
Journal of the
Brazilian Computer Society

Jeanneau et al. Journal of the Brazilian Computer
Society (2017) 23:15
DOI 10.1186/s13173-017-0064-9

RESEARCH Open Access

An autonomic hierarchical reliable
broadcast protocol for asynchronous
distributed systems with failure detection
Élise Jeanneau ,1 Luiz A. Rodrigues2* , Luciana Arantes1 and Elias P. Duarte Jr.3

Abstract

Reliable broadcast is a fundamental building block in fault-tolerant distributed systems. It consists of a basic primitive
that provides agreement among processes of the system on the delivery of each broadcast message, i.e., either none
or all correct processes deliver the message, despite failures of processes. In this work, we propose a reliable broadcast
solution on top of VCube, assuming that the system is asynchronous. VCube is an autonomic monitoring layer that
organizes processes on a hypercube-like overlay which provides several logarithmic properties even in the presence
of processes failures. We consider that processes can fail by crashing, do not recover, and faults are eventually
detected by all correct processes. The protocol tolerates false suspicions by sending additional messages to suspected
processes but logarithmic properties of the algorithm are still kept. Experimental results show the efficiency of the
proposed solution compared to an one-to-all strategy.

Keywords: Implementation of distributed system, Autonomic computing, Fault-tolerant broadcasts, Spanning trees

Introduction
Broadcast is a basic component to implement numerous
distributed applications and services such as notification,
content delivery, replication, and group communication
[1–3]. A process in a distributed system uses broadcast to
send a message to all other processes in the system. For-
mally, reliable broadcast is defined in terms of two prim-
itives: BROADCAST(m), which is defined by the broadcast
algorithm and called by the application to disseminate m
to all processes, and DELIVER(m), which is defined by the
application and called by the broadcast algorithm when
messagem has been received.
From an implementation point of view, the broadcast

primitive sends point-to-point messages to each process
of the system. Broadcast algorithms must ensure that, if
a correct1 process broadcasts a message, then it eventu-
ally delivers the message (validity property). Furthermore,
every correct process delivers a message at most once and
only if that message was previously broadcast by some

*Correspondence: luiz.rodrigues@unioeste.br
2Department of Computer Science, Western Paraná State University, Rua
Universitária, 2069, Jardim Universitário, CEP 85.814-110 Cascavel-PR, Brazil
Full list of author information is available at the end of the article

process (integrity property) [4]. However, if the sender
fails during the execution of the broadcast primitive,
some processes might not receive the broadcast message.
In order to circumvent this problem, reliable broadcast
ensures, besides the validity and integrity, that even if the
sender fails, every correct process delivers the same set of
messages (agreement property).
There exists a considerable amount of literature on

reliable broadcast algorithms, such as the one where all
correct receivers retransmit all received messages guar-
anteeing then the delivery of all broadcast messages by
the other correct processes of the system [5]. We are par-
ticularly interested in solutions that use failure detectors
[6] which notify the broadcast algorithm about processes
failures. Upon receiving such an information, the algo-
rithm reacts in accordance to tolerate the failure. Another
important feature of reliable broadcast algorithms con-
cerns performance, which is related to how broadcast
messages are disseminated to processes. Aiming at scal-
ability and message complexity efficiency, many reliable
broadcasts organize processes on logical spanning trees.
Messages are then disseminated over the constructed tree,
therefore providing logarithmic performance [7–11].

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-017-0064-9&domain=pdf
http://orcid.org/0000-0002-9516-1282
mailto: luiz.rodrigues@unioeste.br
http://creativecommons.org/licenses/by/4.0/

Jeanneau et al. Journal of the Brazilian Computer Society (2017) 23:15 Page 2 of 14

This work presents an autonomic reliable broadcast
algorithm in which messages are transmitted over span-
ning trees dynamically built on top of a logical hierarchical
hypercube-like topology. Autonomic systems constantly
monitor themselves and automatically adapt to changes
[12]. The logical topology is maintained by the underly-
ing VCube monitoring system which also detects failures
[13]. VCube is a distributed diagnosis layer responsi-
ble for organizing processes of the system in a virtual
hypercube-like cluster-based topology which is dynam-
ically re-organized in case of process failure. When
invoked, VCube also gives information about the liveness
of the processes that compose the system.
We assume a fully connected asynchronous system in

which processes can fail by crashing, and crashes are per-
manent. Links are reliable. A process that invokes the
reliable broadcast primitive starts the message propaga-
tion over a spanning tree. This tree is built on demand
with information obtained from VCube and is dynami-
cally reconstructed upon the detection of a node crash
(process failure).
In a previous work [14], we proposed an autonomic reli-

able broadcast algorithm on top of the Hi-ADSD, a pre-
vious version of VCube. The algorithm guarantees several
logarithmic properties, even when nodes fail and allows
transparent and efficient spanning tree reconstructions.
However, for that solution, we considered a synchronous
model for the system, i.e., there exist known bounds on
message transmission delays and processors’ speed and,
consequently, VCube provides a perfect process failure
detection. On the one hand, the advantage of such syn-
chronous assumption is that there was no false failure
suspicions and, thus, if VCube notifies the broadcast algo-
rithm that a given process is faulty, the algorithm is sure
that it can stop sending message to this faulty process and
then removes it forever from the spanning tree construc-
tions. On the other hand, the synchronous assumption
considerably restrains the distributed systems and appli-
cations that can use the broadcast protocol since many of
the current network environments are considered asyn-
chronous (there exist no bounds on message transmission
delay or on processors’ speed).
Hence, considering the above constraints, we propose in

this article a new autonomic reliable broadcast algorithm,
using VCube in an asynchronous model. We assume that
the failure detection service provided by VCube is unreli-
able since it can make mistakes by erroneously suspecting
a correct process (false suspicion) or by not suspecting
temporally a node that has actually crashed. However,
upon the detection of a mistake, VCube corrects it. Fur-
thermore, it also ensures that eventually all failures are
detected (strong completeness property). Note that such
false suspicions render a broadcast algorithm much more
complex than the previous one since it can induce a

