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Abstract

Composite materials are being successfully used in aeronautics for more than two decades. This great success is
mainly because this kind of materials is typically lighter when compared to metals and more resistant to corrosion.
Resistance and stiffness of composite materials are usually related to their fiber orientation. The development of
non-destructive methods is required to assess this kind of property without damaging the sample. In this work, a
non-destructive method based on infrared thermography is presented for fiber orientation assessment. More
specifically, two approaches are presented and results are compared for fiber orientation assessment of randomly
oriented strand parts. The first one is a point-by-point inspection based on pulsed thermal ellipsometry and the
second one is a line approach based on flying laser spot inspection combined with neural artificial networks. Results
showed that the second approach provides similar accuracy when compared to the first one; however, it is much
faster which makes the second approach very interesting for industrial applications.
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Introduction
The use of composite materials reinforced with fibers
in astronautics, aeronautics, automotive, wind energy, oil
and gas, and petrochemical industries is vital for the
full development of these key areas for economic and
social prosperity of a country mainly because of compos-
ite materials’ unique and advantageous properties: these
materials are typically lighter and more resistant to cor-
rosion than metallic materials that have traditionally been
used in these industries. Techniques and methodologies
to ensure the quality of parts, components, and struc-
tures made with such class of advanced materials, both in
the manufacturing stage and throughout its lifetime, are
indispensable, and, towards this strategy and approach,
non-destructive evaluation (NDE) methods play today a

*Correspondence: henrique.fernandes@ufu.br
1School of Computer Science, Federal University of Uberlandia, 2121 Joao
Naves de Avila Avenue, Uberlandia 38408-100, Brazil
Full list of author information is available at the end of the article

fundamental role. NDE has been defined as comprising
those methods used to examine or inspect a part or a sys-
tem without impairing its future usefulness. Many works
have recently dealt with such methods [1–4].
Infrared thermography (IRT) is a safe NDE technique

that has a fast inspection rate and is generally contactless.
It is used for diagnostics and monitoring in several fields
such as electrical components, thermal comfort, build-
ings, artworks, and composite materials. IRT popularity
has grown in the recent years due to spatial resolution
and acquisition rate improvements of infrared (IR) cam-
eras while they became more affordable. Another factor
is the development of advanced image processing tech-
niques focused on this kind of images. In active IRT,
an external heat source is used to stimulate the mate-
rial being inspected in order to generate a thermal con-
trast between the feature of interest and the background.
The active approach is adopted in many cases given that
the inspected parts are usually in equilibrium with the
surroundings [5].

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-018-0071-5&domain=pdf
http://orcid.org/0000-0002-7078-9620
mailto: henrique.fernandes@ufu.br
http://creativecommons.org/licenses/by/4.0/


Fernandes et al. Journal of the Brazilian Computer Society  (2018) 24:7 Page 2 of 19

The arrangement or orientation of the fibers relative to
one another, the fiber concentration, and the distribution
all have a significant influence on the strength and other
properties of fiber-reinforced composites. Thus, effective
testing techniques are needed to assess fiber content.
Destructive methods can be employed to evaluate a com-
posite fiber content, e.g., cutting a section of the material,
polishing the area, and evaluating it by microscopy. How-
ever, the destructive approach is not always an option
since the sample will be “damaged” after the inspection
and probably unfit for use. Thus, NDE techniques must
be employed in some cases to assess the material’s fiber
content.
In this paper, we presented an extension of the work

presented in [6]. Here, two approaches based on infrared
thermography are presented and compared for fiber ori-
entation assessment of randomly oriented strand (ROS)
material. The first uses the traditional pulsed ther-
mal ellipsometry (PTE) method which is based on a
single heating spot. The second one is based on a
recently proposed approach which uses a line heating
region produced by a flying laser spot (FLS) and artifi-
cial neural networks (ANNs). In this new paper, results
of both techniques are presented, compared, and dis-
cussed while in [6] only the line (FLS/ANN) is presented
and discussed.

Methodology
Pulsed thermal ellipsometry
More than one century ago, De Senarmont [7] applied a
thermal approach to find out the principal orientations
in crystal plates: he covered them with a thin layer of
wax, heated them over a small spot, and monitored the

isotherm shape revealed by the solid/liquid transition con-
tour appearing in the wax layer. The isotherm proved to be
elliptical and its aspect ratio is related to the square root
of the principal conductivities in the surface plane.
This method, referred by Krapez [8] as thermal ellip-

sometry (TE), was later used, with, of course, up-to-date
experimental equipment, in several application by the
means of IRT [8–10]. It was applied on polymer mate-
rials to establish a correlation between their draw ratio
and the induced thermal anisotropy. It was also used to
evaluate the fiber orientation in the case of composite
materials using short or long carbon fibers. In our work,
we refer to this method of evaluating the fiber orientation
in the case of composite materials (CM) as pulsed thermal
ellipsometry—PTE.
PTE is an inspection technique that enables the assess-

ment of fiber orientation on CM. It involves the spot
heating of the sample’s surface and following the obser-
vation of the heated pattern in the IR spectrum. A short
pulse is used to spot heat the sample. If the material has an
oriented structure, such as carbon fiber-reinforced poly-
mers (CFRP), an elliptical thermal pattern is observed,
with the ratio between the two principal axes (b/a) being
related to the square root of the thermal diffusivities in
the longitudinal and transverse directions. A test on an
isotropic material would give a circle instead of an ellipse.
Figure 1 shows a typical PTE experimental setup.
The ellipse’s major axis, b, has the same orientation as

the fibers on that region. This “elliptical” behavior occurs
due to the difference in the thermal conductivity values
on the surface of the sample. The thermal conductivity
value parallel to the fibers is greater than the value per-
pendicular to them, i.e., material is thermally anisotropic:

