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Abstract

In most practical multimedia applications, processes are used to manipulate the image content. These processes
include compression, transmission, or restoration techniques, which often create distortions that may be visible to
human subjects. The design of algorithms that can estimate the visual similarity between a distorted image and its
non-distorted version, as perceived by a human viewer, can lead to significant improvements in these processes.
Therefore, over the last decades, researchers have been developing quality metrics (i.e., algorithms) that estimate the
quality of images inmultimedia applications. Thesemetrics canmake use of either the full pristine content (full-reference
metrics) or only of the distorted image (referenceless metric). This paper introduces a novel referenceless image
quality assessment (RIQA) metric, which provides significant improvements when compared to other state-of-the-art
methods. The proposed method combines statistics of the opposite color local variance pattern (OC-LVP) descriptor
with statistics of the opposite color local salient pattern (OC-LSP) descriptor. Both OC-LVP and OC-LSP descriptors,
which are proposed in this paper, are extensions of the opposite color local binary pattern (OC-LBP) operator. Statistics
of these operators generate features that are mapped into subjective quality scores using a machine-learning
approach. Specifically, to fit a predictive model, features are used as input to a gradient boosting machine (GBM).
Results show that the proposed method is robust and accurate, outperforming other state-of-the-art RIQA methods.

Keywords: Color-texture analysis, Gradient boosting machine, Local variance patterns, Local salient patterns,
Referenceless image quality assessment, Regression, Visual attention

Background
The rapid growth of current multimedia industry, and
the consequent increase in content quality requirements,
have prompted the interest in visual quality assessment
methodologies [1]. Because most multimedia applications
are designed for human observers, visual perception has
to be considered when measuring visual quality [2]. Psy-
chophysical experiments (or subjective quality assessment
methods) performed with human subjects are consid-
ered the most accurate methods to assess visual qual-
ity [3]. However, these subjective methods are costly,
time-consuming, and, for this reason, not adequate for
real-time multimedia applications.
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Objective quality assessment metrics predict visual
quality employing mathematical methods instead of
human subjects. For instance, mean squared deviation
(MSD) and peak-to-noise ratio (PSNR) are mathematical
methods that can be used to measure the similarity of
visual signals. However, MSD and PSNR scores often do
not correlate well with the image quality as perceive by
human observers (i.e., subjective scores) [4]. It is worth
mentioning that, for an objectivemetric to be used inmul-
timedia applications, its estimates must be well correlated
with quality scores available in publicly available quality
databases, which use standardized experimental proce-
dures to measure the quality of a comprehensive series of
visual signals.
Metrics can be classified according to the quantity of

reference information (pristine content) required by the
method. While full-reference (FR) metrics require the
original content, reduced-reference (RR) metrics demand
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only parts of original information. Since the reference
(or even partial reference information) is not available in
many multimedia applications, there is a need for ref-
erenceless metrics that do not require any information
about the reference image.
The development of referenceless image quality assess-

ment (RIQA) methods remains a challenging problem
[2, 5]. A popular approach consists of estimating image
quality using distortion-specific (DS) methods that mea-
sure the intensity of the most relevant image distortions.
Among the state-of-the-art DS methods, we can cite the
papers of Fang et al. [6], Bahrami and Kot [7], Golestaneh
and Chandler [8], and Li et al. [9–11]. These methods
make assumptions about the type of distortion present in
the signal and, as a consequence, have limited applications
in more diverse multimedia scenarios.
Non-distortion-specific (NDS) methods, which do not

demand a prior knowledge about the type of distortions in
the signal, are more suitable for diverse multimedia sce-
narios. In this case, instead of making assumptions about
the main characteristics of specific distortions, the meth-
ods make assumptions about the image characteristics.
For instance, to find the relationship between gradient
information and image quality, Liu et al. [12] and Li
et al. [13] make assumptions about the image structure
of reference images in the gradient domain. Some meth-
ods compare the statistics of impaired and non-impaired
(natural) images using a “natural scene statistic” (NSS)
approach [14, 15].
In addition to the aforementioned approaches, IQA

methods can be classified as feature-based or human
visual system (HVS)-based approaches. Feature-based
approaches extract and analyze features from image sig-
nals to estimate quality. Usually, these approaches require
three steps. In the first step, descriptive features are
extracted. Then, the extracted features are pooled to pro-
duce a quality-aware feature vector. Finally, a model maps
the pooled data into a numerical value that represents the
quality score of the image under test. One example of a
feature-basedmetric is the work ofMittal et al. [16], which
is a spatial-domain method based on the NSS. Saad et al.
[14, 17] proposed another feature-based NSS method that
operates in the discrete cosine transform (DCT) domain.
Finally, Liu et al. [18] proposed a feature-based method
that is based on spatial and spectral image entropies.More
recently, some works proposed feature extraction used
texture information to estimate image quality [19–27].
Instead of extracting basic features from images, HVS-

based approaches aim to mimic the HVS behavior. Hith-
erto, various HVS properties have been used in quality
metrics, including structural information [28, 29] and
error and brightness sensitivities [30, 31]. The acclaimed
structural similarity index (SSIM) [32] is based on the
assumption that HVS is more sensitive to the structural