violation of the reliable broadcast. For instance, the algo-
rithm must ensure that a falsely suspected process must
receive and deliver, only once, all broadcast messages, oth-
erwise the agreement and integrity properties would be
violated. In our solution, false suspicions are tolerated by
sending special messages to those processes suspected of
having failed. We must also emphasize that our aim is
to provide a reliable broadcast algorithm which is effi-
cient, i.e., that keeps, as much as possible, the logarithmic
properties of the spanning tree dissemination over the
hypercube-like topology. Our algorithm tolerates up to
n − 1 node crashes.
In addition to the specification, we present experimen-

tal results in which the proposed algorithm was com-
pared to a one-to-all point-to-point broadcast protocol
and another algorithm based on hypercubes that do not
employ failure detectors. The results confirm the effi-
ciency of the proposed broadcast considering the follow-
ing: (1) the latency to deliver the message to all correct
processes; and (2) the total number of messages, including
retransmissions in case of failures/false suspicion.
The rest of this paper is organized as follows: first,

we present the Related work. Next, we define the Sys-
tem model and briefly describe VCube monitoring algo-
rithm and the hypercube-like topology. Next, we present
the proposed autonomic reliable broadcast algorithm for
asynchronous systems, including proofs and performance
issues. Experimental results are reported in sequence.
We finish this article by presenting final remarks in the
Conclusion section.

Related work
Many reliable broadcast algorithms of the literature
exploit spanning trees such as [7–11].
Schneider et al. introduced in [7] a tree-based fault-

tolerant broadcast algorithm whose root is the process
that starts the broadcast. Each node forwards the mes-
sage to all its successors in the tree. If one process p
that belongs to the tree fails, another process assumes the
responsibility of retransmitting themessages that p should
have transmitted if it were correct. Like to our approach,
processes can fail by crashing and the crash of any process
is detected after a finite but unbounded time interval by
a failure detection module. However, the authors do not
explain how the algorithm rebuilds or reorganizes the tree
after a process failure.
In [8], a reliable broadcast algorithm is provided by

exploiting disjoint paths between pairs of source and des-
tination nodes. Multiple-path algorithms are particularly
useful in systems that cannot tolerate the time overhead
for detecting faulty processors, but there is an overhead
in the number of duplicated messages. On a star network
with n edges, the algorithm constructs n − 1 directed
edge-disjoint spanning trees. Fault tolerance is achieved

Jeanneau et al. Journal of the Brazilian Computer Society (2017) 23:15 Page 3 of 14

by retransmitting the same messages through a number
of edge-disjoint spanning trees. The algorithm tolerates
up to n − 2 failure of nodes or edges and can be
adjusted depending on the network reliability. Similarly,
Kim et al. [9] propose a tree-based solution to disseminate
a message to a large number of receivers using multiple
data paths in a context of time-constrained dissemina-
tion of information. Thus, arguing that reliable extensions
using ack-based failure recovery protocols cannot support
reliable dissemination with time constraints, the authors
exploit the use of multiple data paths trees in order to con-
ceive a fast and reliable multicast dissemination protocol.
Basically, the latter is a forest-based (multiple parents-to-
multiple children) tree structure where each participant
node has multiple parents as well as multiple children. A
third work that exploits multi-paths spanning trees is [10]
where the authors present a reliable broadcast algorithm
that runs on a hypercube and uses disjoint spanning trees
for sending a message through multiple paths.
Raynal et al. [11] presented a reliable tree-based broad-

cast algorithm suited to dynamic networks in which mes-
sage transfer delays are bounded by a constant of δ units
of time. Whenever a link appears, its lifetime is at least
δ units of time. The broadcast is based on a spanning-
tree on top of which processes forward received messages
to their respective neighbors. However, as the system is
dynamic, the set of current neighbors of a process p may
consists of a subset of all its neighbors and, therefore, p has
to additionally execute specific statements when a link re-
appears, i.e., forwards the message on this link if it is not
sure that the destination process already has a copy of it.
Similarly to our approach, many existing reliable broad-

cast algorithms exploit spanning trees constructed on
hypercube-like topologies [10, 15, 16]. In [15], the authors
present a fault-tolerant broadcast algorithm for hyper-
cubes based on binomial trees. The algorithm can recur-
sively regenerate a faulty subtree, induced by a faulty node,
through one of the leaves of the tree. On the other hand,
unlike our approach, there is a special message for adver-
tising that the tree must be reconstructed and, in this case,
broadcast messages are not treated by the nodes until the
tree is rebuilt. The HyperCast protocol proposed by [16]
organizes the members of a multicast group in a logi-
cal tree embedded in a hypercube. Labels are assigned to
nodes, and the one with the highest label is considered to
be the root of the tree. However, due to process failures,
multiple nodes may consider themselves to be the root
and/or different nodes may have different views of which
node is the root.
Leitão et al. present in [1] the HyParView, a hybrid

broadcast solution that combines a tree-based strategy
with a gossip protocol. A broadcast tree is created embed-
ded on a gossip-based overlay. Broadcast is performed
by using gossip on the tree branches. Later, some of the

authors proposed a second work [17] where they intro-
duced Thicket, a decentralized algorithm to build and
maintain multiple trees over a single unstructured P2P
unstructured overlay for information dissemination. The
authors argue that multiple trees approach allow that each
node to be an internal node in just a few trees and a
leaf node in the remaining of the trees providing, thus,
load distribution as well as redundant information for
fault-tolerance.
In [14], we presented a reliable broadcast solution based

on dynamic spanning trees on top of the Hi-ADSD, a
previous version of the VCube. Multiple trees are dynam-
ically built that include all correct nodes, where each
tree root corresponds to the node that called a broadcast
primitive. Contrarily to the current work, that solution
considers that the system model is synchronous and that
VCube guarantees perfect failure detection. In the current
work, false suspicions are possible and are dealt with to
guarantee the correction of the algorithm.

