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In the last years, learning from data streams has attracted the attention of researchers and practitioners due to its
large number of applications. These applications have motivated the research community to propose a significant
amount of methods to solve problems in diverse tasks, more prominently in classification, clustering, and anomaly
detection. However, a relevant task known as quantification has remained mostly unexplored. The quantification goal
is to provide an estimate of the class prevalence in an unlabeled set. Recently, we proposed the SQSI algorithm to
quantify data streams with concept drifts. SQSI uses a statistical test to identify concept drifts and retrain the classifiers.
However, the retraining involves requiring the labels for all newly arrived instances. In this paper, we extend SQSI
algorithm by exploring instance selection techniques allied to semi-supervised learning. The idea is to request the
classes of a smaller subset of recent examples. Our experiments demonstrate that SQSI's extension significantly
reduces the dependency on actual labels while maintaining or improving the quantification accuracy.

Introduction
As machine learning becomes a mature discipline,
researchers and practitioners start considering more chal-
lenging application settings. One example is learning from
data streams, in which data arrive continuously and may
be non-stationary. Recently, data streams have attracted a
considerable amount of interest from the machine learn-
ing community. Consequently, we have seen an increasing
and diverse set of methods in several tasks such as classi-
fication, clustering, and anomaly detection [1-4].

However, a relevant task, named quantification, has
remained mostly unexplored in this setting. The objec-
tive in quantification is to provide an accurate estimation
of the class distribution of an unlabeled set [5]. To elu-
cidate the practical utility found in this task, consider
as a concrete example the insect surveillance application
described next.

Insect surveillance is the key to control agricultural
pests and disease vectors. The knowledge of the location
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of the insects allows planning Jlocal interventions. Local
interventions are critical in reducing costs and environ-
mental impact. In contrast, global interventions, such as
large-scale spraying of insecticides, frequently used in
agriculture and public health, are expensive and associ-
ated with the contamination of soil and water, as well
as with increasing danger of extinction for threatened
species.

Mechanical traps are the most used approach in insect
surveillance. These traps attract and imprison insects,
but require a human expert to manually identify and
count the number of captured insects of interest. Such
human-centered approach restricts the scale of applica-
tion for insect surveillance. Recent research efforts have
developed a sensor to automatically recognize the species
of insects using data from the wing movement [6, 7].
This sensor uses machine learning algorithms to clas-
sify the signals obtained from the sensor into the insect
species. For our purposes, classification is just an inter-
mediate step. The final objective is quantification, i.e.,
counting the number of insects that belong to a particular
species. These counts are the estimates of the local insect
population.

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-018-0076-0&domain=pdf
mailto: andregustavo@usp.br
http://creativecommons.org/licenses/by/4.0/

Maletzke et al. Journal of the Brazilian Computer Society (2018) 24:12

We can frame several additional applications as a quan-
tification task. For instance, estimating the percentage of
unemployed people across different time periods; count-
ing the number of positive, negative, or neutral tweets
about a specific topic or product; estimating the number
of news related to terrorism in the last month or semester
and many others.

The class distribution of a training set could be statically
considered as an estimate of the class distribution of a test
set, not requiring any form of learning. However, quantifi-
cation problems typically implicate significant divergence
between the class distributions of the training and test
sets. For instance, news about a particular subject usu-
ally vary with time and accurately counting these articles
requires a classification step.

According to [5], quantification is a supervised task,
recently formalized as a machine learning problem.
Quantification shares similarities with classification. For
instance, both consider the same representation for exam-
ples and a nominal output feature describing the class.
However, quantification is not particularly interested in
predicting the label for each instance, but in the overall
quantity of elements of a specific class. Consequently, a
quantifier issues an output for a set of examples, instead of
for each instance. The output consists of a sequence of real
values which are the estimates of the classes distribution.

Quantification and classification are also related tasks
that benefit from each other. Quantification can be
straightforwardly achieved by counting the number of
examples classified as each class. This approach is known
as classify and count. However, empirical evaluations,
such as the one in [8], have shown that classify and count
usually leads to suboptimal results. Including additional
information, such as the estimated error and classifica-
tion scores, leads to more accurate results. Nonetheless,
even elaborated approaches that make use of additional
information usually maintain an underlying classification
nonetheless. On the other hand, classification benefits
from quantification as an estimate of the class distribution
is required to perform calibration [9].

To the best of our knowledge, the quantification research
has mainly focused on the batch setting [5, 8, 10, 11].
In such cases, excepting changes in the proportions of
the classes, other aspects of the distribution of data are
assumed to be stationary. Recently, we proposed an algo-
rithm to estimate the class distribution in non-stationary
data streams [12]. This algorithm, named stream quantifi-
cation by score inspection (SQSI), is resilient to changes in
the feature space due to it monitoring the scores provided
by a classifier and detecting concept drifts in an unsu-
pervised manner. However, when SQSI detects a drift, it
requests the true labels of all events in the chunk and
updates the quantifier accordingly, acting as a supervised
approach.
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True labels are an expensive resource in many appli-
cations. Therefore, in this paper, we extend the SQSI
algorithm with instance selection techniques to decide
which instances will have their actual labels requested. In
this new setting, instead of demanding class labels for all
cases in the chunk, we actively select a smaller subset to
be labeled by an external oracle. Afterward, we use semi-
supervised learning to label the remaining examples in
the chunk. Finally, we use the cases labeled by an oracle
in conjunction with those labeled by a semi-supervised
scheme to update our quantification model. Our objective
is to reduce the SQSI dependency on actual labels even
further when it detects a drift. Our results show that our
extension achieves similar results to SQSI while typically
requiring 50% or less labeled examples. We also demon-
strate that cluster-based sampling is the instance selection
method that provided the most consistent results across
datasets.

The remaining of this paper is organized as follows:
first, we briefly present concepts related to data streams
and quantification, as well as the instance selection and
semi-supervised techniques explored in this paper. Next,
we describe the topline and baseline reference algorithms
that were compared with our proposals. The original SQSI
algorithm and our recent improvements are presented in
sequence. Next, we show the experimental evaluation
setup and results, respectively. Finally, we conclude this paper
with our final remarks and prospects for future work.

Background

In this section, we introduce relevant concepts regard-
ing data streams and quantification, as well as instance
selection strategies for semi-supervised learning.

Data stream

A data stream is an ordered sequence of instances.
Let E = (é1,€2,...,6:...) be a data stream, where
€ € RP is an instance in a p-dimensional feature
space. In supervised problems, each instance é; has
an associated label. Thus, a supervised data stream
can be represented by an ordered sequence of pairs
E, = ((zlryl)r(_é%yZ)w~~’(ét)yt)v~~~)r where Jt €
{c1,¢2,...5¢).