information of the visual content and, therefore, a struc-
tural similarity measure can provide a good estimate of
the perceived image quality. The recent free energy the-
ory revealed that the HVS strives to comprehend the
input visual signal by reducing the undetermined por-
tions, which affects the perception of quality [33]. Zhang
et al. [34] proposed a Riesz transform-based feature sim-
ilarity index (RFSIM) that characterizes local structures
of images and uses a Canny edge detector to gener-
ate a pooling mask. More recently, HVS-based methods
employing convolutional neural networks (CNN) have
been proposed [35–37]. These CNN-based methods are
established on the comparison between the hierarchy of
the human visual areas and the layers of a CNN [38, 39].
In recent years, HVS-based image quality approaches

that incorporate visual saliency models (VSM) have been
a trend [40–43]. Image quality metrics and VSM are
inherently correlated because both of them take into
account how the HVS perceives the visual content (i.e.,
how humans perceive suprathreshold distortions) [42].
Since VSM provide a measurement of the region’s impor-
tance, they can be successfully used for weight distor-
tions in image quality algorithms. Several researchers
have studied how the saliency information can be incor-
porated into visual quality metrics to enhance their
performance [41, 44–47]. However, most VSM-based
quality metrics are FR approaches. Among the exist-
ing VSM-based RIQA methods, most are DS methods
that cannot be used as general-purpose RIQA methods
(GP-RIQA).
Additionally, most of current GP-IQA methods have no

good prediction accuracy for color and contrast-distorted
images. For instance, Ortiz-Jaramill et al. [48] demon-
strated that current color difference measures (i.e., FR-
IQA methods that compute color differences between
processed and reference images) present little correla-
tion with subjective quality scores. Also, even though
some DS-IQA methods are able to predict the quality
of contrast-distorted images [49], most GP-IQA methods
have a poor prediction performance. This low perfor-
mance leads to authors often omitting the results for these
types of image distortions [18, 20, 23, 50].
In this paper, we introduce a NDS-GP-RIQA method

based on machine learning (ML) that tackles these lim-
itations by taking into account how impairments affect
salient color-texture and energy information. The intro-
duced method is based on the statistics of two new
proposed descriptors: the opponent color local vari-
ance pattern (OC-LVP) and the opposite-color local
salient pattern (OC-LSP). These proposed descriptors are
extensions of the opponent-color local binary pattern
(OC-LBP) [51] that incorporate both feature-based and
HVS-based approaches. More specifically, the OC-LSP
extends the OC-LBP by encoding both spatial, color, and
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saliency information using a VSM to weight the OC-LBP
statistics. The OC-LVP descriptor uses concepts intro-
duced by the local variant patterns (LVP) [52] to modify
the OC-LBP and measure the color-texture energy. The
method uses the statistics of OC-LVP and OC-LSP as
input of a gradient boosting machine (GBM) [53, 54] that
learns the predictive quality model via regression. When
compared to previous work [52], in this work, we use OC-
LSP and OC-LVP operators, instead of the simpler LVP
operator. The metric design of the metric was also modi-
fied to use a GBM, instead of the random forest regression
algorithm.
The rest of this paper is divided as follows. In the

“A brief review of local binary patterns” section, the basis
of texture analysis is revised. In the “Opponent color local
binary pattern” section, the base color-texture descriptor is
summarized. In the “Opponent color local salient pattern”
and “Opposite color local variance pattern” sections, the
proposed descriptors are detailed. In the “Feature extrac-
tion” and “Gradient boosting machine for regression”
sections, we describe how to use the proposed descriptors
to predict image quality without references. An exten-
sive analysis of the results is presented in the “Results
and discussion” section. Finally, the “Conclusions” section
concludes this paper.

Methods
In this section, we review the basic texture operator
local binary pattern (LBP) and its improved color-texture
extension, the opposite color local binary patterns (OC-
LBP). Then, we describe the proposed quality-aware
descriptor, named the color local salient patterns (OC-
LSP) and the color local variance patterns (OC-LVP).
Finally, this section finishes with the proposed quality
assessment method based on these operators.

A brief review of local binary patterns
Local binary pattern (LBP) is indubitably one of the most
effective texture descriptors available for texture analy-
sis of digital images. It was first proposed by Ojala et al.
[55] as a specific case of the texture spectrum model [56].
Being I ∈ R

m×n the image whose texture we want to
describe, the ordinary LBP takes the form:

LBPR,P(Ic) =
P−1∑

p=0
f
(
Ip, Ic, p

)
, (1)

where

f
(
Ip, Ic, p

) = S
(
Ip − Ic

) · 2p (2)

and

S(t) =
{
1, if t ≥ 0,
0, otherwise. (3)

In Eq. 1, Ic = I(x, y) is an arbitrary central pixel at the
position (x, y) and Ip = I(xp, yp) is a neighboring pixel
surrounding Ic, where:

xp = x + R cos
(
2π · p

P

)
,

and

yp = y − R sin
(
2π · p

P

)
.