Systemmodel
We consider a distributed system that consists of a finite
set P of n > 1 processes {p0, .., pn − 1} that communicate
only by message passing. Each single process executes one
task and runs on a single processor. Therefore, the terms
node and process are used interchangeably in this work.
The system is asynchronous, i.e., relative processor

speeds and message transmission delays are unbounded.
Links are reliable, and, thus, messages exchanged between
any two correct processes are never lost, corrupted or
duplicated. There is no network partitioning.
Processes communicate by sending and receiving mes-

sages. The network is fully connected: each pair of
processes is connected by a bidirectional point-to-point
channel. Processes are organized in a virtual hypercube-
like topology, called VCube (see next subsection). Pro-
cesses can fail by crashing and, once a process crashes, it
does not recover. If a process never crashes during a run,
it is considered correct or fault-free; otherwise, it is con-
sidered to be faulty. After any crash, the topology changes,
but the logarithmic properties of the hypercube are kept.
We consider that the primitives to send and receive a

message are atomic, but the broadcast primitives are not.

VCube topology and failure detection
Let n be the number of processes in the system P. VCube
[13] is a distributed diagnosis algorithm that organizes
the processes of the system P in a virtual hypercube-
like topology. In a hypercube of d dimensions, called
d-VCube, there are 2d processes2. A process i groups the
other n − 1 processes in log2 n clusters, such that clus-
ter number s has size 2s−1. Figure 1 shows the hierarchical
organization for a 3-VCube. The ordered set of processes
in each cluster s is defined by the ci,s, i = 0, .., n − 1, also

Jeanneau et al. Journal of the Brazilian Computer Society (2017) 23:15 Page 4 of 14

Fig. 1 Hierarchical cluster-based logical organization in a 3-dimensional VCube

shown in Fig. 1, in which ⊕ denotes the bitwise exclusive
or operator (xor).
To determine the state of each process, a process i tests

another process in the ci,s executing a test procedure and
waiting for a reply. If the correct reply is received within an
expected time interval, the monitored process is consid-
ered to be correct or fault-free. Otherwise, it is considered
to be faulty or suspected. We should point out that in
an asynchronous model, which is the case in the cur-
rent work, VCube provides an unreliable failure detection
since it can erroneously suspect a correct process (false
suspicion). If later it detects its mistake, it corrects it. On
the other hand, according to the properties proposed by
Chandra and Toueg [6] for unreliable failure detectors,
VCube ensures the strong completeness property: eventu-
ally every process that crashes is permanently suspected
by every correct process. Since there are false suspicions,
VCube does not provide any accuracy property.
The virtual hypercube topology is created by connect-

ing each process i to the first correct process in the ci,s,
s = 1, .., log2 n. For instance, considering all processes
are correct in Fig. 1, process p0 is connected to {1, 2, 4},
i.e., the first correct processes in each cluster c0,1 = (1),
c0,2 = (2, 3), and c0,3 = (4, 5, 6, 7).
In order to avoid that several processes test the same

processes in a given cluster, process i executes a test on
process j ∈ ci,s only if process i is the first faulty-free pro-
cess in cj,s. Thus, any process (faulty or fault-free) is tested
at most once per round, and the latency, i.e., the number
of rounds required for all fault-free processes to identify
that a process has become faulty is log2 n in average and
log22 n rounds in the worst case.

The proposed reliable broadcast algorithm
A reliable broadcast algorithm ensures that the same set of
messages is delivered by all correct processes, even if the
sender fails during the transmission. Reliable broadcast
presents three properties [5]:

• Validity: if a correct process broadcasts a message m,
then it eventually delivers m.

• Integrity: every correct process delivers the same
message at most once (no duplication) and only if
that message was previously broadcast by some
process (no creation).

• Agreement: if a message m is delivered by some
correct process pi, then m is eventually delivered by
every correct process pj. Note that the agreement
property still holds if m is not delivered by any
process.

Our reliable broadcast algorithm exploits the virtual
topology maintained by VCube, whenever possible. Each
process creates, thus, a spanning tree rooted at itself to
broadcast a message. The message is forwarded over the
tree and, for every message that a node of the tree sends
to one of its correct neighbor, it waits for the corre-
sponding acknowledgement from this neighbor, confirm-
ing the reception of the message. Algorithm 1 presents
the pseudo-code of our proposal reliable broadcast proto-
col for an asynchronous system with n = 2d processes.
The dimension of VCube is, therefore, d. A process gets
information, not always reliable, about the liveness of the
other processes by invoking VCube. Hence, the trees are
dynamically built and autonomically maintained using the
hierarchical cluster structure and the knowledge about
faulty (or falsely suspected) nodes. The algorithm tolerates
up to n − 1 failures.
Let i and j be two different processes of the system.

The function clusteri(j) = s returns the identifier s
of the cluster of process i that contains process j, 1 ≤
s ≤ d. For instance, in the 3-VCube as shown in Fig. 1,
cluster0(1) = 1, cluster0(2) = cluster0(3) = 2 and
cluster0(4) = cluster0(5) = cluster0(6) = cluster0(7) = 3.

Message types and local variables
Let m be the application message to be transmitted from
a sender process, denoted source, to all other processes in
the system. We consider three types of messages:

• 〈TREE,m〉: message broadcast by the application that
should be forwarded over VCube to all processes
considered to be correct by the sender;

Jeanneau et al. Journal of the Brazilian Computer Society (2017) 23:15 Page 5 of 14

• 〈DELV ,m〉: message sent to processes suspected of
being faulty in order to avoid that false suspicions
induce the no delivery of the message by correct
processes. The recipient of the message should
deliver it but not forward it;

• 〈ACK ,m〉: used as an acknowledgement to confirm
that a TREE message related to m was received.

For the sake of simplicity, we use TREE, DELV, and ACK
to denote these messages.
Every message m carries two fielding containing: (1)

the identifier of the process that broadcast m and (2) a
timestamp generated by the process local counter which
uniquely identifies m. The first message broadcast by a
process i has timestamp 0 and at every new broadcast, i
increments the timestamp by 1. The algorithm can extract
these two parameters from m by respectively calling the
functions source(m) and ts(m).
Process i keeps the following local variables:

• correcti: the set of processes considered correct by
process i.

• lasti[n]: an array of n elements to keep the last
messages delivered by i. For each process j, lasti

[
j
]
is

the last message broadcasted by j that was delivered
by i. If no message was received from j, lasti

[
j
] = ⊥.

• ack_seti: a set with all pending acknowledgement
messages which process i is waiting for. For each
message 〈TREE,m〉 received by i from process j and
retransmitted to process k, an element 〈j, k,m〉 is
added to this set; The symbol ⊥ represents a null
element. The asterisk is used as a wildcard. For
instance, 〈j, ∗,m〉 means all pending acks for a
message m received from process j and forwarded to
any other process.