Fig. 1 PTE setup. Pulsed thermal ellipsometry (PTE) setup. Adapted from [11]

c
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k‖ > k⊥. Thus, heat will travel faster on the direction par-
allel to the fibers and consequently the thermal pattern
observed on the surface will be larger on the direction of
k‖, which results in an elliptical pattern. The heat diffu-
sion process is recorded with an IR camera and stored in
a 3Dmatrix (or an array of images). In order to extract the
elliptical pattern from the IR images, i.e., thermograms,
some image processing techniques must be applied. This
approach is fully presented in our previous work [11]. In
[11], PTE was successfully applied for laminates with con-
tinuous fibers. In this kind of materials, fiber orientation
is homogeneous. Thus, one single-point heating source
inspection is sufficient to assess the material’s fiber orien-
tation. On the other hand, for ROS samples, where fiber
orientation is randomly distributed on the material’s sur-
face, one would need to inspect several points in order
to have a good assessment of the material’s fiber ori-
entation and distribution. Consequently, such approach
would prove very time consuming and unfit for industrial
application.

Computational model A computational model is used
to simulate the behavior of the heat dissipation on the
material without the need of performing an actual exper-
iment. In the current project, computational models were
used to provide insights on how the heat would propa-
gate in the sample considering different shapes of heating
sources in order to develop the line approach.
In the case of this paper, the phenomenon that is being

modeled is transient conduction of heat in solids. This
phenomenon can be represented by the heat equation (in
this case in the 3D space) which is a parabolic partial dif-
ferential equation that describes the distribution of heat
(or variation in temperature) in a given region over time:

k‖
∂2Ts
∂x2

+ k⊥
∂2Ts
∂y2

+ k⊥
∂2Ts
∂z2

− ρCp
∂Ts
∂t

= Q (1)

where k‖[W/mK] and k⊥[W/mK] are the thermal con-
ductivity values parallel and perpendicular to the fibers,
respectively; ρ

[
kg/m3] is the density; Cp[ J/kgK] is the

specific heat of the material; and Q
[
W/m3] is the heat

source intensity.
A classic method called finite element analysis (FEA)

is used to solve Eq. 1. It is a numerical technique that
basically works dividing the object’s geometry in small
sections (called mesh) and finding approximate solutions
for the differential equation for each one of these lit-
tle sections. In the scope of this paper, a commercially
available software called COMSOL Multiphysics� was
used. COMSOL is a FEA solver and simulation software
package for solving various physics and engineering appli-
cations. The core package and the heat transfer package
are used in our simulations.

The simulation performed was a 0.05-s laser pulse on a
block of a carbon fiber composite which is used with the
intent of mimicking the inspection of a single ROS strand.
The material’s block was carbon/PEEK: a prepreg which
62% of its weight is AS4 carbon fiber. Thermal properties
involved in the simulation are presented in Table 1. The
body heat load within the composite block is given by the
following expression [12]:

Q (x, y, z) = Q0 (1 − Rc)
Ac

πσxσy
e
−

[
(x−x0)

2

2σ2x
+ (y−y0)

2

2σ2y

]
e−Acz

(2)

where Q0 is the total power input, Rc is the reflection

coefficient, e
−

[
(x−x0)

2

2σ2x
+ (y−y0)

2

2σ2y

]

is the 2D Gaussian distri-
bution in xy-plane and e−Acz is the exponential decay due
to absorption. The reflection and absorption are assumed
to be constants. The planar surface of the composite block
incident to the laser beam is assumed to be aligned with
the xy-plane of the global coordinate system. The top
planar surface is aligned with z = 0. Hence, the effect
of absorption can be simulated by the term exp(−Ac ∗
abs(z)). The center of the beam is given by the terms x0
and y0. The beamwidth and astigmatism are controlled by
the standard deviation parameters σx and σy.

Infrared image processing Figure 2 summarizes the
processing steps involved on the extraction of the fiber
orientation based on the data provided by a PTE experi-
ment. The process is fully detailed and discussed in our
previous work [11]. Nonetheless, their major points are
going to be outlined here.

Optimal diffusion time selection As stated in begin-
ning of this subsection, a heating spot, produced by a
laser beam, is used to stimulate the surface of the sam-
ple producing the thermal behavior that will lead to the
fiber orientation assessment. After the spot is heated, the
heat diffusion process is recorded with an IR camera and
stored in a 3D matrix M, i.e., an array of images, for post-
processing. The size of M is m × n × k which means that
it is composed of k images of size m × n. The number of
images, or thermograms, depends on the duration of the
acquisition as well as the camera’s acquisition frame rate.

