorithm that works under even-
tual consistency or (2) run the algorithm by pretending
that the underlying system satisfies sequential consistency
but monitor it to detect violations of the mutual exclu-
sion requirement. In case of the first option, we potentially
need to develop a new algorithm for every consistency
model used in practice, whereas in case of the second
option, the underlying consistency model is irrelevant
although we may need to rollback the system to an ear-
lier state if a violation is found. While the rollback in
general distributed systems is a challenging task, exist-
ing approaches have provided rollback mechanisms for
key-value stores with low overhead [11]. Moreover, it is
possible to develop efficient application-specific rollback
algorithms by exploiting the properties of applications.
The predicate P to monitor depends on the applica-

tion. For the mutual exclusion application we alluded to
above, P might be exclusive access to the shared resource.
As another example, consider the following. For many
distributed graph processing applications, the clients pro-
cess a given set of graph nodes. Since the state of a node
depends on its neighbors, the clients need to coordinate
to avoid updating two neighboring nodes simultaneously;
otherwise, they may read inconsistent information. In this
case, predicate P is the conjunction of smaller predicates
and each smaller predicate proscribes the concurrent
access to one pair of neighboring graph nodes (note that
pairs of neighboring nodes belonging to the same client do
not need monitoring). We note that in a general problem,
a smaller predicate may involve any number of processes.
The application will continue executing as long as pred-
icate P is true. If P is violated, the system will be rolled
back to an earlier correct state from where subsequent
execution will resume (cf. Fig. 1).

We require that themonitoringmodule is non-intrusive,
i.e., it allows the underlying system to execute unimpeded.
To evaluate the effectiveness of the monitors, we need
to identify three parameters: (1) the benefit of using the
monitors instead of relying on sequential consistency, (2)
the overhead of the monitors, i.e., how the performance is
affected when we introduce the monitoring module, and
(3) detection latency of the monitors, i.e., how long the
monitors take to detect violation of P. (Note that since
the monitoring module is non-intrusive, it cannot prevent
violation of P.)
Contributions of the paper.We implement the monitors

for linear and semilinear predicates based on the algo-
rithms in [12–14] and develop a rollback algorithm for
some graph-based applications. We integrate our proto-
type into LinkedIn’s Voldemort key-value store and run
experiments on Amazon AWS network. Besides Amazon
AWS network, we also run experiments on our local lab
network where we can control network condition such as
network latency. We evaluate our approach by running
graph-based applications motivated by the task of Social
Media Analysis on social graphs and Weather Monitor-
ing on planar graphs. The source code and experiment
results are available at [15]. The observations from the
experiments are as follows:

• On Amazon AWS network, we run both sequential
consistency without the monitors and eventual
consistency with the monitors. We observe that—
even with the overhead of the monitors–eventual
consistency achieves a higher throughput than
sequential consistency does. Specifically, the
aggregate client throughput was improved by
50–80% when running Social Media Analysis
motivated applications and by 37% on Weather
Monitoring motivated applications. Furthermore, in
those experiments, we find that violation of mutual
exclusion is not frequent. For example, on Social
Media Analysis, a violation occurred every 4500 s on
average and was detected within 3 s.

• We also evaluate the overhead of the monitoring
module if it is intended solely for debugging or
runtime monitoring. We find that when the monitors
were used with sequential consistency, the overhead
was at most 8%. And, for eventual consistency, the
overhead was less than 4%.

• We design test cases with a large number of
violations to stress the monitors. In those test cases,
more than 99.9% of violations were detected within
50 ms for Amazon AWS regional network (all
machines in the same region) and within 3 s for the
global network (machines in multiple regions).

• To evaluate the final benefit the applications can
achieve after accounting for the cost of the monitors

Nguyen et al. Journal of the Brazilian Computer Society (2019) 25:10 Page 3 of 25

Fig. 1 The detect-rollback approach: when the predicate of interest is violated, system state is restored to the most recent consistent snapshot and
the computation resumes from there

and rollback, we run graph-based applications with
our rollback algorithm on the local lab network. We
observe the final benefit varies depending on the
properties of applications. Specifically, on
non-terminating applications such as Weather
Monitoring, the progress of the application running
on eventual consistency with monitors and rollback
was 45–47% faster than running on sequential
consistency. On the other hand, on terminating
applications such as Social Media Analysis, the final
application progress benefit was 10–20%. One of the
reasons for the reduced benefit in terminating
applications is that at the end of terminating
execution, there are a few nodes to be processed;
thus, the chance of conflicts and recurring violations
is increased during this time. In fact, if the application
keeps using eventual consistency, the computation
may stall due to repeated rollbacks (livelocks). We
use some strategies such as backoff and adaptive
consistency to handle the livelock issue. We also
observe that terminating applications using our
approach progressed 16–28% faster than using
sequential consistency during the first 90 % of the
work and 10–20% faster overall (because it has to
switch from eventual consistency to sequential
consistency during the end of the execution).

To the best of our knowledge, our work is the first to
experimentally quantify and analyze the benefits of even-
tual consistency with monitoring and rollback (compared
to sequential consistency) on key-value stores. We also
propose an efficient rollback algorithm for graph-based
applications. Our results suggest that several correctness-
sensitive applications are able to take advantage of weaker
consistency models from the underlying data store to
improve their performance while still preserving the
correctness/safety properties. This opens an alternate
design option and gives more flexibility to the application
designer.

Organization of the paper: The “System architecture”
section describes the architecture of the key-value store
used in this paper. In “The problem of predicate detec-
tion in distributed systems” section, we define the notion
of causality and identify how the uncertainty of event
ordering in distributed systems affects the problem of
predicate detection. The “A framework for optimistic exe-
cution” section describes the overall architecture of the
system using monitors. The “Monitoring module” section
explains the design of the predicate detection module
used in this paper. In the “Rollback from violations”
section, we discuss rollback approaches when a violation
is detected and develop a rollback algorithm for some
graph-based applications. The “Evaluation results and dis-
cussion” section presents experimental results and dis-
cussion. The “Related work” section compares our paper
with related work and we conclude the paper in the
“Conclusion” section.

System architecture
Distributed key-value store
We utilize the standard architecture for key-value stores.
Specifically, the data consists of (one or more) tables with
two fields, a unique key and the corresponding value. The
field value consists of a list of < version, value > pairs. A
version is a vector clock that describes the origin of the
associated value. It is possible that a key has multiple ver-
sions when different clients issue PUT (write) requests for
that key independently. When a client issues a GET (read)
request for a key, all existing versions of that key will be
returned. The client could resolve multiple versions for
the same key on its own or use the resolver function pro-
vided from the library. To provide efficient access to this
table, it is divided into multiple partitions. Furthermore,
to provide redundancy and ease of access, the table is
replicated across multiple replicas.
To access the entries in this table, the client utilizes

two operations, GET and PUT. The operation GET(x)

Nguyen et al. Journal of the Brazilian Computer Society (2019) 25:10 Page 4 of 25

provides the client with the value (or values if multi-
ple versions exist) associated with key x. The operation
PUT(x, val) changes the value associated with key x to
val. The state of the servers can be changed only by PUT
requests from clients.

Voldemort key store
Voldemort is LinkedIn’s open source equivalence of Ama-
zon’s Dynamo key-value store. In Voldemort, clients are
responsible for handling replication. When connecting to
a server for the first time, a client receives meta-data
from the server. The meta-data contains the list of servers
and their addresses, the replication factor (N), required
reads (R), required writes (W), and other configuration
information.
When a client wants to perform a PUT (or GET) opera-

tion, it sends PUT (GET) requests to N servers and waits
for the responses for a predefined amount of time (time-
out). If at least W (R) acknowledgments (responses) are
received before the timeout, the PUT (GET) operation is
considered successful. If not, the client performs onemore
round of requests to other servers to get the necessary
number of acknowledgments (responses). After the sec-
ond round, if still less thanW (R) replies are received, the
PUT (GET) operation is considered unsuccessful.
Since the clients do the task of replication, the values

N, R, W specified in the meta-data is only a suggestion.
The clients can change those values for their needs. By
adjusting the value of W, R, and N, the client can tune
the consistency model. For example, if W + R > N and
W > N

2 for every client, then they run on sequential con-
sistency. On the other hand, ifW + R ≤ N then they have
eventual consistency.

The problem of predicate detection in distributed
systems
Each process execution in a distributed system results in
changing its local state, sending messages to other pro-
cesses or receiving messages from other processes. In
turn, this creates a partial order among local states of the
processes in distributed systems. This partial order, the
happened-before relation [16], is defined as follows:
Given two local states a and b, we say that a happened

before b (denoted as a → b) if and only if

• a and b are local states of the same process and a
occurred before b,

• There exists a message m such that a occurred before
sending message m and b occurred after receiving
message m, or

• There exists a state c such that a → c and c → b.

We say that states a and b are concurrent (denoted as
a‖b) if and only if ¬(a → b) ∧ ¬(b → a)

The goal of a predicate detection algorithm is to ensure
that the predicate of interest P is always satisfied during
the execution of the distributed system. In other words,
we want monitors to notify us of cases where predicate P
is violated.
To detect whether the given predicate P is violated, we

utilize the notion of possibilitymodality [17, 18]. In partic-
ular, the goal is to find a set of local states e1, e2, ..en such
that

• One local state is chosen from every process,
• All chosen states are pairwise concurrent.
• The predicate ¬P is true in the global state

〈e1, e2, · · · , en〉

Vector clocks and hybrid vector clocks
To determine whether state a happened before state b,
we can utilize vector clocks or hybrid vector clocks. Vec-
tor clocks, defined by Fidge and Mattern [19, 20], are
designed for asynchronous distributed systems that make
no assumption about underlying speed of processes or
about message delivery. Hybrid vector clocks [21] are
designed for systems where clocks of processes are syn-
chronized within a given synchronization error (denoted
as parameter ε in this paper). While the size of vector
clocks is always n, the number of processes in the system,
hybrid vector clocks have the potential to reduce the size
to less than n.
Our predicate detection module can work with either of

these clocks. For simplicity, we recall hybrid vector clocks
(HVC) below.
Every process maintains its own HVC. HVC at pro-

cess i, denoted as HVCi, is a vector with n elements
such that HVCi[j] is the most recent information pro-
cess i knows about the physical clock of process j.
HVCi[i]= PTi, the physical time at process i. Other
elements HVCi[j] , j �= i is learned through the com-
munication between processes. When process i sends
a message, it updates its HVC as follows: HVCi[i]=
PTi, HVCi[j]=max(HVCi[j] ,PTi − ε) for j �= i. Then
HVCi is piggy-backed with the outgoing message. Upon
reception of a message msg, process i will use the piggy-
backed hybrid vector clock HVCmsg to update its HVC:
HVCi[i]= PTi, HVCi[j]=max(HVCmsg[j] ,PTi − ε) for
j �= i.
Hybrid vector clocks are vectors and can be compared

as usual. Given two hybrid vector clock HVCi and HVCj,
we say HVCi is smaller than HVCj, denoted as HVCi <

HVCj, if and only if HVCi[k]≤ HVCj[k] ∀k and ∃l :
HVCi[l]< HVCj[l]. If ¬(HVCi < HVCj) ∧ ¬(HVCj <

HVCi), then the two hybrid vector clocks are concurrent,
denoted as HVCi||HVCj.
If we set ε = ∞, then hybrid vector clocks have the

same properties as vector clocks. If ε is finite, certain

Nguyen et al. Journal of the Brazilian Computer Society (2019) 25:10 Page 5 of 25

entries in HVCi can have the default value PTi − ε

and their representation can be compressed. For exam-
ple, if n = 10, ε = 20, a hybrid vector clock
HVC0 =[100, 80, 80, 95, 80, 80, 100, 80, 80, 80] could be
represented by n(10) bits 10010010001 and a list of three
integers 100, 95, and 100, instead of a list of ten integers.
We use HVC in our implementation to facilitate its use

when the number of processes is very large. However, in
the experimental results, we ignore this optimization and
treat as if ε is ∞.

Different types of predicate involved in predicate detection
In the most general form, predicate P is an arbitrary
boolean function on the global state and the problem
of detecting ¬P is NP-complete [14]. However, for some
classes of predicates such as linear predicates, semilin-
ear predicates, and bounded sum predicates, there exist
efficient detection algorithms [12–14]. In this paper, we
adapt these algorithms for monitoring applications run-
ning on key-value stores. Since the correctness of our
algorithms follows from the existing algorithms, we omit
the detailed discussion of the algorithms and focus on
their effectiveness in key-value stores.