In this case, P is the number of neighboring pixels sam-
pled from a distance of R from Ic to Ip. Figure 1 illustrates
examples of symmetric samplings for different neighbor-
ing points (P) and radius (R) values.
Figure 2 exemplifies the steps for applying the LBP oper-

ator on a single pixel (Ic = 35), located in the center
of a 3 × 3 image block, as shown in the bottom-left of
this figure. The numbers in the yellow squares of the
block represent the order in which the operator is com-
puted (counter-clockwise direction starting from 0). In
this figure, we use an unitary neighborhood radius (R = 1)
and eight neighboring pixels (P = 8). After calculating
S(t) (see Eq. 3) for each neighboring pixel Ip, we obtain
a binary output for each Ip (0 ≤ p ≤ 7), as illustrated
in the block in the upper-left position of Fig. 2. In this
block, black circles correspond to “0” and white circles
to “1”. These binary outputs are stored in a binary for-
mat, according to their position (yellow squares). Then,
the resulting binary number is converted to the decimal
format. For a complete image, we use the LBP operator to
obtain a decimal number for each pixel of the image, by
making Ic equal the current pixel.
When an image is rotated, Ip values move along the

perimeter of the circumference (around Ic), generating a

Fig. 1 Circularly symmetric P neighbors extracted from a distance R
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Fig. 2 Pattern extraction process for a given pixel using LBP and LVP operators with R = 1, P = 8, Ic = 35, and Ip = {71, 32, 91, 103, 21, 10, 34, 13}

circular shift in the binary number generated. As a con-
sequence, a different decimal LBPR,P(Ic) value is obtained.
To remove this effect, we assign a unique identifier to each
rotation, generating a rotation invariant LBP:

LBPriR,P(Ic) = min
{
ROTR

(
LBPR,P(Ic), k

)}
, (4)

where k = {0, 1, 2, · · · ,P− 1} and ROTR(x, k) is the circu-
lar bit-wise right shift operator that shifts the t-uple x by
moving k positions.
Due to the primitive quantization of the angular space

[57, 58], LBPR,P and LBPriR,P operators do not always pro-
vide a good discrimination [58]. To improve the discrim-
inability of the LBP operator, Ojala et al. [55] proposed
an improved operator that captures fundamental pattern
properties. These fundamental patterns are called “uni-
form” and computed as follows:

LBPuR,P(Ic) =
⎧
⎨

⎩

P−1∑
p=0

f
(
Ip, Ic, p

)
U

(
LBPriR,P

) ≤ 2,

P + 1 otherwise,
(5)

where U(LBPP,R) is the uniform pattern given by:

U(LBPP,R) = � (IP−1, I0) +
P−1∑

p=1
�

(
Ip, Ip−1

)
, (6)

and

�
(
Ix, Iy

) = |S(Ix − Ic) − S(Iy − Ic)|. (7)

In addition to a better discriminability, the uniform LBP
operator (Eq. 5) has the advantage of generating fewer dis-
tinct LBP labels. While the “nonuniform” operator (Eq. 1)
produces 2P different output values, the uniform opera-
tor produces only P + 2 distinct output values, and the
“rotation invariant” operator produces P(P−1)+2 points.

Opponent color local binary pattern
The LBP operator is designed to characterize texture of
grayscale images. Although this restriction may not affect

many applications, it may be unfavorable for image qual-
ity assessment purposes because LBP is not sensitive to
some types of impairments, such as contrast distortions
or chromatic aberrations. As pointed out by Maenpaa
et al. [51], texture and color have interdependent roles.
When luminance-based texture descriptors (e.g., LBP)
achieve good results, color descriptors can also obtain
good results. However, when color descriptors are unsuc-
cessful, luminance texture descriptors can still present a
good performance. For this reason, operators that inte-
grate both color and texture information tend to be more
successful to predict the quality of images with a wider
range of distortions.
In order to integrate color and texture into a single

descriptor, Maenpaa et al. [51] introduced the opponent
color local binary pattern (OC-LBP). TheOC-LBP extends
the LBP operator by incorporating color information,
while keeping texture information. This color-texture
descriptor is an extension of the operator proposed by Jain
and Healey [59], which replaces the Gabor’s filtering with
a variant of the LBP-inspired operator.
The OC-LBP descriptor operates on intra-channel and

inter-channel color dimensions. In the intra-channel oper-
ation, the LBP operator is applied individually, on each
color channel, instead of being applied only on a sin-
gle luminance channel. This approach is called “intra-
channel” because the central pixel and the corresponding
sampled neighboring points belong to the same color
channels.
In the “inter-channel” operation, the central pixel

belongs to a color channel and its corresponding neigh-
boring points are necessarily sampled from another color
channel. Therefore, for a three-channel color space, such
as HSV, there are six possible combinations of chan-
nels: OC-LBPHS, OC-LBPSH , OC-LBPHV , OC-LBPVH ,
OC-LBPSV , and OC-LBPVS.
Figure 3 illustrates the sampling approach of OC-LBP

when the central pixel is sampled in the R channel of a
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Fig. 3 Opposite color channel sampling scheme

