
Journal of the
Brazilian Computer Society

Oizumi et al. Journal of the Brazilian Computer
Society (2018) 24:13
https://doi.org/10.1186/s13173-018-0078-y

RESEARCH Open Access

On the identification of design problems
in stinky code: experiences and tool support
Willian Oizumi1,2* , Leonardo Sousa1, Anderson Oliveira1, Alessandro Garcia1,
Anne Benedicte Agbachi1, Roberto Oliveira1,3 and Carlos Lucena1

Abstract

Background: Developers often have to locate design problems in the source code. Several types of design
problems may manifest as code smells in the program. A code smell is a source code structure that may reveal a
partial hint about the manifestation of a design problem. Recent studies suggest that developers should ignore smells
occurring in isolation in a program location. Instead, they should focus on analyzing stinkier code, i.e., program
locations—e.g., a class or a hierarchy—affected by multiple smells. There is evidence that the stinkier a program
location is, the more likely it contains a design problem. However, there is no empirical evidence on whether
developers can effectively identify a design problem in stinkier code. Developers may struggle to make an analysis of
inter-related smells affecting the same program location. Besides that, the analysis of stinkier code may require proper
tool support due to its analysis complexity. However, there is little knowledge on what are the requirements for a tool
that helps developers in revealing stinkier program locations. As a result, developers may not be able to identify
design problems due to tool issues.

Method: To address this matter, we aimed at achieving three goals. In the first case, we proposed Organic—a tool
supporting the analysis of stinky code. In the second case, we applied a mixed-method approach to analyze if and
how developers can effectively find design problems when reflecting upon stinky code—i.e., a program location
affected by multiple smells. We conducted a study with 11 software professionals. Finally, in the third case, we aimed
at understanding if Organic could be used by developers to identify design problems. To achieve this goal, we used a
method from the Semiotic Engineering theory. This method enabled us to evaluate what are the tool issues that may
hinder the identification of design problems in stinky code.

Result: Our study revealed that only 36.36% of the developers found more design problems when explicitly
reasoning about multiple smells as compared to single smells. Moreover, 63.63% of the developers reported much
lesser false positives when using the first approach as compared to the latter. The second study, in its turn, showed
that most developers may be unable to identify design problems in stinky code without proper tool support.

Conclusion: Our experiences, in particular the second study, helped us to refine the features of Organic for better
supporting developers in reflecting upon stinkier code. For example, analyses of stinky code scattered in class
hierarchies or packages is often difficult, time-consuming, and requires proper visualization support. Moreover,
without effective support, it remains time-consuming to discard stinky program locations that do not represent
design problems.

Keywords: Design problem, Software design, Code smell, Agglomeration

*Correspondence: woizumi@inf.puc-rio.br
1Opus Research Group, Informatics Department, PUC-Rio, Rio de Janeiro, RJ,
Brazil
2IFPR, Campus Paranavai, Paranavai, PR, Brazil
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://orcid.org/0000-0002-8956-5272
mailto: woizumi@inf.puc-rio.br
http://creativecommons.org/licenses/by/4.0/

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 2 of 30

Introduction
The identification of design problems in the source code
is not a trivial task [1, 2]. Developers usually need to find
hints, as code smells, in the source code that can lead to a
design problem. A code smell is a structure in the source
code that may provide developers with a partial indication
about the manifestation of a design problem [3]. A classi-
cal example of code smell is the God Class, which occurs
when a class is long and complex, centralizing a consid-
erable amount of intelligence of the system. However, the
occurrence of a single smell in isolation in a program
often does not represent a design problem [4, 5]. A design
problem is a design characteristic that negatively impacts
maintainability [2]. Recent studies reveal that design prob-
lems are much more often located in stinkier program
locations (i.e., a class, a hierarchy, or a package) affected by
multiple smells [4–8]. For instance, a Fat Interface [9] is a
design problem that oftenmanifests as multiple smells in a
program, affecting various classes that implement, extend,
and use the interface in a program [5].
The stinkier a program location is, the more likely it

contains a design problem [5, 10]. In fact, developers
tend to focus on refactoring program locations with a
high density of code smells and ignore those locations
affected by a single smell [11, 12]. However, there is lim-
ited understanding if developers can effectively identify
design problems in stinkier code, i.e., program locations
affected by multiple smells. Indeed, existing techniques
tend to focus on the detection and visualization of each
single smell [13–16]. They do not offer a summarized
view of inter-related smells affecting a program location
[5]. Moreover, previous studies focus on simply analyzing
the correlation between design problems and code smells
[5, 17]. They have not investigated if and how developers
are indeed effective in the task of finding design problems
in stinkier code.
Therefore, we do not know whether the analysis of

multiple smells actually provides better precision for the
identification of design problems. Developers may strug-
gle to make a meaning out of inter-related smells affecting
the same program location. Additionally, the analysis of
stinkier code may require proper tool support due to its
analytic complexity. However, there is limited knowledge
on what are the requirements for a tool that supports
the analysis of stinkier code. This is important because
developers may not be able to identify design problems
due to tool support issues. To address these matters, we
defined three goals for our research: (1) provide proper
support for the analysis of stinkier code, (2) assess to what
extent developers are able to identify design problems in
stinkier code, and (3) identify tool issues that may hinder
the identification of design problems.
To achieve our first goal, we designed and implemented

Organic—a tool supporting the analysis of stinky code.We

used findings from previous studies [4, 5, 17–20] as a start
point for defining the requirements of Organic. In a nut-
shell, Organic supports the analysis of multiple forms of
stinkier code, provides detailed information about code
smells, supports the analysis of dependencies between
stinky elements, provides a visualization for stinkier code,
provides historical information about stinkier code, and
allows developers to specify the thresholds that should be
considered when identifying stinkier code. In the context
of Organic, the threshold defines the minimum number of
smells that a program location should have to be consid-
ered stinkier. Those features will be presented in detail in
the “Organic: a tool for the analysis of stinky code” section.
For achieving the second goal, we applied a mixed-

method approach to analyze if and how developers can
effectively find design problems when reflecting upon
stinky code. This study comprised both quantitative and
qualitative analyses. For the quantitative analysis, we com-
pared the precision of the developers with a baseline, i.e.,
situations where only single smells were given to them.
As we want to assess if multiple smells can help develop-
ers to reveal more design problems than single smells, we
divided the developers into two groups. In the first group,
we asked them to identify design problems through the
analysis of stinky program locations. In the second group,
we asked them to identify design problems with the analy-
sis of single smells. After that, we inverted the groups, and
we asked them to repeat the identification of design prob-
lems in a second system. In each identification task, we
used the group that identified design problems with single
smells as the control group. Thus, we could use the con-
trol group to measure if the analysis of stinkier program
locations can improve the precision of design problem
identification.
In the qualitative analysis, we performed a systematic

evaluation through the careful observation of participants
during the study execution and the application of a follow-
up questionnaire. The objective of this analysis was to
identify the main barriers of reflecting upon multiple
smells along the task of identifying design problems. The
outcomes of this analysis helped us to better understand
ways to improve support for the identification of design
problems in stinky code.
By triangulating the results of both analyses, we

noticed that 36.36% of the developers found more
design problems when explicitly reasoning about multi-
ple smells. We found that the understanding of complex
stinky code helped to confirm the occurrence of non-
trivial design problems, such as Scattered Concern [21].
Furthermore, we found that 63.63% of the developers
reported much less false positives when analyzing multi-
ple smells than when analyzing single smells. Thus, devel-
opers that considered stinky program locations, instead
of isolated smelly code, could identify design problems

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 3 of 30

with higher precision. However, this study also showed
that developers need better support to analyze stinky pro-
gram locations to reveal design problems. We observed
that the analysis of stinky code may be difficult and
time consuming. For instance, a prioritization algorithm
is required so that developers do not waste time analyz-
ing many stinky program locations not related to design
problems.
Finally, to achieve our third goal, we evaluated Organic

with the Communicability Evaluation Method (CEM)
[22]. CEM is a method from the Semiotic Engineering
theory, which is intended to reveal ruptures of com-
munication when a user interacts a system, i.e., in our
case when the developer interacts with the Organic
tool. This method enabled us to identify issues in the
Organic tool that may hinder the identification of design
problems.
By conducting the communicability evaluation of

Organic, we observed three major issues. First, although
the tool detects stinkier program locations, it often fails
to provide a concise message that facilitates the rea-
soning about the possible design problem (affecting the
stinky program location). Second, the terms used in the
tool are not adequate to certain software developers.
Third, Organic uses ambiguous static symbols for repre-
senting different types of information. During the eval-
uation, we noted that, the aforementioned issues may
often hinder the identification of design problems in
stinky code.

Contextualization
This section, which is organized into two subsections,
provides background information to support the under-
standing of this paper. The “Basic concepts” section
outlines basic concepts. The “Identifying design prob-
lem in stinky code” section brings up an illustrative
example of analyzing stinky code to identify design
problems.

Basic concepts
Design problem
A design problem is a characteristic in the software
design that leads to negative impact onmaintainability [2].
Design problems affect program locations such as pack-
ages, interfaces, hierarchies, classes, and other structures
that are relevant for the design of the system [23]. Exam-
ples of design problems include Scattered Concern [21]
and Fat Interface [9]. The description of the eight types
of design problems considered in our study is presented
in Table 1. We opted by selecting these design problems
since (i) they are often considered as critical in the sys-
tems [5] chosen in our study and (ii) other studies have
shown the relation between such design problems and
code smells [4, 5, 17, 18, 24].

Table 1 Description of design problems

Name Description

Fat interface Interface of a design component that
offers only a general, ambiguous entry-point
that provides non-cohesive services, thereby
complicating the clients’ logic.

Unwanted dependency Dependency that violates an intended
design rule.

Component overload Design components that fulfill too many
responsibilities.

Cyclic dependency Two or more design components that
directly or indirectly depend on each other.

Delegating abstraction An abstraction that exists only for passing
messages from one abstraction to another.

Scattered concern Multiple components that are responsible
for realizing a crosscutting concern.

Overused interface Interface that is overloaded with many
clients accessing it, that is, an interface with
too many clients.

Unused abstraction Design abstraction that is either unreachable
or never used in the system.

Smelly code
Code smell is a recurring micro-structure in the source
code that may indicate the manifestation of a design prob-
lem [3]. A design problem can manifest itself in a program
by affecting multiple source code locations. Each of these
locations are called here smelly code. Thus, the developers
can analyze the smelly code to identify a design problem.
There are several types of code smell, which may affect a
method, a class, or a hierarchy. In this paper, we used nine
types of code smell, which are God Class, Brain Method,
Data Class, Dispersed Coupling, Feature Envy, Intensive
Coupling, Refused Bequest, Shotgun Surgery, and Tradi-
tion Breaker. These types of smell were considered in this
study as they occur in the target systems used in this
work. The description of each type of smell is presented in
Table 2.

Code smells and design problems
Developers can rely on the analysis of code smells to
identify design problems [17, 25, 26]. The use of code
smells to identify design problems is possible because
some instances of code smells manifest in the source due
to the presence of a design problem. Consequently, code
smells tend to co-occur in elements affected by design
problems [5, 8, 10, 18], which make them indicators of
design problems. Unfortunately, not all (instance of) code
smells are related to a design problem [17].
Usually, a code smell is related to a design problem

when it occurs due to the presence of design problem. For
instance, consider Scattered Concern [21], a design prob-
lem that occurs whenmultiple code elements implement a
functionality that should have been implemented by only

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 4 of 30

Table 2 Types of code smell

Type Description

God class Long and complex class that centralizes the
intelligence of the system

Brain method Long and complex method that centralizes
the intelligence of a class

Data class Class that contains data but not behavior
related to the data

Dispersed coupling The case of an operation which is excessively
tied to many other operations in the system,
and additionally these provider methods
that are dispersed among many classes

Feature envy Method that calls more methods of a single
external class than the internal methods of
its own inner class

Intensive coupling When a method is tied to many other
operations in the system, whereby these
provider operations are dispersed only into
one or a few classes

Refused bequest Subclass that does not use the protected
methods of its superclass

Shotgun surgery This smell is evident when you must change
lots of pieces of code in different places
simply to add a new or extended piece of
behavior

Tradition breaker Subclass that provides a large set of services
that are unrelated to services provided by
the superclass

a few elements. Often, elements that implement the scat-
tered functionality contain code smells such as God Class,
Feature Envy, Intensive Coupling, Divergent Change, and
the like. As the code elements implement a scattered func-
tionality, these elements are likely of realizing at least
two functionalities: their predominant functionality and
another one, in which the predominant functionality can
be either the scattered one or not. Either way, the elements
implement more than one functionality, which leads them
to the appearance of a God Class. Additionally, the meth-
ods in the class have to communicate with other classes
that also implement the scattered functionality. Thus,
these methods can contain instances of Feature Envy,
leading to the appearance of an Intensive Coupling smell.
Furthermore, every chance in the functionality will impact
the elements that implement it; thus, these elements will
have the Shotgun Surgery and Divergent Change. In sum-
mary, these code smells could appear in the elements due
to the scattered functionality, i.e., due to the Scattered
Concern.