Table 1 Thermal properties of carbon/PEEK [24]

Property Value

k: Thermal conductivity Parallel 5.65 [W/mK]

Perpendicular 0.35 [W/mK]

Cp : Specific heata 1310 [J/kgK]

ρ : Density 1584 [kg/m3]

aAt constant pressure
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Fig. 2 Processing steps. Infrared image processing steps for PTE. Adapted from [11]

This sequence of images contains the following: the
plate before heating, the moment when the beam heated
the plate, the rise of the temperature profile, and finally the
temperature profile decrease. In the case of our ROS sam-
ples, which are thermally anisotropic, the heat pulse will
produce an elliptical pattern on the surface of the sample.
However, this pattern would be closer to a circle on the
very beginning of the experiment and in later times where
the thermal behavior of deeper layers would be much
more present. Thus, our assumption is that sometime
between these two moments, an image would contain the
best pattern that reflects the fiber orientation on the sur-
face, i.e., the direction in which the thermal conductivity
is higher. This optimal moment is selected by calculat-
ing the eccentricity (ε) of each elliptical thermal pattern
on the thermograms onM and choosing the image which
contains the ellipse with the largest ε. Eccentricity (ε) is
a quantity defined for a conic section which can be given
in terms of major and minor axes. In the case of a circle
ε = 0 while in the case of an ellipse 0 < ε < 1. Based
on this idea, the thermal pattern that would better express
the fiber orientation is the one with the largest ε. During
our experiments, it always occurred before 0.5 s after the
beam has been stopped.

Binary shape segmentation After the image with the
optimal diffusion time was selected, the next step is to
segment, or binarize, the ellipse on the image. This is a
simple task that can be accomplished by using the auto-
matic clustering-based image thresholdingmethod. There
is a wide range of classical histogram-based algorithms
for automatic threshold selection for bimodal and mul-
timodal images available in the literature. In this work,
Otsu’s method [13], a well-established method, is used.
After the selection of the threshold level, the binary

image is created by applying the following characteris-
tic function in the infrared image selected based on the

optimal diffusion time calculated in the previous step:

fbe(PTi) =
{
1, ifTi ≥ Th
0, otherwise

(3)

where i ∈ [1, . . . ,m × n],m × n is the number of pixels
in the image and Th is the temperature threshold value
determined by Otsu’s method.

Calculation of angle between x-axis and binary
ellipse’s major axis With the resulting binary image
obtained via Eq. 3, which is represented by a binary
matrix, a simple Matlab© native function was used to
calculate the ellipse orientation. The orientation of the
image, here the binary ellipse, is the angle (in degrees
ranging from − 90° to 90°) between the x-axis and the
major axis of the ellipse that has the same second-
moments as the region.

Line inspection approach
A second inspection approach is used to produce a heat-
ing line on the surface of the samples in order to enable the
inspection of a larger area at once. It is based on a dynamic
point scanning approach. The use of a flying laser spot
(FLS) technique in combination with an artificial neural
network was proposed in our previous work [14] to assess
the fiber orientation over a line region on the surface of a
ROS plate. In this paper, we conduct a brief review of the
approach and present additional and unpublished results.

Flying laser spot FLS is a dynamic active IRT technique,
which can be employed for the inspection of materials
by heating point-by-point a component while acquiring a
series of images using an IR camera. This can be done in
two ways, either the thermographic head, consisting of an
IR camera and an energy source, moves along the surface
while the sample to be inspected is motionless, or it may
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be the sample that is in motion while the thermographic
head stands still. In both cases, the thermal history for
every pixel can be precisely tracked by controlling the dis-
placement speed, either the laser or the sample, and the
rate of data acquisition. Detailed theoretical and experi-
mental aspects of this technique can be found in [15]. In
this paper, the second displacement approach is adopted.
In the recorded IR raw sequence, the sample undoubt-

edly appears to be moving. In order to perform advanced
image process techniques, the sequence must be rear-
ranged into a pseudo-static sequence so that the sam-
ple appears motionless. The reconstructed sequence is
obtained by following the temporal evolution of every
pixel independently, in such a way that a given pixel of the
original sequence P(xi, yj, t) is recovered frame by frame
through time t and reallocated into a new image. For
instance, a pixel P that is in a given position at time t will
be in a different position at a later time. Figure 3 shows
some images of an original sequence and an image from
the corresponding pseudo-static reconstructed sequence
0.37 s after the pulse. Part of the experimental setup
used is also shown (the laser source is not shown). The
arrow indicates the direction of the sample’s movement.
A detailed procedure on how to reconstruct the dynamic
sequence in order to obtain a pseudo-static sequence is
provided in [16].
After the pseudo-static sequence is obtained, some

advanced infrared image processing technique must be
applied in the reconstructed sequence in order to per-
form some feature selection to be used in the ANN step.
In this work, three processing techniques were tested:
principal component thermography (PCT), pulsed phase

thermography (PPT), and dynamic thermal tomography
(DTT). PCT, originally proposed in [17], extracts the
image features and reduces undesirable noise. In PPT,
originally proposed by [18], data is transformed from the
time domain to the frequency spectra. The phase is very
attractive not only for qualitative inspections but also
for quantitative characterization of materials. In DTT,
originally proposed by [19], pixel temperature profiles are
rearranged so the time when the maximum temperature
occurred for each pixel can be displayed in a single image.
Details of this infrared image processing techniques are
omitted here; nonetheless, they can be easily found in the
literature.