RGB image. From this figure, we can notice that two com-
binations are possible: OC-LBPRG (left) and OC-LBPRB
(right). In OC-LBPRG, the gray circle in the red channel
is the central point, while the green circles in the green
channel correspond to “0” sampling points and the white
circles correspond to “1” sampling points, respectively.
Similarly, in OC-LBPRB, the blue circles correspond to “0”
sampling points and the white circles correspond to “1”
sampling points, respectively.
After computing the OC-LBP operator for all pixels of a

given image, a total of six texture maps are generated. As
depicted in Fig. 4, three intra-maps and three inter-maps
are generated for each color space. Although all possi-
ble combinations of the opposite color channels allow six
distinct maps, we observed that the symmetric opposing
pairs are very redundant (e.g., OC-LBPRG is equivalent
to OC-LBPGR, OC-LBPHS is equivalent to OC-LBPSH ,
and so on). Due to this redundancy, only the three more
descriptive inter-maps are used.

Opponent color local salient pattern
Although OC-LBP increases the discriminability of
LBP by incorporating color-texture information, it does
not necessarily mimics the human visual system (HVS)
behavior. To generate general-purpose descriptors that
incorporates visual attention, we modify the OC-LBP
by incorporating the VS information. The modified
descriptor is named opponent color local salient pattern
(OC-LSP). Basically, we compute the OC-LBP for all
pixels of an image, obtaining the intra- and inter-channel
maps of the image (see Fig. 4). In other words, being L ∈
{LBPX , LBPY , LBPZ , OC-LBPXY , OC-LBPXZ , OC-LBPYZ},
where XYZ represents any color space (i.e., HSV, CIE
Lab, RGB, and YCbCr) normalized in the range [0, 255].
Each label L(x, y) corresponds to the local texture asso-
ciated to the pixel I(x, y). We use a VSM to generate
a saliency map W , where each pixel W(x, y) corre-
sponds to the saliency of pixel I(x, y). Figure 5a and h
depicts an image and its corresponding saliency map,
respectively.

The saliency map W is used to weight each pixel of the
map L. This weighting process is used to generate a fea-
ture vector based on the histogram of L weighted by W .
The histogram is given by the following expression:

H = {h0, h1, h2, · · · , hP+1} , (8)

where hφ is the count of the label L(x, y) weighted by W ,
as given by:

hφ =
∑

x,y
W(x, y) · δ(L(x, y),φ), (9)

where

δ(v,u) =
{
1, if v = u,
0, otherwise. (10)

The number of bins ofH is the number of distinct labels
of L. Therefore, we can remap each L(x, y) to its weighted
form, generating the map S(x, y) that is the local salient
pattern (LSP) map. Figure 5 depicts S .

Opposite color local variance pattern
The use of the LBP operator (or of its variants) in IQA
is based on the assumption that visual distortions affect
image textures and their statistics. Particularly, images
with similar distortions, at similar strengths, have tex-
tures that share analogous statistical properties. Recently,
Freitas et al. [52] used a second assumption, which con-
siders the changes in the spread of the local texture energy
that are commonly observed in impaired images. For
instance, a Gaussian blur impairment decreases the local
texture energy, while a white noise impairment increases
it. Therefore, we can use techniques that measure texture
energy in RIQA algorithms.
To take into consideration the spread of the texture

local energy, Freitas et al. proposed the local variance pat-
tern (LVP) descriptor [52] for quality assessment tasks.
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Fig. 4 Original image and its output maps, computed using the OC-LBP descriptor computed in HSV (b–g), Lab (h–m), RGB (n–s), and YCbCr (t–y)
color spaces

The LVP descriptor computes the local texture-energy
according to the following formula:

LVPuR,P(Ic) =
⌊
P · VR,P(Ic) − [

LBPuR,P(Ic)
]2

P2

⌉
, (11)

where:

VR,P(Ic) =
P−1∑

p=0

[
f (tp, tc, p)

]2 , (12)

and �·� represents the operation of rounding to the nearest
integer.
Figure 2 depicts the steps to extract the texture-energy

information using the LVP operator. Similar to LBP oper-
ator, a LVP map is generated after computing the LVP
descriptor for all pixels of a given image. A compari-
son between LVP and LBP maps is depicted in Fig. 6.
In this figure, the first column corresponds to the refer-
ence (undistorted) image, while the three other columns
correspond to images impaired with blur, white noise,
and JPEG-2K distortions. The first row shows the col-
ored images, while the second and third rows show the
corresponding LBP and LVP maps, respectively. Notice

that textures are affected differently by different impair-
ments. For instance, the LBP maps (second line of
Fig. 6) corresponding to noise, blurry, and JPEG-2K com-
pressed images have clear differences among themselves.
However, the LBP map corresponding to the noise and
reference images are similar. This similarity affects the
discrimination between unimpaired and impaired images,
affecting the quality prediction. On the other hand, the
LVP channels (third line of Fig. 6) clearly show the differ-
ences between impaired and reference images.
Although the LVP descriptor presents higher discrim-