Stinky program location
Indeed, code smells can be indicators of design prob-
lems. In fact, recent studies [4–6, 8] suggest that the
stinkier a program location is, the more likely it is to be
affected by a design problem. Stinky code is the mani-
festation of multiple code smells in a program location.
In this paper, we are especially interested in stinky code

indicated by smell agglomerations [5]. A smell agglom-
eration is a group of inter-related code smells affecting
the same program location, such as a method, a class,
a hierarchy, or a package [5]. Thus, the agglomeration
is determined in the program by the co-occurrence of
two or more code smells in the same method, class,
hierarchy, or package (or component). For code smells
that co-occur in the last three cases, we only consider
they are part of an agglomeration if they are syntacti-
cally related [5]. For instance, two classes can be related
through structural relationships in the program, such as
method calls and inheritance relationships. In this paper,
we considered four categories of agglomeration, which are
presented below.
An intra-method smell agglomeration consists of multi-

ple code smells that are located in a single method. The
minimum number of code smells required to characterize
an intra-method smell agglomeration is arbitrarily defined
by the developers through a threshold. Figure 1 presents
an example of intra-method agglomeration extracted from
the Apache OODT (Object Oriented Data Technology)
system. OODT is a distributed system aimed at support-
ing the management and integration of processes, data,
and metadata [27]. The agglomeration of Fig. 1 occurs in
the fromWorkflowInstancemethod, which is implemented
by the WorkflowProcessorQueue class. This method is
affected by two code smells: Brain Method and Inten-
sive Coupling. The smelly method is the source of a
Brain Method because fromWorkflowInstance performs
several operations related to pre-conditions, tasks, and
pos-conditions. All these operations make the method
difficult to read and, consequently, to maintain. More-
over, this method suffers from Intensive Coupling because
it is tightly coupled to a few classes, namely Work-
flowInstance,WorkflowProcessor, WorkflowCondition, and
WorkflowTask. These two smells together indicate the
method is complicated, addresses multiple responsibil-
ities, and is intensively coupled to a few classes in
the system.
An intra-class smell agglomeration consists of multi-

ple code smells affecting a single class. Thus, a class
C has an agglomeration whenever the number of code
smells affecting C is higher than an arbitrary threshold
defined by the developer. Figure 1 also shows an exam-
ple of intra-class agglomeration extracted from theOODT
system. This agglomeration occurs in the WorkflowPro-
cessorQueue class and is composed by four code smells
instances: Feature Envy in the getLifeCycle method, Dis-
persed Coupling in the getProcessors method, and Brain
Method and Intensive Coupling in the fromWorkflowIn-
stance method. Such a combination of smells suggests
the WorkflowProcessorQueue class is tied to many other
classes in the system and has more responsibilities than it
should.

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 5 of 30

Fig. 1 Intra-method and intra-class agglomerations in the WorkflowProcessorQueue class

A hierarchical agglomeration follows two conditions.
First, all code elements have to be affected by the same
type of code smells. Second, these elements have to imple-
ment the same interface or inherit from the same code
element. Figure 2 illustrates an example of hierarchical
agglomeration affecting the Apache OODT system. The
Versioner class is an abstraction affected by a Fat Interface
instance due to the high number of responsibilities imple-
mented into it, which realize different design concerns.
Besides that, the Versioner class is inherited by other
classes, namely SingleFileBasicVersioner, BasicVersioner,
DateTimeVersioner, andMetadataBasedFileVersioner. All
implementations are affected by Feature Envy, because
they have too many dependencies with multiple classes of
the system. Thus, all these Feature Envy instances together
form an agglomeration that reifies the Fat Interface design
problem affecting Versioner.
An intra-component smell agglomeration occurs inside

of a single design component. This agglomeration com-
prises multiple code smells affecting different code ele-
ments that are located within the same component. The
minimum number of code smells required to character-
ize an intra-component smell agglomeration is arbitrarily
defined by the developer. Note that, for characterizing this
type of smell agglomeration, all code elements have to (i)
be affected by the same type of code smell and (ii) be
connected by method calls or type references. The “Iden-
tifying design problem in stinky code” section presents
a detailed example involving an intra-component smell
agglomeration.
The concept of smell agglomeration is not limited to

the categories presented above. There are other categories
that we did not consider in this study. An example is the

concern-overload category [5], which is provided by the
Organic tool—as described in the “Organic: a tool for the
analysis of stinky code” section. In this paper, our focus
was to analyze the identification of design problems in
stinky program locations. Therefore, we considered only
categories that represent common program locations,
such as methods and classes.

Identifying design problem in stinky code
As explained in the previous section, the identification
of design problems can be based on code smells. For
instance, let us consider the example illustrated in Fig. 3.
This figure presents some classes that belong to theWork-
flow Manager subsystems–a component of the Apache
OODT (Object Oriented Data Technology) system [27].
It is responsible for description, execution, and monitor-
ing of workflows. Suppose that a developer is in charge
of identifying design problems in the Workflow Manager
subsystem, she can rely on the analysis of code smells to
spot program locations that may contain a design prob-
lem. If she is analyzing the repository package, she will
notice that this package contains several code smells as
indicated by a smell agglomeration. This agglomeration
is formed by four instances of the Feature Envy smell.
As illustrated by Fig. 3, each of the Feature Envy occur-
rences affects a different class. In this case, three classes
implement the WorkflowRepository interface. When the
developer analyze these classes based on the Feature
Envy smell, she will realize that these classes contain the
smell because one of their methods is more interested in
other classes than in its own hosting class. This happens
because these methods are forced to implement a method
that was defined in theWorkflowRepository interface, that

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 6 of 30

Fig. 2 Hierarchical agglomeration under the Versioner class

Fig. 3 Example of agglomeration in the workflow system

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 7 of 30

is, the smells in the agglomeration are indicating that
(the corresponding method in) the interface may con-
tain a design problem. In fact, this “forced implemen-
tation” becomes a problem because these methods are
implementing a concern that should not have been imple-
mented in their hosting classes. That happens because of
the fact that the WorkflowRepository interface processes
multiple services; thus, any class that implements this
interface needs to handle more services than it actually
should have.
In this example, the developer knows that the

code smells in the agglomeration have the same type
(Feature Envy). Also, she knows that three classes affected
by the code smells implement the same interface, as rei-
fied in a hierarchical agglomeration. This interface, in its
turn, seems to provide non-cohesive services. Thus, the
developer can infer that a design problem, called Fat Inter-
face, is affecting theWorkflowRepository interface. On the
other hand, if she did not reflect upon the code smell
agglomeration, it would be harder to her to identify the
same design problem. One of the reasons is the number of
code smells spread over the six classes and two interfaces
within the package. Although the package contains only
eight classes (Fig. 3 only shows some of them), it has more
than 50 code smells, many of which are irrelevant for the
identification of a Fat Interface. Thus, she has to analyze
many smelly code snippets in order to discard, postpone,
or further consider them in the identification of design
problems.
Let us assume that the developer only reasons about

each code smell in isolation to identify the design prob-
lem, i.e., without taking into consideration smell relation-
ships in an agglomeration. Thus, she can choose to analyze
the DataSourceWorkflowRepository class first because the
class contains the highest number of smells in the pack-
age. Analyzing the 21 instances of code smells in the class,
the developer will notice that the class has smells related
to high coupling with other classes (Intensive Coupling
and Dispersed Coupling), low cohesion (Feature Envy),
and overload of responsibilities (God Class). However, all
these smells may indicate different problems. Thus, she
has to extend the analysis to other classes in order to
gather more information that can potentially indicate a
design problem. Unfortunately, the other classes also have
different instances of code smells, and these instances
may not be related to any design problem. Therefore, the
developer can face difficulties to find the relevant code
smells that can help her to identify a design problem.
Thus, the analysis of stinky program locations, as revealed
by agglomerations, seems to be a better strategy. How-
ever, there is little empirical understanding about this
phenomenon. Existing studies are limited to investigat-
ing only if there is a correlation of design problems with
stinky code.

Organic: a tool for the analysis of stinky code
In this section, we present the Organic tool1. Organic
is a plug-in developed for the Eclipse IDE. The essen-
tial objective of Organic is to enable its users to identify
and reason about design problems. To fulfill its role,
Organic detects and groups code smells into agglomera-
tions of code smells. The detection of smells is performed
with the conventional detection strategies proposed by
Marinescu [28]. Each conventional detection strategy
is a heuristic that detects code elements that possi-
bly suffer from a particular type of code smell. The
heuristic of a detection strategy is based on a set of
metrics and thresholds, which are combined into logi-
cal expressions [28]. After the detection of code smells,
Organic explores different forms of relationship between
smells in order to search for smell agglomerations. The
smell agglomerations are identified through information
extracted from different artifacts of the analyzed software.
Finally, for each agglomeration, Organic extracts informa-
tion that may be helpful for the identification of design
problems.
We developed and evolved Organic’s features based

on findings from related work [4, 5, 17–20]. We used
their findings as a start point for defining a preliminary
set of requirements for supporting the identification of
design problems in stinky code. Next, we present the
requirements along with the corresponding features of
Organic. The requirements are made explicit in the title
of each paragraph below, followed by the description
of Organic features that implement the corresponding
requirement.
Supporting multiple categories of agglomeration. Our

prior work [10, 19] provided evidence that design prob-
lems may be reified in the source code by different forms
of agglomeration. Therefore, a tool for the analysis of
stinky code must support multiple categories of agglom-
eration. Thus, to support this requirement, Organic pro-
vides five categories of agglomerations: (i) intra-method,
(ii) intra-class, (iii) intra-component, (iv) hierarchical, and
(v) concern-overload.
Before searching for agglomerations, Organic uses

the source code model provided by Eclipse—through
the org.eclipse.jdt.core.dom package—to compute met-
rics such as Access to Data, Number of Lines of Code,
McCabe Complexity, and the like. After that, the met-
rics are combined into heuristics for the detection of
code smells. Organic uses the heuristics defined by
the conventional detection strategies of Marinescu [28].
Below, we present an example of detection strategy for
Long Method smells:

Long Method = Lines Of Code > VERY HIGH and
Cyclomatic Complexity > HIGH

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 8 of 30

Detection strategy above determines that a Long
Method occurs when the method (1) has more lines of
code than the number defined by a given threshold (VERY
HIGH) and (2) has cyclomatic complexity higher than a
given threshold (HIGH).
After detecting all code smells, Organic uses different

algorithms to search for different categories of agglomer-
ation. Algorithm 1 shows a pseudo-code illustrating the
algorithm used by Organic to search for intra-method
agglomerations. For each method in the source code,
Organic computes the number of smells. When a method
has more code smells than a given threshold, Organic
considers that there is an intra-method agglomeration.

Algorithm 1: Pseudo-code of the algorithm to search
for intra-method agglomerations
Data: Set M of methods
Result: Set A of intra-method agglomerations
initialization;
for each method m in M do

if numberOfSmells(m) > THRESHOLD then
A.add(agglomerationOf(m))

end
end

The different categories are shown by Organic in the
Agglomerations View. This is the main view of the tool,
and it provides features to support the identification of
design problems. Figure 4 shows a screenshot of the
Agglomerations View. As one can observe, this view is
separated in two parts: the first part is called Agglomer-
ations, which is shown on the left side; the second part
is called Details, which is shown on the right side. The
Agglomerations part shows the agglomerations found in
one or more projects according to their category. For
instance, Fig. 4 shows two categories of agglomerations
detected in a project called cas-pushpull.
By clicking on an agglomeration category, one more

subitem level is expanded. This new level displays all
agglomerations in the selected category. For example, in
Fig. 4, all the hierarchical agglomerations that were found
in the cas-pushpull project are displayed. Thus, develop-
ers can use these Organic features to select the category
and/or the specific agglomeration they want to focus.
Providing detailed information about code smells.

Many developers have little to no knowledge about
the concept of code smells. In a survey conducted by
Yamashita andMoonen [29], for example, only 18% of par-
ticipants reported a good or strong understanding about
code smells. As a result, most developers may fail short in
the analysis of stink code when using a tool that do not

provide enough information. Hence, to overcome this lim-
itation, Organic provides detailed information about each
agglomeration of code smells.
When the user selects an agglomeration, Organic dis-

plays all the smells that compose the agglomeration on the
right side of the screen (in the Anomalies tab). One can
see in Fig. 4 that the first agglomeration in the Hierar-
chical category contains three Intensive Coupling smells.
The second tab (Fig. 5) presents a textual description with
information about the agglomeration according to the cat-
egory. As one can observe in Fig. 5, the description of
a Hierarchical agglomeration displays information about
the number of smells that compose the agglomeration
with a textual description of each type of smell.
Supporting the analysis of surrounding code elements.