Real-world problems are increasingly modeled as data
streams. This fact has motivated the development of novel
methods that fulfill the requirements imposed by this type
of data generation process, such as high volume, veloc-
ity, and volatility [4]. Also, mining data stream faces other
challenges that include identifying and reacting to changes
in the feature space and updating the classification model
to incorporate those changes [13]. These changes in data,
also known as concept drifts, are due to modifications
in prior class probabilities P(y;), in data distributions
P(ély;), and in class conditional probabilities P(y;|é). In
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general, two strategies are used to mitigate the concept
drift impact: (i) adapt the models at regular intervals and
(i7) use a trigger for concept drift presence and then adapt
the model. There are several examples of methods that
deal with concept drift in the literature [14, 15]. In our
algorithm, we use the second approach and actively adapt
a classification model when a drift is detected.

Another significant challenge in data stream mining is
the occurrence of verification latency [14]. Most existing
data stream classification algorithms assume that the true
label of an instance becomes available as soon as these
algorithms issue a classification. However, in real-world
applications, this assumption rarely holds. Verification
latency is the time delay before receiving the correct label
[15]. Therefore, there usually is a delay of T; units of time
until the actual label becomes available. Many methods
assume 7; = 0, and consequently, these methods can
update their models using labeled events more rapidly
than possible in practice. Unfortunately, in real situations,
T; > 0, and sometimes 7; = 00, which makes the
data stream mining even more challenging. Verification
latency remains little explored in data stream mining, and
only in the last years, some methods have been proposed
[2, 16].

Verification latency occurs in most, if not all, quantifi-
cation applications. If the true labels were known imme-
diately or after a small amount of time, then it would be
preferable to wait and count the true labels, instead of
using a classification approach. In principle, most quan-
tification applications should have significant or even
extreme (1] = 00) verification latencies.

Quantification

Although quantification and classification share similari-
ties, their objectives differ. Thus, quantification requires
specific evaluation measures and, consequently, special-
ized machine learning algorithms [11].

Given the labeled set E = {éi,..., €}, where each
event & has an associated label y;, where y; € C =
{c1,¢2,...,ck}, we want to learn a classifier § defined by
the function § : E — C that assigns a label ¢; to each event

é; € E. The true frequency of a class ¢; in E is defined by

N _ |éceB)yi=ci|
Jreag(e) =" —

to estimate freqp(c;) ~ freqg(c;). These elements are suf-
ficient to define the quantification problem [11] as stated
in the Definition 1.

, and the objective of a quantifier is

Definition 1 (Quantification [11]) Let T, be a labeled
training set defined by collection E, an unlabeled test set
T., and a classifier § learned using T,. The quantifica-
tion problem consists in finding the best estimation of class
distribution in T, i.e, V¢; € C, we want to minimize the
difference between the real frequency freqr (ci;) and the

estimated one freqTe (ci).
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Most of the contributions regarding quantification algo-
rithms require the output of a classifier in a preliminary
step. These algorithms are named aggregative ones. On
the other hand, non-aggregative algorithms are the meth-
ods that holistically provide a quantification estimate.

To the best of our knowledge, the literature has not
addressed the problem of data stream quantification with
concept drift and verification latency. We started deal-
ing with this issue by exploiting fundamental methods for
quantification. The next section presents these methods.

Classify and count (CC) [8]

As previously mentioned, a straightforward approach to
quantification is known as classify and count and con-
sists in labeling each instance using a classifier and then
counting the number of examples in each class. In other
words, it estimates a class distribution by counting how
many times each label was the output of a classifier § for
instances in a test set T, given that § was induced with a
training set T,. We formalize this approach in Eq. 1.

) (€ Te8@) = ail
PEE = pr.(é) = — e|'T |'f ’ (1)
e

where ¢; is the class assigned by the classifier and pr, (¢;)
is the fraction of instances in T, assigned to c; by the
classifier.

In [8], the authors argue that this strategy is suboptimal
since it does not take into account other pieces of infor-
mation such as the marginal errors among the classes. For
example, consider two binary classifiers: /1; with FP = 20
and FN = 20, and /&, with FP = 18 and FN = 20 (FP and
FN are the number of false positives and false negatives,
respectively). In this scenario, the classifier /i, is better
than /; in terms of classification. However, for quantifica-
tion, the classifier /; is the best binary quantifier, since the
FP and FN are equal, and the errors cancel out each other,
resulting in a perfect quantifier. Summing up, according
to Gao and Sebastiani [8], an inaccurate classifier can be
an accurate quantifier if its marginal errors are spread as
evenly as possible across FP and FN.

Probabilistic classify and count (PCC) [8]

This approach computes pr,(c;) as an expected fraction
of instances predicted to belong to class c;. Let p (ci|?z,-) be
the probability of €; belonging to the class ¢;, estimated by
the classifier, and E[ ¢] the expected value of ¢; defined in
Eq. 2.

1 >
T > plalé) )

ereTe

1% (@) =E[pr. (4)] =

This method is a variation of CC and, in general, has
shown good performance in comparison with other
approaches [8].
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Adjusted classify and count (ACC) [5]

This method estimates the actual proportion of a given
class by applying a correction based on true positive and
false positive rates (tpr and fpr, respectively). Such rates
are estimated with a validation set or with some cross-
validation technique in 7} (e.g., leave-one-out approach).
Equation 3 presents the calculation of ACC for a given
class ¢;.

PEE () — for,

®3)
tprr, —forr,

P =

ACC accounts for the errors committed by its underly-
ing classifier to adjust an estimation previously obtained
with CC. If the estimations for the errors are perfect, so
will be the estimate for the class proportions. However,
it becomes harder to assure accurate estimates for those
errors when the distribution of the data is non-stationary.
Besides, a minor issue is that this method can produce
negative results or results higher than 1. In these cases, a
common practice is to clip these estimates.

Quantification also demands specific evaluation mea-
sures. We present the most used in the literature in the
next section.

Evaluation metrics

Different measures can assess a quantifier accuracy. Most
of them are based on error and cross-entropy measures
[5]. Quantification also inherits virtually any measures
that are suitable for regression problems. In this paper,
we use an intuitive measure based on absolute error.
Equation 4 defines the absolute error (AE). It corresponds
to the average absolute difference between the class distri-
bution estimation, p(c;), and the actual class distribution,
p(c;) [8].

N 1 .
AE (p.p) = — Z b (i) — p (c)| (4)

€] cieC
The AE ranges between 0 (best) and W
(worst). Equation 5 presents the normalized absolute

error (NAE), normalized version that ranges between 0
and 1 [8].