inability (when compared with LBP), it does not incor-
porate color information. To take advantage of the LVP
properties and include color information, we combine the
OC-LBP and LVP descriptors to produce a new descrip-
tor: the opposite color local variant pattern (OC-LVP).
OC-LVP uses a sampling strategy that is similar to the
strategy used by the OC-LBP descriptor (see Fig. 3), with
a difference that it replaces Eq. 5 by Eq. 11. Similar to OC-
LBP, OC-LVP generates six maps. As depicted in Fig. 7,
three LVP intra-channel maps are generated by comput-
ing LVP independently for each color channel. Likewise,
three OC-LVP inter-channels are computed by sampling
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Fig. 5 Original image (a), its saliency (h), and its output maps, computed using the OC-LSP descriptor computed in HSV (b–g), Lab (i–n), RGB (o–t),
and YCbCr (u– z) color spaces

the central point in a channel and the neighboring points
in another channel (across channels).

Feature extraction
The proposed RIQA method uses a supervised ML
approach. The set of features is extracted, as depicted
in Fig. 8. The first step of the feature extraction process
consists of splitting the color channels. Using the indi-
vidual color channels, we compute the OC-LSP maps. In
Fig. 5, we observe that, independent of the color space,

the intra-channel maps are very similar. This similarity
and the invariance between color spaces indicate that
intra-channel statistics do not depend on the chosen color
space.
The inter-channel maps, on the other hand, are not sim-

ilar to each other. Moreover, they show considerable dif-
ferences for the different color spaces. This indicates that
different OC-LSP are able to extract different information,
depending of the color space. Therefore, based on these
observations, we use Eq. 8 to compute the histograms

Fig. 6 Reference image, its impaired versions, and their respective LBP and LVP maps
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Fig. 7 Original image and its output maps, computed using the OC-LVP descriptor computed in HSV (b–g), Lab (h–m), RGB (n–s), and YCbCr (t–y)
color spaces

H of LSPH , OC-LSPHS, OC-LSPHV , OC-LSPSV , OC-
LSPLa, OC-LSPLb, OC-LSPab, OC-LSPRG, OC-LSPRB,
OC-LSPGB, OC-LSPYCb, OC-LSPYCr , and OC-LSPCbCr
maps. The concatenation of these histograms generates
the OC-LSP feature set.
Finally, the OC-LVP feature set is generated by comput-

ing the mean, variance, skewness, kurtosis, and entropy
of each map, as depicted in Fig. 8. The concatenation of
OC-LVP and OC-LSP feature sets generates the feature
vector �x, which is used as input to a regression algorithm.

Gradient boosting machine for regression
After concatenating the OC-LVP and OC-LSP feature
sets to generate the feature vector �x, we use it to pre-
dict image quality. The prediction is computed using �x
as input to a gradient boosting machine (GBM). GBMs
are a group of powerful ML techniques that have shown
substantial success in a wide range of practical appli-
cations [53, 54]. In our application, we use a GBM
regression model to map �x to the database subjective
scores.

Fig. 8 Block diagram of the proposed RIQA method
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Results and discussion
In this section, we analyze the proposed method by
comparing it with some of the state-of-the-art methods.
Specifically, this section describes the experimental setup
and configurations used in the analysis of the impact of the
color space on the performance of the proposed method
and in the comparisons between the proposed method
and available state-of-the-art methods.

Experimental setup
There are a number of existing benchmark image quality
databases. In this work, we use the following databases:

• Laboratory for Image and Video Engineering (LIVE)
Image Database version 2 [60]: The database presents
982 test images, including 29 originals and 5
categories of distortions. These images are in
uncompressed BMP format at several dimensions,
including 480× 720, 610× 488, 618× 453, 627× 482,
632× 505, 634× 438, 634× 505, 640× 512, and
768× 512. The distortions include JPEG, JPEG 2000
(JPEG2k), white noise (WN), Gaussian blur (GB), and
fast fading (FF).

• Computational and Subjective Image Quality (CSIQ)
Database [28]: The database contains 30 reference
images, obtained from public-domain sources, and 6
categories of distortions. These images are in
512× 512× 24 compressed bitmap (BMP) format
(PNG image data). The distortions include JPEG,
JPEG 2000 (JPEG2k), white noise (WN), Gaussian
blur (GB), global contrast decrements (CD), and
additive Gaussian pink noise (PN). In total, there are
866 distorted images.

• Tampere Image Database 2013 (TID2013) [61]: The
database has 25 reference images and 3,000 distorted
images (25 reference images× 24 types of
distortions× 5 levels of distortions). These images are
in 512× 384× 24 uncompressed BMP format. The
distortions include additive Gaussian noise (AGN),
additive noise in color components (ANCC), spatially
correlated noise (SCN), masked noise (MN), high
frequency noise (HFN), impulse noise (IN),
quantization noise (QN), Gaussian blur (GB), image
denoising (ID), JPEG, JPEG2k, JPEG transmission
errors (JPEG+TE), JPEG2k transmission errors
(JPEG2k+TE), non eccentricity pattern noise (NEPN),
local block-wise distortions (LBD), intensity shift (IS),
contrast change (CC), change of color saturation
(CCS), multiplicative Gaussian noise (MGN), comfort
noise (CN), lossy compression (LC), image color
quantization with dither (ICQ), chromatic aberration
(CA), and sparse sampling and reconstruction (SSR).