In our previous work [5, 10], we observed that a design
problemmay involve the surrounding code elements of an
agglomeration. For instance, we found agglomerations in
which one or more surrounding elements were the main
cause for the design problem manifestation. Thus, to sup-
port the analysis of surrounding code elements, Organic
provides a tab called References. This tab displays all ref-
erences involving smelly code elements. For instance, in
Fig. 6, the getSite method of the RemoteSiteFile class is
referenced by 10 other methods. This Organic feature
enables developers to reason about the external impact
of an agglomeration and further help for the search of
a design problem associated with the agglomeration. For
example, a high number of references involving agglom-
erated element(s) and their surrounding elements may
suggest the occurrence of a scattered functionality and/or
an overly coupled component.
Providing a visual representation of stinkier code. Based

on findings from our first (mixed-method) study (the
“Study I: Quasi-experiment” section), we also incorpo-
rated a graph-based view into Organic. This view is
displayed in the fourth tab. Figure 7 shows an example
of the graph-based visualization for a selected agglom-
eration. The visualization is not intended to provide a
dependency graph of the agglomeration’s code elements.
Instead, the objective is to provide an abstract representa-
tion of an agglomeration, an overview of the composition
of the agglomeration, and to help the analysis and under-
standing of the agglomeration. Figure 7 illustrates the
graphic representation of an hierarchical agglomeration.
In this graph, the blue nodes represent smelly classes,
while the red arrows represent inheritance relationships.
Figure 8 illustrates an intra-component agglomeration
graph. In the graph, a rectangle with a red outline repre-
sents the affected component while the nodes represented
within the component are the smelly classes. In the same
way, the concern-overload agglomeration graph (Fig. 9)
also illustrates the component and smelly classes. In this
graph, concerns are shown by hovering over the nodes

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 9 of 30

Fig. 4 Smells that compose an Agglomeration

representing the classes. The intra-class agglomeration
graph (Fig. 10) shows a blue node that represents the
agglomerated class, while the gray nodes represent the
smelly methods of the class. Finally, the intra-method
agglomeration graph (Fig. 11) shows a blue node rep-
resenting the agglomerated method and red nodes to
represent the name of smells affecting the method.
Providing historical information. During the analysis

of an agglomeration, developers may benefit from infor-
mation about the evolution of an agglomeration across
the source code history [30]. Therefore, the fifth tab of
Organic displays historical information about the selected
agglomeration. By historical information, we mean infor-
mation about the agglomeration in previous versions of
the software. Thus, this historical information is orga-
nized by versions. For example, in the Fig. 12, information
about the agglomeration is displayed in two previous ver-
sions: “0.2” and “0.5.” Each version shows the code smells
that were members of the agglomeration.
The objective of this tab is to assist the analysis of the

evolution of each agglomeration throughout the differ-
ent versions of the system. This tab shows the history
of code smells that progressively composed the agglom-
eration along the versions of the software. As one can

be observe in Fig. 12, in version 0.2, the agglomeration
was composed by four smells (1 Dispersed Coupling, 2
Feature Envy, and 1 Intensive Coupling). On the other
hand, the same agglomeration was composed of three
smells (1 Dispersed Coupling, 1 Feature Envy, and 1
Intensive Coupling) in version 0.5. Using this feature,
developers can identify agglomerations that are growing
or shrinking along the system’s evolution. The analysis
of this phenomenon can help developers identify cer-
tain design problems. For example, a developer can check
(i) if the number of smelly clients of a specific inter-
face (all taking part in the agglomeration) is growing
(or not) along the project history and (ii) if the agglom-
eration started from a smell affecting an interface in
the program. These observations will help the devel-
oper to confirm if the design problem is located in that
interface.
Allowing flexible thresholds. Similarly to conventional

detection strategies for code smells [28], the detec-
tion of agglomerations also requires flexible thresh-
olds. Therefore, to satisfy this requirement, Organic has
a configuration screen (Fig. 13) that can be accessed
through the Window → Preferences menu. The purpose
of this screen is to allow users to define the threshold

Fig. 5 Description of an Agglomeration

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 10 of 30

Fig. 6 References of an Agglomeration

for each agglomeration category. The threshold defines
the minimum number of code smell that should be
in a program location before being considered as an
agglomeration. For example, if we configure the intra-
method category with threshold 2, Organic will only
find agglomerations in methods that contain 3 or more
code smells.

Study I: Quasi-experiment
This work is intended to address three main goals, which
are to (1) provide proper support for the analysis of
stinkier code, (2) assess to what extent developers are able
to identify design problems in stinkier code, and (3) iden-
tify tool issues that may hinder the identification of design
problems.

In the previous section, we proposed the Organic tool,
attending to our first goal. The “Study II: Communicabi-
lity evaluation of Organic” section presents a study that
addresses our third goal. Thus, aiming at achieving our
second goal, in this section, we present a quasi-experiment
with professional software developers. Quasi-experiment
is an empirical interventional study in which the sub-
jects are not randomly assigned to certain conditions [31].
In this study, we investigated whether the use of smell
agglomerations improves the precision of developers in
identifying design problems.

Study design
A previous study suggests that code smell agglomera-
tions are related to occurrences of design problems [5].

Fig. 7 Graph representation of a hierarchical agglomeration

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 11 of 30

Fig. 8 Graph representation of an intra-component agglomeration

This study only analyzed the correlation between agglom-
erated smelly elements and code elements affected by
design problems. However, such study did not show evi-
dence that developers indeed identify design problems
when exploring information about agglomerations. Thus,
there is a need to investigate whether developers can,
by themselves, identify design problems when exploring
smell agglomerations. In order to address this matter, we
defined two research questions. The first one is presented
as follow:

RQ1. Does the use of agglomerations improve
the precision of developers in identifying design
problems?

Research question RQ1 allows us to analyze whether
code smell agglomerations help developers to identify
design problems. To answer this question, we conducted a
quasi-experiment with 11 professional developers. In this
quasi-experiment, we measured the precision of develop-
ers using agglomerations to identify design problems. Pre-
cision in our context is measured based on the percentage

of true positives indicated by the developers— i.e., the per-
centage of correctly identified design problems (against a
ground truth, as explained later). We have used precision
since it is an important aspect of the identification task.
Through the precise identification of design problems,

developers are able to optimize their work by solving
problems that really impact design. On the other hand,
the lack of precision would lead software development
teams to spend time and budget with irrelevant refac-
toring tasks. Refactoring is a transformation used for
improving the structural quality of a system while pre-
serving its observable behavior [3]. In companies adept of
code review practices [32], the lack of precision in identi-
fying design problems can lead developers to waste time
on refactorings that do not contribute to improving soft-
waremaintainability, or even refactorings that are harmful
to the software design [12]. The precise identification of
design problems is also important in open source projects.
For instance, the contributions of eventual collaborators
are often rejected by core developers due to the pres-
ence of design problems [33]. Therefore, in this case, lack

Fig. 9 Graph representation of a concern-overload agglomeration

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 12 of 30

Fig. 10 Graph representation of an intra-class agglomeration

of precision could lead core developers to reject relevant
contributions due to “false design problems.”
Someone could wonder why we have not measured

recall. Although we agree to the relevance of measuring
recall, we did not measure it. The reason is because the
analyzed systems have a high number of design problems
unfeasible to be identified during the quasi-experiment,
which should not last (in total) for more than 90 min.
Therefore, the consideration of recall would not be feasi-
ble in a quasi-experiment as the developers have limited
time to search for some design problems only. Together
with the system’s original developers, we created a ground
truth of design problems with more than 150 instances
of design problems. Hence, it would be impracticable for
participants to find all the design problems in the system
due to the time constraints in the study (45 min). Con-
sequently, they were expected to reach a low recall value.
Therefore, we focused on the precision.
In order to measure whether precision improved or not,

we compared the participants using agglomerations with
a control group. The control group comprises of partici-
pants identifying design problems with a flat list of smells,

i.e., code smells presented individually without showing
their connection with other smells in the program. In the
comparison, we used a ground truth to confirm or refute
each design problem indicated by participants. Then, we
compared the number of false positives and true positives
produced with the code smell agglomerations against the
number of false and true positives produced by the con-
trol group. In the context of this study, a false positive
occurs when a participant reports a design problem that is
not confirmed by our ground truth analysis. On the other
hand, a true positive occurs when the design problem is
confirmed during the ground truth analysis.
Someone could assume that developers would often

benefit from the use of agglomerations in their quest for
design problems. However, we do not have evidence about
such benefit. Hence, we need to address RQ1 to verify if
developers can correctly identify more design problems
using smell agglomerations. Regardless of RQ1 results,
another question involves the understanding of how to
better support developers in exploring smell agglomer-
ations. The success of developers on identifying design
problems through agglomerations may strongly depend

Fig. 11 Graph representation of an intra-method agglomeration

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 13 of 30

Fig. 12 Historical information of an agglomeration

on additional support for this task. Even though a pre-
vious study [5] has shown the strong relation between
design problems and code smells within an agglomera-
tion, we do not know whether and how the identification
of design problems with agglomerations can be improved
with additional support. The following question addresses
this matter:

RQ2. How can the identification of design problems
with code smell agglomerations be improved?

We conducted a qualitative analysis to address RQ2.
This analysis was based on the observation of par-
ticipants during the quasi-experiment and a follow-up
questionnaire. As reported in the “Results and analysis”

Fig. 13 Configuration of the tool

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 14 of 30

section, the combination of quantitative and qualita-
tive analyses helped us to draw more well grounded
conclusions. Thus, RQ1 can inform us if developers
become (or not) more precise on identifying design
problems when they use agglomeration, while RQ2 can
provide a complementary perspective to explain why
developers succedded or struggled to precisely iden-
tify design problems. For instance, RQ2 can reveal the
benefits and barriers associated with the use of smell
agglomerations.

Experimental procedure
We had to define a set of requirements in order to answer
our research questions. Thus, we opted for conducting a
quasi-experiment [31]. A quasi-experiment is an empiri-
cal study in which the units or groups are not assigned to
conditions randomly. This allowed us to assign each par-
ticipant to different treatments during the experimental
steps. The experimental procedure was conducted indi-
vidually with each participant. They had to perform the
quasi-experiment in two steps with four tasks in each one.
Both steps comprise the same set of tasks the only dif-
ference between them was regarding the treatment, i.e.,
usage of agglomerations or non-agglomerated smells.
As explained before, we compare developers using

agglomeration with a control group using non-
agglomerated smells. Thus, we divided the participants
into two groups. The first group would identify design
problems using agglomerations in the first step. After
that, they would identify design problems using non-
agglomerated smells in the second step. The second group
of participants would make the identification inversely:
using the non-agglomerated smells in the first step and,
then, using the agglomerations in the second step. Thus,
in each step, we have two groups of participants: a group
using agglomerations and a control group.
As each participant identifies design problems twice

(first and second step), we had to select two software
projects. Thus, each participant could identify design
problems using a different project in both steps. Another
reason for providing two software projects is to avoid bias
with the learning curve. For example, supposing that the
participant uses the same project in both steps, she could
find more problems in the second step than in the first
step. That could happen because she can identify in the
second step the same problems that she identified in the
first step, plus other design problems identified only in
the second step. This increase in the number of design
problems found in the second step would not be due to the
use of agglomerations, but rather due to the knowledge
acquired by the participant.
There are four possible combinations with the par-

ticipants based on the distribution between steps and
software projects. Therefore, all participants were divided

Table 3 Combinations of groups, projects and steps

Step 1 Step 2

Arrange Group Project Group Project

1 Agglomeration Project 1 Control Project 2

2 Agglomeration Project 2 Control Project 1

3 Control Project 1 Agglomeration Project 2

4 Control Project 2 Agglomeration Project 1

into four mutually exclusive arranges. Table 3 presents
the cross design for the four arranges. The agglomeration
group represents the group of participants that identi-
fied design problems using the agglomerations, and the
control group comprises the participants that identified
design problems using the list of non-agglomerated code
smells.
The study was composed by a set of six activities

distributed into three phases, as represented in Fig. 14
described as follows.
Activity 1: Apply the questionnaire for subjects’ char-

acterization. The subjects’ characterization questionnaire
is composed of questions to characterize each partici-
pant, including academic degree, professional experience
with Java programming, background on code smells, and
Eclipse IDE.
Activity 2: Training session. After defining the order of

execution of each step, the next step was to provide a
training session for the participants. Themain objective of
the training session was to level the participant at the same
background required to understand and properly execute
the experimental tasks. Thus, they received training about
basic concepts and terminologies. This training was given
only once for each participant before the first steps of
the quasi-experiment. The training consisted of a 15-min
presentation that covered the following topics: software
design, code smells, and design problems. The training
session took approximately 15 min, and the participants
could make any question throughout it.
After the training, subjects received some artifacts that

could be used during the study. They received a list with
a brief description of the types of design problems pre-
sented in the training session. They also received a list
with the description of basic principles of object-oriented
programming and software design. They received a doc-
ument containing (i) a brief description of both project
systems and (ii) a very high level description of their
design blueprint. We gave these documents because when
they have to conduct perfective maintenance tasks, they
need to have someminimal information about the systems
to be maintained. The design blueprint represented the
high-level design in the view of the project managers, but
it was not detailed enough to support the identification of

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 15 of 30

Fig. 14 The experimental design

design problems. As it often occurs in practice, the anal-
ysis of the source code is inevitably required to identify a
design problem.
Activity 3: System introduction. We asked the partici-

pants to read the document containing the description of
the project in which they would identify design problems.
They had 20 min to read the description and the design
blueprint of the system. Thus, they could start the identi-
fication with a certain level of familiarity with the software
project.
Activity 4: Understanding the task. In this activity, we

explained how the participant could use the Organic tool
to collect either the list of agglomerations or the list
of (non-agglomerated) code smells. As the Organic tool
was developed as an Eclipse plug-in, we explained each
one of the sections displayed in the Eclipse IDE and
that was related to the Organic tool. This activity lasted
approximately 10 min.
Activity 5: Identification of design problems. In this

activity, the participant had 45 min to identify design
problems in the project. We emphasized to the partici-
pant the importance of achieving the key goal of finding
design problems. For each identified design problem, the
participant was asked to provide the following informa-
tion: (i) short description of the problem, (ii) possible
consequences caused by the problem, (iii) classes, meth-
ods, or packages realizing the design problem in the

source code, and (iv) the category(s) of agglomerations—
described in “Basic concepts” section—that helped him
to identify the design problems. If the participant was
identifying design problems as part of the control group,
she needed to provide almost the same information; the
difference was that instead of providing the agglomera-
tion (and its category), she needed to provide the code
smells that she used to identify the design problem.
For conducting this task, participants were instructed
to use only the information provided by Organic in
the current phase. This means that, neither the con-
trol group had access to the list of agglomerations, nor
the agglomeration group had access to the list of non-
agglomerated smells. This was guaranteed by providing
different versions of Organic for each group—that is, one
version for agglomerations and another version for non-
agglomerated code smells. Nevertheless, both the project
source code and the information provided by Organic
(agglomerated or non-agglomerated smells) could be
freely explored and analyzed during the design problem
identification.
Activity 6: Follow-up questionnaire. In this activity, the

participant received a feedback form. This form pro-
vides a list of questions, which enables the participant to
expose her opinion on the identification of design prob-
lems. More details about this activity are provided in the
“Qualitative analysis procedure” section.