Yeec|p ) —p e

A y 2 pr—
NAE (p,p) 2 (1 — mingecp ()

(5)

However, according to Gao and Sebastiani [8] both AE and
NAE may suffer from a serious issue when the true class
prevalence is small. For instance, the same errors are pro-
duced for p(c) = 0.01 when predicting p(c) = 0.1 and for
p(c) = 0.41 when predicting p(c) = 0.50. To avoid these
cases, Gao and Sebastiani [8] propose the normalized
relative absolute error (NRAE) as in Eq. 6.
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|p(c)—p(ci)|
ZC:'GC p(ci)
ICl—1+ 1—mingec p(ci)

ming ec p(ei)

NRAE (p,p) = (6)

NRAE is undefined for zero denominators. Therefore, p(c)
and p(c) should be smoothed with Laplace smoothing, as
in Eq. 7.
€+p)
€ICT+ Yopec (@)
1

where p;(c) is the smoothed version of p(c), and € = 3]
is the smoothing factor.

(7)

ps(c) =

Instance selection and semi-supervised learning

The original SQSI approach [12] splits the data stream
into chunks with a non-overlapping sliding window and
processes each chunk in order. Whenever SQSI reports
a concept drift, it induces a new classifier that is trained
with the data in the chunk, requesting true labels for the
all of its instances.

Although SQSI has the merit of requesting labels only
when it detects a concept drift, labels are frequently a
limited and expensive resource. Therefore, in this paper,
we propose the use of instance selection methods to find
a subset of relevant examples in the chunk and request
true labels only for them. We use a semi-supervised learn-
ing approach to expand these labels to the remaining
examples in the chunk.

Instance selection methods are prevalent in the active
learning literature. According to Settles [17], there are
three basic settings:

e Membership query synthesis: creates and labels a set
of artificial instances;

e DPool-based: requests the true labels of a subset of the
unlabeled examples;

e Stream-based selective sampling: the instances
belong to a stream, and the decision to label instances
happens in an online manner.

In our work, since we process data streams in chunks,
we can avail of pool-based approaches. According to
Souza et al. [18], methods that select instances based
on evaluation measures are widespread in the litera-
ture. These methods use approaches such as uncertainty,
expected error reduction, and query committee to esti-
mate the utility of each example. Uncertainty sampling
selects instances that the classifier is least confident
about their class labels. Expected error reduction selects
examples that contribute to reducing the model error.
Query by committee use ensembles to decide which
examples to label, such as instances with the largest vote
discordance.

However, given a non-stationary scenario, where
changes can happen in class distribution as well as in



Maletzke et al. Journal of the Brazilian Computer Society (2018) 24:12

the feature space, the applicability of instance selection
techniques based on evaluation measures may result
in misleading selections. For example, the uncertainty
sampling method selects the instances for which the
model is least confident in its classification. Thus, this
method indirectly assumes the data are stationary. When
non-stationarity is present, an outdated model could
be uncertain for all instances, or be confident in the
wrong ones. For this reason, in our experiments, we only
employ methods that do not use evaluation measures. We
evaluate the following instance selection techniques:

Random sampling

Random sampling consists in selecting a subset of the
instances randomly and with equal probability [19]. This
technique can be considered naive, since all instances are
equiprobable and consequently no intelligent mechanism
decides which ones are more valuable.

Farthest-first traversal

The intuition behind this method is that a representa-
tive labeled set is composed of a set of diverse events.
To achieve such diversity, the farthest-first traversal
algorithm selects k instances that are the farthest from
each other [18].

Cluster-based sampling
Clustering analysis has been used in several areas to
identify groups and observe the relationship between
the groups in an unsupervised manner [18, 19]. There
are plenty of clustering methods, but, in essence,
most of them employ the idea of similarity. Thus, the
clustering objective consists in maximizing the
similarity between the instances in the same group and in
minimizing the similarity between examples from
different groups. Therefore, a pool of events represented
by a cluster structure can be useful to pick out repre-
sentative events. Instance selection based on clustering
algorithms selects the events near to cluster centers and
near to the cluster borders, to compose a diverse set
of events that will have their labels requested. Finding
clusters in a pool of events usually involves a parameter
k that represents the number of clusters, and sometimes
this parameter can be set according to the number of
events that will be labeled. Another strategy consists in
defining a number b of events for which the true labels
will be requested and a number be of border events from
each cluster. Hence, the number of clusters is given by
k = |b/(be + 1)]. Souza et al. [18] uses this last strategy.
These instance selection methods attempt to over-
come the labeling bottleneck by requesting an oracle
to label only 5% of the chunk. However, defining how
many examples to label is not a trivial task. Therefore,
we decided to evaluate a range of values. In fact, we
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are looking for a minimal number of labels that pro-
vide similar results to a full labeled set. However, sets
with too few labeled instances may lead to an underfitted
model, since the learning algorithm does not have enough
instances to learn properly and has to extrapolate regard-
lessly. In any event, to optimize the use of such small
labeled sets, we use semi-supervised methods to infer the
labels of the remaining examples in the chunk.

Semi-supervised learning (SSL) methods are useful for
learning tasks in which the quantity of labeled examples is
so limited that compromises the generalization ability of
the learning algorithm. Zhu and Goldberg [20] present a
comprehensible survey of semi-supervised learning tech-
niques. In our experimental section, we experiment with
self-training, one of the most straightforward SSL meth-
ods available.

Self-training is a wrapper algorithm that iteratively
applies a supervised learning method. This algorithm
induces an initial classification model using the labeled
portion of the data and uses this model to classify the
unlabeled examples. In each iteration, part of the clas-
sified instances are moved to the labeled set. A popular
approach is to move the instances classified with the high-
est confidence. The algorithm tags these instances with
the predicted label. In our implementation, we decided to
move one instance per iteration: the one with the highest
score. The algorithm continues until it labels all examples.
Algorithm 1 details the self-training strategy [18].

Algorithm 1: Self-training

Input: Labeled instances Lg; Unlabeled instances Us;
Supervised machine learning method ml,,
Output: §(Us)
1 begin
repeat
8 < buildClassifier(Ls, ml,,)
S <« SelectMostConfident(s, L)
Us < Us;— S
Ly < LgUS
until L = ¥;
return § (L)
end

O XTI QAU W

According to [20], self-training assumes that its pre-
dictions, when performed with high confidence, tend to
be correct. This assumption has a controversial point
motivated by the fact that early errors made by the clas-
sifier § can be propagated to the entire unlabeled set. For
this reason, we reinforce the importance of the instance
selection methods to choose the most representative
instances to be externally labeled by an oracle.