A framework for optimistic execution
The overall framework for optimistic execution in key-
value store (i.e., running eventual consistency with mon-
itors and rollback) is as shown in Fig. 2. In addition to
the actual system execution in the key-value store, we
include local detectors for every server (cf. Fig. 3). These
local detectors provide information to the monitors. Note
that the desired predicate P can be a conjunction of sev-
eral smaller predicates and the monitors are designed to
ensure that each smaller predicate, says Pi (which involves
one or more processes), continues to be true during the

execution. In other words, the monitors are checking if a
consistent snapshot where ¬Pi is true (thus ¬P is true)
exists.
When the monitors detect violation of the desired prop-

erty P, they notify the rollback module. The monitors also
identify a safe estimate of the start time Tviolate at which
the violation occurred, based on the timestamps of local
states they received.
If the violation of predicate P is rare and the overall

system execution is short, we could simply restart the
computation from the beginning.
If the system computation is long, we can take periodic

snapshots. Hence, when a violation is found, the rollback
module notifies all clients and servers to stop the subse-
quent computation until the restoration to a checkpoint
before Tviolate is complete. The exact length of intervals
between the periodic snapshots would depend upon the
cost of taking the snapshot and the probability of violating
predicate P in the intervals between snapshots.
In case the violations are frequent, feedbacks from the

monitor can help the clients to adjust accordingly. For
example, if Voldemort clients are running in eventual con-
sistency and find that their computations are restored too
frequently, they can switch to sequential consistency by
tuning the value of R and W without the involvement of
the servers (recall that in the Voldemort key-value store,
the clients are responsible for replication).
Alternatively, we can utilize approach such as Retro-

scope [11]. Retroscope allows us to dynamically create a
consistent snapshot that was valid just before Tviolate if
Tviolate is within its window log. This is possible if the
predicate detection module is effective enough to detect
the violation promptly. In [11], it authors have shown that
it is possible to enable rollback for up to 10 min while
keeping the size of logs manageable.

Fig. 2 An overall framework for optimistic execution in key-value store

Nguyen et al. Journal of the Brazilian Computer Society (2019) 25:10 Page 6 of 25

Fig. 3 Architecture of predicate detection module

The approach in Retroscope can be further optimized
by identifying the cause of the rollback. For instance, recall
the example from the Introduction that considers a graph
application and requires that two clients do not operate
on neighboring nodes simultaneously. Suppose a violation
is detected due to clients C1 and C2 operating on neigh-
boring nodes V1 and V2. In this case, we need to rollback
C1 and C2 to states before they operated on V1 and V2.
However, clients that do not depend upon the inconsistent
values of nodes V1 and V2 need not be rolled back. Hence,
unnecessary rollback can be avoided.

Monitoringmodule
The monitoring module is responsible for monitoring and
detecting violation of the global predicate of interest in
a distributed system. The structure of the module is as
shown in Fig. 3. It consists of local predicate detectors
attached to each server and the monitors independent of
the servers. The local predicate detector caches the state
of its host server and sends information to the monitors.
This is achieved by intercepting the PUT requests for vari-
ables that may affect the predicate being monitored. The
monitors run predicate detection algorithm based on the
information received to determine if the global predicate
of interest P has been violated.
We anticipate that the predicate of interest P is a con-

junction of all constraints that should be satisfied during
the execution. In other words, P is of the form P1 ∧
P2 ∧ · · ·Pl where each Pi is a constraint (involving one
or more processes) that the program is expected to sat-
isfy. Each Pi can be of different types (such as linear

or semilinear). The job of the monitoring module is to
identify an instance where P is violated, i.e., to deter-
mine if there is a consistent cut where ¬P1 ∨ ¬P2 ∨
· · · ¬Pl is true. In order to monitor multiple predicates,
the designer can have multiple monitors with one moni-
tor for each predicate Pi or one monitor for all predicates
Pis. In the former case, the detection latency is small
but the overheads can be unaffordable when the num-
ber of predicates is large since we need many monitor
processes. In the latter case, the overhead is small but
the detection latency is long. We adopt a compromise:
our monitoring module consists of multiple monitors and
each monitor is responsible for multiple predicates. The
predicates are assigned to the monitors based on the hash
of the predicate names in order to balance the monitors’
workload.
The number of monitors equals the number of servers

and the monitors are distributed among the machines
running the servers. We have done so to ensure that the
cost of the monitors is accounted for in experimental
results while avoiding overloading a single machine. An
alternative approach is to have monitors on a different
machine. In this case, the trade-off is between CPU cycles
used by the monitors (when monitors are co-located with
servers) and communication cost (when monitors are on
a different machine). Our experiments suggest that in
the latter approach (monitors on a different machine)
monitoring is more efficient. However, since there is no
effective way to compute the increased cost (of machines
in terms of money), we report results where monitors are
on the same machines as the servers.

Nguyen et al. Journal of the Brazilian Computer Society (2019) 25:10 Page 7 of 25

Each (smaller) predicate Pi is a Boolean formula on
the states of some variables. Since any Boolean formula
can be converted to a disjunctive normal form, users can
provide the predicates being detected (¬Pis) in disjunc-
tive normal form. We use the XML format to represent
the predicate. For example, the semilinear predicate, says
¬P1 ≡ (x1 = 1 ∧ y1 = 1) ∨ z2 = 1, in XML format is
shown in Fig. 4. Observe that this XML format also iden-
tifies the type of the predicate (linear, semi-linear, etc.) so
that the monitor can decide the algorithm to be used for
detection.
Implementation of local predicate detectors. Upon

the execution of a PUT request, the server calls the
interface function localPredicateDetector which
examines the state change and sends a message (also
known as a candidate) to one or more monitors if
appropriate. Note that not all state changes cause the
localPredicateDetector to send candidates to the
monitors. The most common example of this is when the
changed variable is not relevant to the predicates being
detected. Other examples depend upon the type of pred-
icate being detected. As an illustration, if predicate ¬P is
of the form x1 ∧ x2, then we only need to worry about the
case where xi changes from false to true.

A candidate sent to the monitor of predicate Pi consists
of an HVC interval and a partial copy of the server local
state containing variables relevant to Pi. The HVC interval
is the time interval on the server when Pi is violated, and
the local state has the values of variables which make ¬Pi
true.
For example, assume the global predicate of interest to

be detected is ¬P ≡ ¬P1 ∨ ¬P2 · · · ∨ ¬Pm where each
¬Pj is a smaller global predicate. Assume that monitor
Mj is responsible for detection of predicate ¬Pj. Con-
sider a smaller predicate, says ¬P2, and for the sake of
the example, assume that it is a conjunctive predicate, i.e.,
¬P2 ≡ (¬LP12

) ∧ (¬LP22
) ∧ ...

(¬LPn2
)
where n is the num-

ber of servers. We want to detect when¬P2 becomes true.
On a server, say server i, the local predicate detector will
monitor the corresponding local predicate ¬LPi2 (or ¬LP2
for short, in the context of server i as shown in Fig. 5).
Since ¬P2 is true only when all constituent local predi-
cates are true, server i only has to send candidates for the
time interval when ¬LP2 is true. In Fig. 5, upon the first
PUT request, no candidate is sent to monitorM2 because
¬LP2 is false during interval

[
HVC0

i ,HVC1
i
]
. After serv-

ing the first PUT request, the new local state makes ¬LP2
true, starting from the time HVC2

i . Therefore, upon the

Fig. 4 XML specification for ¬P ≡ (x1 = 1 ∧ y1 = 1) ∨ z2 = 1

Nguyen et al. Journal of the Brazilian Computer Society (2019) 25:10 Page 8 of 25

Fig. 5 Illustration of candidates sent from a server to monitors corresponding to three conjunctive predicates. If the predicate is semilinear, the
candidate is always sent upon a PUT request of relevant variables

second PUT request, a candidate is sent to monitor M2
because ¬LP2 is true during the interval

[
HVC2

i ,HVC3
i
]
.

This candidate transmission is independent of whether
¬LP2 is true or not after the second PUT request is served.
It depends on whether ¬LP2 is true after execution of the
previous PUT request. That is why, upon the second PUT
request, a candidate is also sent tomonitorM3, but none is
sent to M1. However, if the predicate is not a linear pred-
icate, then upon a PUT request for a relevant variable,
the local predicate detector has to send a candidate to the
associated monitor anyway.
Implementation of the monitors. The task of a moni-

tor is to determine if some smaller predicate Pi under
its responsibility is violated, i.e., to detect if a consistent
state on which ¬Pi is true exists in the system execution.
The monitor constructs a global view of the variables rele-
vant to Pi from the candidates it receives. The global view
is valid if all candidates in the global view are pairwise
concurrent.
The concurrence/causality relationship between a

pair of candidates is determined as follows: sup-
pose we have two candidates Cand1,Cand2 from two
servers S1, S2 and their corresponding HVC intervals[
HVCstart

1 ,HVCend
1

]
,
[
HVCstart

2 ,HVCend
2

]
. Without loss

of generality, assume that ¬ (
HVCstart

1 > HVCstart
2

)
(cf.

Fig. 6).

• If HVCstart
2 < HVCend

1 then the two intervals have
common time segment and Cand1‖Cand2.

• If HVCend
1 < HVCstart

2 , and
HVCend

1 [S1]≤ HVCstart
2 [S2]−ε then interval one is

considered happens before interval two. Note that

HVC[i] is the element corresponding to process i in
HVC. In this case Cand1 → Cand2

• If HVCend
1 < HVCstart

2 , and
HVCend

1 [S1]> HVCstart
2 [S2]−ε, this is the uncertain

case where the intervals may or may not have
common segment. In order to avoid missing possible
violations, the candidates are considered concurrent.

When a global predicate is detected, the monitor
informs the administrator or triggers a designated pro-
cess of recovery. We develop detection algorithms for
the monitors of linear predicates and semilinear pred-
icates based on [13, 14] as shown in Algorithm 1 and
Algorithm 2. Basically, the algorithms have to identify
the correct candidates to update the global state (GS) so
that we would not have to consider all possible combi-
nations of GS as well as not miss the possible violations.
In linear (or semilinear) predicates, these candidates are
forbidden (or semi-forbidden) states. Forbidden states are
states such that if we do not replace them, we would not
be able to find the violation. Therefore, we must advance
the global state along forbidden states. Semi-forbidden
states are states such that if we advance the global state
along them, we would find a violation if there exists
any.
The procedure of advancing the global snapshot GS

along a local state s (s belongs to GS) means the succes-
sor of s is added to GS. The successor of a local state
s is the next local state after s on the same process. As
s is replaced by its successor, the global snapshot GS
“advances” forward.

Nguyen et al. Journal of the Brazilian Computer Society (2019) 25:10 Page 9 of 25

Fig. 6 Illustration of causality relation under HVC interval perspective

When advancing global state along a candidate (which
contains a local state), that candidate may not be con-
current with other candidates existing in the global state.
In that case, we have to advance the candidates to make
them consistent. This is done by consistent(GS) in
the algorithm. If we can advance global state along a can-
didate without calling consistent(GS), that candidate
is called an eligible state. The set of all eligible states
in the global state is denoted as eligible(GS) in the
algorithms. For a more detailed discussion of linear and
semi-linear predicates, we refer to [14].

Algorithm 1 Linear predicate monitor algorithm [13]
1: Input:
2: P � global linear predicate to monitor
3: Variable:
4: GS � global state
5: Initialization:
6: GS ← set of initial local states
7: while P(GS)==true do
8: Find forbidden local state s ∈ GS
9: GS ← GS ∪ succ(s) � advance GS along s

10: consistent(GS) � make GS consistent
11: end while
12: return GS

After a consistent global state GS is obtained, we eval-
uate whether predicate P is violated at this global state
(P(GS) = true means P is satisfied, P(GS) = false means
P is violated). If P is violated, the algorithms return the
global snapshot GS as the evidence of the violation. Note
that the monitors will keep running even after a violation
is reported so that possible violations in the future will not
be missed. This is the case when the applications, after
being informed about the violation and rolling back to a
consistent checkpoint before the moment when the vio-
lation occurred, continue their execution and violations
occur again. Hence, the monitors have to keep running in
order to detect any violations of P.