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 16 of 30

After the sixth activity had been completed, we asked
the same participant to repeat all tasks in the second
phase.

Software projects and participant selection
In order to conduct the quasi-experiment as explained
in the previous section, we selected two software sys-
tems in which developers had to identify design problems.
We selected two programs that represent components of
the Apache OODT project [27]: Push Pull and Workflow
Manager. We selected subsystems of the OODT project
since it is a large heterogeneous system; then, we could
choose subsystems based on their diversity. Also, the
Apache OODT project has a well-defined set of design
problems previously identified by developers who actually
implemented the systems [5], thus avoiding the intro-
duction of false positive design problems in the ground
truth. In addition, the OODT project was developed for
NASA, used in other studies [4, 5, 17, 18, 24] and with
a global community involved in its development. Table 4
presents the characteristics of each project. The columns
of this table are organized as follows. The second column
shows the project size in Source Lines of Code (SLOC),
the third column presents the number of classes, and the
fourth column contains the number of agglomerations in
the project. A brief description of the project systems is
presented as follows:

• Push Pull: it is the OODT component responsible for
downloading remote content (pull) or accepting the
delivery of remote content (push) to a local staging
area.

• Workflow Manager: it is a component that is part of
the OODT client-server system. It is responsible for
describing, executing, and monitoring workflows.

After choosing the projects, our next step was to recruit
developers for the study. Thus, we sent a characterization
questionnaire for a group of developers of our network.
Their answers were analyzed to determine which of them
were eligible to participate in the study based on the
following requirements:

• Four years or more of experience with software
development and maintenance. We have chosen four
years because this is the average time used by
companies such as Yahoo [34] and Twitter [35] to
classify a developer as experienced.

Table 4 Characteristics of software projects

Project Size (SLOC) # Classes # Agglomerations

Push pull 11213 133 49

Workflow 18505 150 111

Table 5 Knowledge classification

Classification Description

None I have never heard about it

Minimum I have heard about it, but I do not use it

Basic I have a general understanding,

but almost never use it

Intermediary I have a good understanding,

and use basic features sometimes

Advanced I have a deep understanding,

and often use advanced features

Expert I am a specialist in this topic,

and I use many features almost every day

• No previous knowledge about Push Pull and
Workflow Manager.

• At least with basic knowledge about code smells.
• At least with intermediary knowledge on Java

programming and Eclipse IDE.

We defined the knowledge in each topic based on a scale
composed of six levels: none, minimum, basic, intermedi-
ary, advanced, and expert. Table 5 presents the description
of such classification. We included in the questionnaire a
description of each level, allowing the subjects to have a
similar interpretation of the answers. Table 6 summarizes
the characteristics of each selected developer.

Quantitative analysis procedure
In order to answer research question RQ1, we asked the
study participants to analyze two systems with the aim of
identifying design problems as described above. For each

Table 6 Characterization of the participants

ID Experience
in years

Education
level

Knowledge

Java Code smells Eclipse

P1 5 PhD Advanced Advanced Advanced

P2 6 Graduate Advanced Basic Advanced

P3 8 Master Advanced Intermediary Advanced

P4 4 Graduate Intermediary Basic Basic

P5 5 Master Advanced Intermediary Intermediary

P6 5 Graduate Intermediary Intermediary Intermediary

P7 12 Graduate Expert Advanced Expert

P8 5 Graduate Advanced Advanced Advanced

P9 10 Graduate Intermediary Intermediary Intermediary

P10 4 PhD Advanced Intermediary Advanced

P11 5 PhD Advanced Intermediary Advanced

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 17 of 30

system, we analyzed the precision of participants regard-
ing the identification of design problems. The precision
of participants was measured based on true positives (TP)
and false positives (FP). In this context, a true positive
is a candidate of design problem, as indicated by the
participant, that was confirmed by a ground truth anal-
ysis. On the other hand, a false positive is a candidate
of design problem that was not confirmed in the ground
truth analysis. Thus, the precision is calculated using the
following formula:

Precision = TP
TP + FP

(1)

We had to validate the identified design problems as
true positive or false positive for each one of the ana-
lyzed systems. However, we could not argue that a design
problem was correct or not since we were not involved
with the design of each system. Thus, we relied on the
knowledge of the systems’ original designers and devel-
opers to help us in validating the design problems. We
certified they were the people who had the deepest knowl-
edge of the design of the investigated projects. We high-
light these designers and developers were not subjects of
this study.
We performed two steps to incrementally develop the

ground truth. First, we asked original OODT design-
ers and developers to provide us a list of design prob-
lems affecting the systems. They listed the problems and
explained the relevance of each one through a question-
naire. They also described which code elements were
contributing to the realization of each design problem.
Second, we identified some design problems using a suite
of design recovery tools [36]. We asked the developers
of the systems to validate and combine our additional
design problems with their list. The procedure for the
additional identification was the following: (i) an initial
list of design problems was identified using a method pre-
sented by Macia and colleagues [18], (ii) the developers
had to confirm, refute, or expand the list, (iii) the develop-
ers provided a brief explanation of the relevance of each
design problem, and (iv) when we suspected there was
still inaccuracies in the list of design problems, we dis-
cussed with them. In the end, we had the ground truth of
design problems validated by the original designers and
developers.

Qualitative analysis procedure
Our first research question aims to investigate the preci-
sion of developers in the identification of design problems
with agglomerations. Answer for such question will indi-
cate whether developers benefit or not of using agglomer-
ations. However, answering this questions is not enough

for revealing the reasons why agglomerations may ben-
efit developers. Moreover, we will not know how to
improve the use of agglomerations to identify design
problems. Therefore, we conducted a qualitative analysis
to investigate what should be improved from the perspec-
tive of professional software developers. Besides identi-
fying possible improvements, this analysis also helped us
to understand what are the main strengths of exploring
agglomerations for design problem identification.
As described in the “Experimental procedure” section,

we asked the participants to provide us feedback about
the identification of design problems. They answered a
follow-up questionnaire, and we use their answers to
conduct a qualitative analysis. The objective of the ques-
tionnaire was to gather participant’s opinion regarding (i)
the (dis)advantages of using the agglomerations or code
smells to identify design problems, (ii) whether the pro-
vided information could be easily understood, (iii) which
types of information were fundamental to identify design
problems, (iv) what she believes that should be done to
improve the identification of design problems, (v) what
she thought about the use of the code smells for the
identification of design problems, (vi) how the visualiza-
tion mechanism provided by the Organic tool affected
her performance, and (vii) which types of code smell and
categories of agglomeration were the most useful for iden-
tifying design problems. The results of this questionnaire
helped us to answer research question RQ2.
By applying the questionnaire, we were able to gather

the opinion of developers regarding the use of code smell
agglomerations. However, as reported by Easterbrook and
colleagues [37], what is reported in the questionnaire may
not be what actually happens in practice. Therefore, to
obtain more reliable results, we also observed the par-
ticipants of our study during the identification of design
problems. This observation was performed during the
study and also in analyses after it, through video and
audio recorded during the quasi-experiement. This anal-
ysis allowed us to look at code smell agglomerations from
the standpoint of professional software developers. It is
important to note that the observation of participants dur-
ing the quasi-experiment does not replace nor invalidate
the questionnaire responses. In fact, the combination of
observations and responses helped us to obtain a deeper
understanding and interpretation on the results observed
in the study.

Results and analysis
The results of this study are organized in two sub-sections.
The “Do agglomerations improve precision?” section
presents the results of our quantitative analysis regard-
ing research question RQ1. The “How to improve design
problem identification?” section provides the results of
our qualitative analysis to answer research question RQ2.

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 18 of 30

Table 7 Precision

ID Agglomeration group Control group

TP FP Precision (%) TP FP Precision (%)

1 2 1 66.67 1 1 50

2 0 3 0 1 4 20

3 3 2 60 1 4 20

4 2 0 100 1 3 25

5 4 0 100 3 1 75

6 1 0 100 1 0 100

7 1 1 50 1 1 50

8 3 0 100 3 0 100

9 0 1 0 0 6 0

10 0 0 – 1 1 50

11 0 1 0 0 0 –

All 16 9 64 13 21 38.24

Do agglomerations improve precision?
As described in “Quantitative analysis procedure” section,
we conducted a quantitative analysis to answer our first
research question: Does the use of agglomerations improve
the precision of developers in identifying design problems?
Table 7 presents the precision results for each partici-
pant (rows). The first column (ID) shows the identification
number of each participant. The second column (Agglom-
eration group) presents the true positives (TP), false
positives (FP), and precision for the participants when
they were provided with agglomerations to identify design
problems. Similarly, the third column (Control group)
presents the true positives (TP), false positives (FP), and
precision for the participants in the control group, i.e.,
when they were provided with non-agglomerated smells.
Agglomeration led to a slight increase of true positives.

We can see in Table 7 that the developers identified a
few more design problems (TPs) when they were in the
agglomeration group (16 TP design problems) than when
they were in the control group (13 TP design problems).
As far as the per-subject analysis is concerned, four devel-
opers (light gray rows) identifiedmore true positives when
they used agglomerations than when they used the list of
code smells in the control group. The use of agglomera-
tions outperformed the use of smells in these four cases.
On the other hand, two participants (2, 10) did not identify
any true positive using the agglomerations, but they iden-
tified a true positive each in the control group. The other
participants (6, 7, 8, 9, and 11) identified the same num-
ber of true positives (5 TP design problems) regardless the
group.
Upon qualitative analysis, we were able to reveal the

main reason why the four developers in the light gray
rows identified more true positive design problems in
the agglomeration group than in the control group. As

illustrated in the example in Fig. 3 (“Identifying design
problem in stinky code” section), these four participants
systematically used each agglomeration’s smell as an indi-
cator of the presence of a design problem. They analyzed
each one of the code smells as a complementary symp-
tom of the presence of a design problem, which gave them
increasing confidence to confirm the occurrence of the
design problem. Surprisingly, we noticed the same behav-
ior for the participant 8 even when she was in the control
group. She was capable of agglomerating the code smells
on her own, starting from the individual smells given in
the flat list. Then, she used such agglomerations to iden-
tify design problems in the control group. This may be the
reason why she reached a precision value of 100% in both
groups.
Agglomerations help developers to avoid false positives.

In general, developers identified less false positives when
they used agglomerations (9 FP design problems) than
when they used the list of code smells (21 FP design prob-
lems). As presented in our qualitative analysis (“How to
improve design problem identification?” section), with the
exception of participant 11, who analyzed several irrel-
evant agglomerations—i.e., agglomerations that do not
reveal any design problem—all others identified either less
or equal number of false positives when they were in the
agglomeration group than when they were in the con-
trol group. When we analyze the control group, we can
notice that more than half of the identified design prob-
lems are false positives (61.76%) while the agglomeration
group identified only 36% of false positives.
After observing how developers identify design prob-

lems in the control group, we noticed that they did not go
further with the analysis of the elements. Usually, a devel-
oper needs to analyze other classes in order to gathermore
information that can potentially indicate a design problem
as discussed in the “Identifying design problem in stinky
code” section. When the participants used the agglom-
erations, they analyzed multiple elements because they
analyzed each code smell within the agglomeration even
when the smells were in different elements. This behav-
ior did not happen when participants were in the control
group. In most of the cases, the participants in the control
group analyzed only one code smell, which increased the
likelihood of reporting false positives. Then, they reported
a design problem in the class due to the presence of the
code smell. However, some code smells are not related to
any design problem; thus, the developer can report a false
positive if shemistakenly considers a code smell that is not
related to a design problem. That explains why develop-
ers in the control group found so many false positives. As
developers tend to look at all agglomeration smells before
reporting a design problem, the likelihood of reporting a
false positive decreases, even when there is a code smell
that is a false positive by itself.

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 19 of 30

Agglomerations improve the precision. Even though we
cannot claim a statistical significance in our results due
to the sample size of this study, we can notice that devel-
opers achieve a higher precision (64%) when they use
agglomerations than when they use code smells (38.24%).
Therefore, this result suggests that agglomerations may
improve the precision of developers in identifying design
problems, answering our first research question. How-
ever, someone could expect that all developers using
agglomerations would significantly outperform the con-
trol group. As a matter of fact, we noticed some factors
that explain, at least partially, why developers did not
find much more design problems when they were in the
agglomeration group than when they were in the con-
trol group. These factors are presented next, and they
are useful to discover improvements for the identifica-
tion of design problem with the analysis of stinky program
locations.

How to improve design problem identification?
This section presents the answer for our second research
question: How can the identification of design problems
with code smell agglomerations be improved? We con-
ducted a qualitative analysis to answer this question. As
described in the “Qualitative analysis procedure” section,
this analysis was based on the observation of participants
during the identification of design problems as well as the
analysis of responses to our follow-up questionnaire.
Where to start from? As discussed in the previous

section, the participants identified few more true posi-
tives using agglomerations. Someone could expect that all
developers using agglomerations would significantly out-
perform the control group. However, we observed that
participants spent much more time analyzing the agglom-
erations than analyzing the smells in the control group.
That happened because they analyzed each code smell
in the stinky program location as previously explained in
the “Do agglomerations improve precision?” section. Fur-
thermore, sometimes the participants analyzed agglomer-
ations that were not related to any design problem, which
is a key factor that explains the almost same number of
true positives between both groups.
Unfortunately, almost all the participants analyzed irrel-

evant agglomerations. Participants 6, 9, 10, and 11 were
the ones that suffered the most from the analysis of irrel-
evant agglomerations. Since these four participants faced
this issue, they suggested in our follow-up questionnaire
that the Organic tool should provide means to priori-
tize (or, at least, rank) potentially relevant agglomerations.
This feature would help to further reduce the time spent
with the analysis of irrelevant stinky code. Thus, this issue
also helps us to explain why they fell short in identify-
ing additional design problems through the analysis of
agglomerations.