• pendingi: list of the messages received by i that were
not delivered yet because they are “out of order” with
regard to their timestamp, i.e.,
ts(m) > ts(lasti(source(m)) + 1, ensuring the FIFO
order.

• historyi: the history of messages that were already
broadcasted by i. This set is used to prevent sending
the same message to the same cluster more than
once. 〈j,m, h〉 ∈ historyi indicates that the message m
received from process j was already sent by i to the
clusters ci,s for all s ∈ [1, h].

Algorithm 1 Reliable broadcast primitives at process i
1: ∀j ∈ [0, .., n − 1] : lasti[j]← ⊥ � Initialization
2: ack_seti ← ∅
3: correcti ← {0, ..., n − 1}
4: pendingi ← ∅
5: historyi ← ∅

6: procedure BROADCAST(messagem) � Invoked by the
application

7: wait until ack_seti ∩ {〈⊥, ∗, lasti[i] 〉} = ∅
8: lasti [i] ← m
9: DELIVER(m)

10: BROADCAST_TREE(⊥,m, log2n)

11: procedure BROADCAST_TREE(process j, messagem, inte-
ger h) � Sendm to all first fault-free node in each cluster
smaller than h

12: start ← 0
13: if ∃x : 〈j,m, x〉 ∈ historyi then
14: start ← x
15: historyi ← historyi\{〈j,m, x〉}
16: historyi ← historyi ∪ {〈j,m,max(start, h)〉}
17: if start < h then
18: for all s ∈ [start + 1, h] do
19: BROADCAST_CLUSTER(j,m, s)

20: procedure BROADCAST_CLUSTER(process j, message m,
integer s) � Sendm to the the first fault-free node and all
suspect process in cluster ci,s

21: sent ← false
22: for all k ∈ ci,s do
23: if sent = false then
24: if 〈j, k,m〉 ∈ ack_seti and k ∈ correcti then
25: sent ← true
26: else if k ∈ correcti then
27: SEND(〈TREE,m〉) to pk
28: ack_seti ← ack_seti ∪ {〈j, k,m〉}
29: sent ← true
30: else if 〈j, k,m〉 /∈ ack_seti then
31: SEND(〈DELV ,m〉) to pk

32: procedure CHECK_ACKS(process j, messagem)
33: if j �= ⊥ and ack_seti ∩ {〈j, ∗,m〉} = ∅ then
34: SEND(〈ACK ,m〉) to pj

35: procedure HANDLE_MESSAGE(process j, messagem)
36: pendingi ← pendingi ∪ {m}
37: while ∃l ∈ pendingi : source(l) = source(m) ∧ (ts(l) =

ts(lasti[source(l)]) + 1
38: or lasti [source(l)] = ⊥ ∧ ts(l) = 0) do
39: lasti [source(l)] ← l
40: pendingi ← pendingi\{l}
41: DELIVER(l)
42: if source(m) /∈ correcti then
43: BROADCAST_TREE(j, lasti[source(m)] , log2n)

44: upon receive 〈TREE,m〉 from pj
45: HANDLE_MESSAGE(m)
46: BROADCAST_TREE(j,m, clusteri(j) − 1)
47: CHECK_ACKS(j,m)

48: upon receive 〈DELV ,m〉 from pj
49: HANDLE_MESSAGE(m)

Jeanneau et al. Journal of the Brazilian Computer Society (2017) 23:15 Page 6 of 14

50: upon receive 〈ACK ,m〉 from pj
51: for all k = x : 〈x, j,m〉 ∈ ack_seti do
52: ack_seti ← ack_seti\{〈k, j,m〉}
53: CHECK_ACKS(k,m)

54: upon notifying crash(j)
55: correcti ← correcti\{j}
56: for all p = x,m = y : 〈x, j, y〉 ∈ ack_seti ∩ {〈∗, j, ∗〉} do
57: BROADCAST_CLUSTER(p,m, clusteri(j))
58: ack_seti ← ack_seti\{〈p, j,m〉}
59: CHECK_ACKS(p,m)
60: if lasti[j] �= ⊥ then
61: BROADCAST_TREE(j, lasti[j] , log2n)

62: upon notifying up(j)
63: correcti ← correcti ∪ {j}

Algorithm description
Process i broadcasts a message by calling the BROAD-
CAST(m) function. Line 7 ensures that a new broadcast
starts only after the previous one has been completed,
i.e., there are no pending acks for the lasti[i] message.
Note that some processes might not have received the
previous message yet because of false suspicions. Then,
the received message m is locally delivered to i (line 9)
and, by calling the function BROADCAST_TREE (line 10),
i forwards m to its neighbors in VCube. To this end, it
calls, for each cluster s ∈ [1, log2n], the function BROAD-
CAST_CLUSTER that sends a TREE message to the first
process k which is correct in the cluster (line 27). To
those processes that are not correct, i.e, suspected of hav-
ing crashed and placed before k in the cluster, a DELV
message (line 31) is sent to them. Notice that in both
cases, the messages are sent provided i has not already
forwarded m, received from j, to k. For every TREE
message sent, the corresponding ack is included in the
list of pending acks (line 28). Note that in the notation
used, upon-clauses cannot preempt the procedures nor
vice-versa.
Upon reception of a message 〈TREE,m〉 from process j

(line 44), process i calls the function HANDLE_MESSAGE.
In this function,m is added to the set of pending messages a
nd then all pending messages which were broadcast by the
same process that broadcast m (source(m)) are delivered in
increasing order of timestamps, provided no message is
missing in the sequence of timestamps (lines 36 - 41).
In the same HANDLE_MESSAGE function, if i sus-
pects that source(m) failed, it restarts the broadcast of
lasti[source(m)] (line 43) to ensure that every correct pro-
cess receives the message even if source(m) crashed in the
middle of the broadcast. Otherwise, by calling function
BROADCAST_TREE with parameter h = clusteri(j) − 1
(line 46), m is forwarded to all neighbors of i in each
sub-cluster of i that should receivem.