Reference approaches for data stream
quantification

This section presents two reference approaches to
quantify data streams. Although these approaches make
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assumptions that we consider infeasible in practice, such
as the absence of concept drifts and the instantaneous
availability of all labels along the stream, we use them as
reference methods.

Static

This algorithm ignores the non-stationarity present in
data stream environments. It builds a quantifier with the
first examples from the stream and does not update it
over time. This approach generates a quantification every
w events. Therefore, it requires only a small portion of
labeled data from the beginning of the stream. It is also
very efficient since it builds a quantifier only once. We
consider it as a baseline.

Sliding
In this approach, we regularly update the quantifier every
w events, attempting to track the most recent changes in
the stream. After the quantification of the w events is esti-
mated, their actual labels become available, allowing the
quantifier to be updated. This setting represents a null-
verification latency scenario. We consider this approach
to be our topline reference.

In the next section, we present our proposal, and later
compare it with the baseline and topline strategies.

The original and extended SQSI algorithm
In this section, we present the SQSI algorithm, proposed
by Maletzke et al. [12], as well as the extended version
that incorporates instance selection and semi-supervised
learning.

The SQSI works as follows. As an initial step, it learns
a classifier § from a labeled training set. After this ini-
tialization, the method issues a quantification whenever
a pool achieves w events. To this end, the SQSI gener-
ates classification scores for each event in the pool using
the classifier §. Then, we verify whether these scores and
the ones estimated in the training set (calculated with
cross-validation) come from the same distribution (using
a statistical test), i.e., we sense the presence or absence of
a drift only between the training set scores and the scores
of the pool of recent instances. If the null hypothesis is not
rejected (i.e., both samples come from the same distribu-
tion), we apply the quantification method, and the result
is issued.

However, if the null hypothesis is rejected, we perform a li
near transformation in the recent pool, applying Eq. 8 [15].

Xﬁ? — mean (XJ?“>
sd (x7) (8)

x sd (X;ef) +mean (X;ef>

T (Xﬁ?) _
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where Xj?“ and X;ef are the set of the observed values

for feature f in the recent (active) pool and the reference
(training) set, respectively, and Xj‘fjt is the value of feature
f of the i-th example in X;Ct.

The intuition behind Eq. 8 is straightforward. The con-
cept drift may be due to global linear transformation of the
data. Therefore, SQSI first tries to reframe the attribute
values in each example of the recent set with the mean and
standard deviation of the reference set.

After applying the linear transformation, SQSI gener-
ates new scores for the transformed recent data pool.
Afterward, it applies the statistical test to the new
scores, and if the null hypothesis is rejected once again,
the algorithm requests the labels of the events in the
pool and updates the classifier §. Otherwise, the quan-
tification is performed and the result is issued. The
statistical test used in our algorithm is the Kolmogorov-
Smirnov test with a significance level of 0.001. Such low
significance level is necessary to minimize the number
of false positives due to consecutive reapplications of
the test.

The original version of the SQSI algorithm requests as
many labels as necessary to learn during the stream. In
the extreme case, it can request labels for every single
example. This happens if every single chunk represents
a non-linear transformation of the previous chunk. In
our extension, we propose the introduction of a mech-
anism to request a smaller number of labels when a
change is detected. We hypothesize that the use of an
instance selection mechanism allied to semi-supervised
learning can provide similar results with a smaller label
dependency.

Figure 1 represents our proposed extension, named
SQSI with instance selection (SQSI-IS). Similarly to the
SQSI, our proposal requires an initial step that creates
a quantifier with the first labeled chunk of the stream
(training set). Thus, as result, we have our first quantifier
Q. However, differently from SQSI, the SQSI-IS defines
an instance selection method as well as the rate of the
requested true labels.

In summary, the main difference between the SQSI
and SQSI-IS consists in the use of a mechanism that
combines instance selection and self-training, when the
linear transformation is insufficient to reframe the active
pool, and therefore, true labels need to be requested. This
mechanism is displayed on items 1 and 2 of Fig. 1.

In the aforementioned scheme, we present in
Algorithm 2 our extension to the SQSI algorithm. The
essence of the SQSI algorithm remains and the major
difference between SQSI and SQSI-IS is in lines 15-18,
where SQSI-IS requests a portion of the labels using an
instance selection method and the self-training algorithm
labels the remaining examples.
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Training set (X"®) | Xaet || xeet,
data stream”
Machine Yes Concept drift No [oTTT I P ! D
learning detected? : ____(}9_&1_n_t_|f|_e_r_(_2___“i T m
algorithm KS test
Transform

the pool (Xo¢t)

Quantification
method

Yes Concept drift No

detected?
KS test
Updated | ——— 0
Request labels }—ﬁ Self-training |—-N, Quantifier Q i = O

Fig. 1 Schematic design of the SQSI-IS algorithm

Algorithm 2: SQSI with instance selection and
semi-supervised learning

Input: Initial training set X" o, classifying algorithm
mlulg; data stream E; pool size w; quantification
method gnt 045 instance selection method

IS ethoa
Output: Class prevalence for each pool Qnut

1 begin
2 8 < buildClassifier(X"?, mlyg)
3 Xsrff <« getScores(X"?, mlyy)
4 X%t — ¢
5 for each event é € E do
6 X4t Xty {g)
7 if | X%t| = w then
8 XE < 5(X“et)
9 t < Test KS(XZ, Xact
10 if £ < 0.001 then
11 X%t « transformData(X"%, X“ct)
12 X4t §(xact)
13 t < Test_KS(X.Z, xact)
14 if £ < 0.001 then
15 S; < requestLa-
bels_withInstanceSelection(X%“,
Ismethod)
16 Sy <« X%t _§;
17 XY Self-Training(Sz, Su/»
One-NearestNeighbor)
18 8 < buildClassifier(X"/, ml,;)
19 end
20 end
21 Qut < Qnt U gnt_method (8, X*)
22 X%t )
23 end
24 end
25 end

26 return Qnt

Time complexity analysis

The time complexity of SQSI-IS comprises four factors, as
follows: (1) the complexity of performing the hypothesis
test, (2) the complexity of applying the linear transforma-
tion exhibited in Eq. 8, (3) the complexity of the instance
selection method, and (4) the complexity of training a new
quantification model.

For the analysis, consider w the size of each batch, n
the number of batches in the stream, N the number of
observations # x w, F the number of features, and y
the proportion of batches that had true labels requested
for.