Need for prioritizing agglomerations. The aforemen-
tioned need for agglomeration prioritization shows that
the time and effort required to identify design problems is
a key factor for developers; thus, prioritization should be
taken into consideration. As a matter of fact, the prioriti-
zation of smelly code has been the focus of recent research
[38–40]. The work of Vidal et al. [40], for example, pro-
posed and assessed a set of criteria for prioritizing smell
agglomerations. As they have observed, the prioritized
list of agglomerations would help a developer to progres-
sively analyze the agglomerations that are more likely to
represent design problems, discarding the irrelevant ones.
This would be especially useful in large legacy systems, in
which thousands of agglomerationsmay be detected. Nev-
ertheless, they observed there is no prioritization criterion
that is always the most effective one for all the analyzed
systems [40]. They provided some hints on how a devel-
oper could choose a promising prioritization criterion for
her project.
Based on our qualitative analysis, we noticed that exist-

ing criteria for prioritization should select agglomerations
that are cohesive. In our context, an agglomeration is
considered to be cohesive whenever all its code smells
are related to the same design problem. If there is one
code smell that is not related to the design problem (i)
in the best case, the developer will spend time analyzing
a code smell that is useless to identify the design prob-
lem or (ii) in the worst case, such smell may direct the
developer away from the design problem. This fact sug-
gests that developers need accurate algorithms to find
cohesive agglomerations and to discard the less cohesive
ones. However, prioritization algorithms based on exist-
ing criteria are unable to do this as far we are concerned.
Consequently, the prioritization of stinky program loca-
tions still poses as a challenging research topic. Therefore,
after this study, we decided to not incorporate existing
prioritization criteria into Organic. Before including any
prioritization feature into Organic, we intend to propose
and evaluate improvements for the existing prioritization
criteria.
Stinky code analysis is challenging. Besides the priori-

tization issue, participants also suffered to analyze large
agglomerations. As reported in the “Do agglomerations
improve precision?” section, this problem was even worse
for agglomerations affecting larger program scopes, i.e.,
agglomerations crosscutting implementation packages or
class hierarchies. We noticed that a large agglomeration
requires that developers reason about a wide range of scat-
tered code smells. As they tend to use each code smell
as a symptom of design problem, they have difficulties
to correlate the multiple symptoms of an agglomeration.
This is a challenging task because the higher the num-
ber of code elements involved in an agglomeration, the
greater is the volume of code that must be analyzed.

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 20 of 30

Consequently, developers will have more code to analyze,
which increases the complexity of the analysis.
Need for proper visualization mechanisms. In order to

alleviate the analysis of stinky code, some participants
suggested the adoption of better visualization mecha-
nisms. For instance, participant number 8 suggested the
visualization of agglomerations through a graph-based
representation [41]. Shementioned that such visualization
would provide an abstract and general view of agglomera-
tions. The main advantage of this form of visualization is
that the more abstract a representation is, the less details
will be displayed for analysis. Consequently, the develop-
ers would not be overloaded with details. At the same
time, an abstract representation like the graph-based visu-
alization would help developers to see the full extent of an
agglomeration. After providing an abstract view, a visu-
alization mechanism could allow developers to progres-
sively explore the agglomeration details such as the types
of smells, location of stinky code, and relationships among
smells. In order to address this matter, we incorporated a
graph-based visualization mechanism into Organic.
Identification of the design problem type. The diffi-

culty in analyzing agglomerations also raised the need
for recommendations on which types of design prob-
lem each smell agglomeration is more likely to indicate.
These recommendations would reduce the effort required
to decide whether the elements are affected by a spe-
cific design problem. For example, the agglomeration
of Fig. 3 occurs in classes of the same hierarchy that
are implementing the WorkflowRepository interface. All
smelly elements of this stinky program location mani-
fest the same type of smell, which is the Feature Envy.
The occurrence of multiple Feature Envies in a single
hierarchy suggests that there is a problem, in a root
abstract class or a root interface, which is spreading
through all the subclasses of the hierarchy. Therefore,
to help developers to decide whether there is a prob-
lem or not, the Organic tool could suggest the analysis
of this hierarchical agglomeration trying to identify prob-
lems like Ambiguous Interface [21] and Fat Interface [9],
for example.
Suggestions of design problem types can help develop-

ers to focus their attention in specific characteristics of the
suggested design problems. However, this kind of recom-
mendation algorithm requires multiple empirical studies
to understand how and when each form of agglomera-
tion may consistently represent specific types of design
problem. This is indeed a challenging research topic to be
addressed in the future and, therefore, we are unable to
provide this recommendation feature in the Organic tool.

Threats to validity
This section presents some threats that could limit the
validity of our main findings. For each threat, we present

the actions taken to mitigate its impact on the research
results.
The first two threats to validity are related to the num-

ber of participants in the study and to the convenience
approach used to find participants. We have selected a
sample of 11 participants, which may not be enough to
achieve conclusive results. However, instead of drawing
conclusions based on the quantitative results, we com-
plemented our analysis with a qualitative analysis. In
addition, we defined a set of requirements to selecting par-
ticipants suitable for this study. Also, we conducted train-
ing sessions with all participants. Such sections aimed
to resolve any gaps in the participants’ knowledge and
any terminology conflicts, allowing us to increase our
confidence in the results.
The third threat is related to possible misunderstand-

ings during the study. As we asked developers to conduct
a specific software engineering task and to answer a ques-
tionnaire, they could have conducted the study different
from what we asked. To mitigate this threat, we assisted
the participants during the entire study, and we make sure
of helping them to understand the experimental tasks and
the questionnaire. We highlighted that our help was lim-
ited to only clarify the study in order to avoid some bias
on our results.
Next threat concerns the ground truth used to confirm

or to refute the design problems reported by participants.
Since our ground truth was built manually, it is possi-
ble that some design problems are missing in the ground
truth, which would impact the precision measure. To mit-
igate this threat, we built the ground truth with the help of
original OODT designers and developers. Moreover, we
relied on a suite of design recovery tools to identify possi-
ble design problems that were not reported by the original
designers and developers of OODT.
There is another threat that is related to the amount

of information we asked participants to provide for each
design problem reported. Providing all information dur-
ing the experiment may slow down the participants, and
as a consequence, some participants may report fewer
design problems than they would be able to do during the
45-min time frame. We mitigated this threat by asking the
same amount of information for both the agglomeration
group and the control group.
Finally, there are two threats concerning the selected

projects. The first one is about the difficulty of the par-
ticipants in understanding the source code used in the
experimental tasks. This difficulty appears due to the
complexity of the source code and time constraints to
complete each task. The second threat is related to one
software project that could be easier to identify design
problem than the other. We minimized the first threat
by running a pilot study to define an experimental time
reasonable to perform the tasks. To minimize the second

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 21 of 30

threat, we selected projects with similar size, complex-
ity, and number of known design problems. We also have
trained all participants about each project. In addition, the
cross design of our experiment allowed different combina-
tions of project and technique. Finally, our results suggest
no variation in difficulty for identifying design problems
in the two projects.

Study II: Communicability evaluation of Organic
In the previous section, we presented a quasi-experiment,
which allowed us to gather quantitative and qualitative
results regarding design problem identification. In addi-
tion, we collected the opinion of developers regarding the
use of code smell agglomerations. Nevertheless, the pre-
vious study did not evaluate Organic, which is the tool
proposed in this paper for helping in the identification of
design problems. Thus, we did not have shreds of evidence
that indicate to what extent Organic affects the users
during the identification of design problems. In order to
understand these effects, we conducted a qualitative eval-
uation of the Organic tool. We opted for proposing and
evaluating Organic because, to the extent of our knowl-
edge, it is the only tool that meets the requirements
(“Organic: a tool for the analysis of stinky code” section)
for helping developers in the analysis of stinkier code.
To evaluate Organic, we applied the Communicabil-

ity Evaluation Method (CEM) [42]. CEM is a qualitative
evaluation method developed to capture communicabil-
ity issues, which are problems that appear due to poor
communication between users and a system, usually when
users interact with a system. An example of communi-
cability issue is when the user mistakenly believes that
she performed a certain task on the system successfully.
Another example is when the user does not understand
the answers provided by the system. In our case, we are
interested in communicability issues that happen when
developers interact with the Organic tool. We have to
investigate these communicability issues because they
may hinder the identification of design problems when
developers use the Organic tool.
CEM has been widely used in HCI (human-computer

interaction) research to evaluate the communicability of
software systems. This method is based on the theory of
Semiotic Engineering [22] and is intended to find ruptures
of communication when a user interacts with a system.
Thus, in order to use CEM, we have to characterize the
system and users in the context of our study. As explained
in the Organic: a tool for the analysis of stinky code
section, developers use the Organic tool to identify design
problems. Hence, in the context of this study, the system
is the Organic tool and the user is the software developer
that uses Organic to identify design problems in stinky
code. Therefore, the objective of this study is to use the
CEM to find communicability issues in the Organic tool.

In the subsection below, we present details about this
study. The “Study design” section presents the study
design. The “Data analysis and evaluation procedure”
section contains an overview of the evaluation proce-
dure followed in this study. The “Results and inter-
pretation” section presents the results. Finally, the
“Threats to validity” section outlines the threats to validity
of this study.

Study design
We defined our third research question to evaluate the
Organic tool as follows:

RQ3.Whichare the communicability issues of Organic
that hinder the identification of design problems?

To answer RQ3, we followed the procedure defined by
the CEM. For being a method focused on user experi-
ence, CEM allowed us to look at the Organic tool from the
standpoint of potential users, which are professional soft-
ware developers. In this way, we can observe the aspects
of the tool that affect the identification of design problems
as if we were the users ourselves. Moreover, such obser-
vation was not fully accomplished by our previous study
(“Study I: Quasi-experiment” section), since the primary
goal there was to evaluate precision of developers when
using the technique (code smell agglomerations) rather
than the tool itself.
CEM requires the participation of potential users of the

system under evaluation. Therefore, similarly to the pre-
vious study (“Software projects and participant selection”
section), we selected participants for this study according
to the following requirements:

• Minimum of 4 years experience with software
development

• Intermediary knowledge about software design
• Advanced knowledge about the Java programming

language
• Basic knowledge about the Eclipse development

environment
• Basic knowledge about code smells

Requirements above are justified by the fact that
Organic is part of a complex domain, which is the
identification of design problems. Therefore, participants

Table 8 Profile of selected participants

Participant Software
design

Java
programming
language

Eclipse IDE Code smells

1 Advanced Advanced Advanced Advanced

2 Intermediary Advanced Advanced Basic

3 Advanced Advanced Basic Intermediary

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 22 of 30

that have a minimum knowledge about basic concepts
have more chance of revealing communicability problems
when using the tool. This happens since the influence
of the domain complexity is mitigated by the experience
and knowledge of participants. Based on the aforemen-
tioned requirements, we selected three participants for
this study. On Table 8, we summarize the profile of each
participant, presenting their experience with software
design, Java programming language, Eclipse IDE, and
code smells. Participant 1 is a developer with vast expe-
rience both in academic field and software industry.
He has advanced knowledge about software design and
code smells. Participant 2 is a professor from the com-
puting field with 4 years of experience in the industry.
He has intermediary knowledge about software design
and basic knowledge about code smells. Finally, par-
ticipant 3 had moderate experience in the industry,
and he was also undergoing his postgraduate studies at
the time of this evaluation. He has advanced knowl-
edge about software design and intermediary knowledge
about code smells. Table 8 summarizes the profile of all
participants.

Test scenario
After selecting the participants, the definition of a test
scenario is the next CEM procedure. Since Organic is
designed to be applied to a single task, which is the identi-
fication of design problems, our test scenario is composed
of one task as well. The task consists in:

Using the Organic tool to search for design problems
in the source code of a given software project.

In the context of this study, Apache OODT [27] is the
selected software project. We selected Apache OODT due
to the same reason explained at the “Software projects and
participant selection” section. As defined by the CEM, this
task was designed to last at most 30 min. During the exe-
cution of this task, for each design problem found, the
participant should give the following information:

• Brief description of the problem.
• Classes and methods participating in the design

problem.
• Tool resources that were useful to identify the

problem.

During the identification task, besides using theOrganic
tool, the participants could consult three documents: (1)
Apache OODT documentation, (2) a reference docu-
ment about basic concepts (design problems, code smells,
and the like), and (3) manual of the Organic tool. We
provided these documents to help users to gather an
understanding of the system. Consequently, they were

able to focus on the task instead of wasting time trying
to understand, for example, the system and basic con-
cepts. This initial preparation was not part of the time
frame of 30 min.

Environment and infrastructure
To perform this study, we used an individual room
equipped with a computer containing the following hard-
ware configuration: 8GB of RAM, CPU Intel Core i5
2.7GHz, GPU GeForce GT 740M, and built-in micro-
phone in the notebook. In addition, we used the fol-
lowing softwares: Organic tool, Windows 10 Operational
System, Java Development Kit 1.7, Eclipse Luna IDE,
Rabbit Eclipse Plugin, and Screen record tool Active
Presenter. The Eclipse Luna chosen as the Organic tool
only works with this version at the moment. The Rab-
bit plugin registers information regarding the time spent
using the resources of Eclipse (e.g., files, perspectives, and
views). This information is useful to the analysis and inter-
pretation of videos recorded using the Active Presenter.

Post-study interview
Using the interview pre-test, we collected data regarding
the participant’s profile. The questions of the interview
post-test were developed individually for each partici-
pant. Thus, the evaluators, based on their observation,
could explore the participants’ answers. Additionally, the
following questions were asked to all participants:

• What were the main difficulties to perform the task?
• What were the most useful tool resources?