Algorithm 2 Semilinear predicate monitor algorithm [14]
1: Input:
2: P � global semilinear predicate to monitor
3: Variable:
4: GS � global state
5: Initialization:
6: GS ← set of initial local states
7: while P(GS)==true do
8: Find a local state s ∈ GS such that s ∈ eligible(GS)

and s a semi-forbidden state of P in GS.
9: GS ← GS ∪ succ(s) � advance GS along s

10: end while
11: return GS

The way we evaluate P on global state GS is slightly
different from the algorithms in [12–14, 22]. In those algo-
rithms, the candidates are sent directly from the clients
containing the states of the clients. In our algorithms, the
candidates are sent from the servers containing the infor-
mation the servers know about the states of the clients that
have been committed to the store by the clients. Note that,
in a key-value store, the clients use the server store for
sharing variables and committing updates. Therefore, the
states of clients will eventually be reflected at the server
store. Since the predicate P is defined over the states of the
clients, in order to detect violations of P from the states
stored at the server, we have to adapt the algorithms in
[12–14, 22] to consider that difference. Furthermore, the
state of a client can be stored slightly differently at differ-
ent servers. For example, a PUT request may be successful
at the regional server but not successful at remote servers.
In that case, assuming we are using eventual consistency,
the regional server store will have the update while remote
stores do not have the update. Our algorithms also con-
sider this factor when evaluating P. For example, suppose
variable x has version v1 at a server and version v2 at
another server. Suppose that if x = v1 then P is violated,
and if x = v2 then P is satisfied. To avoid missing possible

Nguyen et al. Journal of the Brazilian Computer Society (2019) 25:10 Page 10 of 25

violations, our algorithms check all available versions of x
when evaluating P.
Since our algorithms are adapted from [12–14, 22], the

correctness of our algorithms follow from those exist-
ing algorithms. We refer to [12–14, 22] for more detailed
discussion and proof of correctness of the algorithms.
Handling a large number of predicates. When the num-

ber of predicates to be monitored is large (e.g., hundreds
of thousands, as in Social Media Analysis application
in the next section or in graph-based applications dis-
cussed in the Introduction), it is costly to maintain mon-
itoring resources (memory, CPU cycles) for all of them
simultaneously. That not only slows down the detec-
tion latency but also consumes all the resources on the
machines hosting the monitors (for example, we received
OutOfMemoryError error when monitoring tens of
thousands of predicates simultaneously). However, we
observe that not all predicates are active at the same time.
Only predicates relevant to the nodes that the clients are
currently working on are active. A predicate is considered
inactive when there is no activity related to that predi-
cate for a predetermined period of time, and therefore, the
evaluation of that predicate is unchanged. Consequently,
the monitors can clean up resources allocated for that
predicate to save memory and processing time.
Automatic inference of predicate from variable names.

This feature is also motivated by applications where the
number of predicates to be monitored is large such as
the graph-based applications. In this case, it is impossi-
ble for the users to manually specify all the predicates.
However, if the variables relevant to the predicates fol-
low some naming convention, our monitoringmodule can
automatically generate predicates on-demand.
For example, in graph-based applications, the predicates

are the mutual exclusions on any edge whose endpoints
are assigned to two different clients. Let A and B are two
such nodes and A_B is the edge between them. Assume
A < B. If the clients are using Peterson’s mutual exclusion,
the predicate for edge A_B will be

¬PA_B ≡ (flagA_B_A = true ∧ turnA_B = "A")
∧(flagA_B_B = true ∧ turnA_B = "B")

When a server receives a PUT request from some client
for a variable whose name is either flagA_B_A, or
flagA_B_B, or turnA_B, it knows that the client is
interested in the lock for edge A_B and the local pred-
icate detector will generate the predicate for edge A_B
so that the monitors can detect if the mutual exclusion
access on edge A_B is violated. On the other hand, if
the servers never see requests for variables flagA_B_A,
flagA_B_B, and turnA_B, then both nodes A and B are
assigned to the same client and we do not need the mutual
exclusion predicate for edge A_B.

Rollback from violations
Rollback mechanism
While inconsistency is possible with eventual consistency,
it is rare [1] given that networks are reliable and data con-
flicts are infrequent. However, such inconsistencies and
data conflicts can arise and, hence, one needs to deal
with these conflicts if we are using an application that
relies on sequential consistency. We discuss the rollback
approaches for such scenarios.
One possible approach for rollback, especially if viola-

tions can be detected quickly is as follows: we partition the
work assigned to each client in terms of several tasks. Each
task consists of two phases (cf. Fig. 7): (1) Read phase: the
client obtains all necessary locks for all nodes in the task,
reading the necessary data, and identify the values that
need to be changed. However, all updates in this phase are
done in local memory. (2) Write phase: the client writes
the data that they are expected to change and reflect it in
the data store.
In such a system, a violation could occur if clients C1

and C2 are accessing the same data simultaneously. For
sake of discussion, suppose that client C1 started access-
ing the data before C2. Now, if the detection of violation
is quick then detection would occur before client C2
enters the write phase. In this case, client C2 has not
performed any changes to the key-value store. In other
words, client C2 can re-start its task (that involves read-
ing the data from the key-value store) to recover from the
violation.
With this intuition, we can provide recovery as follows:

when a violation is detected, if the client causing the vio-
lation is in the read phase, it aborts that task and starts
that task again. On the other hand, if a client is in write
phase (and this can happen to at most one task if detec-
tion is quick enough), then it continues its task normally.
Note that with this approach, it is possible that two clients
that result in a violation are both in the read phase. While
one of the clients could be allowed to continue normally,
this requires clients to know the status of other clients.
We do not consider this option as it is expected that in
most applications clients do not communicate directly.
Rather, they communicate only via the key-value store.We
utilize this approach in our rollback mechanism. In partic-
ular, when detection is quick, we use the Algorithm 3 for
rollback (cf. Fig. 7 and Algorithm 3).
Other approaches for rollback are as follows:

• Rollback via Retroscope[11]. The most general
approach is to utilize an algorithm such as
RetroScope [11]. Specifically, it allows one to rollback
the state of the key-value store to an earlier state. The
time, t, of rollback is chosen in such a way that there
are no violations before time t. Upon such a rollback,
we can determine the phases the clients are in at time

Nguyen et al. Journal of the Brazilian Computer Society (2019) 25:10 Page 11 of 25

Fig. 7 Two client tasks involved in a violation. Since detection latency is much smaller than the Read phase time, violation will be notified within
Read phase of the current task of at least one client

t. If a client is in the read phase at time t, it will abort
its current task and begin it again. And, if the client is
in a write phase, it will finish that phase. Note that
since there are no conflicts until time t, such write
phases will not result in conflicts.
While this approach is most general, it is also
potentially expensive. Hence, some alternate
approaches are as follows:

• Use of self-stabilizing algorithms. One possibility is if
we are using a self-stabilizing algorithm. An
algorithm is self-stabilizing if it is guaranteed to
recover to a legitimate state even in the presence of
arbitrary state perturbation. In [23], it is shown that if
the underlying algorithm is self-stabilizing, then we
can simply ignore the violations as we can treat it as a
state perturbation and the algorithm is already
designed to handle it. In this case, there is neither a
need for monitoring or rollback.

• Use of application-specific rollbacks. Another
possibility is application specific rollback. To
illustrate this, consider an example of graph coloring.
For sake of illustration, consider that we have three
nodes A, B, C, arranged in a line with node B in the
middle. Each node may have additional neighbors as
well. Node A chooses its color based on the colors of
its neighbors. Subsequently, node B chooses its color
based on node A (and other neighbors of B).
Afterward, C chooses its color based on B (and other
neighbors of C). At this point, node B is required to
rollback, it can still choose its color based on the new
color of node C while still satisfying the constraints of
graph coloring. In other words, in this application, we
do not need to worry about cascading rollback.

Dealing with potential of livelocks
One potential issue with rollback is a possibility of live-
locks. Specifically, if two clients C1 and C2 rollback and
continue their execution, then the same violation is likely
to happen again. We consider the following choices for
dealing with such livelocks.

Algorithm 3 Rollback algorithm at a client
1: for taskId = clientFirstTask to clientLastTask do
2: while (performTask(taskId) == False) do
3: end while
4: end for
5:
6: function PERFORMTASK(taskId)
7: Obtain relevant locks
8: Read information from data-store
9: Compute new values

10: if Violation is received then
11: Release locks
12: return False � abort
13: end if
14: Write new values to data-store
15: return True � success
16: end function

• Random backoff. Upon rollback, clients perform a
random backoff. With backoff, the requests for locks
from clients arrive at different times in the key-value
store. Hence, the second client is likely to observe
locks obtained by the first client in a consistent
manner. In turn, this will reduce the possibility of the
same violation to recur.

• Reordering of tasks. If the work assigned to clients
consists of several independent tasks, then clients can
reorder the tasks upon detecting a violation. In this
case, the clients involved in the rollback are likely to
access different data and, hence, the possibility of
another violation is reduced.

• Moving to sequential consistency. If the number of
violations is beyond a certain threshold, clients may
conclude that the cost of rollback is too high and,
hence, they can move to sequential consistency.
While this causes one to lose the benefits of an
eventual consistent key-value store, there would be
no need for rollback or monitoring.

Nguyen et al. Journal of the Brazilian Computer Society (2019) 25:10 Page 12 of 25

Evaluation results and discussion
Experimental setup
System configurations. We ran experiments on Ama-
zon AWS EC2 instances. The servers ran on M5.xlarge
instances with 4 vCPUs, 16 GB RAM, and a GP2 general-
purpose solid-state drive storage volume. The clients ran
on M5.large instances with 2 vCPUs and 8 GB RAM. The
EC2 instances were located in three AWS regions: Ohio,
U.S; Oregon, U.S; Frankfurt, Germany.
We also ran experiments on our local lab network which

is set up so that we can control network latency. We used
nine commodity PCs, three for servers, six for clients, with
configurations as in Table 1. Each client machine hosted
multiple client processes, while each server machine
hosted one Voldemort server process.
On the local network, we control the delay by placing

proxies between the clients and the servers. For all clients
on the same physical machine, there is one proxy pro-
cess for those clients. All communication between those
clients and any server is relayed through that proxy (cf.
Fig. 8). Due to the proxy delays, machines are virtually
arranged into three regions as in Fig. 9. Latency within
a region is small (2 ms) while those across regions are
high and tunable (e.g., 50 to 100 ms). Since Voldemort
uses active replication, we do not place proxies between
servers. The latency in the proxies is simulated to follow
the gamma distribution [24, 25].
We considered replication factors (N) of 3 and 5. The

parameters R (required reads) andW (required writes) are
chosen to achieve different consistency models as shown
in Table 2. The number of servers is equal to the replica-
tion factor N. The number of clients is varied between 15
and 90.
Test cases. In our experiments, we used three case

studies: Social Media Analysis, Weather Monitoring, and
Conjunctive.
The application motivated by Social Media Analysis

considers a large graph representing users and their con-
nections. The goal of clients is to update the state of each
user (node) based on its connections. For the sake of illus-
tration in our analysis, the attribute associated with each
user is a color and the task is to assign each node a color