For the first component, our hypothesis test of choice
is the Kolmogorov-Smirnov test. Its computation is linear,
given a list of ordered observations from both samples. As
we need to order the observations and as we apply the test
for each every feature, its time complexity for each batch is
O (Fwlogw) and, for the whole stream, it is O (nFwlog w),
or O (NFlogw).

For the second factor, the transformation exhibited in
Eq. 8 requires only the mean and the standard devia-
tion of both samples, which can be obtained linearly.
Therefore, the time complexity of the transformation
is O(w) for a single batch and O(N) for the whole
stream.

For the last two factors, as both base quantification
model and instance selection technique are parame-
ters, we note their time complexities as (Q(x)) and
(S(x)), respectively. We only perform instance selection
when training and as such, the complexity for train-
ing new model for a given batch is O (Q(w) + S(w)).
However, the objective of SQSI is to lower the num-
ber of times we need to retrain the model. Then, the
time complexity of retraining for the whole stream is

O (yn(Qw) +Sw))).



Maletzke et al. Journal of the Brazilian Computer Society (2018) 24:12

Finally, we can sum up the factors and we end up
with the following time complexity for the whole stream:

O (n (log(w) + ¥ (Qw) + S(w)))).

Experiments
Our experiments involve four real datasets that are
described below:

® Bike [3] contains hourly records of a bicycle-sharing
system with the corresponding weather and seasonal
information between years 2011 and 2012. The goal is
to predict whether there is high or low demand.
Thus, we expect concept drift due to seasonality. It
contains 17,379 instances;

® Mosquitoes has laboratory data with information of
mosquitoes passing through a photosensitive sensor.
The sensor data comprise seven features for each
event: the wingbeat frequency (WBF) and the
frequencies of the first six harmonics. The
temperature varies during the stream, influencing the
insect metabolism and, consequently, changing their
wingbeat frequency [21, 22]. We consider the
temperature as a latent variable for the quantification
and classification tasks. The objective is to distinguish
between events of female Aedes aegypti and Aedes
albopictus mosquitoes from Culex quinquefasciatus
and Anopheles aquasalis. This dataset contains
13,410 instances;

e Insects contains events generated by the same insect
sensor. Differently from the Mosquitoes dataset, the
features are the wingbeat frequency and the 92 first
coefficients of the frequency spectrum obtained with
a 1024-point fast Fourier transform. The object is to
differentiate the Aedes aegypti mosquitoes from the
insects Musca domestica, Culex quinquefasciatus,
Culex tarsalis, and Drosophila melonagaster. It
contains 83,339 instances;

o NOAA [2] is composed of meteorological conditions
registered by the U.S. National Oceanic and
Atmospheric Administration (Bellueve-Nebraska) for
50 years. This dataset contains eight features and
18,159 daily registers;

® Arabic-Digit [23]: A modified version of
Arabic-Digit, described by a fixed number of MFCC
values for the human speech of Arabic digits (among
10). The spoken digit defines the context, and the
task is to predict the sex of the speaker. The dataset
contains 26 features and 14,380 registers;

® QG [24] is a version of the dataset Handwritten [10],
constrained to the handwritten letters g, and g. The
context is defined by the author (among 10), and the
objective is to predict the letter. This dataset is
composed of 63 features and 13,279 registers.
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In our experiments, all the quantification algorithms
for data stream belong to the aggregative class, i.e., they
require the classification of each event as an intermediate
step. For this reason, we perform our experiments using
two well-known classification algorithms that usually
present very competitive results for a large number of
application domains: random forest (RF) and support vec-
tor machines (SVM). We used both with default settings
available in WEKA tool. Therefore, we use both RF and
SVM for all the quantification methods, i.e., Static, Sliding,
SQSI, and SQSI-IS.

To compare our results with [12], we retain the same
experimental setup, i.e., we train an initial classifier with
400 examples, and the pool size has a fixed number of
300 examples. To analyze the impact of instance selec-
tion techniques, we evaluate the influence of different
instance selection techniques in the SQSI-IS algorithm.
We evaluate the following techniques: random sampling,
farthest-first, and sampling based on clustering (k-means).
We vary the portion of selected events from 5 to 95% by
increments of 5%.

Random sampling randomly selects b% instances with
equal probability. Farthest-first selects an initial exam-
ple at random with constant probability. This example is
removed from the pool. The next example is the most dis-
tant one from the first. The process continues, removing
the last chosen example and searching for the most distant
example from the last instance. The process stops when it
reaches b% instances.

For cluster-based sampling, we use the k-means
algorithm. We run the k-means algorithm to find two
clusters (k = |b/(be + 1)]). Thus, we request labels for
the two events nearest to each cluster center and another
eight true labels for the border events. In the experimental
setup, we consider be = 3, motivated by results presented
in [18].

Finally, after the labeling process, using one of the
instance selection methods, we have two subsets of
events. The first one has 5% of labeled events and
the second contains all remaining unlabeled exam-
ples. To avoid the risk of underfitting due to learn-
ing in an excessively small labeled sample, we apply
the self-training algorithm that iteratively labels the
remaining events, using a one-nearest neighbor classifier
[20].

We execute all experiments ten times and report aver-
aged results across the ten runs. We assess our results
with NRAE and compare the methods using the Friedman
test with 95% confidence level and Nemenyi post hoc test.
Our evaluation is not a strictly prequential scheme, which
means the tested examples are used for training only when
a drift is detected. Additionally, for the SQSI-IS algo-
rithm, the tested examples used for training are selected
using an instance selection method. Implementation
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details and datasets are freely available as supplementary
material [25].

Results
In this section, we present the results of the SQSI-IS
regarding the influence of instance selection strategies in
data stream quantification. Our evaluation approach uses
a sliding window of 300 examples. In addition, we train an
initial model with the 400 first examples from the stream.

We evaluated three different instance selection tech-
niques: random, farthest-first, and clustering-based sam-
pling (k-means). Our experiments are an extension of
the results published in Maletzke et al. [12]. Therefore,
we compare the results with the algorithms presented
there, which include the baseline, the topline and the orig-
inal version of the SQSI. We group the results by the
combination of classification algorithm and quantification
method.

Figures 2, 3, and 4 show the mean quantification
errors for the random forest classifier applying distinct
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quantification methods and instance selection techniques
for each dataset. The horizontal axis represents the
percentage of examples labeled by the instance selection
approach.

Figures 2, 3, and 4 show a decreasing error tendency,
as the percentage of true labels increases. This decreasing
tendency is common to several plots. In general, results
with less than 50% labeled examples tend to have a higher
variance than the ones labeled with more than 50% of the
window.