If process i is a leaf in the spanning tree of the broadcast
(clusteri(j) − 1 = 0) or if all neighbors of i (i.e., children of
i in the tree) that should receive themessage are suspected
of being crashed, i sends an ACK message to the pro-
cess which sent m to it, by calling function CHECK_ACKS
(line 34).
If process i receives a 〈DELV ,m〉 message from j

(line 48), it means that j falsely suspects i of being crashed
and has decided to trust another process with the for-
warding of the message to the rest of the tree. Therefore, i
can simply call the HANDLE_MESSAGE function to deliver
the message and does not need to call BROADCAST_TREE.
Whenever i receives a message 〈ACK ,m〉, it removes the

corresponding ack from set of pending acks (line 52) and,
by calling the function CHECK_ACKS, if there are no more
pending acks for message m, i sends an ACK message to
the process j which sent m to it (line 34). If j = ⊥, the
ACK message has reached the process that has broadcast
m (source(m)) and the ACK message does not need to be
forwarded.
The detection of the failure of process j is notified to

i (crash(j)). It is worth pointing out that this detection
might be a false suspicion. Three actions are taken by i
upon receiving such a notification: (1) update of the set of
processes that it considers correct (line 55); (2) removal
from the set of pending acks of those acks whose related
message m has been retransmitted to j (line 58); (3) re-
sending to k, the next neighbor of j in the cluster of j
(if k exists), of those messages previously sent to j. The
re-sending of these messages triggers the propagation of
messages over a new spanning tree (line 57).
Finally, in case j crashes, i has to re-broadcast the last

message broadcast by j (line 61). Notice that, in this case,
the history variable is used in order to prevent i from re-
rebroadcasting the message to those clusters that i has
already sent the same message.
If VCube detects that it had falsely suspected process j,

it corrects its mistake and notifies i which then includes j
in its set of correct processes (line 63).
Note that the restriction that to broadcast a new mes-

sage it is only done after the previous broadcast has
completed (line 7) was included to simplify the delivery
procedure, so that it is not necessary to keep all messages
received, but only one: the last broadcast. It also presents
advantages when the source process is detected as faulty,
because only the last message needs to be broadcast again.
Note that it is not difficult to allow concurrent messages,
but handling them will make the algorithm more difficult
to present and understand.

Example of execution
Consider the 3-VCube topologies in Fig. 2 where process
0 (p0) broadcasts a message. First, consider the fault-free
scenario represented by Fig. 2a. Only TREE and ACK

Jeanneau et al. Journal of the Brazilian Computer Society (2017) 23:15 Page 7 of 14

a b

Fig. 2 Reliable broadcast started by process 0 (p0). aMessages in a fault-free execution. bMessages when process p4 is suspected

messages are involved. After delivering the TREEmessage
to itself, p0 sends a copy of the message to p1, p2, and p4,
which are neighbors of p0 and the first correct processes
on each of 0’s clusters. Process p1 receives the TREE mes-
sage and, as p1 is member of cluster 1 of process p0 (which
means it is a leaf in p0’s tree), it delivers the message and
send the ACK to p0. Process p2 is in cluster 2 of process p0.
In this case, it must retransmit the message to its cluster 1,
which contains process p3 (c2,1 = 3). Process p3 is also a
leaf, since it is in cluster 1 of p2. So, p3 delivers themessage
and sends the ACK back to p2, and p2 in turn, sends the
ACK back to p0. Process p4 is in cluster 3 of p0. It means
p4 needs to retransmit the message to the first free pro-
cesses in clusters c4,1 and c4,2, i.e., p5 and p6. Process p6,
on the other hand, still needs to retransmit the message
to its cluster c6,1 that contains only process p7. Processes
p5 and p7 operate in the same way as processes p1 and p3.
Each ACK is propagated back to the source p0 following
the reverse path of the spanning tree. As soon as process
p0 receives the ACKs from p1, p2, and p4, the broadcast is
finished.
Now, consider the scenario represented by Fig. 2b, in

which p4 is considered suspected by the source p0. In this
case, process p0 sends TREE messages to p1 and p2, as
done in the fault-free scenario. Process p4 is not the first
fault-free process in the cluster 3 anymore. So, the TREE
message is sent to p5 (c0,3 = (4, 5, 6, 7)) and a DELVmes-
sage is sent to p4, since in the asynchronous environment
there is no guarantee if p4 is really faulty. TREE and ACK
messages are propagated to p2, p7,and p6, and forwarded
to p0 following the trivial rules already described.
In both scenarios, all correct processes receive a copy

of the TREE message broadcast by p0, as required by the
broadcast properties.

Proof of correctness
In this section, we will prove that Algorithm 1 implements
a reliable broadcast.

Lemma 1 Algorithm 1 ensures the validity property of
reliable broadcast.

Proof If a process i broadcasts amessagem, the only way
that i would not deliver m is if i waits forever in line 7.
This wait is interrupted when the set ack_seti contains no
more pending acknowledgements related to the message
lasti [i] previously broadcast by i.
For any process j that i sent lasti [i] to, i added a pend-

ing ack in ack_seti (line 28). If j is correct, then it will
eventually answer with an ACK message (line 34) and i
will remove 〈⊥, j, lasti[j] 〉 from ack_seti on line 52. If j is
faulty, then i will eventually detect the crash and remove
the pending ack in line 58.
As a result, all of the pending acks for lasti [i] will even-

tually be removed from ack_seti and i will deliver m on
line 9.
Line 9 then ensures that iwill deliver the message before

broadcasting it.

Lemma 2 For any processes i and j, the value of
ts(lasti[j]) only increases over time.

Proof For the sake of simplicity, we take the convention
that ts(⊥) = −1. The lasti array is only modified in lines 8
and 39.
The first case can only happen when i broadcasts

a new message m, and since timestamps of new
messages sent by a same processes have to be increasing,
ts(m) > ts(lasti [i]). When i calls BROADCAST(m)

Jeanneau et al. Journal of the Brazilian Computer Society (2017) 23:15 Page 8 of 14

procedure, ts(lasti[i]) will therefore increase in
line 8.
The other way for lasti to be modified is on line 39.

lasti [source(l)] will then be updated with message l
if lasti [source(l)] = ⊥ and ts(l) = 0 (and therefore
ts(lasti [source(l)]) = −1 < ts(l)), or if ts(l) = ts(lasti
[source(l)]) + 1. It follows that lasti[source(l) is only
updated if the new value of ts(lasti[source(l)]) would be
superior to the old one.