Artificial neural network An ANN is an information
processing paradigm that is inspired by the way biological
nervous systems, such as the brain, process information.
It is composed of a large number of highly interconnected
processing elements (neurons) working in unison to solve
specific problems. ANNs, like people, learn by example.
An ANN is configured for a specific application, such as
pattern recognition or data classification, through a learn-
ing process which could be supervised or unsupervised.
Learning in biological systems involves adjustments to the
synaptic connections that exist between the neurons. This
is true of ANNs as well. There are several works involv-
ing ANN in the literature. A review on image processing
with ANN can be found in [20]. In IRT, ANNhas also been
used for years for defect depth estimation [21, 22].
In this work, the thermal pattern obtained from the

pseudo-static sequence is divided into small sections (or
samples) that represent different points on the inspected

Fig. 3 Pseudo-static sequence reconstruction. In the top of the figure, two images from the original sequence at different times are shown. Below
these images, the experimental setup is shown: the IR camera and the inspected sample can be seen as well as the 2-axis electric actuator used to
displace the sample. The green arrow indicates the direction of displacement. On the right, an image from the reconstructed pseudo-static
sequence is shown. Adapted from [14]



Fernandes et al. Journal of the Brazilian Computer Society  (2018) 24:7 Page 6 of 19

line. A two-layer feed-forward network, with sigmoid hid-
den and softmax output neurons (512 and 4, respectively)
trained with scaled conjugate gradient backpropagation,
is then used to classify these points on the reconstructed
line obtained with the pseudo-static IR sequence into their
corresponding class (in this case: fiber orientation). The
points (samples) extracted from the pseudo-static line are
divided into three sets of samples: 70% of the total of sam-
ples is used to train the network, 15% is used for validation
during training, and the remaining 15% is used for testing
the network after the training has been completed. Next,
data representation of input samples is detailed as well as
how classes are organized.
After the thermal pattern obtained with the line

approach (FLS) was reconstructed into the pseudo-static
sequence, the resulting image sequence is processed with
one of the three techniques mentioned before: PCT, PPT,
or DTT. Then, the processed image is binarized using
an automatic threshold selection based on Otsu’s method
[13]. The envelope of the binary line image is easily
selected and then 11 features are calculated for each sam-
ple. Figure 4 shows the binary images obtained from the
processed reconstructed lines. From these binary images,
an envelope is extracted. Each sample has two line seg-
ments originating from the line envelope: top and bottom
line segments. These line segments belong to the edges
of the binary image. The first two extracted features are
the normal to the line segment orientation regarding the
x-axis: θ1 and θ2. The next two features are the curva-
ture values (k1 and k2: it is a measure of how much the
curve deviates from a straight line) in the middle points
of the top and bottom line segments. The fifth feature
is the width of the envelope on its middle section. The
last six extracted features are also related to the width of
the envelop: the distance (in pixels) from the envelope’s
centroid to six points on the envelope edges.
The processed pseudo-static image is divided in the

same manner that the binary image was divided. Then,
the pixels of each sample are rearranged line-wise. The
input data of the ANN, i.e., the data used to describe each
sample, is the combination of the 11 features calculated
before, with the line-wise pixels from the first empirical
orthogonal function (EOF) for the PCT case, the phase
image for the PPT case, and the resulting image for the
DTT case. In total, each sample is represented by a set of
2681 numerical values. These values are the input of the
network.
The output of the ANN is the class of the sample pre-

sented in the input layer. In this work, samples were
classified into four classes. Each class covers a range of
45°. For instance, class 1 (blue) is centered at 0° and rep-
resents orientation angles ranging from 157.5° to 22.5°,
class 2 (green) is centered at 45° and represents orienta-
tion angles ranging from 22.5° to 67.5°, class 3 (orange) is

centered at 135° and represents orientation angles rang-
ing from 157.5° to 112.5°, and class 4 (red) is centered at
90° and represents orientation angles ranging from 67.5°
to 112.5°. Thus, the output layer of the ANN has four neu-
rons. Each neuron is in charge of recognizing one class,
i.e., if the sample presented in the input layer belongs to
the first class, the first neuron would have the value 1
and the other neurons’ value would be 0 (in the perfect
recognition scenario).
In order to train the network, target classes were pre-

viously determined by PTE static-point inspections. For
each one of the 49 samples on the line, a respective
PTE inspection was previously performed, i.e., a point-
by-point inspection: for each line, 49 samples, with 2-mm
spacing, were inspected with the PTE approach proposed
in [11]. Then, based on the orientation angle obtained
with the PTE inspection, a target class was assigned to
the sample. All 180 angle degrees possibilities were not
considered as individual classes because it would make
the classification processes impossible due to the lack of
information present on the line envelope that could be
extracted. For instance, the distinction between an input
belonging to class 15° and an input belonging to class 16°
would be impossible.

Experimental setup and inspected samples
PTE setup
Two ROS samples were inspected for the PTE approach.
The first ROS flat plate, ROS001 (figure not shown here),
is a 250 × 150-mm plate molded using carbon/PEEK
unidirectional slit tape, which was cut into strands of
25.4× 6.35 mm using an automated tape cutter. The other
ROS sample, B61 (Fig. 5), is a 100× 100-mm plate molded
also using carbon/PEEK unidirectional slit tape, which
was cut into strands of 25 × 10 mm using an automated
tape cutter. Figure 5a shows the front side of the plate and
Fig. 5b shows the back side of the plate.
The samples were inspected by PTE using a laser-diode

beam spot as stimulation source. A computer and a con-
trol unit were used to store recorded images and control
the laser driver as well as the IR camera. A high-power
laser diode available in our laboratory was used in the
experiments. Its output power goes from 0 to 30 W and
its wavelength is 808 ± 5nm. A biconvex lens was used to
focus the beam on a small spot on the surface of the sam-
ple. Finally, a mid-wave infrared camera (MWRI)—Indigo
Phoenix Thermal Camera from FLIR Systems©, InSb, 3–
5 μm, 640 × 512 pixels windowed to 320 × 256 pixels at a
frame rate of 220 Hz was used to record the temperature
profiles.
For our first round of experiments, sample ROS001 was

placed in front of the focused laser beam. The angle of
incidence (AOI) of the laser beam with the plate’s surface,
i.e., the angle between the incident beam on the surface
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Fig. 4 Binary images lines. Binary images obtained from each infrared image processing technique applied in the reconstructed line sequence. The
red line mark in the first image indicates the region which was heated