The Boolean Map Saliency (BMS) is used as the VSM
algorithm [62]. We compare the proposed method with

a set of publicly available methods. The chosen state-of-
the-art RIQA methods are the following: Codebook Repre-
sentation for No-Reference Image Assessment (CORNIA)
[23], Curvlet-based Quality Assessment (CQA) [50], Spa-
tial and Spectral Entropies Quality Assessment (SSEQ)
[18], Blind/Referenceless Image Spatial Quality Evalua-
tor (BRISQUE) [16], local ternary patterns (LTP) [20],
and No-Reference Free Energy Principe Metric (NFERM)
[33]. Additionally, we also compared the proposed algo-
rithmwith three well-established FR-IQAmetrics, namely
PSNR, structural similarity (SSIM) [32], and reduced-
reference image quality metric for contrast change
(RIQMC) [49].
The trained-based RIQA methods are performed using

the same training-and-testing protocol. The protocol con-
sists of splitting each single database into two content-
independent subsets (i.e., one subset for training and
another for testing). To avoid overtraining and, therefore,
failing to predict quality for other contents, scenes in the
testing subset are not present in the training subset, and
vice-versa. Considering this constraint, 20% of images are
randomly selected for testing and the remaining 80% are
used for training. This 80-20 split, training, and testing
procedure is a simulation. We performed each simulation
1000 times, and the mean correlation value is reported.
To compare the predicted and subjective quality scores,
three correlation metrics were used: Spearman rank order
correlation coefficient (SROCC), Pearson linear correla-
tion coefficient (LCC), and Kendall rank order correlation
coefficient (KRCC).
It is worth pointing out that each simulation is per-

formed using all distortions in training. When the
prediction performance “per distortion” is reported,
the predicted data for each distortion is generated
using the trained data using all distortions for train-
ing. For the training-based methods based on the sup-
port vector regression (SVR) algorithm, the training
and predicting steps are implemented using the Sklearn
library [63]. The SVR metaparameters are found using
exhaustive grid search methods provided by Sklearn’s
API. The proposed method, on the other hand, uses
GBM regression implemented with the XGBoost [64]
library.

Impact of color space on prediction performance
To investigate the most suitable color space for the pro-
posed method, we perform simulations with the LIVE2
database using the HSV, Lab, RGB, and YCbCr color
spaces. For comparison proposes, we also tested the
algorithm using the features obtained by combining all
color spaces. Table 1 shows the average LCC, SROCC, and
KRCC correlation scores (CS) for 1000 simulations.
From these results, we notice that the YCbCr color space

provides a statistically superior performance for almost
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Table 2 Mean SROCC of the PSNR, SSIM, RIQMC, BRISQUE, CORNIA, CQA, SSEQ, LTP, NFERM, and the proposed metrics, obtained for
1000 simulation runs on the LIVE, CSIQ, and TID2013 databases