Table 1 Machine configuration in local lab experiments

Machine CPU RAM

Server machine 1, 2 4 Intel Core i5 3.33 GHz 4 GB

Server machine 3 4 Intel Core i3 3.70 GHz 8 GB

Client machine 1, 2 4 Intel Core i5 3.33 GHz 4 GB

Client machine 3, 4 Intel Core Duo 3.00 GHz 4 GB

Client machine 5 4 AMD Athlon II 2.8 GHz 6 GB

Client machine 6 4 Intel Core i5 2.30 GHz 4 GB

that is different from its neighbors. We use the tool net-
workx [26] to generate input graphs. There are two types
of graph: (1) power-law clustering graph that simulates the
power-law degree and clustering characteristics of social
networks and (2) random six-regular graph in which each
node has six adjacent edges and the edges are selected ran-
domly. The reason we use random regular graphs is that
they are the test cases where the workload is distributed
evenly between clients and throughout the execution. The
graphs have 50,000 nodes with about 150,000 edges. Each
client is assigned a set of nodes to be colored and run a
distributed coloring algorithm [27].
Since the color of a node is chosen based on its neigh-

bors’ colors, while a client C1 is coloring node v1, no other
client is updating the colors of v1’s neighbors. The goal
of the monitors is to detect violation of this requirement.
This requirement can be viewed as a mutual exclusion
(semi-linear) predicate where a client going to update the
color of v1 has to obtain all the exclusive locks associ-
ated with the edges incident to v1. Mutual exclusion is
guaranteed if clients use Peterson’s algorithm and the sys-
tem provides sequential consistency [10]. However, it may
be violated in the eventual consistency model. To avoid
deadlock, clients obtain locks in a consistent order. For
example, let A_B and C_D are the locks associated with
the edges between nodes A and B, and C and D respec-
tively. Assume A < B and C < D. Then, lock A_B is
obtained before C_D when A < C or when A = C and
B < D.
The number of predicates being monitored in this test

case is proportional to the number of edges.
We note that the task performed by each client (i.e.,

choosing the color of a node) is just used as an example.
It is easily generalized for other analysis of Social Media
Graph (e.g., finding clusters, collaborative learning, etc.)
The application motivated by Weather Monitoring task

considers a planar graph (e.g. a line or a grid) where the
state of each node is affected by the state of its neigh-
bors. In a line-based graph, all the nodes of the graph
are arranged on a line and each client is assigned a seg-
ment of the line. In a grid-based graph, the graph nodes
are arranged on a grid. The clients are also organized
as a grid and each client is responsible for a section of
the grid of nodes. In this application, we model a client
that updates the state of each node by reading the state
of its neighbors and updating its own state. This appli-
cation can be tailored to vary the ratio of GET/PUT
request. This application is relevant to several practical
planar graph problem such as weather forecasting [28],
radio-coloring in wireless and sensor network [29], and
computing Voronoi diagram [30].
Finally, the Conjunctive application is an instance of dis-

tributed debugging where the predicate being detected
(i.e., ¬P) is of the form P1 ∧ P2 ∧ · · · ∧ Pl. Each local

Nguyen et al. Journal of the Brazilian Computer Society (2019) 25:10 Page 13 of 25

Fig. 8 Simulating network delay using proxies

predicate Pi becomes true with a probability β , and the
goal of the monitors is to determine if the global conjunc-
tive predicate ¬P becomes true. In this application, we
monitor multiple conjunctive predicates simultaneously.
Since we can control how frequently these predicates
become true by varying β , we can use it mainly to assess
monitoring latency and stress the monitors. Conjunctive
predicates are also useful in distributed testing such as to
specify breakpoints.
Performance metrics and measurement. We use

throughput as the performance metrics in our experi-
ments. Throughput can be measured at two perspectives:
application and Voldemort server. The two perspectives
are not the same but related. One application request

triggers multiple requests at Voldemort client. For exam-
ple, one application PUT request is translated into one
GET_VERSION request (to obtain the last version of
the key) and one PUT request (with a new incremented
version) at the Voldemort client library. Then, each
Voldemort client request causes multiple requests at
servers due to replication. Failures and timeout also make
the counts at the applications and the servers differ. For
example, an application request is served and counted at a
server, but if the server response is lost or arrives after the
timeout, the request is considered unsuccessful and thus
not counted at the application. Generally, servers’ counts
are greater than applications’ counts. In our experiments,
we use the aggregated measurement at servers to assess

Fig. 9 Network arrangement with proxies

Nguyen et al. Journal of the Brazilian Computer Society (2019) 25:10 Page 14 of 25

Table 2 Setup of consistency models with N (replication factor),
R (required reads), andW (required writes)

N R W Abbreviation Consistency model

3 1 3 N3R1W3 Sequential

2 2 N2R2W2 Sequential

1 1 N3R1W1 Eventual

5 1 5 N5R1W5 Sequential

3 3 N5R3W3 Sequential

1 1 N5R1W1 Eventual

the overhead of our approach since the monitors directly
interfere with the operation of the server and use aggre-
gated measurement at applications to assess the benefit
of our approach because that measurement is close to
users’ perspective. Hence, in the following sections, for
the same experiment, we note that the measurements
used for overhead and benefit evaluation are different.
Results stabilization. We ran each experiment three

times and used the average as the representative results
for that experiment. Figure 10 shows the stabilization
of different runs of an experiment. Note that the values
are aggregated from all applications. We observe that in
every run, after a short period of initialization, the mea-
surements converge on a stable value. When evaluating
our approach, we use the values measured at the stable
phase. We also note that the aggregated throughput in
Fig. 10 is not very high but expected. The pairwise round-
trip latency between three AWS regions (Ohio, Oregon,
Frankfurt) were 76 ms, 103 ms, and 163 ms. The aver-
age round-trip latency was 114 ms. On M5.xlarge EC2
instances with a GP2 storage volume, the average I/O
latency for a read and a write operation was roughly 0.3

ms and 0.5 ms, respectively. We will roughly estimate the
cost of a GET request since in Social Media Analysis, most
operations are GET requests to read lock availability and
colors of neighbors. Assume eventual consistency R1W1
is used, a GET request is executed by Voldemort client in
two steps:

1. Perform parallel request: client simultaneously sends
GET requests to all servers (N = 3) and wait for
responses with a timeout of 500 ms. The wait is over
when either client gets responses from all servers or
the timeout expires. In this case, the client will get all
responses in about 114.3 ms (114 ms for
communication delay and 0.3 ms for the read
operation processing time at the server).

2. Perform serial request: client checks if it has received
enough required responses. If not, it has to send
addition GET requests to servers to get enough
number of responses. If after the additional requests,
the required number of responses is not met, the
GET request is considered unsuccessful. Otherwise,
the result is returned. In the current case, the number
of responses received (3) is greater than the required
(R = 1). Thus, this step is skipped.

From this discussion, a GET request takes roughly 115
ms to complete, on average. Since GET is the dominat-
ing operation in the Social Media Analysis application,
with 15 clients, the expected aggregated throughput is

15
0.1143 ≈ 131 ops. The average throughput measured in
experiments was 132 ops (cf. Fig. 10).
If we run experiments where all machines are in the

same region but in different availability zones, the aggre-
gated throughput will be higher (cf. Fig. 12). For example,

Fig. 10 Illustration of result stabilization. The Social Media Analysis application is run three times on Amazon AWS with monitoring enabled. Number
of servers (N) = 3. Number of clients per server (C/N) = 5. Aggregated throughput measured by Social Media Analysis application in three different
runs and their average is shown. This average is used to represent the stable value of the application throughput

Nguyen et al. Journal of the Brazilian Computer Society (2019) 25:10 Page 15 of 25

in the AWS North Virginia region, the average round-
trip latency within an availability zone was about 0.5 ms
and between different availability zones was about 1.4 ms.
Based on the discussion about GET request above, a GET
request takes roughly 0.8 ms (0.5 ms for network latency
within an availability zone plus 0.3 ms for processing read
request at the server). Similarly, a GET_VERSION request
takes 0.8 ms. Since we are using R1W1 configuration, an
actual PUT request can be satisfied by the server within
the same availability zone. Thus, an actual PUT request
takes roughly 1 ms (0.5 ms for network latency within an
availability zone plus 0.5 ms for write operation process-
ing time at the server). A PUT request (consisting of a
GET_VERSION request and an actual PUT request) takes
roughly 1.8 ms. Assume the workload consists of 50 %
GETs and 50 % PUTs, then on average, a request takes
0.5× 0.8+ 0.5× 1.8 = 1.3 ms = 0.0013 s. With ten clients,
the expected aggregate throughput is 10

0.0013 = 7692 ops.
If the workload consists of 75 % GETs and 25 % PUTs, a
request takes 0.75×0.8+0.25×1.8 = 1.05 ms = 0.00105 s,
and the expected aggregate throughput is 10

0.00105 = 9524
ops. In our experiments, the aggregate throughput mea-
sured for 50 % PUT and 25 % PUT was 7782 ops and 9593
ops, respectively (cf. Fig. 12a and b).

Analysis of throughput
Comparison of eventual consistency with monitors vs.
sequential consistency. As discussed in the introduction,
one of the problems faced by the designers is that they
have access to an algorithm that is correct under sequen-
tial consistency but the underlying key-value store pro-
vides a weaker consistency. In this case, one of the choices
is to pretend as if sequential consistency is available but
monitor the critical predicate P. If this predicate is vio-
lated, we need to rollback to an earlier state and resume
the computation from there. Clearly, this approach would
be feasible if the monitored computation with eventual
consistency provides sufficient benefit compared with
sequential consistency. In this section, we evaluate this
benefit.
Figure 11a compares the performance of our algorithms

for eventual consistency with monitors and sequential
consistency without monitors in the Social Media Anal-
ysis application on the AWS environment. Using our
approach, the client throughput was increased by 57 %
(for N3R1W3) and 78 % (for N3R2W2). Note that the
cost of a GET request is more expensive in N3R2W2 (the
required number of positive acknowledgment is 2) than
in N3R1W3 (the required acknowledgment is 1). Since in
the Social Media Analysis application GET requests dom-
inates, the application performs better in N3R1W3 than
in N3R2W2.
Overhead of monitoring. A weaker consistency model

allows the application to increase the performance on

a key-value store as illustrated above. To ensure cor-
rectness, a weaker consistency model needs monitors to
detect violations and trigger rollback recovery when such
violations happen. As a separate tool, the monitors are
useful in debugging to ensure that the program satis-
fies the desired property throughout the execution. In
all cases, it is desirable that the overhead of the mon-
itors is small so that they would not curtail the ben-
efit of weaker consistency or make the debugging cost
expensive.
Figures 11b, c, and d show the overhead of the monitors

on different consistency settings in the SocialMedia Anal-
ysis application. The overhead was between 1% and 2%. At
its peak, the number of active predicates being monitored
reached 20,000 predicates. Thus, the overhead remains
reasonable even with monitoring many predicates simul-
taneously.

Analysis of system and application factors
Impact of workload characteristics. In order to evaluate
the impact of workload on our algorithms we ran the
WeatherMonitoring applicationwhere the proportional of
PUT and GET was configurable. The number of servers
was 5 and the number of clients was 10. The machines
hosting the servers and clients were in the same AWS
region (North Virginia, USA) but in five different avail-
ability zones. We choose machines in the same region
to reduce the latency (to less than 2 ms), thus increas-
ing the throughput measure and stressing the servers and
the monitors. If we put the clients and servers in differ-
ent regions (e.g., Frankfurt Germany, Oregon USA, Ohio
USA), then the throughput for 15 clients is low. To stress
it further, we would have to add hundreds of clients which
is very expensive. Hence, for the stress test, we put the
servers and clients in the same region.
From Fig. 12a and b, we find that when the percentage

of PUT request increased from 25 to 50%, the benefit over
sequential consistency (N5R1W5 in this case) increased
from 18 to 37%.
This is because the cost for a PUT request is expen-

sive in N5R1W5 as a PUT request is successful only when
it is confirmed by all five servers. Thus, when the pro-
portion of PUT increases, the performance of N5R1W5
decreases. In such cases, sequential settings that balance R
andW (e.g., N5R3W3) will perform better than sequential
settings that emphasize W (e.g., N5R1W5). When GET
requests dominate, it is vice versa (cf. Fig. 11a). We also
observe that, when PUT percentage increased and other
parameters were unchanged, the aggregated throughput
measured at clients decreased. That is because a PUT
request consists of a GET_VERSION request (which is as
expensive as a GET request) and an actual PUT request;
therefore, a PUT request takes a longer time to complete
than a GET request does.

Nguyen et al. Journal of the Brazilian Computer Society (2019) 25:10 Page 16 of 25

Fig. 11 (AWS) Social Media Analysis application, 3 servers, 15 clients. The benefit of eventual consistency with monitors vs. sequential consistency
without monitors (a throughput improvement compared to R1W3 and R2W2 is 57% and 78%, respectively) and the overhead of running monitors
on each consistency setting (the overhead is less than 2%). b Overhead on R1W1=1.4%. Overhead on R1W3=1.7%. d Overhead on R2W2=1.3%

Regarding overhead, Fig. 12c shows that the overhead
was 4 % when PUT percentage was 50 %. Note that in
WeatherMonitoring application, the number of predicates
being monitored is proportional to the number of clients.
Thus, the overhead remains reasonable even when mon-
itoring several predicates simultaneously and the servers
are stressed.
The number of violations detected in this experi-

ment was only one instance in executions with a total
time of 18, 000 ms. The violation was detected within
20 ms.