Data analysis and evaluation procedure
In order to conduct our evaluation following the CEM, we
collected the following data: (1) video from the computer
screen with audio from the microphone, (2) report col-
lected with the Rabbit Plugin, (3) annotations done during
the execution of the tests, and (4) answers given during
the interview.
After data collection, we followed three main steps,

which are defined by the CEM [22]. They are (1) tag-
ging, (2) interpretation, and (3) semiotic profile. On
tagging, the researcher analyzes the recording of the
task being performed, after that, she identifies the evi-
dence of communicability failures. To each of these fail-
ures, she associates with one of the 13 tags defined
by CEM [22]. On the interpretation, the researcher
works with the tagged data, trying to identify the
main communicability issues. The researcher then ana-
lyzes and organizes the collected evidence, according to
some perspectives. Finally, in the semiotic profiling step,
an in-depth characterization of metacommunication is
achieved. The idea of these steps is to achieve higher
levels of abstraction in our analysis and interpretation

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 23 of 30

of how the developers receive communication from the
Organic tool [22].
Tagging. In this step, we analyzed and tagged the com-

municability failures that occurred during the interaction
between the software developers and the Organic tool.
A communicability failure is the result of a communica-
bility issue. In our case, if the Organic tool contains a
communicability issue, this issue will lead to a communi-
cability failure observed when the user interacts with the
tool. Thus, tagging was made according to what happened
when the communicability failures were observed. To
perform this step, we observed each participant during the
task of identifying design problems, taking notes of possi-
ble communicability failures. After that, we analyzed the
video and audio recorded during the task registering com-
municability issues according to the 13 tags defined by the
CEM [22]. Whenever necessary, we consulted the Rabbit
reports to confirm or to change the tags. For a detailed
description of the tagging step, we refer to [22, 42].
Table 9 presents a brief description of the tags that
occurred in this study.
Interpretation. In this step, we analyzed the tagged

material aiming to identify the main communicability
issues in the Organic tool. Based on the CEM [22], we
analyzed and organized collected evidence based on three
perspectives:

• Frequency and context of each communicability
failure.

• Recurrent sequences of communicability failures.
• Identification of communicability issues that have

caused the observed failures.

The analysis of frequency and context of communicabil-
ity failures was helpful to discover the most frequent fail-
ures in the communication between the software developers
and the Organic tool. Identifying recurrent sequences of
failures helped us to discover the origins of communi-
cability issues in Organic. Finally, the identification of
communicability issues in the Organic tool is the main
objective of this study, as defined by our main research
question. To identify communicability issues, we classified
tags as complete, partial, or temporary failures (first col-
umn of Table 9), following theoretical tag categorizations
from Semiotic Engineering [22].
Complete failures occur when the developers are unable

to identify any design problem with Organic and do not
try again. Partial failures occur when the developer gives
up from using Organic’s functionalities before identifying
any design problem and tries to achieve this in another
way. Finally, temporary failures occur when the developer
temporarily interrupts the identification of design prob-
lems with Organic due to some communicability issue.
According to the CEM, there are three types of temporary

Table 9 Description of CEM tags that occurred in this study

Classification Tag Description

Complete failure I give up The developer is
unable to identify
design problems with
Organic either
because he does not
know how to or
because he does not
have enough time, or
will, or patience for it.

Partial failure I can do otherwise The developer
manages to identify
design problems in a
way that is not
optimal. For example,
without using the
most functionalities
provided by Organic.

Temporary failure—
communicate

What now? The developer
searches for a clue of
what to do next and
not searching for a
specific functionality
that will help in the
identification of
design problems.

Temporary failure—
understand the rules

What is this? The developer seems
to be exploring the
tool to gain more (or
some) understanding
of what a specific
functionality achieves.

Help! The developer
deliberately calls a
help function, using
menus, dragging
question marks, or
asking for help.

Why doesn’t it? The developer
expects some sort of
outcome from
Organic, but does not
achieve it. She steps
through the path,
again and again, to
check that it is not
working.

failures: (1) trying to communicate, (2) trying to fix an
error, and (3) trying to understand the rules.
Semiotic profiling. In this last step, we conducted an

analysis to understand the communication between the
software developers and the Organic tool. After execut-
ing all steps defined by the CEM, we were able to look at
Organic as if we were the users ourselves. This helped us
to acquire a deeper understanding of Organic’s communi-
cability issues. In addition, looking from the perspective of
potential users, we were able to identify the requirements
for a tool that supports the identification of design prob-
lems in stinky code.

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 24 of 30

The steps defined by the CEM were fundamental for
achieving the goal of this study: discover communica-
bility issues in Organic that hinder the identification of
design problems. The first step (tagging) provided a guide-
line for the identification of communicability failures that
may occur when a user interacts with Organic. After that,
with the interpretation step, CEM provided us with a
systematic method for the analysis and classification of
communicability failures. This classification was funda-
mental for organizing the data collected during this study.
Finally, in the last step, we analyzed the data collected
in previous steps to consolidate our results. During this
step, we identified the main communicability issues of
Organic based on the recurrent failures observed during
the interaction of software developers with Organic. Next,
we present the results and our interpretation of this study.

Results and interpretation
Table 10 presents the frequency of occurrence of each tag
(rows) by participant (columns). Also, the total frequency,
considering all participants, is summarized in the last col-
umn. Table 11 presents the frequency of communicability
failures, categorized by the type of failure. We did not
observe any recurring pattern of failures among the par-
ticipant. Nevertheless, as seen on Table 11, all participants
suffered from the “I give up” failure, which is a complete
failure. For all of them, the complete failure occurred after
successive temporary failures. As exposed in Table 11,
most of the temporary failures were of type 3—that occur
when the developer is trying to understand the com-
munication rules of Organic. This sequence of failures
indicates that developers tried to identify design prob-
lems with Organic. However, due to successive failures,
the developers gave up on the task.

Communicability issues of Organic
Answering research question RQ3, we observed three
main communicability issues in the Organic tool, which
are (1) lack of a precise message, (2) inadequate terminol-
ogy, and (3) ambiguity in static signs. Next, we present
details about each of them.

Table 10 Frequency of occurrence total and by participant

Tag Participant Total

P1 P2 P3

I give up 1 1 1 3

Go another way 1 0 1 2

And now? 0 1 0 1

What is this? 1 4 2 7

Help! 2 8 2 12

Why doesn’t it? 4 0 0 4

Table 11 Frequency of occurrence categorized by type of failure

Type of Failure Participant Total

P1 P2 P3

Complete failures 1 1 1 3

Partial failures 1 0 1 2

Temporary failures—type 1

communicate 0 1 0 1

Temporary failures—type 2

fix an error 0 0 0 0

Temporary failures—type 3

understand the rules 7 12 14 23

Lack of a precise message. Although the tool identi-
fies and groups the symptoms that are interrelated (the
agglomerated code smells), it does not provide a mes-
sage that facilitates concise reasoning about the possible
design problem. Hence, the developer needs, by him-
self, to explore and synthesize all the information needed
to analyze a design problem. The tool gives the neces-
sary information, but the analysis of those information
requires a significant effort from the developer. Besides
being a communicability issue, it also has relation with the
domain complexity in which Organic is designed for. We
list next some changes in Organic that can contribute for
building and delivering a more precise message.
Following our findings from the previous study (“How to

improve design problem identification?” section), for this
study, we incorporated a graph-based view into Organic.
However, we observed that developers did not use the
graph-based view of Organic. In the post-study inter-
views, we noticed that this happened because the graph-
based view did not prove to be useful for identifying
design problems. Nevertheless, we believe that, after some
improvements, this type of view can indeed contribute for
transmitting a more concise message about each agglom-
eration. For that, a better integration of this view with
other information is required. For example, instead of
using a separated tab, the description of code smells could
be provided in the graph nodes. Moreover, the graph
could show the relationships of the agglomeration with
external classes. This information could be provided on
demand, when required by the developer. We believe that
such improvements would help developers to conduct an
integrated, smoother analysis of an agglomeration.
Inadequate terminology. The terms used in the tool

are not adequate to the target public, which are com-
mon software developers. Terms such as “anomalies” and
“agglomeration,” for instance, are unknown bymost devel-
opers. Two participants (P2 and P3) who have the least
knowledge about software engineeringmentioned the fact
that the concepts embedded in the tool were too hard to

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 25 of 30

understand. The participant (P1) that did not have diffi-
culties with the terms was a postgraduate student, acting
on the software developer field.
To improve the communicability of Organic, partici-

pants suggested maximizing the use of terms from pop-
ular books like the books of Fowler [3] and Martin
[43], which are widely known in the software develop-
ment community. In addition, as observed in the quasi-
experiment (“Study I: Quasi-experiment” section), for
being a complex domain, developers would benefit from
interactive help content. This kind of aid should be avail-
able, at least, in the first interaction between the developer
and Organic.
Ambiguity in static signs. The last problem of communi-

cability occurs due to the inadequate use of static symbols.
As presented in Fig. 15, different types of information are
presented with the same static symbols. This mixture con-
fused all the participants, leading to situations in which,
for instance, the participant believes that he is interacting
with the tab “Anomalies,” when in fact he was interacting
with the tab “References.” This is the least harmful com-
municability issue, but also affects the identification of
design problems.
The direct solution for resolving this ambiguity con-

sists on the use of different static symbols for each
type of information. Also, the improvement on the
graph visualization—mentioned to solve the first com-
municability issue—would be an excellent alternative to
solve this problem. The graph would integrate the dif-
ferent information in a single view, removing existing
ambiguities.

Communicability strengths of Organic
Despite presenting some communicability issues, Organic
also has its strengths revealed in this study. In fact, there
was no previous study evaluating Organic. Therefore,
looking from the perspective of Semiotic Engineering,
besides identifying communicability issues, we also iden-
tified some communicability strengths of Organic. This
provided us with evidence on what is working well in
Organic. It is important to note that the strengths pre-
sented here were not reported by participants. Instead,
they are the result of our own observations.
Next, we present the main strengths found in Organic

during this study:
Multiple analyses of stinky code. The identification of

a design problem in stinky code requires multiple com-
plementary analyses. Organic provides the opportunity
to analyze stinky code based on different agglomera-
tion categories (“Basic concepts” section). As reported
by Oizumi and colleagues [5], each agglomeration cat-
egory provides a different perspective to the analysis
of source code. In addition, Organic provides multiple
information about each agglomeration: (1) list of code

smells, (2) description of code smells, (3) dependencies of
the agglomeration with external classes, (4) a high level
visualization, and (5) information about the agglomer-
ation across different versions of the source code. We
observed, in this study and in the quasi-experiment
(“Study I: Quasi-experiment” section), that developers
were able to identify design problems when they man-
aged to explore and synthesize the multiple information
provided by Organic for each agglomeration.
Integration with IDE. The analysis of stinky code

requires the developer to constantly navigate from
Organic to the source code, and vice-versa. This is nec-
essary because most code smells can only be fully under-
stood in the source code. Moreover, the analysis of source
code is required to verify if a code smell is a false pos-
itive. As an Eclipse plugin, Organic promotes a smooth
integration of its views with the source code. In addition,
the developer can open the source code affected by a code
smell with a double-click in the code smell. Without this
integration, the developer would have to constantly shift
between programs to analyze stinky code. For example,
without this resource, the analysis of an agglomeration
of five code smells would require, at least, nine shifts
between programs.
Information about code smells. Most developers ben-

efit from reading information about code smells during
the analysis of stinky code. We observed in this study
that, during the analysis of an agglomeration, even expe-
rienced developers usually consult the definition of each
smell. As explained in the “Organic: a tool for the analysis
of stinky code” section, Organic provides this informa-
tion in a tab called “Description.” We noted that devel-
opers used the “Description” tab (back and forth) as a
guide for analyzing agglomerated code smells. Provid-
ing this information is important because even experi-
enced developers do not know or remember the defini-
tion of all code smells. Thus, without this resource, they
would spend more time analyzing an agglomeration and
searching for information about code smells via external
resources.

Threats to validity
This section presents threats that could impact the validity
of this study. For each threat, we present the actions we
took to mitigate its impact on the study.
First, one could claim it would be beneficial to have

more participants in the study in order to achieve rep-
resentative results. However, according to Yin [44], qual-
itative research is, by nature, particularistic. Thus, the
analysis and understanding of qualitative results requires
the study of specific situations and people, comple-
mented by considering specific contextual conditions. We
selected three software professionals, which are repre-
sentative individuals of our target population. Thus, we

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 26 of 30

Fig. 15 Example of ambiguity in the static symbols

consider that this threat was properly mitigated. How-
ever, we plan to perform other studies in the future
in order to analyze the behavior of professionals with
other types of background and using future versions of
Organic.
The second threat is related to possible misunder-

standings during the study. To mitigate this threat, we
prepared the participants before the study, explain-
ing how the study would proceed. Moreover, in
order to comply with the recommendations of CEM,
two researchers assisted the participants during the
entire study.
Finally, there is a threat related to the complexity of

the system used in this study. We mitigated this threat
by selecting system from a widely known computer sci-
ence domain—Apache OODT is a middleware system
that provides infrastructure services, such as file man-
agement and networking communication. In addition,
as presented in the “Test scenario” section, we pro-
vided participants with the required documentation of
Apache OODT.

Related work
In this section, we present the literature that is related
to this paper. The “Identification of design problems
with code smells” section presents studies investigating
the occurrence of design problems in stinky code. The
“Other approaches to identify design problems” section
outlines studies that investigate the use of information
other than code smells to identify design problems. The
“Detection and visualization of stinky code” section pro-
vides a brief overview of the literature about detection and
visualization of stinky code. Finally, the “Semiotic Engi-
neering” section presents studies on the use of Semiotic
Engineering in different research contexts.