Database Distortion PSNR SSIM RIQMC BRISQUE CORNIA CQA SSEQ LTP NFERM PROPOSED

LIVE JPEG 0.8515 0.9481 0.7794 0.8641 0.9002 0.8257 0.9122 0.9395 0.9645 0.9325

JPEG2k 0.8822 0.9438 0.5383 0.8838 0.9246 0.8366 0.9388 0.9372 0.9411 0.9497

WN 0.9851 0.9793 0.6628 0.9750 0.9500 0.9764 0.9544 0.9646 0.9838 0.9845

GB 0.7818 0.8889 0.8711 0.9304 0.9465 0.8377 0.9157 0.9530 0.9219 0.9641

FF 0.8869 0.9335 0.6802 0.8469 0.9132 0.8262 0.9038 0.8758 0.8627 0.8977

ALL 0.8013 0.8902 0.6785 0.9098 0.9386 0.8606 0.9356 0.9316 0.9405 0.9492

CSIQ JPEG 0.9009 0.9309 0.7242 0.8525 0.8319 0.6506 0.8066 0.9292 0.9036 0.9331

JPEG2k 0.9309 0.9251 0.5795 0.8458 0.8405 0.8214 0.7302 0.8877 0.9223 0.8871

WN 0.9345 0.8761 0.4678 0.6931 0.6187 0.7276 0.7876 0.6454 0.9214 0.9346

GB 0.9358 0.9089 0.8007 0.8337 0.8526 0.7486 0.7766 0.9244 0.8962 0.9197

PN 0.9315 0.8871 0.3653 0.7740 0.5340 0.5463 0.6661 0.7828 0.6334 0.9461

CD 0.8862 0.8128 0.9565 0.4255 0.4458 0.5383 0.4172 0.2082 0.3774 0.8097

ALL 0.8088 0.8116 0.5066 0.7597 0.6969 0.6369 0.7007 0.8280 0.9142 0.8949

TID2013 AGC 0.8568 0.7912 0.3555 0.4166 0.2605 0.3964 0.3949 0.5963 0.7077 0.9217

AGN 0.9337 0.6421 0.6055 0.6416 0.5689 0.6051 0.6040 0.6631 0.8567 0.8662

CA 0.7759 0.7158 0.5726 0.7310 0.6844 0.4380 0.4366 0.6749 0.6357 0.5991

CC 0.4608 0.3477 0.8044 0.1849 0.1400 0.2043 0.2006 0.1886 0.2148 0.7583

CCS 0.6892 0.7641 0.0581 0.2715 0.2642 0.2461 0.2547 0.2384 0.3106 0.5765

CN 0.8838 0.6465 0.6262 0.2176 0.3553 0.1623 0.1642 0.3880 0.1385 0.5100

GB 0.8905 0.8196 0.7687 0.8063 0.8341 0.7019 0.7058 0.7465 0.8502 0.8655

HFN 0.9165 0.7962 0.4267 0.7103 0.7707 0.7104 0.7061 0.7626 0.8797 0.9319

ICQ 0.9087 0.7271 0.8691 0.7663 0.7044 0.6829 0.6834 0.7603 0.4804 0.7877

ID 0.9457 0.8327 0.8661 0.5243 0.7227 0.6711 0.6716 0.7063 0.6405 0.8388

IN 0.9263 0.8055 0.1222 0.6848 0.5874 0.4231 0.4272 0.6484 0.1735 0.6699

IS 0.7647 0.7411 0.5979 0.2224 0.2403 0.2011 0.2013 0.3291 0.0407 0.8792

JPEG 0.9252 0.8275 0.7293 0.7252 0.7815 0.6317 0.6284 0.6631 0.8711 0.6160

JPEGTE 0.7874 0.6144 0.6009 0.3581 0.5679 0.2221 0.2195 0.2314 0.1281 0.8531

JPEG2k 0.8934 0.7531 0.5967 0.7337 0.8089 0.7219 0.7205 0.7780 0.8068 0.3819

JPEG2kTE 0.8581 0.7067 0.7189 0.7277 0.6113 0.6529 0.6529 0.6594 0.1686 0.1754

LBD 0.1301 0.6213 0.2471 0.2833 0.2157 0.2382 0.2290 0.3813 0.1995 0.9000

LC 0.9386 0.8311 0.5346 0.5726 0.6682 0.4561 0.4460 0.6533 0.6516 0.7738

MGN 0.9085 0.7863 0.3751 0.5548 0.4393 0.4969 0.4897 0.6209 0.7159 0.1254

MN 0.8385 0.7388 0.0438 0.2650 0.2342 0.2506 0.2575 0.4243 0.2238 0.8769

NEPN 0.6931 0.5326 0.1496 0.1821 0.2855 0.1308 0.1275 0.1256 0.0667 0.1985

QN 0.8636 0.7428 0.8697 0.5383 0.4922 0.7242 0.7214 0.7361 0.7716 0.8662

SCN 0.9152 0.7934 0.7811 0.7238 0.7043 0.7121 0.7064 0.7015 0.2181 0.9146

SSR 0.9241 0.7774 0.6967 0.7101 0.8594 0.8115 0.8084 0.8457 0.7865 0.9023

ALL 0.6869 0.5758 0.4439 0.5416 0.6006 0.4925 0.4900 0.6078 0.3971 0.7231

Average 0.8377 0.7807 0.5808 0.6234 0.6262 0.5741 0.5893 0.6563 0.6084 0.7767

all distortions (23 out of 114 CS or 20.17%) and fol-
lowed by Lab (13 out of 114 or 11.41%), HSV (10 out of
114 or 8.77%), and RGB (3 of 114 or 2.63%). However,

the combination of all color spaces (“ALL” label) pro-
vides the best prediction performance (65 out of 114
or 57.02%).
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Fig. 9 Bean plot of SROCC distributions from 1000 runs of simulations on tested databases. a LIVE. b CSIQ. c TID2013

Prediction performance using a single database
Table 2 depicts the results for the tested methods using
part of database for training and part for testing. Num-
bers in italics represent the best correlation values among
RIQA and FR-IQAmethods, while numbers in bold corre-
spond to the best correlation values considering only the
RIQA methods.
From Table 2, we can see that, for most databases, the

proposed method achieves the best performance among
the RIQA methods. For the LIVE2 database, the pro-
posed method outperforms even the FR-IQA methods
for JPEG2, WN, GB, and “ALL” distortions. For the PN
and CD distortions of the CSIQ database, the proposed
method provides a significantly better performance than
the other RIQA methods. The only exception is RIQMC
that obtained a mean SROCC of 0.9565, which is expected
since it is a contrast-specific metric. The superior perfor-
mance for PN distortions is probably due to the color-
based features. The good performance for CD distortions
is an important advantage of the proposed method, given
that this distortion is a challenge for most RIQAmethods.
For the TID2013 database, the proposed method out-

performs other RIQAmethods for 18 out of the 25 distor-
tions, followed by NFERM, BRISQUE, and CORNIA. For
AGC, HFN, IS, JPEG+TE, SSR, LBP, and MN distortions,
the performance of the proposed method surpasses even
FR-IQA methods. The performance for AGC distortions
is very good, similar to what was obtained for the PN dis-
tortions of the CSIQ database. Albeit losing for RIQMC,
which is a contrast-specific metric, the performance of
the proposed method for CC and CD distortions of the
CSIQ database is also good. This shows that the proposed
method can handle contrast distortions.
Figure 9 depicts the distributions of the SROCC values

computed between the subjective scores (MOS) and the
predicted scores obtained using the tested RIQA meth-
ods. The bean plots of this figure are generated using the
distribution of SROCC values for the set containing all
database distortions (corresponding to “ALL” in Table 2).