Impact of network latency. We ran experiments on the
local lab network (cf. the “Experimental setup” section)
where the one-way latency within a region (cf. Fig. 9) was
1 ms and one-way latency between regions varied from 50
ms to 100 ms.
The number of clients per each server varied between

10 and 20. The values in sub-columns “server” and “app”
are the aggregate throughput measured at the servers and
at the applications (unit is ops).
In Table 3, the overhead is computed by comparing

server measurements when the monitors are enabled and

Fig. 12 Benefit and overhead of monitors inWeather Monitoring application. Percentage of PUT requests is 25% and 50% Number of servers =5.
Number of clients = 10. Machines are on the AWS North Virginia region but in different availability zones. a PUT=25%. Benefit=18%. b PUT=50%.
Benefit=37%. c PUT=50%. Overhead=4%

Nguyen et al. Journal of the Brazilian Computer Society (2019) 25:10 Page 17 of 25

Table 3 Overhead and benefit of monitors in local lab network. For Conjunctive andWeather Monitoring, PUT percentage is 50%

Latency
(ms)

Application Client/
server

Monitor N3R1W1 N3R2W2 N3R1W3

Server Overhead (%) App Server Overhead (%) App Benefit (%) Server Overhead (%) App Benefit (%)

50 Conjunctive 20 Yes 821 −0.2 470 842 0.6 375 25.3 588 3.3 337 40.7

No 819 470 847 375 608 334

Weather Monitoring 20 Yes 924 0.2 454 795 7.1 345 27.2 628 3.2 312 45.0

No 926 453 856 357 649 313

Social Media Analysis 10 Yes 560 0.2 258 367 0.5 156 65.4 344 7.8 174 47.4

No 561 267 369 156 373 175

100 Conjunctive 20 Yes 476 0.4 270 491 −0.2 218 23.3 354 0.0 191 42.1

No 478 271 490 219 354 190

Weather Monitoring 20 Yes 544 0.7 266 500 1.0 209 28.5 371 0.8 176 49.4

No 548 273 505 207 374 178

Social Media Analysis 10 Yes 287 0.0 135 236 0.0 74 80 185 −0.5 86 60.7

No 287 133 236 75 184 84

disabled. The benefit is computed by comparing appli-
cation measurements on sequential consistency without
monitoring to those on eventual consistency with moni-
toring.
For example, when one-way latency is 50 ms, if we run

the Weather Monitoring application on N3R1W3 with-
out monitoring, the aggregate server throughput is 649
ops (Table 3, column 12 (N3R1W3 → server) and row
6 (50 ms → Weather Monitoring → monitor = no)) and
the aggregate client throughput is 313 ops. If we run the
same application on N3R1W3with monitoring, the server
throughput is 628 ops (Table 3, column 12 and row 5).
The overhead of monitoringWeather Monitoring applica-
tion on N3R1W3 is (649 − 628)/649 = 3.2%. The client
throughput when run the same application on N3R1W1
with monitoring is 454 ops (Table 3, column 7, row 5).
Thus, the benefit of eventual consistency with monitoring
vs. sequential consistency N3R1W3 is (454 − 313)/313 =
45%.
From Table 3, as latency increases, the benefit of

eventual consistency with monitoring vs. sequential con-
sistency increases. For example, when one-way latency
increased from 50 to 100 ms, in Social Media Analysis
application, the benefit of eventual consistency with mon-
itoring vs. sequential consistency R1W3 increased from
47 to 60%. In the case of R2W2, the increase was from 65
to 80%. This increase is expected because when latency
increases, the chance for a request to be successful at a
remote server decreases. Due to strict replication require-
ment of sequential consistency, the client will have to
repeat the request again. On the other hand, on eventual
consistency, requests are likely to be successfully served
a local server and the client can continue regardless of
results at remote servers. Hence, as servers are distributed

in more geographically disperse locations, the benefit of
eventual consistency is more noticeable. Regarding over-
head, it was generally less than 4 %. In all cases, the
overhead was at most 8 %.

Analysis of violations and detection latency
Detection latency is the time elapsed between the violation
of the predicate being monitored and the time when the
monitors detect it. In our experiment with Social Media
Analysis applications on eventual consistency (N3R1W1),
in several executions of total 9000 s, we detected only
two instances of mutual exclusion violations. Detection
latency for those violations were 2238 ms and 2213 ms.
So, for Social Media Analysis application, violations could
happen on eventual consistency every 4500 s on average.
In order to evaluate the detection latency of monitors

with higher statistical reliability, we need experiments
where violations are more frequent. In these experiments,
the clients ran Conjunctive application in the same AWS
configuration as Weather Monitoring application above.
The monitors have to detect violations of conjunctive
predicates of the form P = P1 ∧P2 ∧· · ·P10. Furthermore,
we can control how often these predicates become true by
changing when local predicates are true. In these experi-
ments, the rate of local predicate being true (β) was 1 %,
which was chosen based on the time breakdown of some
MapReduce applications [31, 32]. The PUT percentage
was 50 %. The Conjunctive application is designed so that
the number of predicate violations is large and to stress the
monitors. We considered both eventual consistency and
sequential consistency. Table 4 shows detection latency
distribution of more than 20,000 violations recorded in
theConjunctive experiments. Predicate violations are gen-
erally detected promptly. Specifically, 99.93% of violations

Nguyen et al. Journal of the Brazilian Computer Society (2019) 25:10 Page 18 of 25

Table 4 Response time in 20,647 conjunctive predicate violations

Response time (milliseconds) Count Percentage (%)

<50 20,632 99.927

50 − 1000 6 0.029

1000 − 10, 000 3 0.015

10, 000 − 17, 000 6 0.029

were detected in 50ms, 99.97% of violations were detected
in 1 s. There were rare cases where detection latency
was greater than 10 s. Among all the runs, the maximum
detection latency recorded was 17 s, and the average was
8 ms.
Regarding overhead and benefit, the overhead of mon-

itors on N5R1W1, N5R1W5, and N5R3W3 was 7.81%,
6.50%, and 4.66%, respectively. The benefit of N5R1W1
over N5R1W5 and N5R3W3 was 27.90% and 20.16%,
respectively.

Evaluating strategies for handling livelocks
In this section, we evaluate the effect of rollback mech-
anisms. We consider the evaluation of the Social Media
Analysis with a power-law graph and Weather Monitor-
ing with grid-based graph (cf. the “Experimental setup”
section for description of the graphs). We consider the
execution with sequential consistency, eventual consis-
tency with rollback but no mechanism for dealing with
livelocks, and eventual consistency with one or more
mechanism for dealing with livelocks. The results are
shown in Fig. 13.
From this figure, we observe that the impact of live-

locks is not the same in different applications. In par-
ticular, for terminating applications like Social Media
Analysis, if the livelock issue is ignored, the computation
does not terminate. Likewise, computation does not ter-
minate with the mechanism of reordering of remaining
tasks upon rollback. This is anticipated, in part, because
recurrence of rollback happens in end-stages where the
number of remaining tasks is low. On the other hand,
for non-terminating application like Weather Monitoring,
livelocks do not cause the computation to stall. Except
for adaptive consistency, the effectiveness of different live-
lock handling strategies are almost similar. From Fig. 13,
we observe that rollback with adaptive consistency works
best for terminating applications, and rollback with back-
off works best for non-terminating applications. There-
fore, we choose these mechanisms to handle livelocks in
the detailed analysis of applications in the “Analysis of
applications” section.

Analysis of applications
In this section, to illustrate the benefit of our approach,
we run the recovery algorithm described in the “Rollback

mechanism” section for two applications: Weather Mon-
itoring and Social Media Analysis. We do not consider
Conjunctive, as it was designed explicitly to cause too
many violations for the purpose of detecting latency of
violations. The analysis was performed in our local lab
network with the round-trip latency varying between 5 to
50 ms. We use the approach in the “Experimental setup”
section to add additional delays to evaluate the behavior
of the application in a realistic setting where replicas are
not physically co-located. In order to deal with livelocks,
we utilize the backoff mechanism for Weather Monitor-
ing application and adaptive mechanism for Social Media
Analysis application. The number of servers was 3 and the
number of clients was 30.
Weather Monitoring. When running the Weather Mon-

itoring application with eventual consistency, first, we
consider the nodes organized in a line. In this case,
the application progressed 47.2% faster than running on
sequential consistency (cf. Fig. 14a). Even if we extend it
to a grid graph, the results are similar. In Fig. 14c, we find
that in the grid graph, the application progressed 46.8%
faster under eventual consistency than in sequential con-
sistency. In both of these executions, no violations were
detected in the 500 and 1000 s window, respectively.
To evaluate the effect of rollbacks, we increase the

chance of conflicts by reducing the coverage of each client
(i.e., the number of nodes in the graph assigned to each
client) so that the clients work on bordering nodes more
frequently. In that setting, on a line graph, eventual con-
sistency still progressed about 45% faster than running
on sequential consistency (cf. Fig. 14b), even though we
had a substantial number of rollbacks (36 in 500 s). The
detection latency for violation was on average 18 ms.
The worst case detection latency was 55 ms. We note
that the application motivated by Weather Monitoring is
a non-terminating application which keeps running with-
out termination. Hence, the number of nodes processed
measured in stable phase reflects the overall progress
of the application. For this reason, in order to compare
the progress of different experiment configurations, we
measure the progress made by the clients after the same
execution duration. For example, in Fig. 14a, the larger
points on each line are where we measure the progress
after the execution has run for 490 s. Figure 14b also
considers the progress made by the application on even-
tual consistency without rollback ormonitoring. Thus, the
resulting answer may be incorrect. The reason for this
analysis is to evaluate the cost of monitoring and rollback.
As shown in Fig. 14b, the cost of rollback is very small.
Specifically, with rollback, the number of nodes processed
decreased by about 1.4%.
In grid-based graphs, eventual consistency progressed

45.1% faster than sequential consistency did (cf. Fig. 14d)
even though it had to rollback a number of times (68 times

Nguyen et al. Journal of the Brazilian Computer Society (2019) 25:10 Page 19 of 25

Fig. 13 Effectiveness of livelock handling mechanisms. Number of servers=3, number of clients=30. We observed that adaptive mechanism worked
best for Social Media Analysis (Fig. 13a) and backoff mechanism worked best forWeather Monitoring (Fig. 13b)

in 1000 s). The detection latency was 10ms on average and
41 ms in the worst case. The cost of rollback was 1.4%.
Social Media Analysis. Since the Weather Monitoring

task is a non-terminating task, its behavior remains the
same throughout the execution. Hence, to evaluate the
effect of termination, we evaluate our approach in the
Social Media Analysis application. Terminating computa-
tion suffer from the following when compared with non-
terminating computations: (1) at the end, some clients
may have completed their task thereby reducing the level
of concurrency and (2) the chance of rollback resulting in

the same conflict increases, as the tasks remaining are very
small. Therefore, the computation after rollback is more
likely to be similar to the one before the rollback. In other
words, the conflict is likely to recur.
We evaluate the effect of termination in two types

of graph: (1) power-law clustering (cf. Fig. 15a) and (2)
regular graphs (cf. Fig. 15b) where degrees of all nodes
are close. (The details of these graphs is given in the
“Experimental setup” section.)
On power-law clustering graphs, as shown in Fig. 15a,

before the execution reached 90% completion of the work,

Fig. 14 The benefit and overhead of eventual consistency + rollback vs. sequential consistency inWeather Monitoring application. The inset figure
within Fig. 14b is a close-up view showing the impact of rollback. The larger points near the end of each data sequence are where we choose the
representative values for the data sequences. a Line-based Weather monitoring, Put=0.5, delay=10ms, clientCoverage=1000 nodes. b Line-based
Weather monitoring, Put=0.5, delay=10ms, clientCoverage=500 nodes. c Grid-based Weather monitoring, Put=0.5, delay=5ms,
clientCoverage= 500 × 500 nodes. d Line-based Weather monitoring, Put=0.5, delay=5ms, clientCoverage= 300 × 300 nodes