Identification of design problems with code smells
In this paper, we have investigated if developers can
identify design problems in stinkier code. In this inves-
tigation, we observed developers reasoning about code
smell agglomerations to identify design problems. Oizumi
et al. stated the concept of agglomeration [5]. In their
study, they investigated to what extent code smells could
“flock together” to realize a design problem. They found
that these code smells flocked together because they were
somehow related to each other. The groups of smells that
flock together are called agglomerations. After analyz-
ing more than 2200 agglomerations of code smells from
seven software systems with different sizes and different
domains, they concluded that certain forms of agglomera-
tions are consistent indicators of design problems. Despite
such result, Oizumi et al. did not evaluate if develop-
ers would identify most design problems when they use
agglomerations.
Oizumi et al. study was not the only one to investigate

inter-related code smells. Abbes et al. [6] brought up the
notion of code smells that interact to each in the source
code. They also investigated the effects of such inter-
acting. They concluded that classes and methods iden-
tified as God Classes and God Methods in isolation did
not affect maintenance effort; however, when these two
smells appear together, they led to a statistically significant
increase in maintenance effort. Yamashita and Moonen
[7] also investigate the relationship between code smells.
They observed that inter-smell relationships negatively
affect the maintenance. Posteriorly, Yamashita et al. [8]
studied collocated smells—code smells that interact in the
same source code file—and coupled smells—code smells
that interact across different source code files. Regarding
software design, they observed that limiting the analysis
to collocated smells would reduce their capability to reveal

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 27 of 30

design problems, as coupled smells may reveal critical
design problems.
Macia et al. [17] analyzed the relevance of code smells

to identify design problems. Their research revealed that
none of the studied code smell types was consistently a
strong indicator of design problems. Their results also
revealed that a higher proportion of individual code smells
did not impact software design. Macia [24], then, cata-
loged a set of patterns of inter-related code smells. Nev-
ertheless, none of these authors studied the impact of
agglomerations (i.e., inter-related code smells) on identi-
fying design problems from the point of view of devel-
opers, and none of them characterized how to explore
agglomerations to improve the identification of design
problems.
Nevertheless, none of the aforementioned papers

present evidence on whether developers can indeed find
more design problems when they focus on inspect-
ing stinky program location. We addressed this gap
in our previous work [20]. We conducted a mixed-
method study to investigate whether the analysis of
stinky program locations help developers in revealing
more design problems than the analysis of single smells.
In this paper, we extended our previous work [20]
by investigating what are the requirements for a tool
that supports the analysis of stinky code. This inves-
tigation also complements the results of our previous
work, showing that communicability issues in the tool
may prejudice the identification of design problems in
stinky code.

Other approaches to identify design problems
We also found studies that have investigated other
approaches to identify design problems [45, 46]. Mo
et al. [45] proposed and evaluated a suite of hotspot pat-
terns, which are recurring design problems that lead to
high maintenance cost. These patterns are detected by
the combination of structural, history, and design infor-
mation to identify potential design problems. In their
study, they showed that these patterns might be the causes
of bug-proneness and change-proneness. Xiao et al. [46]
introduced an approach that uses a history coupling prob-
ability matrix to identify and quantify design problems.
The proposed approach uses four patterns to show the
correlation between design problems and the decrease of
software quality. These studies did not also evaluate the
identification of design problems from the perspective of
software developers. Besides, these studies rely on history
and design information, which may not be available for
many software systems.
Other studies have focused on investigating the iden-

tification of design problems from the perspective of
developers as well [47, 48]. Sousa et al. [47] conducted
a qualitative study to investigate how developers identify

design problems in practice. In their study, the authors
observed the actions that developers apply to identify
design problems. They noticed that some actions were
applied to locate program elements to analyze, while
other actions were applied to confirm if the location con-
tains or not a design problem. They also observed that
developers often search for multiple symptoms of design
problems, such as code smells, during the identification.
In a subsequent study, Sousa et al. [48] proposed a the-
ory to describe how the identification of design problems
happens in practice. Their theory explains factors that
influence developers during the identification of design
problems. For instance, the relation among symptoms is a
recurring factor that developers take into account. Despite
investigating the identification of design problems from
the perspective of developers, these studies focused on
observing developers identifying design problems. Con-
versely, they did not investigate whether developers can
indeed find more design problems when they focus on
inspecting stinky program location. Also, they did not
provide any evaluation on the requirements for a tool that
supports the analysis of stinky code.

Detection and visualization of stinky code
Related works propose techniques for supporting the
detection and visualization of both single smells and inter-
related smells. There are several studies that investigated
detection and visualization of single code smells [13–16].
Van Emden and Moonen [13], for example, presented a
tool that detects and visualizes code smells in source code.
Their tool displays the code structures as a graph and
maps code smells onto the graph attributes. Although this
tool can represent the relation among elements, it fails
on representing code smells. The tool is built upon the
assumption that code smells concentrate in a particular
location on the source and that software metrics will point
developers to these locations. However, this assumption
does not always hold since some code smells need the
understanding of how the smelly elements interact to
which other. For instance, let us consider the Dispersed
Coupling, which happens when a code element is exces-
sively tied tomany other elements. In this case, a visualiza-
tion should not only represent the element that contains
the Dispersed Coupling, but also the elements to which it
is coupled. These interactions cannot be represented by a
simple mapping between code structures and colors.
Regarding the visualization of inter-related smells, we

found few studies that investigated the detection and
visualization of inter-related smells affecting a program
location [39, 49, 50]. Palomba et al. [50] analyzed the co-
occurrence of 13 code smell types detected in 395 releases
of 30 software systems. Their results show that 59% of
smelly classes are affected by more than one smell. They
also observed that method-level smells may be the cause

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 28 of 30

of some class-level smells. Finally, they found six pairs
of smell types that frequently co-occur together. Based
on these findings, they suggest that code smell detectors
and refactoring tools should be aware of co-related code
smells to provide better results. Nevertheless, the study
of Palomba et al. only considered the co-occurrence of
code smells at the same class. On the other hand, in this
paper, we are investigating four forms of co-occurrence
(“Basic concepts” section). Moreover, they did not investi-
gate the identification of design problems with co-located
code smells.
Vidal et. al. [39] presented a tool for detecting code

smells and agglomerations of a (Java-based) system and
ranking them according to different criteria [39]. The
main benefit of using their tool is that developers can con-
figure and extend it by providing different strategies to
identify and rank the smells and groups of smells (i.e.,
agglomerations). However, this tool cannot present all the
characteristics of agglomerations. For instance, it can-
not represents the relations that exist between the code
smells within an agglomeration. Therefore, the developer
has to reason about the agglomeration to first understand
the relation among the smells, to then identify a design
problem.

Semiotic Engineering
Semiotic Engineering is a semiotic theory on of human-
computer interaction (HCI) [22]. It views a system as
a computer-mediated communication between the pro-
grammer (system designer) and the user. Semiotic Engi-
neering proposes two qualitative methods to evaluate
the communicability in HCI, which are the Semiotic
Inspection Method (SIM) and the Communicability Eval-
uation Method (CEM). These methods have been applied
in technical contexts, focusing on how to to improve the
communicability of specific systems [22], but also in sci-
entific research. For example, based on a literature review,
Reis and Prates [51] observed 21 technical applications
and 10 scientific applications of the SIM. Overall, they
observed that SIM have been frequently applied in the
educational domain and in the evaluation of collaborative
systems. Semiotic Engineering has also been applied in
the evaluation of programming APIs. The work of Bastos
et al. [52] applied a semiotic engineering method called
SigniFYIng APIs. In this work, they evaluated a date and
time API of the Java programming language. Although
being applied in different research and technical con-
texts, Semiotic Engineering was never used to evaluate
the impact of communicability issues in the identification
of design problems. In this paper, we conducted a quali-
tative evaluation using the CEM. This analysis helped us
to understand how communicability issues in the Organic
tool can hinder the identification of design problems. In
addition, this evaluation helped us to identify what are the

communicability requirements for a tool that helps in the
analysis of stinky code.

Concluding remarks
In this paper, we presented Organic—a tool supporting
the analysis of stinky code. Organic is a tool to help
developers to identify design problems through the anal-
ysis of code smells in the source code. Organic supports
the analysis of multiple forms of stinkier code, provides
detailed information about code smells, supports the anal-
ysis of dependencies involving stinky code, provides a
graph-based visualization for stinkier code, and provides
historical information about stinkier code. These fea-
tures were designed and implemented based on findings
from previous studies about the relation between design
problems and code smells. We believe these features can
provide the basic support to support developers on iden-
tifying design problems.
In addition to proposing Organic, we also conducted

two studies to assess if developers are effective in revealing
design problems when they reason about agglomerated
code smells and to identify tool issues that may hin-
der the identification of design problems. These studies
were important because they revealed that (i) developers
find more design problems (and report less false posi-
tives) with agglomerations than with a flat list of smells
and (ii) developers sometimes may not be able to identify
design problems either because they cannot properly rea-
son about multiple code smells or because limited support
tool is hindering the identification. Thus, we address these
two aspects not explored by previous studies.
In the first study, we conducted a multi-method study

with 11 developers. We asked participants to identify
design problems in stinkier program locations. After
that, we compared their results with the results of when
they analyzed a flat list of single code smells to iden-
tify design problems. Our analysis showed that developers
found more design problems when they reasoned about
stinkier code (i.e., agglomerated smells). In addition, we
noticed that, when developers were aware of multiple
smells in a program location, they reported less false pos-
itives. Therefore, our results suggest that reasoning about
stinkier code may improve the precision of developers
in identifying design problems. Based on the qualita-
tive analysis, we observed that developers indeed tend to
have higher confidence to identify the occurrence of non-
trivial design problems when using information about
multiple smells. That happens because developers usu-
ally analyze all smells before reporting a design problem.
Consequently, the likelihood of reporting a false positive
decreases.
Additionally to these results, this first study also helped

us to identify opportunities to improve the tool support
for developers. For instance, we observed that developers

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 29 of 30

need to prioritize stinkier program locations that are most
likely to indicate a design problem. This need should be
addressed because the analysis of stinky code is difficult
and time-consuming. Furthermore, a system may contain
several stinkier locations, which choosing which location
to analyze can be a cumbersome task for developers. Thus,
developers should focus on those locations that are most
likely to embody a design problem. In addition, we also
noticed that developers need proper visualization mech-
anisms to support the analyses of stinky code scattered
across wider program locations, such as hierarchies or
packages.
In the second study, we evaluated Organic with

the Communicability Evaluation Method (CEM) [22].
This method enabled us to identify communicabil-
ity issues in the Organic tool that may hinder the
identification of design problems. For example, we
observed that, although detecting stinkier program loca-
tions, Organic does not provide a message containing
concise reasoning about the possible design prob-
lem occurring in the stinkier code. As a result, the
developer may struggle to make a meaning out of
multiple smells.
The second study also revealed some strengths of

Organic. For instance, we observed that Organic pro-
vides useful information about code smells and about
dependencies. Such information was considered useful by
most participants. We also observed that Organic pro-
motes a smooth integration of its views with the source
code. This characteristic is important because most code
smells can only be understood through source code
analysis.
In a nutshell, we conclude that both studies encourage

the analysis of stinky code to identify design problems.
However, there are issues that should be addressed before
developers can more effectively explore multiple code
smells in a time-effective manner. As discussed above,
there is a need to provide mechanisms for better priori-
tizing and visualizing stinkier code. As a future work, we
plan to improve these mechanisms in the Organic tool
(“Organic: a tool for the analysis of stinky code” section)
and evaluate their impact on developers’ effectiveness and
efficacy.

Endnote
1Organic. Available at https://wnoizumi.github.io/

organic/.

Abbreviations
CEM: Communicability evaluation method; OODT: Object oriented data
technology; TP: True positives; FP: False positives; ID: Identification; HCI:
Human-computer interaction; SIM: Semiotic inspection method

Acknowledgements
We would like to thank Clarisse Sieckenius de Souza for the valuable
contributions to this work.

Funding
This work is funded by CNPq (309884/2012-8, 483425/2013-3, 477943/2013-6,
465614/2014-0, 308380/2016-9), CAPES/Procad (175956, 117875,
153363/2018-5), and FAPERJ (22520 7/2016, 102166/2013).

Availability of data andmaterials
Please contact the authors for data requests.

Authors’ contributions
AG, LS, and WO conceived the research and coordinated the research
activities. AG, LS, and WO designed and implemented the Organic tool. All
authors participated in the design, data collection, and analysis of the
mixed-method study. All authors participated in the design, data analysis, and
interpretation of the communicability evaluation. All authors helped to draft
the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Opus Research Group, Informatics Department, PUC-Rio, Rio de Janeiro, RJ,
Brazil. 2IFPR, Campus Paranavai, Paranavai, PR, Brazil. 3UEG, Campus Posse,
Posse, GO, Brazil.