Lemma 3 Algorithm 1 ensures the integrity property of
reliable broadcast.

Proof Processes only deliver a message if they are broad-
casting it themselves (line 9) or if the message is in their
pendingi set (line 41). Messages are only added to the
pendingi set on line 36 after they have been received from
another process. Since the links are reliable and do not
create messages, it follows that a message is delivered only
if it was previously broadcasted (there is no creation of
messages).
To show that there is no duplication of messages, let us

consider two cases:
• source(m) = i. Process i called BROADCAST(m).

As proved in Lemma 1, i will deliver m in line 9.
Since the BROADCAST procedure is only called once
with a given message, the only way that i would
deliver m a second time is in line 41. Since lasti[i]
was set to m on line 8, it follows from Lemma 2 that
m will never qualify to pass the test in lines 37 – 38.• source(m) �= i. Process i is not the emitter of
message m and did not call BROADCAST(m).
Therefore the, the only way for i to deliver m is in
line 41. Before i delivers m for the first time, it sets
lasti[source(m)] to m on line 39. It then follows from
Lemma 2 that m will never again qualify to pass the
test on lines 37 – 38, and therefore i can deliver m at
most once.

Lemma 4 Algorithm 1 ensures the agreement property of
reliable broadcast.

Proof Let m be a message broadcast by a process i. We
consider two cases:

• i is correct. It can be shown by induction that every
correct process receives m.
As a basis of the induction, let us consider the case
where n = 2 and P = {i, j}. It follows that ci,1 = {j}.
Therefore, i will send m to j in line 31 if i suspects j
or in line 27 otherwise. If j is correct, it will eventually
receive m since the links are reliable and will deliver
m in line 41. i will also deliver m by virtue of the
validity property.

We now have to prove that if every correct process
receives m for n = 2k , it is also the case for
n = 2k+1. The system of size 2k+1 can be seen as
two subsystems P1 = {i} ∪ ⋃k

x = 1 ci,x and
P2 = ci,k+1 such that |P1| = |P2| = 2k .
The BROADCAST_TREE and BROADCAST_CLUSTER
procedures ensure that for every s ∈ [1, k + 1], i will
send m to at least one process in ci,s. Let j be the first
process in ci,k+1. If j is correct, it will eventually
receive m. If j is faulty and i detected the crash prior
to the broadcast, i will send the message to j anyway
in case it is a false suspicion (line 31) but it will also
send it to another process in ci,k+1 as a precaution
(line 27). i will keep doing so until it has sent the TREE
message to a non-suspected process in ci,k+1, or until
it has sent the message to all the processes in ci,k+1.
If j is faulty and i only detects the crash after the
broadcast, the BROADCAST_CLUSTER procedure will
be called again in line 57, which ensures once again
that i will send the message to a non-suspected
process in ci,k + 1. As a result, unless all the processes
in ci,k+1 are faulty, at least one correct process in
ci,k +1 will eventually receive m. This correct process
will then broadcast m to the rest of the P2 subsystem
in line 46.
Since a correct process broadcasts m in both
subsystems P1 and P2, and since both subsystems are
of size 2k , it follows that every correct process in P
will eventually receive m.

• i is faulty. If i crashes before sending m to any
process, then no correct process delivers m and the
agreement property is verified. If i crashes after the
broadcast is done, then everything happens as if i was
correct. If i crashes after sending m to some
processes and a correct process j receives m, then j
will eventually detect the failure of i. If j detects the
crash before receiving m, when it receives m it will
restart a full broadcast of m in line 43. If j only detects
the crash of i after receiving m, it will also restart a
full broadcast of m in line 61. Since j is correct, every
correct process will eventually receive m.

Theorem 1 Algorithm 1 correctly implements reliable
broadcast.

Proof The proof follows directly from Lemmas 1, 3,
and 4.

Discussion on the performance
The goal of exploiting the VCube overlay in our solution
is to provide an efficient broadcast where each process
sends at most log2n messages. However, this complex-
ity cannot be ensured at all times in an asynchronous

Jeanneau et al. Journal of the Brazilian Computer Society (2017) 23:15 Page 9 of 14

system where false suspicions can arise. Algorithm 1 aims
to take advantage of VCube whenever possible while still
ensuring the properties of a reliable broadcast despite false
suspicions.
In the best case scenario where no process is ever sus-

pected of failure, each process will send at most one
message per cluster (line 27). Therefore n − 1 TREEmes-
sages will be sent in total (since no process will be sent
the same message twice) with no single process sending
more than log2n messages. This is the example presented
in Fig. 2a.
If a process other than the source of the broadcast is

suspected before the broadcast, there will be n − 2 TREE
messages and one DELV message sent. A single process
might send up to log2n TREE messages plus one DELV
message per suspected process. This is the example of
Fig. 2b.
If the source of the broadcast suspects everyone else,

then it will send n − 1 DELV messages. In this case,
Algorithm 1 is equivalent to a one-to-all algorithm where
one process sends the message directly to all others, los-
ing, thus, the advantages of tree topology properties, such
as scalability.
The main cost of suspicions lies in the fact that when

a process is suspected, its last broadcast message must
be resent. This is the purpose of lines 43 and 61. Such
re-broadcast is an unavoidable consequence of the exis-
tence of false suspicions, necessary in order to ensure the
agreement property of reliable broadcast.
Note that the fact that the information about a node

failure is false or true has the same impact on the per-
formance of the broadcast algorithm in terms of message
complexity.

Experimental evaluation
In this section, we present simulation experimental results
obtained with Neko [18], a Java framework to simulate and
prototype distributed algorithms.
We compare our broadcast solution (VCube-RB) with

two other approaches. In the one-to-all algorithm (All-
RB), a source node sends a message directly to all other
nodes in the system, i.e., without using a spanning tree.
The sender process waits for acknowledgment messages
to be sure that the related broadcast has been com-
pleted. After a failure is detected, the sender is noti-
fied to avoid waiting indefinitely. The second approach,
named DPath-RB, was proposed by [8] and implements
reliable broadcast in hypercube systems without need-
ing failure detectors. Multiple copies of the messages are
sent along disjoints paths. No acknowledgments messages
are sent, since the multiple paths guarantee the deliver,
but only if fewer than log2n processes are faulty, which
ensures that the graph representing the hypercube is
connected.