and the line perpendicular to the surface at the point of
incidence, was 0° while the camera’s optical axis AOI was
about 15°, i.e., the angle between the camera optical axis
and the plate’s normal to the surface.
A short pulse of 0.1 s was shot heating a small circle

area on the plate’s surface. Then, the heating and cooling
down process was recorded using the MWIR camera. As
mentioned before, the pattern formed on the plate’s sur-
face is elliptical in anisotropic materials, which is the case
of our samples and the ellipse major axis is related to the
fiber orientation on the surface. The parameters used in
this experiment are listed in Table 2.
In order to assess the fiber orientation of a broader

region, a second round of experiments was performed. For
this round, a section of each surface of the sample B61

was inspected with a point-by-point approach in order
to create an “orientation map.” The dimension of each
section was 50 × 50 mm2. Figure 5 shows the inspected
sections. The distance between each inspected point was
5 mm. This 5-mm distance was chosen so every strand
(25 × 10 mm2) on the section had at least one point heat-
ing it. With this configuration, 121 points were inspected
on each section. The other inspection parameters were
kept the same as the ones used in the previous experiment
and are listed in Table 2. The inspection of each section,
i.e., 121 points, took about 2 h.
The horizontal displacement of the sample was per-

formed with an aid of a 2-axis electric actuator, which
moves the inspected sample from left to right (or right to
left) in front of the camera’s field of view. The inspection of
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Fig. 5 Second ROS sample (B61). Second inspected ROS sample with the regions inspected on the surfaces of sample depicted with the dashed
square. a Front surface and b back surface

a complete row (with 11 inspections) was performed, and
then, the sample was manually repositioned so the sec-
ond row, 5 mm below, could be inspected. Figure 6 shows
the experimental setup used during this inspections. On
the left, an image with front surface of the sample B61 is
shown. The red point indicates the location of the first
point of the first row. On the right, the experimental setup
is shown with the electric actuator, the IR camera, and the
IR laser diode.

Line inspection approach setup
The samples inspected with the line approach are similar
(same specifications) to the second sample inspected with
the PTE approach. The total of three samples were used
and four lines (H1, H2, V1, and V2) on each sample were
inspected. Thus, 12 lines were inspected from three dif-
ferent samples (B61, B62, and B63). Figure 7 shows these
samples with the respective inspected lines indicated with
red lines.
For each inspection, the sample to be inspected is

displaced in front of the thermographic head (camera and
laser). In the first recorded image the sample does not

Table 2 Parameters used during PTE inspections

Parameter Value

Diode-laser frequency 805 [W/mk]

Diode-laser power 1 W

Shooting duration 0.1 s

Spot size on plate’s surface 2 mm

Acquired frames 1200 frames

Camera’s acquisition rate 220 Hz

Camera’s frame size 320 × 256 pixels

appear and in the last one the sample does not appear
either. In the images between the first and last one, the
sample appears in different positions. This displacement
of the sample is performed with the aid of a 2-axis electric
actuator that moves the inspected sample from left to
right (or right to left) in front of the camera’s field of
view. The use of a 2-axis electric actuator provides the
possibility to program the inspection path and to control
the inspection speed displacement and acquisition rate in
a precise manner. After a line was inspected, the sample
was repositioned so the laser spot could head the desired
line. This approach was repeated until the 12 lines were
inspected. The experimental setup prepared in the lab-
oratory can be seen in Fig. 3. Next, results are presented
and discussed.

Results and discussion
PTE results
Computational model Previous to performing the
PTE experimental tests, FEA studies were conducted.
Computational models were created using the commer-
cial software COMSOL Multiphysics�. The first model
created investigates the transient heating of a composite
material single strand when an incident laser beam in
continuous wave (CW) mode shines upon it for a given
time. Since the thermal conductivity values in x and in
y are different due to the carbon fiber thermal behavior
(one is much bigger than the other), an elliptical pattern
is expected to be formed on the xy-plane. The mesh
used in the simulation is showed in Fig. 8 (the scale is
in millimeter). An elliptical boundary was created on the
top surface to represent the zone of heat input and a finer
mesh was used in this region.
In Fig. 9, some plots of the results calculated by

the software are shown. Figure 9a shows temperature
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Fig. 6 Point-by-point setup inspection. PTE setup used for the point-by-point inspection. The red point on the image on the left indicates the
position of the first inspection on the first row

distribution over the xy-plane at time 0.3 s, and Fig. 9b
shows the temperature counters at the same time.
Figure 10 shows the plot of temperature values over the
line and the column passing through the point where the
beam center was. It is possible to see in both Figs. 9 and

10 that the heat has spread faster in the direction which
the thermal conductivity is higher, i.e., in the direction
parallel to the fibers.
The second simulation carried out was about heating

more than one block, or strand, at the same time. This

Fig. 7 Inspected sample with the line approach. ROS samples inspected with the line approach. The red lines indicate where the inspected regions
were. a B61, b B62, and c B63
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Fig. 8 COMSOL mesh. Mesh used by COMSOL to solve the heat transfer problem

was performed simulating a line heating where the stan-
dard deviation parameters, σx and σy, were different. One
was much bigger than the other. Also, neighbor strands
had different thermal conductivities to simulate strands
with fibers oriented in 0° and 90°. The goal of this simu-
lation was to see the different heat patterns formed over
the heating line caused by the different thermal con-
ductivities in different regions. The goal is to use such
configuration to inspect a bigger area at once in a ROS
plate.
Simulation results obtained showed that it is possible to

identify different patterns along the line due to strands’
different fiber orientation (or thermal conductivity). Thus,
these preliminary results show the potential of line heat-
ing to inspect a bigger ROS area. Figure 11 shows the
isothermal contours obtained at time 0.3 s for this second
simulation.