Among the instance selection methods, clustering-
based sampling performs best. Random and farthest-first
techniques change places as second-best depending on
the dataset and counting method. These results corrob-
orate with the results presented in batch classification
problems [17, 18].

SQSI performs well on datasets Bike, Insects, NOAA,
Arabic-Digit, and QG. For these datasets, there is a clear
separation between the topline and baseline quantifiers
and SQSI tends to perform closer to the topline. For

» © Mosquitoes
S @ A
£ o
(0]
c o E3
S &-
[\
S .
2 2]
= o Sa A AL
§ L boles i’!*és/' LN\ Ly ¥t dpss
3 g ] — ]
o o T T T T T T T T T T T T T T T T T T T
5% 15% 25% 35% 45% 55% 65% 75% 85% 95%
% Selected events
[ NOAA
[e] =
= o
(0]
c [}
S S
=
T | Ee sl S B N -
==
S 5
o
O o T T T T T T T T T T T T T T T T T T T
5% 15% 25% 35% 45% 55% 65% 75% 85% 95%
% Selected events
=~ QG
S T A
= o
[0) A
S
c 8 ] TNa-
'g S 4“M‘.\">m
() = ‘*\*
S S
E S s":*_g*-m‘
% ﬁz{‘«ﬁ“,““‘\A
S SRR =
O o T T T T T T T T T T T T T T T T T T T

5% 15% 25% 35% 45% 55% 65% 75% 85% 95%

% Selected events

« o Bike
S 0
£ o
()
c n
S 37
© A
“g 8 - * - ¥,
= o ~—
= - —‘-S -”*.*A’-?s*/— == —\*;;,*\— - A= =
S 9 7___‘!’_.%._.,._._;.__.___, T T 0y T8
o o T T T T T T T T T T T T T T T T T T T
5% 15% 25% 35% 45% 55% 65% 75% 85% 95%
% Selected events
. © Insects
o -
= o
(0]
c o | /*\*w*
o S | *,
= \,
T o *
£ S A r -—— =
= © A—dea_,_ T Sy —_—h e
- 3 - -
g o R b o
o 4
O o T T T T T T T T T T T T T T T T T T T
5% 15% 25% 35% 45% 55% 65% 75% 85% 95%
% Selected events
o~ Arabic-Digit
S o
= o
9] *
5 2 /\\
T *
HYA
£ 24
c ° A #* \
© —_— = T Ty
=R~ M) SF B 5 i B S T T e
o o T T T T T T T T T T T T T T T T T T T
5% 15% 25% 35% 45% 55% 65% 75% 85% 95%
% Selected events
— Sliding - SQSI
— Static

-+ SQSI-1S+K-Means

¥ SQSI-IS+Farthest-First
SQSI-IS+Random

Fig. 2 Mean quantification errors. Normalized relative quantification error for each dataset using the random forest (RF) as a classifier and the classify
and count (CC) quantification method, varying the percentage of true labels requested by each instance selection technique




Maletzke et al. Journal of the Brazilian Computer Society (2018) 24:12

Page 10 of 17

Bike

— ©

o T A

= o

(0]
o

s 21

= A

.8 © ’\* *

= = P —

= 5 | M \ka TN e

© <¥Z§ —A=f 2 .

8 3 F-HA*A*AL“\*_L
c T T T T T T T T T T T T T T T T T 1.1

5% 15% 25% 35% 45% 55% 65% 75% 85% 95%

% Selected events
Insects

0.13 0.18

*
* \.
AN ~%
*\e&/ *

0
e
]
>
1
>
]
>
]
»
[
p
i
> e
v
p{}
i 1
]
1
y
*1\3
’
a)
d*
4]
1

Quantification error
7

0.01

1 T 1 T T T T T 1 T T T T T T T T 1
5% 15% 25% 35% 45% 55% 65% 75% 85% 95%

% Selected events

- © Arabic-Digit

o N A

= o

o) *

c ® | /\

L2 o

§ —,/*{ %

£ 847 \ '\

c o _A___F\* - 3% *q

g . Stalatet) ©F = B3 443 o=, 1ot o TP

> b= S _A-_A=-=--—.--.ﬁ—4.l’.—‘.‘..{'r:{:y_
O =] T T T T T T T T T T T T T T T T T T T

5% 15% 25% 35% 45% 55% 65% 75% 85% 95%

% Selected events

N Mosquitoes
S ©
= o
° &
& 9§ -
= O
3
s 2|
€ ° *  EL
- A A
g 9 | - 7/ ¥, N ‘*\t;l A
O o T T T T 1 T T T T T T T T T I T T I
5% 15% 25% 35% 45% 55% 65% 75% 85% 95%
% Selected events
- © NOAA
S o
s o
()
c 8 |
L s
(0]
O o L i i e e e e e e o e e e et et et s
= g:mwuuuwuwv—wwwﬁuuumv—u-
C
S o
o 4
O o T T T T T T T T T T T T T T T T T T I
5% 15% 25% 35% 45% 55% 65% 75% 85% 95%
% Selected events
o QG
e I
b o A
(0]
N\
c 5 NA
= ‘.’>*~*
(1] §*h*
QO © \‘*:"\*
'-E S | - -*"‘Tx
c ‘]“'&fFAT
R SEpen o
o
O o T T T T T T T T T T T T T T T T T T I

5% 15% 25% 35% 45% 55% 65% 75% 85% 95%

% Selected events

— Sliding

— Static

- SaQsl
-+ SQSI-IS+K-Means

<k SQSI-IS+Farthest-First
SQSI-IS+Random
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Mosquitoes dataset, the performances of the baseline and
topline are quite close to each other. This is an indi-
cation that no concept drifts are present or the occur-
rence of a significant amount of data chunks with a
severely unbalanced class distribution. The unbalanced
class distribution in the data chunks for each dataset will
be discussed next. For the NOAA dataset, the KS test
correctly identifies the lack of concept drifts. In total, KS
flagged zero concept drifts with the RF classifier during
the entire stream. Therefore, SQSI and SQSI-IS variants
perform constantly across the entire stream.

For the Mosquitoes dataset, SQSI performs slightly
worse than the baseline. However, in this case, the KS test
flagged a concept drift in 18% of the pools. We hypoth-
esize that most of these drifts are changes in the class
distribution rather than in the feature space. We note
that the KS statistic is sensitive to changes in both class
and covariate attributes. These class changes are likely
to be due to the circadian rhythm of the insects [6].