Nguyen et al. Journal of the Brazilian Computer Society (2019) 25:10 Page 20 of 25

Fig. 15 Comparing the completion time of sequential consistency (R1W3) vs. eventual consistency with rollback and adaptive consistency (R1W1 +
adaptive) in Social Media Analysis application. On a power-law clustering graph, before 90% of the nodes are processed, R1W1 + adaptive progresses
about 18% faster than R1W3. Overall, R1W1 + adaptive is 9.5% faster than R1W3. On a regular random graph, the benefit before 90% of the nodes
are processed is 26% and the overall benefit is 20.8%. a Power-law clustering graph with 50000 nodes. b Random regular graph with 50000 nodes

eventual consistency—even with the cost of monitor-
ing and rolling back—progressed about 18.5% faster than
sequential consistency. However, in the remaining 10%
of the work, when there were a few nodes to be col-
ored, the chance of conflict increased. Furthermore, the
same conflict occurred after rollback as well. Hence, in the
final phase, execution under eventual consistency almost
stalled due to frequent rollbacks. When the clients uti-
lized adaptive consistency, then they could make progress
through the final phase and finished about 9.5% faster
than sequential consistency. We note that the decline in
computation rate in the final phase is also true for sequen-
tial consistency, and that is related to a property of power-
law cluster graph that some nodes are high degree nodes.
In regular random graph, we do not observe this decline
as shown in Fig. 15b. The main reason for this is that the
likelihood of conflict in the power-law graph is high since
there are several nodes with a high degree. Furthermore,
it is difficult to distribute the workload of power-law clus-
tering graph to the clients evenly. Therefore, in the final
phase, some clients have completed before the others,
thus reducing the parallelism. By contrast, in the regular
graph, the likelihood of conflict in end stages remains the
same and the workload can be evenly distributed among
the clients. On a regular graph, eventual consistency with
monitoring and rollback was 26% faster than sequential
consistency before 90% of the nodes were processed and
20.8% faster overall (cf. Fig. 15b).

Discussion
In this section, we consider some of the questions raised
by this work including questions raised by the reviewers
of LADC 2018 and JBCS.
What is the likely effect of the number of clients on the

probability of rollback? First, we note that for linear pred-
icates (e.g., conjunctive predicates), when the number of
clients increases, the number of violations decreases as it
is less likely to find a consistent snapshot where the local

predicate at every client is true [33]. As a result, if we
increase the concurrency level, the probability of rollback
decreases. Hence, in the following discussion, we limit the
context to semi-linear predicates (e.g., mutual exclusion).
In general, the probability of rollback depends upon the

probability that two clients are updating conflicting data.
Thus, if the number of clients is too large when compared
with the size of the graph (i.e., the coverage of a client is
too small), the probability of conflict/rollback is high. We
have validated this with experimental analysis of applica-
tions motivated by Weather Monitoring in the “Analysis
of applications” section. However, in a typical deploy-
ment, the coverage of a client is usually large enough (e.g.,
thousands of nodes) that the chance of two clients con-
currently working on neighboring nodes is small. Further-
more, when working on neighboring nodes, clients utilize
mutual exclusion mechanism such as Peterson locks to
prevent conflicts. Conflicts/rollbacks only happen when
there is some data inconsistency related to the mutual
exclusion mechanism that causes the clients concurrently
updating neighboring nodes. In eventual consistency, data
inconsistencies exist but are rare [34] and usually involve
hardware and/or network failures. Hence, from our anal-
ysis, we anticipate that the probability of rollback is small
given that each client is assigned a reasonable workload.
How do the observations in this paper relate to the

CAP theorem? When latency increases, we are simulating
pseudo network partition. In this case, which consistency
level is better depends upon the configuration of the
Voldemort servers.
As an illustration, consider the example where we have

five servers and we use R2W4. Furthermore, suppose
that one of the servers is partitioned from the other four
servers.
With sequential consistency, the four servers and

their associated clients can still make progress correctly.
The partitioned server and its clients would not make
progress. Hence, they could be considered as being dead.

Nguyen et al. Journal of the Brazilian Computer Society (2019) 25:10 Page 21 of 25

By some detection mechanism, we can detect such parti-
tioning and assign the tasks of dead clients to other clients.
And the computation could progress to the end.
With eventual consistency, all five servers and their

clients make progress but the clients will process based on
stale data.When the network is recovered, the data incon-
sistencies will invalidate the computation results of both
sub-networks. When the monitor detects such partition
and inconsistencies, we will have to rollback the whole
systems, including the four servers and their clients (even
though their results are correct, given that the partitioned
server has been rolled back).
While the above discussion applies to R2W4, if the

system used R1W5 , then neither eventual consistency
nor sequential consistency could make progress. This
is because eventual consistency would result in incon-
sistently updated replicas. These inconsistencies would
be resolved based on the implementation of Voldemort
(e.g., latest write wins, minority replicas follow the major-
ity replicas). However, this conflict resolution may not
be consistent with the needs of the application. And, in
sequential consistency, no write operation would succeed.
However, if the nodes are not partitioned but rather suffer
from a high delay (but no partition), eventual consistency
may be able to make progress. However, it would need to
rollback frequently. By contrast, in sequential consistency,
it is likely that most write operations fail (as they take too
long to complete). Consequently, sequential consistency
will not be able to make progress.
What the above discussion suggests is that when the

delays are very high, the above approach would work for
some configurations (e.g., R2W4) but not for others (e.g.,
R1W5). Hence, one of the future work in this area is to
allow only certain clients to rollback while allowing others
to continue without rollback.
Applications that cannot be rolled back. In this paper,

we assume the application has exclusive access to its
data. Specifically, before the application finishes, other
applications will not read this application results. If the
data is shared and used by multiple applications, then
the rollback approach is not suitable since it is almost
impossible to rollback other applications. For instance,
the results of computing shortest paths, routing infor-
mation can be produced by one application and used by
other applications. In this case, other approaches such as
self-stabilization can be useful.

Related work
Predicate detection in distributed systems
Predicate detection is an important task in distributed
debugging. An algorithm for capturing consistent global
snapshots and detecting stable predicates was proposed
by Chandy and Lamport [35]. A framework for gen-
eral predicate detection is introduced by Marzullo and

Neiger [18] for asynchronous systems and Stollers [17]
for partially synchronous systems. These general frame-
works face the challenge of state explosion as the predi-
cate detection problem is NP-hard in general [14]. How-
ever, there exist efficient detection algorithms for several
classes of practical predicates such as unstable predi-
cates [22, 36, 37], conjunctive predicates [13, 38], linear
predicates, semilinear predicates, and bounded sum pred-
icates [14]. Some techniques such as partial-order method
[39] and computation slicing [40, 41] are also approaches
to address the NP-Completeness of predicate detection.
Those works use vector clocks to determine causality
and the monitors receive states directly from the con-
stituent processes. Furthermore, the processes are static.
[42, 43] address the predicate detection in dynamic dis-
tributed systems. However, the class of predicate is limited
to the conjunctive predicate. In this paper, our algorithms
are adapted for detecting the predicate from only the
states of the servers in the key-value store, not from the
clients. The servers are static (except failure), but the
clients can be dynamics. The predicates supported include
linear (including conjunctive) predicates and semilinear
predicates.
In [44, 45], the monitors use Hybrid Logical Clock

(HLC) to determine causality between events in a dis-
tributed execution. HLC has the advantage of low over-
head but suffers from false negatives (some valid viola-
tions are not detected). In contrast, we use hybrid vec-
tor clocks to determine causality in our algorithms. In
[33], the authors discussed the impact of various fac-
tors, among which is clock synchronization error, on the
precision of the monitors. In this paper, we set epsilon
at a safe upper bound for practical clock synchroniza-
tion error to avoid missing potential violations. In other
words, a hybrid vector clock is practically a vector clock.
Furthermore, this paper focuses on the efficiency and
effectiveness of the monitors.
Bloom clock [46] is another alternative to vector clock.

Due to the overhead of the counting Bloom filter, the ben-
efit of Bloom clock only payoffs on very large distributed
systems.

Distributed data-stores
Many NoSQL data stores exist on the market today, and
a vast portion of these systems provide eventual con-
sistency. The eventual consistency model is especially
popular among key-value and column-family databases.
The original Dynamo [1] was one of the pioneers in
the eventual consistency movement and served as the
basis for Voldemort key-value store. Dynamo introduced
the idea of hash-ring for data-sharding and distribution,
but unlike Voldemort, it relied on server-side replica-
tion instead of active client replication. Certain modern
databases, such as Cosmos DB and DynamoDB [47, 48]

Nguyen et al. Journal of the Brazilian Computer Society (2019) 25:10 Page 22 of 25

offer tunable consistency guarantees, allowing operators
to balance consistency and performance. This flexibil-
ity would enable some applications to take advantage
of optimistic execution while allowing other applications
to operate under stronger guarantees if needed. How-
ever, many data stores [49, 50] are designed to provide
strong consistency and may not benefit from optimistic
execution module.
Aside from general purpose databases, a variety of spe-

cialized solutions exist. For instance, TAO [51] handles
social graph data at Facebook. TAO is not strongly consis-
tent, as its main goal is performance and high scalability,
even across datacenters and geographical regions. Gorilla
[52] is another Facebook’s specialized store. It operates
on performance time-series data and highly tuned for
Facebook’s global architecture. Gorilla also favors avail-
ability over consistency in regards to the CAP theorem.
Crail-KV [53] is Samsung’s extension for Apache Crail
data storage system [54] that leverages recent advances
in hardware technology, especially key-value solid state
drive, to provide higher I/O performance for distributed
data store.
Various consistency models in distributed system are

presented in the survey [55]. In [56], the authors introduce
the notion of Fluctuating Eventual Consistency which is
the mix of eventual consistency and strong consistency in
order to provide stronger guarantee for eventual consis-
tency. However, this correctness property is not suitable
for the adaptive behavior of application since it is not
sufficient to prevent violations as sequential consistency
does, and it has more extra synchronization effort than
eventual consistency. Consistify [57] is a framework that
supports tuning the consistency level of a distributed data
store. However, Consistify has to statically analyzes the
semantics of the application.

Snapshots and reset
The problem of acquiring past snapshots of a system
state and rolling back to these snapshots has been
studied extensively. Freeze-frame file system [58] uses
Hybrid Logical Clock (HLC) to implement amulti-version
Apache HDFS. Retroscope [11] takes advantage of HLC to
find consistent cuts in the system's global state by exam-
ining the state-history logs independently on each node
of the system. The snapshots produced by Retroscope can
later be used for node reset by simple swapping of data-
files. Eidetic systems [59] take a different approach and
do not record all prior state changes. Instead, the eide-
tic system records any non-deterministic changes at the
operating system level and constructing a model to navi-
gate deterministic state mutations. This allows the system
to revert the state of an entire machine, including the
operating system, data, and applications, to some prior
point. Certain applicationsmay not require past snapshots

and instead need to quickly identify consistent snapshots
in the presence of concurrent requests affecting the data.
VLS [60] is one such example designed to provide snap-
shots for data analytics applications while supporting high
throughput of requests executing against the system.

Distributed data processing
MapReduce [61] and DataFlow [62] are general-purpose
distributed data processing frameworks. In the realm of
distributed graph processing, many frameworks are avail-
able such as Pregel [63], GraphLab [64], GraphX [65],
and PowerGraph [66]. In those works, data is persisted in
semi-structural storages suchGoogle File System, Hadoop
Distributed File Systems [67], BigTable [68], or in in-
memory storage such as Spark [69]. Our work focuses on
the no-structure key-value stores and the impact of differ-
ent consistency models on key-value store performance.
Our approach’s usefulness is also not limited to graph
applications.