Using the same geometry used in the second simulation,
a third simulation was performed in order to investigate
the effect of the size of the heating spot and its position.
First, the beam center was positioned exactly between two
different strands. It was observed that the heat pattern
formed on the surface is deformed in this case. Part of
the heat follows the fiber orientation of the first strand
while the rest follow the fiber orientation of the sec-
ond strand resulting in a deformed-two-region ellipse.
Figure 12 shows the temperature on the surface at time
0.3 s for this simulation.
The size of the spot also plays a key role here. Since

a single narrow strand is being analyzed at a time, the
spot should be small enough that the heat has space to
propagate freely and the appropriate thermal partner is
observed. For instance, the simulation result illustrated in
Fig. 13 shows that if a big spot is used, it is not possible

Fig. 9 Simulated temperature at surface. Temperature over xy-plane at time 0.3s calculated with the simulation
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Fig. 10 Surface temperature profile. Temperature distribution on the surface [mm] over x and y directions (line × column)

to see the fiber orientation. In the example, the fiber ori-
entation of the heated strand is 90° and the figure shows
the temperature distribution at time 0.3 s. By looking at
these results, one cannot surely say that the fiber orien-
tation is 0° or say that it is 90°. Thus, it is important to
choose properly the spot size and its position according to
the specimens (region) being tested.

Experimental In order to evaluate the effectiveness of
the PTE approach for ROS samples, individual strands
were first inspected separately. The results obtained for
two different strands chosen on the surface of the sample
ROS001 are presented here. A first PTE inspection was

performed. Next, the plate was rotated 90° clockwise and
a second PTE inspection was then performed. Inspections
were expected to be also rotated 90° from each other.
Figures 14 and 15 show the results of those inspections.

Figure 14 shows the results for the first inspected strand.
Figure 14a, b shows the results in the case where the plate
was in its original position while Fig. 14c, d shows the
results in the case where the plate was rotated 90° clock-
wise. Figure 15 shows the results for the second inspected
strand. Results for both strands are presented in a similar
structure. Images on the left column display the picture of
the region on the plate containing the specific inspected
strand (position where the laser beam heated the surface

Fig. 11 Line heating simulation. Simulation of line heating on strands with different thermal conductivity
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Fig. 12 Simultaneously heating two strands. Simulation of effect of heat dissipation between two different strands at time 0.3 s

is marked with a red point). Images on the right column
display the respective ellipse segmentedwith the approach
described in the “Methodology” section (red line indicates
the ellipse’s major axis).
Fiber orientation measured in Fig. 14b was − 47.52°

while the fiber orientation measured in Fig. 14d was
55.99°. The ellipse extracted from the second inspection is
then 76.49° shifted when it should be 90°. Thus, an error
of approximately 13.5° is present in this case. For the sec-
ond strand, fiber orientation measured in Fig. 15b was
6.37° while the fiber orientation measured in Fig. 15d was
− 85.19°. The ellipse extracted from the second inspection
is then 88.5° shifted when it should be 90°. Thus, an error
of approximately 1.5° is present in this second case. It is
important to remember that all fiber orientation angles
are reported regarding the x-axis.

For both strands, the difference between the two major
axis measurements (fiber orientation), i.e., first when the
plate was in its original position and then in when it is
rotated 90° clockwise, should be 90°. However, it is not.
For the first strand, the error between the two measure-
ments was approximately 13.5°. This happened because
the exact position heated in each case was not the same
and, perhaps, in the first inspection a place nearer to
the chip border was heated and it got more influence
from a neighbor strand, which could have a different fiber
orientation. Additionally, during the plate’s molding pro-
cess, heat and pressure are applied on the strands, which
leads to a high degree of deformation in the shape of
consolidate strands in the final plate and it could give
to strands a high level of “shape interaction.” Thus, in
some cases, neighbor strands can play a bigger role in the

Fig. 13 Strand heat with big spot. COMSOL simulation of effect of spot heating size
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Fig. 14 First PTE inspection of single strand. First strand: a, b plate on its original position and c, d plate rotated 90° clockwise

Fig. 15 Second PTE inspection of single strand. Second strand: a, b plate on its original position and c, d plate rotated 90° clockwise
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Fig. 16 Point-by-point inspection results—front section. Result of point-by-point inspection of the front section of sample B61. a 121 ellipses
obtained and b respective color-coded orientation map. The actual size of the inspected region is 50 × 50 mm2

heating diffusion on a single strand, which could affect
the elliptical pattern. For the second inspected strand,
the error between the two inspections was approximately
1.5°. Here the error between measurements is much
smaller. This happened because the second strand is bet-
ter placed and large enough so the heating spot could hit
the same position with minimal edge or neighbor strand
effects.
Therefore, one can conclude from the computational

results and this first experimental results presented that,
similar to the laminate case (which were approached in
our previous works [11, 23]), where the fiber orientation
on each layer of the laminate is uniform, fiber orientation
can also be assessed for ROS material using PTE.
So far, it was presented the use of PTE to measure the