Additionally, a severe class distribution variability over
some chunks of the streams has influenced the perfor-
mance of the topline algorithm negatively. When a new
chunk arrives, the topline algorithm makes a quantifica-
tion and then receives the true labels for updating the
quantification model. However, when the most recent
chunk containing no drifts but a severely unbalanced class
distribution, the topline efficiency goes down. Summing
up, scenarios with no concept drift and with a severe class
imbalance within the chunks are more promising to the
baseline than the topline, because the latter will carry little
information regarding one of the classes over to the fol-
lowing chunk of the data, while the former will keep its
original, and possibly well balanced amount of informa-
tion for each class. This rationale also applies to the SQSI
and SQSI-IS algorithms, but for this a high drift detection
rate is mandatory. Figure 5 shows histograms regarding
the frequency of data chunks over different positive class
distributions for each dataset.
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Fig. 4 Mean quantification errors. Normalized relative quantification error for each dataset using the random forest (RF) as a classifier and the
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These histograms pointed out that for Mosquitoes
and Insects datasets there is a large quantity of data
chunks with a severely unbalanced class distribution along
the stream. Unsurprisingly, algorithms that updated the
model more often were more adversely affected. This is
more prominent when there is only a small number of
concept drifts (specifically in the feature space).

Another issue is that the changes in the class priors are
causing the quantification method to require more labels
than necessary. In particular, SQSI retrains the classifier
with different class distributions. In principle, observing
the quantification errors, this approach of tracking the
most recent class distribution did not work well. Possi-
bly because the initial classifier was trained on a larger
training set and, therefore, had a better representation of
the classes.

These results indicate that a possible path for future
work is the development of a statistical test that is insen-
sitive to changes in the class priors.

Regarding the quantification methods PCC performs
slightly better than CC, and CC better than ACC. ACC
relies on classifier error estimates to improve the quantifi-
cation output. However, our experimental setup imposes
two restrictions on ACC. The first one is that we train on a
small samples and, therefore, it is more difficult to obtain
reliable estimates. The second one is that, in the datasets
with concept drifts, those estimates tend to become less
reliable with time.

Summarizing the Figs. 2, 3, and 4, we show in Table 1
the mean NRAE about all datasets for each instance selec-
tion technique using different quantifiers applying RF as
base classifier. Although the results showed lower errors
when the k-means was used in conjunction with the PCC
quantifier, the errors for all setups are quite similar.

To analyze these results in depth, we performed the
Friedman test with Nemenyi post hoc analysis to verify
whether the differences among instance selection tech-
niques have statistical difference. For this, we applied a
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comparison among K-Means, farther-first, and random
techniques considering all range of positive class distri-
butions, but separately for each quantification method.
Table 2 presents the results, where p value > 0.05 is
represented by (us), p value < 0.05 by (x), p value < 0.01
by (*x), and p value < 0.001 by ( * ).

As expected, the statistical analysis shows that the
clustering strategy (using k-means algorithm) outper-
forms, with statistically significance, the other strategies
with the quantifiers PCC and ACC. Regarding the CC
quantifier, the k-means strategy was statistically superior
to the farthest-first. However, we did not find statistical
differences between cluster-based sampling and random
strategy with the CC quantifier.

Figures 6, 7, and 8 present the results for the SVM
classifier.

The results for the SVM classifier corroborate with
the results for random forrest. Once again, CC and
PCC produced the best quantifiers and ACC presented

Table 1 Mean quantification error (NRAE) for each instance
selection techniques using different quantifiers induced by RF
classifier

cC pCC ACC Mean
k-means 0.0758 0.0670 0.0846 0.0758
Farthest-first 0.1053 0.0952 0.1102 0.1036
Random 0.1011 0.0867 0.0966 0.0948

For the sake of visualization, the best quantification errors are shown in italic

slightly worse results. Once again, the fopline has pre-
sented a bad performance for the Mosquitoes dataset
that is affected by unbalanced data chunks as shown in
Fig. 5.

Table 3 is the analogous of Table 1 for SVM, instead
of RE. Again, the clustering strategy has presented better
results on average, except for the CC quantifier. In this
case, farthest-first outperforms k-means.

This fact is even more evident by looking the
Table 4. The statistical analysis shows that the instance
selection based on clustering (using k-means) out-
performs the others strategies, except for the CC
quantifier.

In fact, the cluster-based sampling produces results with
a lower variability compared to random and the farthest-
first strategies. Furthermore, cluster-based sampling
frequently produces results similar to (or better than) the
original SQSI using less than 50% of the true labels. Sum-
ming up, considering our datasets and the experimental

Table 2 Statistical analysis
SQSHHS+k-means
CcC PCC ACC

SQSI-IS+Farthest—first
CC PCC ACC

SQSIHISH+Farthest-first s s % %% % *x% - - —

SQSI-IS+Random ns * * ok k ns ns ns

Results for Friedman test and Nemenyi post hoc test between the active learning
techniques using RF classifier in each quantifier method
ns not significant
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method, varying the percentage of true labels requested in each active learning technique

setup, we point out the cluster-based sampling as the most
promising instance selection technique among the evalu-
ated ones. Indeed, instance selection methods produced
equivalent or even better results using only a portion
of the true labels. This remark is valid for both base
classifiers.

Additionally, we note that our extension achieves sim-
ilar results to SQSI typically requiring 50% or less
labeled examples. Based on this observation, we per-
form a statistical analysis between SQSI and SQSI-
IS allowing that only 50% of labels can be requested
when a drift is detected for each instance selection
technique. Table 5 summarizes this comparison, show-
ing the NRAE of the SQSI for each quantifier at the
table header and the NRAE of the SQSI-IS with the
p value for each instance selection technique in the
rOWS.

The SQSI NRAE for all datasets using CC, PCC, and
ACC quantifiers generated using a RF classifier were

0.0648, 0.0546, and 0.0599, respectively. Although the
SQSI-IS NRAE values using different instance selection
techniques are have been slightly greater than the SQSI
errors, there is no statistical difference.

In addition, when the quantifiers were induced using
the SVM classifier, the differences between SQSI and
SQSI-IS were greater. However, a statistical differ-
ence was not observed among all variations of SQSI-
IS for all instance selection techniques. Adding a
large number of datasets, the similarity between the
SQSI and SQSI will be more evident. In general, our
results suggest that achieving a confident quantifica-
tion rate in scenarios with label scarcity is possi-
ble, especially when instance selection techniques are
used.

Finally, results summarized in Table 5 are a response
to our initial hypothesis showing that it is possible to
require fewer labels when a drift is detected maintaining
the performance.