From Fig. 9a, we notice that almost all methods (with the
exception CQA) present similar distributions of SROCC
scores for the LIVE database. On the other hand, SROCC
values vary more for CSIQ and TID2013 databases, as can
be seen in Fig. 9b, c.

Statistical difference significance test
We also conduct tests to determine the statistical signifi-
cance of the differences of the coefficient values reported
in Table 3. We used the Welch’s t test on the SROCC
values corresponding to each color space, considering all
distortions (“ALL” label), with a 95% confidence level. The
cells in Table 3 indicate whether the value of the corre-
sponding row is statistically better (↑), statistically inferior
(↓), or statistically equivalent (�) to the value of the cor-
responding column. These results show that the proposed
method has a statistically superior performance in all
cases.

Performance for a cross-database validation
To investigate the generalization capability of the pro-
posed method, we performed a cross-database validation.
This validation consists of training the proposed RIQA
method using all images of one database and testing them

Table 3 Welch’s t test performed between SROCC average values
for TID2013 database: “↑” indicates that the method depicted in
the row is statistically superior to the one in the column, “↓”
indicates that the row is worse than the column, and “�” indicates
that two methods have statistically the same performance

BRISQUE CORNIA CQA SSEQ LTP PROPOSED

BRISQUE – � ↑ ↑ � ↓
CORNIA – ↑ ↑ ↓ ↓
CQA – � ↓ ↓
SSEQ – ↓ ↓
LTP – ↓
Proposed –
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Table 4 SROCC cross-database validation, when models are trained on LIVE2 and tested on CSIQ and TID2013

DIST BRISQUE CORNIA CQA SSEQ LTP Proposed

CSIQ JPEG 0.8209 0.7062 0.7129 0.8141 0.8784 0.9876

JPEG2k 0.8279 0.8459 0.6957 0.7862 0.8914 0.9881

WN 0.6951 0.8627 0.6596 0.4613 0.7739 0.9962

GB 0.8311 0.8815 0.7648 0.7758 0.8712 0.9934

ALL 0.8022 0.7542 0.7114 0.7403 0.8628 0.9914

TID 2013 JPEG 0.8058 0.7423 0.8071 0.7823 0.8472 0.8853

JPEG2k 0.8224 0.8837 0.7724 0.8258 0.9046 0.9481

WN 0.8621 0.7403 0.8692 0.6959 0.6881 0.9077

GB 0.8245 0.8133 0.8214 0.8624 0.8693 0.8693

ALL 0.7965 0.7599 0.8214 0.7955 0.8137 0.8923

on the other databases. Table 4 depicts the SROCC val-
ues obtained using LIVE as the training database and
TID2013 and CSIQ as the testing databases. To perform
a straightforward cross-database comparison, only simi-
lar distortions were selected from each database. In other
words, we select only JPEG, JPEG2k, WN, and GB dis-
tortions of CSIQ since these distortions are also present
in the training databases. The PN and CD distortions
were removed from the test set and, therefore, they are
not listed in Table 4. Likewise, for TID2013, only JPEG,
JPEG2k, WN, and GB distortions were kept. In TID2013,
the HFN distortion was chosen because it is the most
similar to the WN distortion.
From Table 4, we can notice that the proposed method

outperforms the other RIQA methods for the cross-
database validation test. Notice that the proposed method
achieves the best performance for all cases, except for
one. For TID, the proposedmethod outperforms the other
methods for four out of the five distortions, while for
CSIQ, it outperforms the other methods for all five distor-
tions. Therefore, the cross-database validation test indi-
cates that the proposedmethod has a better generalization
capability, when compared to the tested state-of-the-art
RIQA methods.

Conclusions
In this paper, we proposed a novel NDS-GP-RIQA
method based on the statistics of two new texture
descriptors: the OC-LSP and OC-LVP. OC-LSP descrip-
tor extends the capabilities of the (previous) OC-LBP
operator by incorporating texture, color, and saliency
information. Similarly, OC-LVP fuses OC-LBP and LVP
operators to incorporate texture, color, and energy infor-
mation. Quality is predicted after training a regression
model using a gradient boost machine. Experimental
results showed that, when compared with state-of-the art
RIQAmethods, the proposed method has the best perfor-
mance. More specifically, when considering a wide range

of distortions, the proposed method has a clear supe-
riority. Since the proposed method is based on simple
descriptors, it can be suitable for video quality assess-
ment. Future works include a parallel implementation of
the OC-LSP and OC-LVP descriptors.
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