Conclusion
Due to limitations of the CAP theorem and the desire
to provide availability/good performance during network
partitions (or long network delays), many key-value stores
choose to provide a weaker consistency such as eventual
or causal consistency. This means that the designers need
to develop new algorithms that work correctly under such
weaker consistency models. An alternative approach is to
run the algorithm by ignoring that the underlying system
is not sequentially consistent but monitoring it for viola-
tions that may affect the application. For example, in the
case of graph-based applications (such as those encoun-
tered in Weather Monitoring and Social Media Analysis),
each client operates on a subset of nodes in the graph.
It is required that two clients do not update two neigh-
boring nodes simultaneously. In this case, the predicate
of interest is that the local mutual exclusion is always
satisfied.
We demonstrated the usage of this approach in the

Voldemort key-value store. We considered two types of
predicates: conjunctive predicates and semi-linear pred-
icates (such as that required for local mutual exclusion).
We evaluated our approach using Amazon AWS for graph
applications motivated by Social Media Analysis and
Weather Monitoring. Our approach improved the client
throughput performance by 50–80%. Furthermore, we
find that the number of violations of predicates of interest
was infrequent. Violations were also detected promptly.
When all clients and servers were in the same region,
the violations were detected within 50 ms whereas if they
were in different regions, time for detection was higher.
For example, in a network where clients and servers were
located in Frankfurt Germany, Ohio USA, and Oregon
USA, violations were detected in less than 3 s. In this

Nguyen et al. Journal of the Brazilian Computer Society (2019) 25:10 Page 23 of 25

context, the time required for a client to work on one
task was at least 22 s and was on average 45 s. Thus,
detection latency was significantly lower than the time for
processing a task.
We developed an efficient rollback algorithm for graph-

based applications with the assumption that all violations
are detected quickly enough. Our rollback algorithm has
mechanisms to handle livelocks (i.e., multiple rollbacks
caused by a recurring violation) such as back-off and
adaptive consistency where clients switch from eventual
consistency to sequential consistency if violations are fre-
quent. We observe that livelocks occur at the end of
terminating computation. This is due to the fact that,
in a graph processing application, when the computa-
tion is about to terminate, there are only a few nodes of
the graph that need to be processed. Hence, if a conflict
occurs between two clients C1 and C2, computation after
their rollback is likely to have the same conflict again,
as each client has only a very small set of nodes to be
processed. In this case, without a livelock mechanism,
eventual consistency will fail to process all the nodes.
Adaptive consistency is also useful in scenarios where the
network condition is unstable for an extended period of
time. In this case, data inconsistencies are likely to hap-
pen and the clients process stale information and produce
incorrect results. By switching to sequential consistency,
some clients can make progress while some other clients
those do not make progress also do not produce conflict-
ing data. Since Voldemort uses active replication (where
clients are responsible for replication), such an adaptive
approach can be implemented by clients alone without
any changes to the underlying server architecture. If pas-
sive replication were used, implementation of an adaptive
approach would require servers to perform such a change.
We demonstrated the benefit of using eventual consis-

tency with monitoring and rollback. On non-terminating
applications such as those motivated by Weather Mon-
itoring, our approach was 45–47% faster than running
the application on sequential consistency, even occasional
rollbacks occurred during the execution. Furthermore, the
cost of the monitors and rollback was as low as 1.4%. On
terminating applications such as thosemotivated by Social
Media Analysis, adaptive consistency is required as even-
tual consistency fail to process all nodes. For this reason,
the overall benefit is reduced. Specifically, when 90% of
the nodes were processed, the benefit was 19–26%. How-
ever, since it needed to switch to sequential consistency
at the end due to excessive recurring violations, the final
benefit was reduced to 10–20%.
There are several possible future extensions of this

work. Currently, the adaptive solution switches from
eventual consistency to sequential consistency based on
the feedback frommonitors. It is possible that the increase
in conflicts is temporary due to network issues. When the

condition is resumed to normal, it would be beneficial to
run in eventual consistency again. However, in sequential
consistency, monitors are not required and, thus, there is
no feedback mechanism to determine when using even-
tual consistency is reasonable. One needs to develop new
techniques to permit this possibility.
Another issue is that the monitors used in this work suf-

fer from false positives, i.e., they initiate rollback when it
was not absolutely necessary. One possible reason for false
positives is that the clients, say C1 and C2, involved in
rollback had only read from the key-value store. In this
case, one of the clients can continue the execution with-
out rollback. However, in our implementation, as each
client rolls back independently, both of them rollback.
If this is prevented, it can not only reduce the wasted
work, and it can also potentially avoid re-occurrence of
conflict between C1 and C2 after rollback. Another rea-
son for false positives is the impedance mismatch in the
synchrony assumptions made by the monitors and the
applications [33]. In order to reduce or eliminate the
false positives, we would have to augment the clients and
servers with more information and the monitors would
have to examine the candidates more extensively. Conse-
quently, that would increase the cost of monitoring but
reduce the need for performing rollback.
The rollback algorithm proposed in this paper is spe-

cific for graph-based application and has the assumption
on small detection latency. For a general application, we
are investigating the possibility of integrating the mon-
itor with Retroscope [11] to automate the rollback and
recovery.

Abbreviations
AWS: Amazon Web Service; CAP: CAP theorem, also known as BrewerŠs
theorem where C stands for Consistency, A for Availability, and P for Partition
tolerance; CPU: Central processing unit; EC2: Amazon Elastic Compute Cloud;
GP2: Amazon General Purpose SSD storage volume; HDFS: Hadoop
Distributed File System; HLC: Hybrid Logical Clock; HVC: Hybrid vector clock;
I/O: input/output; JBCS: Journal of the Brazilian Computer Society; LADC:
Latin-American Symposium on Dependable Computing; ms: The time unit
millisecond; NP in NP-complete and NP-hard: Non-deterministic polynomial
time; ops: Operations per second; P: We often denote a predicate as P in this
manuscript (this is not an abbreviation); PC: Personal computer; PT: Physical
time; RAM: Random access memory; s: The time unit second; TAO: Facebook’s
The Associations and Objects distributed data store; VC: Vector clock; VLS:
Virtual lightweight snapshots; XML: Extensible Markup Language

Acknowledgements
We thank the reviewers of the 8th Latin-American Symposium on Dependable
Computing (LADC 2018) for their suggestions on our work.

Authors’ contributions
All authors have contributed to the methodological and research aspects of
the research. All authors have also read and approved the final manuscript.

Authors’ information
Duong Nguyen, Michigan State University, nguye476@msu.edu; Aleksey
Charapko, University at Buffalo, SUNY, charapk@buffalo.edu; Sandeep S.
Kulkarni, Michigan State University, sandeep@cse.msu.edu; Murat Demirbas,
University at Buffalo, SUNY, demirbas@buffalo.edu.

mailto: nguye476@msu.edu
mailto: charapk@buffalo.edu
mailto: sandeep@cse.msu.edu
mailto: demirbas@buffalo.edu

Nguyen et al. Journal of the Brazilian Computer Society (2019) 25:10 Page 24 of 25

Funding
This work is supported in part by NSF CNS-1329807, NSF CNS-1318678, NSF
XPS-1533870, and NSF XPS-1533802.

Availability of data andmaterials
The source code and experimental results supporting the conclusions of this
article are at https://doi.org/10.5281/zenodo.3338381.

Competing interests
The authors declare that they have no competing interests.

Author details
1Michigan State University, MI 48824 East Lansing, USA. 2University at Buffalo,
SUNY, NY 14260 Buffalo, USA.

Received: 4 April 2019 Accepted: 9 September 2019

References
1. DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A,

Sivasubramanian S, Vosshall P, Vogels W (2007) Dynamo: Amazon’s highly
available key-value store. In: Proceedings of Twenty-first ACM SIGOPS
Symposium on Operating Systems Principles, SOSP ’07. ACM, New York.
pp 205–220. https://doi.org/10.1145/1294261.1294281

2. Brewer EA (2000) Towards robust distributed systems (abstract). In:
Proceedings of the Nineteenth Annual ACM Symposium on Principles of
Distributed Computing, PODC ’00. ACM, New York. p 7. https://doi.org/10.
1145/343477.343502

3. Gilbert S, Lynch N (2002) Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. SIGACT News
33(2):51–59. https://doi.org/10.1145/564585.564601

4. Du J, Iorgulescu C, Roy A, Zwaenepoel W (2014) Gentlerain: cheap and
scalable causal consistency with physical clocks. In: Proceedings of the
ACM Symposium on Cloud Computing, SOCC ’14. ACM, New York.
pp 4–1413. https://doi.org/10.1145/2670979.2670983

5. Lloyd W, Freedman MJ, Kaminsky M, Andersen DG (2011) Don’t settle for
eventual: Scalable causal consistency for wide-area storage with COPS. In:
Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP ’11. ACM, New York. pp 401–416. https://doi.org/10.
1145/2043556.2043593

6. Roohitavaf M, Demirbas M, Kulkarni SS (2017) Causalspartan: Causal
consistency for distributed data stores using hybrid logical clocks. In: 36th
IEEE Symposium on Reliable Distributed Systems, SRDS 2017, Hongkong,
China, September 26 - 29, 2017. pp 184–193

7. Lakshman A, Malik P (2010) Cassandra: a decentralized structured storage
system. ACM SIGOPS Oper Syst Rev 44(2):35–40

8. Project Voldemort. http://www.project-voldemort.com/voldemort/
quickstart.html. Accessed 14 July 2019

9. Sumbaly R, Kreps J, Gao L, Feinberg A, Soman C, Shah S (2012) Serving
large-scale batch computed data with project voldemort. In: Proceedings
of the 10th USENIX Conference on File and Storage Technologies. USENIX
Association. pp 18–18

10. Brzezinski J, Wawrzyniak D (2002) Consistency requirements of Peterson’s
algorithm for mutual exclusion of N processes in a distributed shared
memory system. In: Proceedings of the International Conference on
Parallel Processing and Applied Mathematics-Revised Papers, PPAM ’01.
Springer, London. pp 202–209

11. Charapko A, Ailijiang A, Demirbas M, Kulkarni S (2017) Retrospective
lightweight distributed snapshots using loosely synchronized clocks. In:
Distributed Computing Systems (ICDCS), 2017 IEEE 37th International
Conference On. IEEE. pp 2061–2066

12. Garg VK (1996) Principles of Distributed Systems. Kluwer, Norwell
13. Garg VK, Chase CM (1995) Distributed algorithms for detecting

conjunctive predicates. In: Distributed Computing Systems, 1995.,
Proceedings of the 15th International Conference On. IEEE. pp 423–430

14. Chase CM, Garg VK (1998) Detection of global predicates: techniques and
their limitations. Distrib Comput 11(4):191–201

15. Nguyen D (2019) Supplementary dataset and source code for the paper
“Using Weaker Consistency Models with Monitoring and Recovery for
Improving Performance of Key-Value Stores”. https://doi.org/10.5281/
zenodo.3338381

16. Lamport L (1978) Time, clocks, and the ordering of events in a distributed
system. Commun ACM 21(7):558–565. https://doi.org/10.1145/359545.
359563

17. Stoller SD (2000) Detecting global predicates in distributed systems with
clocks. Distrib Comput 13(2):85–98

18. Marzullo K, Neiger G (1991) Detection of global state predicates. In:
International Workshop on Distributed Algorithms. Springer. pp 254–272

19. Fidge CJ (1988) Timestamps in message-passing systems that preserve
the partial ordering. In: Raymond K (ed). Proceedings of the 11th
Australian Computer Science Conference (ACSC). pp 56–66

20. Mattern F (1989) Virtual time and global states of distributed systems.
Parallel Distrib Algoritm 1(23):215–226

21. Demirbas M, Kulkarni S (2013) Beyond truetime: using augmentedtime
for improving google spanner. In: Workshop on Large-Scale Distributed
Systems and Middleware (LADIS)

22. Garg VK, Waldecker B (1994) Detection of weak unstable predicates in
distributed programs. IEEE Trans Parallel Distrib Syst 5(3):299–307

23. Nguyen DN, Kulkarni SS, Datta AK (2019) Benefit of self-stabilizing
protocols in eventually consistent key-value stores: a case study. In:
Proceedings of the 20th International Conference on Distributed
Computing and Networking, ICDCN 2019, Bangalore, India, January
04-07, 2019. pp 148–157. https://doi.org/10.1145/3288599.3288609

24. Bovy C, Mertodimedjo H, Hooghiemstra G, Uijterwaal H, Van Mieghem P
(2002) Analysis of end-to-end delay measurements in internet. In: Proc. of
the Passive and Active Measurement Workshop-PAM, vol 2002. sn

25. (2013) NIST/SEMATECH e-Handbook of Statistical Methods. http://www.
itl.nist.gov/div898/handbook/eda/section3/eda366b.htm. Accessed 14
July 2019