Maletzke et al. Journal of the Brazilian Computer Society (2018) 24:12

Page 14 of 17

«  © Bike « © Mosquitoes
S I A S I A
= ©° = o
() () A
=S c =
g ° § &4
© S
S 2 */\ A 2 &
= o = oS
C *—*\* w‘\,q_ c \
g S === e EY S Z{*. i 3 «‘.g‘ - g 3 = = =isia - e
O o B I I T T T T T T T T T T T T I | O o B T T T T T T T T T T T T T T T T T T I
5% 15% 25% 35% 45% 55% 65% 75% 85% 95% 5% 15% 25% 35% 45% 55% 65% 75% 85% 95%
% Selected events % Selected events
- Insects - o NOAA
] N o S A
= o = o
() o ()
c - c 5
S ¢ / \ / \ S 27 *
= =
N\,
8 x| X 8 . A"
:‘é S A’A Q‘i—u\%A :E' S SE=tuy *-* *-*\!"f *\
g - e e e e e e e e e - === Sa-¥og-k -*“-*— g Q p===- - :-_A\_"_“_‘: }A‘A-L/ \;JJJQ_
O g B T T T T T T T T T T T T T T T T T T T O o T T T T T T T T T T T T T T T T T T T
5% 15% 25% 35% 45% 55% 65% 75% 85% 95% 5% 15% 25% 35% 45% 55% 65% 75% 85% 95%
% Selected events % Selected events
o~ Arabic-Digit “ QG
S o A S <
£ o £ o
(0] %* (0]
c = | e o5 R
2 g S
8 % S 40N
S g / S o T
E o ¥ E o= SE¥oag
= 3 ¥ g~ = o S¥=gca
= LIS 1) [ c =4
< o BRY TV Y vy i = ] iy T
S 8 k=== T eSS —‘Q‘-""““"-f—hf—u-u- S § === === == === == = = e =
O o I I T T T T T T T T T T T T T T I I O o T T T T T T T T T T T T T T T T T T |
5% 15% 25% 35% 45% 55% 65% 75% 85% 95% 5% 15% 25% 35% 45% 55% 65% 75% 85% 95%
% Selected events % Selected events
— Sliding - SQsl ¥ SQSI-IS+Farthest-First
— Static -+ SQSI-IS+K-Means SQSI-IS+Random

Fig. 7 Mean quantification errors. Normalized relative quantification error for each dataset using the SVM as a classifier and the PCC quantification
method, varying the percentage of true labels requested in each active learning technique

Limitations

Our experimental setup has some limitations that are
worth mentioning. The first limitation is that we only
address binary quantification problems. We should note
that although this limitation is present in our current
setup, it is not a limitation to our proposal: SQSI-IS
does not particularly rely on the underlying quantifica-
tion problem being binary. Additionally, this limitation
is shared with the majority of the quantification litera-
ture, as the most thought-through and best performing
quantification techniques are designed exclusively for this
setting.

A second limitation is that we simplified the experi-
ments by analyzing consecutive batches of data, instead
of providing a quantification for the last w instances after
every single instance is observed. As w is a small number
compared with the size of the stream, this simplification
should not significantly alter any performance measure-
ment. Yet, this limitation can be withdrawn by using the
Incremental Kolmogorov-Smirnov [15].

A third limitation is that for every drift detected that
could not be successfully identified as a linear transfor-
mation of the data, we still have to collect true labels and
retrain the model. Our proposals aim at decreasing the
number of true labels that are requested, but we reckon
that we could be able to avoid requesting any true labels at
all in more situations than we do. For instance, we know
for sure that in some of our test datasets, as Arabic-Digit,
concepts are recurrent. A memory mechanism could be
inserted in order to avoid requesting labels for concepts
that were learned in the past.

The fourth noteworthy limitation is that, as we feed
the Kolmogorov-Smirnov test with the scores produced
by the classifier, i.e, its confidence on each individual
instance being positive, the test ends up being sensitive to
changes in the proportion of the classes. This is counter-
productive since, while changes in the prior distributions
can negatively affect classifiers, this type of change with-
out changes in the feature space should not affect the
performance of quantifiers. Therefore, raising drift flags
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Fig. 8 Mean quantification errors. Normalized relative quantification error for each dataset using the SVM as a classifier and the ACC quantification
method, varying the percentage of true labels requested in each active learning technique

and requesting an updated model would be unnecessary
for our quantification objective. For future work, we aim
at replacing either what is used to feed the KS test or the
test itself.

Conclusions
In this paper, we presented an extension of the SQSI
algorithm that quantifies stream data using fewer true

Table 3 Mean quantification error (NRAE) for each instance
selection techniques using different quantifiers induced by SVM
classifier

CcC pCC ACC Mean
k-means 0.1059 0.0758 0.0853 0.0890
Farthest-first 0.1000 0.0907 0.1164 0.1023
Random 0.1060 0.0953 0.0967 0.0993

For the sake of visualization, the best quantification errors are shown in italic

labels than the original version of the SQSI. Indeed,
in most datasets, less than 50% of true labels were
sufficient to maintain or even outperform the original
results.

We showed that instance selection techniques, used
in conjunction with the self-training algorithm, can be
an useful tool to tackle quantification problems on data
stream scenarios where the labels are scarce.

Table 4 Statistical analysis
SQSHS+k-means

SQSI-IS+Farthest-first

CcC PCC ACC CC PCC ACC
SQSHS+Farthest-first sk % k%% k%xx  — — -
SQSHHS+Random * kkk  kkk NS ns ns

Results for Friedman test and Nemenyi post hoc test between the active learning
techniques using SVM classifier in each quantifier method
ns not significant
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SQSI with RF SQSI with SVM
CC (NRAE = 0.0648) PCC (NRAE = 0.0546) ACC (NRAE = 0.0599) CC (NRAE = 0.0574) PCC (NRAE = 0.0392) ACC (NRAE = 0.0504)
NRAE p value NRAE p value NRAE p value NRAE p value NRAE p value NRAE p value
SQSI-IS+k-means  0.0758 ns 0.0670 ns 0.0846 ns 0.1059 ns 0.0758 ns 0.0853 ns
SQSI-IS+Farthest- 0.1053 ns 0.0952 ns 0.1102 ns 0.1000 ns 0.0907 ns 0.1165 ns
first
SQSI-IS+Random  0.1011 ns 0.0867 ns 0.0966 ns 0.1060 ns 0.0953 ns 0.0967 ns

Mean error and results for Friedman test between the SQSI and SQSHIS using different instance selection techniques for each quantification method

ns not significant

We plan to investigate, as future work, different man-
ners to look for events in each pool when true labels
are required, for instance, favoring the selection of recent
events in the pool, rather than old ones. Besides, other
aspects that, for brevity, were limited in our experiments,
such as the pool size and the training set size, will be
explored and deeply analyzed in forthcoming studies.
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