fiber orientation of a single strand on the surface of a
ROS sample. However, only the local inspection of a single
strand is not enough to meaningfully assess the fiber ori-
entation on the surface of a ROS sample. In order to have
an assessment about how random and how strands (fiber
orientation) are distributed, several points, systematically
distributed on the surface of the ROS sample, should be
inspected. The outcome of such inspection is going to be
called “orientation map.”
A section of each surface of the sample B61 was

inspected with a point-by-point approach in order to cre-
ate the so-called orientation map. The dimension of each
section was 50 × 50 mm2. A total of 121 points was
inspected for each section. Figure 5 shows the inspected
sections, and the details of the experimental procedure
can be found in the previous section.
The fiber orientation was then calculated for each

inspected point according to what was described in the
“Methodology” section. Decimal values of each measured

angle were not considered and the angle values were
rounded. Thus, the fiber orientation assessed on each
point was reported in one of 180 possible angles. In order
to create the map, each possible angle was assigned to
one color and a color-coded map was created. Figures
16 and 18 show the obtained ellipses (left) and the corre-
sponding orientation map (color-coded map on the right)
for each section in Fig. 5a, b respectively. Figures are not in
scale for better visualization. Each image has 121 ellipses
and the ellipse image size is 42 × 42 pixels (11 × 11 mm).
The results were also statistically analyzed. First, the

mean orientation angle was calculated for each section as
well as the correspondent standard deviation (STD) value.
Table 3 shows these values. Second, orientation values for
each section were sorted and then the values were plot-
ted. Figures 17a and 19a show these plots for the results
reported in Figs. 16 and 18, respectively. Last, all possi-
ble orientation values were dived into 18 classes and each
measured angle was classed into its specific class. For
instance, if the fiber orientation measured for a point was
5°, it would be classed into class 1 (class 1 includes angles
from 0° to 9°, class 2 includes angles from 10° to 19°, and so
on). Figures 17b and 19b show a bar chart where the num-
ber of samples of each one of the 18 classes are shown for
the results reported in Figs. 16 and 18, respectively.
By observing the results reported in Table 3 and in

Figs. 17 and 19, one can easily conclude that the fiber ori-
entation on the surface of a ROS sample is well distributed,

Table 3 Statistical results from ROS point-by-point inspection

Front section Back section

Mean (°) 93 82

STD (°) 58.1 59.3
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Fig. 17 Statical analyses of point-by-point inspection—front section. Statistical results of point-by-point inspection of the front section of sample
B61. a Plot of 121 sorted orientation values and b bar chart of the number of points per class

which confers (at least on its surface) a quasi-isotropic
behavior to the sample. Such analysis could be extended to
the other “layers” of the ROS sample confirming that the
random oriented strands give a quasi-isotropic behavior
to the entire sample.

Line results
The goal of the line approach is to develop a method that
could estimate the fiber orientation on the surface of a
ROS sample using a line heating region, that in this case
was obtained with a flying laser spot inspection. ANNs
were chosen because they have the capability of estimating
or approximating functions that can depend on a large
number of inputs and are generally unknown, which is
the present case. If one observes the result obtained with
the PCT, PPT, and DTT application on the reconstructed
pseudo-static sequence (see Fig. 4), it can easily observe
that there is information linked to the fiber orientation
on the edges of the line envelope. However, a relation

between this information and the actual fiber orientation
is far from obvious. Thus, we propose to use an ANN.
The first step in order to employ an ANN to approx-

imate this problem is to structure the network. In the
“Methodology” section, it is summarized the ANN used
in this work. Next, the network must be trained, i.e., the
network must learn how to classify a sample. In order
to train an ANN, a set of samples for which the clas-
sification of each sample is known beforehand must be
created. In order to create a training dataset, 49 points
were previously inspected by PTE on the same regions (49
on each region) where each flying laser spot inspection
would be later conducted. The same approach used for
the PTE was employed to assess the fiber orientation of a
single point using a static laser spot heating source. Thus,
588 PTE inspections, on 12 lines from 3 different sam-
ples, were performed in order to create a database with
known orientations that were used as ground truth. From
this database, 412 samples were used to train the net-

Fig. 18 Point-by-point inspection results—back section. Result of point-by-point inspection of the back section of sample B61. a 121 ellipses
obtained and b respective color-coded orientation map. The actual size of the inspected region is 50 × 50 mm2
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Fig. 19 Statical analyses of point-by-point inspection—back section. Statistical result of point-by-point inspection of the back section of sample B61.
a Plot of 121 sorted orientation values and b bar chart of the number of points per class

work. They were presented to the network as well as their
respective classes obtained from the static single-point
inspections. During the training process, the network
adjusts itself (its internal weights) in order to recognize
the input samples presented during training into their
classes with an acceptable error. From the other 176 sam-
ples, half were used for validation purposes. The other half
was not presented to the network during training process
and is used in order to test the network after training.
The pseudo-static sequences were processed with three

different techniques: PCT, PPT, and DTT. Thus, the train-
ing, validation, and testing processing of the network was
performed three times. Results were compared in order
to select the best infrared image processing technique
suitable for this specific problem. However, before the
technique was applied on ROS samples, we tried it on
the laminate case. Recognizing the fiber orientation on the
surface of a laminate sample is a trivial task and the results
obtained with the ANN for all three stages, i.e., train-
ing, validating, and testing, should be 100%. And, in fact,
we got 100% for all three infrared image processing tech-
niques tested. After this previous step, the technique was
applied on ROS samples where it would bemuchmore dif-
ficult for the ANN to assess the fiber orientation. Results
for the ROS case are presented in Table 4.
For the two techniques that presented better results,

i.e., PCT and PPT, we present in Fig. 20 a comparison of
results for classification of the same region. The inspected
region is 100 × 50 mm divided 11 lines spaced of 2 mm
from each other and each line was divided in 49 samples.
Results are color-coded according to class assigned to the