Received: 21 March 2018 Accepted: 4 October 2018

References
1. Ciupke O (1999) Automatic detection of design problems in

object-oriented reengineering. In: Proceedings of technology of
object-oriented languages and systems - TOOLS 30 (Cat. No.PR00278).
IEEE, Washington, DC. pp 18–32

2. Trifu A, Marinescu R (2005) Diagnosing design problems in object
oriented systems. In: WCRE’05. IEEE, Washington, DC. p 10

3. Fowler M (1999) Refactoring: improving the design of existing code.
Addison-Wesley Professional, Boston

4. Macia I, Garcia J, Popescu D, Garcia A, Medvidovic N, von Staa A (2012)
Are automatically-detected code anomalies relevant to architectural
modularity?: an exploratory analysis of evolving systems. In: AOSD ’12.
ACM, New York. pp 167–178

5. Oizumi W, Garcia A, Sousa L, Cafeo B, Zhao Y (2016) Code anomalies flock
together: exploring code anomaly agglomerations for locating design
problems. In: The 38th International Conference on Software Engineering.
ACM, New York

6. Abbes M, Khomh F, Gueheneuc Y, Antoniol G (2011) An empirical study
of the impact of two antipatterns, blob and spaghetti code, on program
comprehension. In: Proceedings of the 15th European Software
Engineering Conference. IEEE, Washington, DC. pp 181–190

7. Yamashita A, Moonen L (2013) Exploring the impact of inter-smell
relations on software maintainability: an empirical study. In: Proceedings
of the 35th International Conference on Software Engineering. IEEE Press,
Piscataway. pp 682–691

8. Yamashita A, Zanoni M, Fontana FA, Walter B (2015) Inter-smell relations
in industrial and open source systems: a replication and comparative
analysis. In: ICSME 2015. IEEE, Washington, DC. pp 121–130

9. Martin RC, Martin M (2006) Agile principles, patterns, and practices in C#
(Robert C. Martin). Prentice Hall PTR, Upper Saddle River

10. Oizumi W, Garcia A, Colanzi T, Staa A, Ferreira M (2015) On the
relationship of code-anomaly agglomerations and architectural
problems. J Softw Eng Res Dev 3(1):1–22

11. Cedrim D, Sousa L, Garcia A, Gheyi R (2016) Does refactoring improve
software structural quality? A longitudinal study of 25 projects. In:
Proceedings of the 30th Brazilian Symposium on Software Engineering.
SBES ’16. ACM, New York. pp 73–82

12. Cedrim D, Garcia A, Mongiovi M, Gheyi R, Sousa L, Mello R, Fonseca B,
Ribeiro M, Chávez A (2017) Understanding the impact of refactoring on
smells. In: 11th Joint Meeting of the European Software Engineering

https://wnoizumi.github.io/organic/.
https://wnoizumi.github.io/organic/.

Oizumi et al. Journal of the Brazilian Computer Society (2018) 24:13 Page 30 of 30

Conference and the ACM Sigsoft Symposium on the Foundations of
Software. ESEC/FSE’17. ACM, New York

13. Emden E, Moonen L (2002) Java quality assurance by detecting code
smells. In: Proceedings of the 9th Working Conference on Reverse
Engineering. IEEE, Washington, DC. p 97

14. Ratzinger J, Fischer M, Gall H (2005) Improving evolvability through
refactoring, Vol. 30. ACM, New York. https://doi.org/10.1145/1082983.
1083155

15. Murphy-Hill E, Black AP (2010) An interactive ambient visualization for
code smells. In: Proceedings of the 5th International Symposium on
Software Visualization. ACM, Salt Lake City. pp 5–14

16. Wettel R, Lanza M (2008) Visually localizing design problems with
disharmony maps. In: Proceedings of the 4th ACM Symposium on
Software Visualization. ACM, New York. pp 155–164

17. Macia I, Arcoverde R, Garcia A, Chavez C, von Staa A (2012) On the
relevance of code anomalies for identifying architecture degradation
symptoms. In: CSMR12. IEEE, Washington, DC. pp 277–286

18. Macia I, Arcoverde R, Cirilo E, Garcia A, von Staa A (2012) Supporting the
identification of architecturally-relevant code anomalies. In: ICSM12. IEEE,
Washington, DC. pp 662–665

19. Oizumi W, Garcia A, Colanzi T, Ferreira M, Staa A (2014) When
code-anomaly agglomerations represent architectural problems? An
exploratory study. In: Proceedings of the 2014 Brazilian Symposium on
Software Engineering (SBES). IEEE, Washington, DC. pp 91–100

20. Oizumi W, Sousa L, Garcia A, Oliveira R, Oliveira A, Agbachi OIAB, Lucena C
(2017) Revealing design problems in stinky code: a mixed-method study.
In: Proceedings of the 11th Brazilian Symposium on Software
Components, Architectures, and Reuse. SBCARS ’17. ACM, New York.
pp 5–1510. https://doi.org/10.1145/3132498.3132514

21. Garcia J, Popescu D, Edwards G, Medvidovic N (2009) Identifying
architectural bad smells. In: CSMR09. IEEE, Washington, DC

22. De Souza CS, Leitão CF (2009) Semiotic engineering methods for
scientific research in HCI. Synthesis Lectures on Human-Centered
Informatics 2(1):1–122

23. Bass L, Clements P, Kazman R (2003) Software architecture in practice.
2nd edn. Addison-Wesley Longman Publishing Co., Inc, Boston

24. Macia I (2013) On the detection of architecturally-relevant code
anomalies in software systems. PhD thesis, Pontifical Catholic University
of Rio de Janeiro, Informatics Department

25. Lanza M, Marinescu R (2006) Object-oriented metrics in practice. Springer,
Heidelberg

26. Suryanarayana G, Samarthyam G, Sharma T (2014) Refactoring for
software design smells: managing technical debt. 1st edn. Morgan
Kaufmann Publishers Inc, San Francisco

27. Mattmann C, Crichton D, Medvidovic N, Hughes S (2006) A software
architecture-based framework for highly distributed and data intensive
scientific applications. In: Proceedings of the 28th ICSE: Software
Engineering Achievements Track. ACM, New York. pp 721–730

28. Marinescu R (2004) Detection strategies: metrics-based rules for detecting
design flaws. In: Proceedings of 20th IEEE International Conference on
Software Maintenance (ICSM). IEEE, Washington, DC. pp 350–359

29. Yamashita A, Moonen L (2013) Do developers care about code smells? An
exploratory survey. In: 2013 20th Working Conference on Reverse
Engineering (WCRE). IEEE, Washington, DC. pp 242–251. https://doi.org/
10.1109/WCRE.2013.6671299

30. Oizumi W, Garcia A, Sousa L, Albuquerque D, Cedrim D (2014) Towards the
synthesis of architecturally-relevant code anomalies. In: Proceedings of
the 11th Workshop on Software Modularity. SBC, Porto Alegre. pp 39–52

31. Shadish WR, Cook TD, Campbell DT (2002) Experimental and
quasi-experimental designs for generalized causal inference. Houghton
Mifflin, Michigan. https://books.google.com.br/books?id=o7jaAAAAMAAJ

32. McIntosh S, Kamei Y, Adams B, Hassan AE (2014) The impact of code
review coverage and code review participation on software quality: a case
study of the qt, vtk, and itk projects. In: Proceedings of the 11th Working
Conference on Mining Software Repositories. ACM, New York. pp 192–201

33. Silva MCO, Valente MT, Terra R (2016) Does technical debt lead to the
rejection of pull requests? In: Proceedings of the 12th Brazilian Symposium
on Information Systems. SBSI ’16. SBC, Porto Alegre. pp 248–254

34. Yahoo! Explore Career Opportunities. Available at https://careers.yahoo.
com/us/buildyourcareer. Accessed 21 Mar 2018

35. Twitter Working at Twitter. Available at https://about.twitter.com/careers.
Accessed 21 Mar 2018

36. Garcia J, Ivkovic I, Medvidovic N (2013) A comparative analysis of software
architecture recovery techniques. In: Proceedings of the 28th IEEE/ACM
International Conference on Automated Software Engineering. IEEE Press,
Piscataway

37. Easterbrook S, Singer J, Storey M-A, Damian D (2008) Selecting empirical
methods for software engineering research(Shull F, Singer J, Sjøberg
DIK, eds.). Springer, London

38. Arcoverde R, Guimares E, Macía I, Garcia A, Cai Y (2013) Prioritization of
code anomalies based on architecture sensitiveness. In: 2013 27th
Brazilian Symposium on Software Engineering. IEEE, Washington, DC.
pp 69–78. https://doi.org/10.1109/SBES.2013.14

39. Vidal SA, Marcos C, Díaz-Pace JA (2016) An approach to prioritize code
smells for refactoring. Automated Software Engg 23(3):501–532. https://
doi.org/10.1007/s10515-014-0175-x

40. Vidal S, Guimaraes E, Oizumi W, Garcia A, Pace AD, Marcos C (2016)
Identifying architectural problems through prioritization of code smells.
In: 2016 X Brazilian Symposium on Software Components, Architectures
and Reuse (SBCARS). IEEE, Washington, DC. pp 41–50. https://doi.org/10.
1109/SBCARS.2016.11

41. Herman I, Melancon G, Marshall MS (2000) Graph visualization and
navigation in information visualization: a survey. IEEE Transactions on
Visualization and Computer Graphics 6(1):24–43

42. Prates RO, de Souza CS, Barbosa SDJ (2000) Methods and tools: A method
for evaluating the communicability of user interfaces. Interactions
7(1):31–38. https://doi.org/10.1145/328595.328608

43. Martin RC (2008) Clean code: a handbook of agile software craftsmanship.
1st edn. Prentice Hall PTR, Upper Saddle River

44. Yin RK (2015) Qualitative research from start to finish. Guilford
Publications, New York

45. Mo R, Cai Y, Kazman R, Xiao L (2015) Hotspot patterns: the formal
definition and automatic detection of architecture smells. In: Software
Architecture (WICSA), 2015 12th Working IEEE/IFIP Conference On. IEEE,
Washington, DC. pp 51–60

46. Xiao L, Cai Y, Kazman R, Mo R, Feng Q (2016) Identifying and quantifying
architectural debt. In: Proceedings of the 38th International Conference
on Software Engineering. ICSE ’16. ACM, New York

47. Sousa L, Oliveira R, Garcia A, Lee J, Conte T, Oizumi W, de Mello R, Lopes A,
Valentim N, Oliveira E, Lucena C (2017) How do software developers
identify design problems?: a qualitative analysis. In: Proceedings of the
31st Brazilian Symposium on Software Engineering. SBES’17. ACM, New
York. pp 54–63. https://doi.org/10.1145/3131151.3131168. http://doi.acm.
org/10.1145/3131151.3131168

48. Sousa L, Oliveira A, Oizumi W, Barbosa S, Garcia A, Lee J, Kalinowski M,
de Mello R, Neto B, Oliveira R, Lucena C, Paes R (2018) Identifying design
problems in the source code: a grounded theory. In: Proceedings of the
40th International Conference on Software Engineering. ICSE’18. ACM,
New York

49. Oizumi W, Garcia A Organic: a prototype tool for the synthesis of code
anomalies. https://wnoizumi.github.io/organic/

50. Palomba F, Bavota G, Penta MD, Fasano F, Oliveto R, Lucia AD (2018) A
large-scale empirical study on the lifecycle of code smell co-occurrences.
Information and Software Technology. https://doi.org/10.1016/j.infsof.
2018.02.004

51. De S. Reis S, Prates RO (2011) Applicability of the semiotic inspection
method: a systematic literature review. In: Proceedings of the 10th
Brazilian Symposium on Human Factors in Computing Systems and the
5th Latin American Conference on Human-Computer Interaction.
IHC+CLIHC ’11. Brazilian Computer Society, Porto Alegre. pp 177–186.
https://dl.acm.org/citation.cfm?id=2254436.2254468

52. Bastos JADM, Afonso LM, de Souza CS (2017) Metacommunication
between programmers through an application programming interface: a
semiotic analysis of date and time APIs. In: 2017 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, Washington,
DC. pp 213–221. https://doi.org/10.1109/VLHCC.2017.8103470

https://doi.org/10.1145/1082983.1083155
https://doi.org/10.1145/1082983.1083155
https://doi.org/10.1145/3132498.3132514
https://doi.org/10.1109/WCRE.2013.6671299
https://doi.org/10.1109/WCRE.2013.6671299
https://books.google.com.br/books?id=o7jaAAAAMAAJ
https://careers.yahoo.com/us/buildyourcareer
https://careers.yahoo.com/us/buildyourcareer
https://about.twitter.com/careers
https://doi.org/10.1109/SBES.2013.14
https://doi.org/10.1007/s10515-014-0175-x
https://doi.org/10.1007/s10515-014-0175-x
https://doi.org/10.1109/SBCARS.2016.11
https://doi.org/10.1109/SBCARS.2016.11
https://doi.org/10.1145/328595.328608
https://doi.org/10.1145/3131151.3131168
http://doi.acm.org/10.1145/3131151.3131168
http://doi.acm.org/10.1145/3131151.3131168
https://wnoizumi.github.io/organic/
https://doi.org/10.1016/j.infsof.2018.02.004
https://doi.org/10.1016/j.infsof.2018.02.004
https://dl.acm.org/citation.cfm?id=2254436.2254468
https://doi.org/10.1109/VLHCC.2017.8103470

	Abstract
	Background
	Method
	Result
	Conclusion
	Keywords

	Introduction
	Contextualization
	Basic concepts
	Design problem
	Smelly code
	Code smells and design problems
	Stinky program location

	Identifying design problem in stinky code

	Organic: a tool for the analysis of stinky code
	Study I: Quasi-experiment
	Study design
	Experimental procedure
	Software projects and participant selection
	Quantitative analysis procedure
	Qualitative analysis procedure

	Results and analysis
	Do agglomerations improve precision?
	How to improve design problem identification?

	Threats to validity

	Study II: Communicability evaluation of Organic
	Study design
	Test scenario
	Environment and infrastructure
	Post-study interview

	Data analysis and evaluation procedure
	Results and interpretation
	Communicability issues of Organic
	Communicability strengths of Organic

	Threats to validity

	Related work
	Identification of design problems with code smells
	Other approaches to identify design problems
	Detection and visualization of stinky code
	Semiotic Engineering

	Concluding remarks
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