The tests were organized into fault-free and faulty
scenarios. Two metrics were used to evaluate the
performance of both algorithms: (1) the mean latency to
broadcast onemessage to all correct processes, and (2) the
mean number of messages to complete a broadcast.

Simulation parameters
The simulation model is based on [19]. Each message
exchanged between two processes consumes ts + tt + tr
time units (t.u.): ts t.u. are taken to send the message at the
source, tt t.u. are taken to transmit the message across the
network, and tr t.u. are taken to receive the message at the
destination. If a message is sent to multiple destinations,
the sender computes ts to each copy sent.
For all executions, simulation parameters were set as fol-

lows: time to send/receive a message ts = tr = 0.1;
time to transmit a message tt = 0.8. In this case, we
assume a scenario in which it takes longer for a message
to be transmitted than it takes to be processed at each
local node.
For the sake of improving of the evaluation coverage,

we considered different scenarios and system sizes. The
system parameters were set as follows. For each experi-
ment, the number of processes n ranges from 8 to 1024 in
a power of 2.
VCube-RB and All-RB use the same hierarchical mon-

itoring strategy of VCube, and, therefore, the impact of
failure detection is the same in the two solutions. The
testing interval was set 30.0 t.u. A process is considered
to be suspected if it does not respond to the test after
4 ∗ (ts + tr + tt) time units, that is, 4.0 t.u.

Experiments without faulty processes
Without loss of generality, a single broadcast message
is sent by process 0 (p0). Figure 3 presents the results
obtained to fault-free scenarios.
In the All-RB strategy, latency is lower for systems up

to 128 processes (compared to VCube-RB) and 64 pro-
cesses (compared to DPath-RB), but increases faster after
this threshold because of the processing delay for send-
ing the copies of the TREE message to each of the n − 1
correct processes in the system (remember that each sent
message consumes ts = 0.1 time units). On the other
hand, the sender in VCube-RB sends only log2 nmessages,
one for each neighbor, that are forward in parallel in the
other levels of the tree. DPath-RB also uses a tree over the
hypercube topology, but it is slightly faster than VCube-
RB since it does not wait for acknowledgements. These
results confirm the scalability of the proposed hierarchical
strategy.
The number of messages per broadcast is the same

for VCube-RB and All-RB, since 2(n − 1) messages are
sent by both algorithms (n − 1 TREEs and n − 1 ACKs).
The difference is that in All-RB all TREE messages of

Jeanneau et al. Journal of the Brazilian Computer Society (2017) 23:15 Page 10 of 14

a b

Fig. 3 Latency to complete a broadcast in a fault-free execution. a Latency. b Number of messages

the broadcast are sent by the same sender, while in
the VCube-RB, the sender sends TREE messages to its
neighbors that forward it to their neighbors and so on
along the tree. DPath-RB sends much more messages,
because each message is retransmitted by log2n disjoint
paths, and each process receives log2n copies of the same
message.

Experiments with faulty processes
We compared the performance of the three approaches
when processes are faulty. The first experiment consid-
ers the failure of an intermediate process in the subtree of
Vcube-RB. The second considers the failure of the sender
process. Last, we perform tests with random fault pro-
cesses. For the sake of simplicity, a single process (p0)
performs the broadcast.

Scenario with one faulty node in the subtree
We simulated one single crash of the process whose
identifier is n/2. This process is the first process of
the biggest cluster of process 0 in the VCube topol-
ogy. In a VCube with eight processes, for example, when
p4 fails, extra messages can be retransmitted to p5,
p6, and p7, depending on the time the failure occurs.
For All-RB and DPath-RB, the faulty process is the
same, even if the scenario would be equivalent to any
faulty process. For DPath-RB, a faulty process mans
no retransmission along the paths that contains the
process.
The failures of process pn/2 were simulated at two differ-

ent time instants. In the first scenario, the process crashes
at time t0 = 0.0. In this case, no extra message is gen-
erated, since the faulty process does not receive the TREE
message and, in case of VCube-RB, upon detection of the
failure, a new message will be retransmitted to the next
correct process in the cluster, which will retransmit in the
subtree only once. In the second experiment, the crash is

set at time t1 = log2 n. In the case of VCube-RB, this
time is long enough to the process to receive and forward
the TREE message before it fails. Thus, when the failure is
detected, a new message will be sent to the next fault-free
process in the same cluster that will forward it through
the new subtree. Each correct process in that cluster will
receive the message twice (although duplicated delivery is
avoided by the timestamps). Note that the testing interval
was set to 30.0 t.u., and the crash happens just after the
first testing round. In this case, the latter is detected only
in the second testing round. After that, the tree is rebuilt
and the broadcast is completed. Such a behavior of the
algorithm explains the performance of the experiments
with t1.
Figure 4a, b shows the latency and number of messages

generated in the above two scenarios when the interme-
diate process of the tree, pn/2, fails. We can observe that
latency is higher in relation to the fault-free scenario due
to the fault detection latency. Remember that the time-
out was set to 4.0 t.u. In the case of All-RB, after the
detection of the failure by the source process, the broad-
cast is immediately considered completed. Note that in
order to ensure the correctness of the solution in case of
mistakes, messages are also sent to processes considered
to be faulty. In the case of VCube-RB, once the failure
is detected, the tree is automatically reconfigured and
the broadcast restarts in the cluster of the faulty process.
In these scenarios, besides sending additional messages
(Fig. 4d), there is a higher latency in VCube-RB in small
systems, till close to 128. However, as the number of pro-
cesses increases, the latency of All-RB is again jeopardized
by the multiple copies of the message sent from the source
process. In Fig. 4b with 128 processes, it is possible to
note that All-RB presents a higher latency because the
crash was detected only in the second round of the failure
detector, i.e., 30 t.u. after the first round. For DPath-RB,
one faulty process has no effect in terms of latency, and

Jeanneau et al. Journal of the Brazilian Computer Society (2017) 23:15 Page 11 of 14

a b

c d

Fig. 4 Latency and total number of messages to scenarios with crash of the intermediate node pn/2 at times t0 = 0.0 and t1 = log2 n. a Latency
to t0. b Latency to t1. c Number of messages to t0. d Number of messages to t1

the number of messages can be slightly reduced if the
process crashes before retransmiting the messages to the
neighbors.