26. Overview of NetworkX. http://https://networkx.github.io/
documentation/stable/. Accessed 24 Mar 2019

27. Raynal M (2013) Distributed Algorithms for message-passing systems.
Springer, New York

28. Fjukstad B, Bjørndalen JM, Anshus O (2013) Embarrassingly distributed
computing for symbiotic weather forecasts. Procedia Comput Sci
18:1217–1225

29. Prakash R, Shivaratri NG, Singhal M (1995) Distributed dynamic channel
allocation for mobile computing. In: Proceedings of the Fourteenth
Annual ACM Symposium on Principles of Distributed Computing. ACM.
pp 47–56

30. Núnez-Rodrıguez Y, Xiao H, Islam K, Alsalih W (2008) A distributed
algorithm for computing voronoi diagram in the unit disk graph model.
In: Proc. 20th Canadian Conference in Computational Geometry
(CCCG’08). pp 199–202

31. Ranger C, Raghuraman R, Penmetsa A, Bradski G, Kozyrakis C (2007)
Evaluating mapreduce for multi-core and multiprocessor systems. In:
High Performance Computer Architecture, 2007. HPCA 2007. IEEE 13th
International Symposium On. IEEE. pp 13–24

32. Blanas S, Patel JM, Ercegovac V, Rao J, Shekita EJ, Tian Y (2010) A
comparison of join algorithms for log processing in mapreduce. In:
Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data. ACM. pp 975–986

33. Yingchareonthawornchai S, Nguyen D, Valapil VT, Kulkarni SS, Demirbas M
(2016) Precision, recall, and sensitivity of monitoring partially synchronous
distributed systems. In: Runtime Verification. Springer. pp 20–30

34. DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A,
Sivasubramanian S, Vosshall P, Vogels W (2007) Dynamo: amazon’s highly
available key-value store. ACM SIGOPS Oper Syst Rev 41(6):205–220

35. Chandy KM, Lamport L (1985) Distributed snapshots: determining global
states of distributed systems. ACM Trans Comput Syst 3(1):63–75. https://
doi.org/10.1145/214451.214456

36. Garg VK, Waldecker B (1992) Detection of unstable predicates in
distributed programs. In: International Conference on Foundations of
Software Technology and Theoretical Computer Science. Springer.
pp 253–264

37. Garg VK, Waldecker B (1996) Detection of strong unstable predicates in
distributed programs. IEEE Trans Parallel Distrib Syst 7(12):1323–1333

38. Garg VK, Chase CM, Mitchell JR, Kilgore R (1995) Conjunctive predicate
detection. In: Proceedings Hawaii International Conference on System
Sciences HICSS95 (January 1995), IEEE Computer Society. Citeseer

39. Stoller SD, Unnikrishnan L, Liu YA (2000) Efficient detection of global
properties in distributed systems using partial-order methods. In:

https://doi.org/10.5281/zenodo.3338381
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/343477.343502
https://doi.org/10.1145/343477.343502
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/2670979.2670983
https://doi.org/10.1145/2043556.2043593
https://doi.org/10.1145/2043556.2043593
http://www.project-voldemort.com/voldemort/quickstart.html
http://www.project-voldemort.com/voldemort/quickstart.html
https://doi.org/10.5281/zenodo.3338381
https://doi.org/10.5281/zenodo.3338381
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/3288599.3288609
http://www.itl.nist.gov/div898/handbook/eda/section3/eda366b.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda366b.htm
http://https://networkx.github.io/documentation/stable/
http://https://networkx.github.io/documentation/stable/
https://doi.org/10.1145/214451.214456
https://doi.org/10.1145/214451.214456

Nguyen et al. Journal of the Brazilian Computer Society (2019) 25:10 Page 25 of 25

International Conference on Computer Aided Verification. Springer.
pp 264–279

40. Mittal N, Garg VK (2005) Techniques and applications of computation
slicing. Distrib Comput 17(3):251–277

41. Chauhan H, Garg VK, Natarajan A, Mittal N (2013) A distributed abstraction
algorithm for online predicate detection. In: 2013 IEEE 32nd International
Symposium on Reliable Distributed Systems. IEEE. pp 101–110

42. Wang X, Mayo J, Hembroff G, Gao C (2009) Detection of conjunctive
stable predicates in dynamic systems. In: Parallel and Distributed Systems
(ICPADS), 2009 15th International Conference On. IEEE. pp 828–835

43. Wang X, Mayo J, Hembroff GC (2010) Detection of a weak conjunction of
unstable predicates in dynamic systems. In: Parallel and Distributed
Systems (ICPADS), 2010 IEEE 16th International Conference On. IEEE.
pp 338–346

44. Valapil VT, Kulkarni SS (2018) Biased clocks: a novel approach to improve
the ability to perform predicate detection with O(1) clocks. In: Structural
Information and Communication Complexity - 25th International
Colloquium, SIROCCO 2018, Ma’ale HaHamisha, Israel, June 18-21, 2018,
Revised Selected Papers. pp 345–360

45. Valapil VT, Yingchareonthawornchai S, Kulkarni SS, Torng E, Demirbas M
(2017) Monitoring partially synchronous distributed systems using SMT
solvers. In: Runtime Verification - 17th International Conference, RV 2017,
Seattle, WA, USA, September 13-16, 2017, Proceedings. pp 277–293

46. Ramabaja L (2019) The bloom clock. CoRR abs/1905.13064. 1905.13064
47. Azure Cosmos DB – Globally Distributed Database Service. https://azure.

microsoft.com/en-us/services/cosmos-db/?v=17.45b. Accessed 10 Dec
2017

48. Amazon DynamoDB – a Fast and Scalable NoSQL Database Service
Designed for Internet Scale Applications. http://www.allthingsdistributed.
com/2012/01/amazon-dynamodb.html. Accessed 10 Dec 2017

49. Corbett JC, Dean J, Epstein M, Fikes A, Frost C, Furman JJ, Ghemawat S,
Gubarev A, Heiser C, Hochschild P, et al. (2013) Spanner: Google’s globally
distributed database. ACM Trans Comput Syst (TOCS) 31(3):8

50. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M,
Chandra T, Fikes A, Gruber RE (2008) Bigtable: a distributed storage
system for structured data. ACM Trans Comput Syst (TOCS) 26(2):4

51. Bronson N, Amsden Z, Cabrera G, Chakka P, Dimov P, Ding H, Ferris J,
Giardullo A, Kulkarni S, Li HC, et al. (2013) Tao: Facebook’s distributed data
store for the social graph. In: USENIX Annual Technical Conference.
pp 49–60

52. Pelkonen T, Franklin S, Teller J, Cavallaro P, Huang Q, Meza J,
Veeraraghavan K (2015) Gorilla: a fast, scalable, in-memory time series
database. Proc VLDB Endowment 8(12):1816–1827

53. Bisson T, Chen K, Choi C, Balakrishnan V, Kee Y (2018) Crail-kv: A
high-performance distributed key-value store leveraging native kv-ssds
over nvme-of. In: 2018 IEEE 37th International Performance Computing
and Communications Conference (IPCCC). pp 1–8. https://doi.org/10.
1109/PCCC.2018.8710776

54. Stuedi P, Trivedi A, Pfefferle J, Stoica R, Metzler B, Ioannou N, Koltsidas I
(2017) Crail: A high-performance I/O architecture for distributed data
processing. IEEE Data Eng Bull 40(1):38–49

55. Aldin HNS, Deldari H, Moattar MH, Ghods MR (2019) Consistency models
in distributed systems: a survey on definitions, disciplines, challenges and
applications. CoRR abs/1902.03305

56. Kokocinski M, Kobus T, Wojciechowski PT (2019) On mixing eventual and
strong consistency: Bayou revisited. CoRR abs/1905.11762

57. Sidhanta S, Mukhopadhyay S, Golab W (2019) Consistify: preserving
correctness and sla under weak consistency. In: Proceedings of the 20th
International Conference on Distributed Computing and Networking,
ICDCN ’19. ACM, New York. pp 282–291. https://doi.org/10.1145/3288599.
3288630. http://doi.acm.org/10.1145/3288599.3288630

58. Song W, Gkountouvas T, Birman K, Chen Q, Xiao Z (2016) The
freeze-frame file system. In: SoCC. pp 307–320

59. Devecsery D, Chow M, Dou X, Flinn J, Chen PM (2014) Eidetic systems. In:
11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14). pp 525–540

60. Chirigati F, Siméon J, Hirzel M, Freire J (2016) Virtual lightweight
snapshots for consistent analytics in nosql stores. In: Data Engineering
(ICDE), 2016 IEEE 32nd International Conference On. IEEE. pp 1310–1321

61. Dean J, Ghemawat S (2008) Mapreduce: simplified data processing on
large clusters. Commun ACM 51(1):107–113

62. Akidau T, Bradshaw R, Chambers C, Chernyak S, Fernández-Moctezuma
RJ, Lax R, McVeety S, Mills D, Perry F, Schmidt E, et al. (2015) The dataflow
model: a practical approach to balancing correctness, latency, and cost in
massive-scale, unbounded, out-of-order data processing. Proc VLDB
Endowment 8(12):1792–1803

63. Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N, Czajkowski G
(2010) Pregel: a system for large-scale graph processing. In: Proceedings
of the 2010 ACM SIGMOD International Conference on Management of
Data. ACM. pp 135–146

64. Low Y, Bickson D, Gonzalez J, Guestrin C, Kyrola A, Hellerstein JM (2012)
Distributed graphlab: a framework for machine learning and data mining
in the cloud. Proc VLDB Endowment 5(8):716–727

65. Gonzalez JE, Xin RS, Dave A, Crankshaw D, Franklin MJ, Stoica I (2014)
Graphx: graph processing in a distributed dataflow framework. In: OSDI
Vol. 14. pp 599–613

66. Gonzalez JE, Low Y, Gu H, Bickson D, Guestrin C (2012) Powergraph:
distributed graph-parallel computation on natural graphs. In: OSDI, vol
12. p 2

67. Ghemawat S, Gobioff H, Leung S (2003) The Google file system. In:
Proceedings of the 19th ACM Symposium on Operating Systems
Principles 2003, SOSP 2003, Bolton Landing, NY, USA, October 19-22,
2003. pp 29–43

68. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M,
Chandra T, Fikes A, Gruber RE (2008) Bigtable: a distributed storage
system for structured data. ACM Trans Comput Syst (TOCS) 26(2):4

69. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, Franklin MJ,
Shenker S, Stoica I (2012) Resilient distributed datasets: a fault-tolerant
abstraction for in-memory cluster computing. In: Proceedings of the 9th
USENIX Conference on Networked Systems Design and Implementation.
USENIX Association. pp 2–2

70. Nguyen D, Charapko A, Kulkarni S, Demirbas M Using weaker consistency
models with monitoring and recovery for improving performance of
key-value stores. In: The 8th Latin-American Symposium on Dependable
Computing, LADC 2018, Foz do Iguaçu, Brazil, October 08-10, 2018

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

http://arxiv.org/abs/1905.13064
https://azure.microsoft.com/en-us/services/cosmos-db/?v=17.45b
https://azure.microsoft.com/en-us/services/cosmos-db/?v=17.45b
http://www.allthingsdistributed.com/2012/01/amazon-dynamodb.html
http://www.allthingsdistributed.com/2012/01/amazon-dynamodb.html
https://doi.org/10.1109/PCCC.2018.8710776
https://doi.org/10.1109/PCCC.2018.8710776
https://doi.org/10.1145/3288599.3288630
https://doi.org/10.1145/3288599.3288630
http://doi.acm.org/10.1145/3288599.3288630

	Abstract
	Keywords

	Introduction
	System architecture
	Distributed key-value store
	Voldemort key store

	The problem of predicate detection in distributed systems
	Vector clocks and hybrid vector clocks
	Different types of predicate involved in predicate detection

	A framework for optimistic execution
	Monitoring module
	Rollback from violations
	Rollback mechanism
	Dealing with potential of livelocks

	Evaluation results and discussion
	Experimental setup
	Analysis of throughput
	Analysis of system and application factors
	Analysis of violations and detection latency
	Evaluating strategies for handling livelocks
	Analysis of applications
	Discussion

	Related work
	Predicate detection in distributed systems
	Distributed data-stores
	Snapshots and reset
	Distributed data processing

	Conclusion
	Abbreviations
	Acknowledgements
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