Table 4 ANN classification rates for 512 hidden neurons

Input image Total (%) Training (%) Validation (%) Test (%)

PCT 84.9 91.3 68.2 71.6

PTT 81.1 88.6 55.7 71.6

DTT 76.4 80.6 61.4 71.6

sample at the ANN’s output. The results are quite differ-
ent. Nevertheless, they are within the results that we could
expect with a test accuracy of 71.6%.
As it can be observed in Fig. 21, results obtained from

PCT and PPT appear to be quite different. However, it can
be observed that the differences usually occurred between
neighboring classes, and at this early stage of the algo-
rithm, it is acceptable since each class covers 45° (± 22°)
and a sample which is placed near the border of one class
could easily be misclassified as the neighbor class. For
example, a sample which has fibers oriented at 20° could

Fig. 20 Line approach results. Results obtained with PCT, PPT, and
DDT applied on the pseudo-static line
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Fig. 21 Point-by-point and line approach result comparison. The same color coding used in Fig. 18b was used here. Results obtained with the line
approach from the same region reported in Fig. 18b. Results calculated with the ANN for the FLS inspection are color-coded according to the target
classes

be classified in class 1 (centered at 0°) by PCT and clas-
sified in class 2 (centered at 45°) by PPT since each class
covers ± 22° and the sample originally oriented at 20°.
Also, the number of classes was limited to four in order

to develop a first solution that could be improved later. In
the current state of this research, each class is 45° wide.
However, if six or nine classes were used instead of four
(30° or 20° wide respectively instead of 45°), the perfor-
mance of the network would be severely affected in the
current state of this solution. Generally, the classification
rate in the testing dataset decreased to 30 and 25%, respec-
tively. Nevertheless, these first results obtained with four
classes are very promising.
Other configurations (number of hidden neurons) were

tested for the ANN. However, the obtained results
were not satisfactory. These results are presented in
Table 5. With fewer hidden neurons, the results were even
worse.

Comparison
Additionally, the 50 × 50-mm region (Fig. 5b) that was
inspected with the static spot heating PTE technique
reported in Fig. 18b was inspected with the line approach.
These results are displayed in Fig. 21 and can be directly
compared to the one showed in Fig. 18b. The inspected

Table 5 ANN classification rates for 256 hidden neurons

Input image Total (%) Training (%) Validation (%) Test (%)

PCT 75.7 80.6 65.9 62.5

PTT 74.5 78.2 65.9 65.9

DTT 85.9 95.1 65.9 62.5

region is depicted in Fig. 5b. The result of inspection of
the region with the point-by-point PTE inspection where
121 points where inspected (11 × 11 points) is showed
in Fig. 18b. Results are presented and color-coded in
a range of 0° to 180°. Figure 21 shows the inspection
results of the same region for both the point-by-point
PTE inspection and the line (FLS/ANN) approach. In
this last case, 11 lines with 32 samples on each line are
reported, i.e., 11 line inspections were performed with the
FLS technique. Results are displayed color-coded accord-
ing to the 0 to 180 range. The image processing technique
used in this case was the PPT. It must be remembered
here that each classification result obtained with the line
approach covers a region with 45° while the point-by-
point of the given classification is in the 1° range. The
best improvement obtained with the line approach is the
inspection speed.While the PTE inspection of a single line
showed in Fig. 5b took around 25 min, the line inspec-
tion presented in Fig. 21 was performed and processed
in under 30 s, i.e., 50 times less. This is an important
factor when considering an approach to be used in the
industry.

Conclusions
In this work, it was presented two approaches for fiber ori-
entation assessment on ROS materials based on infrared
thermography. The first one uses the classical PTE
method and a point-by-point inspection procedure to
evaluate the fiber orientation over an ROS region since
the fibers are randomly oriented. The second approach
is inspired in the PTE method. It uses a flying laser spot
inspection procedure and classifies the samples using an
artificial neural network.
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For the PTE approach, inspections were performed on
single strands since each strand has its own fiber orienta-
tion. Ultimately, a matrix of several points on the surface
of a flat ROS sample was inspected in order to estimate
“how random” fiber orientation is on the sample’s surface.
An “orientation map” was created and statistical analysis
of the results (Table 3) showed that the fiber orientation
on a ROS sample is well distributed, which confirms the
quasi-isotropic behavior of ROS samples.
However, an inspection approach based on a matrix of

several points obtained with PTE of a ROS sample is very
time consuming. The inspection of 121 points (Fig. 5b)
presented in this paper took about 2 h. Thus, we pro-
posed to use the line approach described here to inspect a
broader region at once. The same experiments which last
for 2 h in the PTE case were performed in less than 6 min
using the line approach.
Our proposed line approach uses a flying laser spot

(FLS) to heat the sample over a line region. Then, the ther-
mal sequence is rearranged and processed with three dif-
ferent image processing techniques: PCT, PPT, and DTT.
From these processed images, features are extracted and
an ANN is used to recognize the fiber orientation linked
to that sample. Training and testing results were presented
in Table 4. The best technique was PCT which presented
an accuracy in the training stage of 91.3 and 71.6% in
the testing. This is probably because of the nature of the
PCT technique which tends to project the most signifi-
cant information present in the data set into the first EOF
images. Even though the results obtained with the ANN
are not spectacular, the inspection time of the method is
the great advantage of the proposed line approach.
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