Failure of the sender process (source)
Considering the worst case in which the sender, process
p0, starts the broadcast and crashes after it has sent a
message to each neighbor. This means that, in case of
VCube-RB, all log2 n neighbors of p0 in the hypercube will
receive a TREE message and forward it along the tree.
In case of All-RB, all n − 1 copies of the TREE will
be sent before the source crashes. In both algorithms, all
correct processes will receive the TREE message. As we
have explained, VCube monitoring system will eventually
notify every correct process about the failure of p0 and a
new broadcast will be restarted at each correct process.
Although they happen at different times for each algo-
rithm, the source crash is simulated in the first round of
VCube, not interfering with the detection time. For the
DPath-RB implementation, considering the restriction of
the number of faulty processes and the multiple disjoint
paths, no re-broadcast is applied.

Figure 5 presents latency results considering different
system sizes. The difference in latencies is due to the time
taken for each process to propagate the TREE message to
other members after being notified by the VCube failure
detector about p0’s crash. In the All-RB strategy, each pro-
cess sends a new copy of the last message received from p0
directly to all other process of the system and waits for the
respective acknowledgements. In the VCube-RB solution,
copies of the last message are also sent by each process of
the system, but using the tree rooted at each process.
Figure 5a compares the latency of the three solutions.

Compared to All-RB, Vcube-RB has a lower latency as the
number of processes grows; in relation to the total num-
ber of messages, it can be seen in Fig. 5b and Table 1
that VCube-RB uses a much smaller number of mes-
sages. Such a difference is the result of the retransmission
mechanism in the tree, which prevents two equal mes-
sages from being propagated in the same subtree if it
has already been forwarded and the corresponding ack
is pending. The graph shows an imbalance between the
number of TREE messages related to the ACK messages
which can be explained since, in scenarios with failures,

Jeanneau et al. Journal of the Brazilian Computer Society (2017) 23:15 Page 12 of 14

a b

Fig. 5 Latency and total number of messages when sender process (source) crashes. a Latency. b Number of messages

when a process receives a TREE message from a faulty
process (source or intermediary) it does not send an
ACK message to the latter. In the case of the VCube-
RB strategy, for example, the propagation of ACK mes-
sages to the source process, which is faulty, is canceled
as soon as the failure is detected by a process in the
reverse path of the tree. In addition, VCube-RB does not
retransmit messages that have already been propagated
in the tree. This considerably reduces the total num-
ber of retransmitted messages after failures compared
to the All-RB strategy without this control. For DPath-
RB, latency and number of messages are similar to the
previous faulty scenarios. It is possible to conclude that
DPath-RB has the best performance with single crash, but
the restriction on the number of failures, as in DPath-RB,
remains a limiting factor in systems subject to multiple
failures.

Scenarios with random faulty nodes
In this subsection we evaluate the three approaches under
scenarios with random faulty processes from 1 to (log2n)−
1 (process p0 is the sender and never fails). The number
of faulty processes were defined to (log2n) − 1, since this
is the maximum number of faults tolerated by DPath-RB.
Considering d = log2n the dimension of the hypercube,
for each scenario with different number of processes, we
executed 32 experiments, each one with d − 1 random
faulty processes at random time. With eight processes
(d = 3), for example, two processes fail during each test.
The time instant of the crashes were generated using a
random integer between zero and d, which is the time that
fits all latencies in fault-free executions. Results in Fig. 6a
shows the mean latency with a 95% confidence interval
using standard normal z-table.
The results confirm the scalability of VCube-RB com-

pared to All-RB, and the efficiency in terms of messages
compared to both All-RB and DPath-RB.

Conclusion
This paper presented a reliable broadcast algorithm for
message-passing asynchronous distributed systems prone
to crash failures. It tolerates up to n − 1 failures.
For broadcasting a message, the algorithm dynamically
builds a spanning tree over a virtual hypercube-like topol-
ogy provided by an underlying monitoring system called
VCube. In case of failure, the tree is dynamically recon-
structed without any message overhead. To this end, the
VCube provides information about node failures. How-
ever, as the system is asynchronous, it can make mistakes
falsely suspecting fault-free nodes. Such false suspicions
are tolerated by the algorithm by sending special mes-
sages to those processes suspected of having failed.
In summary, whenever possible, the algorithm exploits
the hypercube properties offered by the VCube while
ensuring the properties of the reliable broadcast, even in
case of false suspicions.
Besides the formal proof of the algorithm, simulation

results comparing the proposed solution with two other
approaches show the scalability and efficiency of the algo-
rithm in fault-free and faulty scenarios, especially for
systems with more than 128 processes. The calculation of

Table 1 Total number of messages when sender process
(source) crashes

Processes VCube-RB All-RB DPath-RB

8 120 96 24

16 491 442 64

32 1589 1899 160

64 4582 7884 384

128 12242 32141 896

256 31104 129807 2048

512 76153 521741 4608

1024 181790 2092009 10240

Jeanneau et al. Journal of the Brazilian Computer Society (2017) 23:15 Page 13 of 14

a b

Fig. 6 Latency and total number of messages with multiple random faults. a Latency. b Number of messages

the tree on demand in each process and without the need
to exchange messages, added to the control of messages
already transmitted in that tree, decreases the latency and
the total number of messages.
Future work includes developing causal and atomic

broadcast algorithms based on VCube for asynchronous
environments.

Endnotes
1 A correct process is a process that does not fail during

execution.
2 Note that this is not a restriction. To deal with an

arbitrary n, it is enough to avoid communications with
processes that have identifiers greater than or equal to n.

Acknowledgements
We would like to thank the funding agencies and universities involved for the
support provided. We also thank the many contributions from the reviewers.

Funding
This work has been partially supported by grants 45112/2015-144 from the
Parana State Research Agency (Fundação Araucária/SETI)/CNRS, and by the
Brazilian Research Agency (CNPq) under grants 311451/2016-0.

Availability of data and materials
Not applicable.

Authors’ contributions
ÉJ is Ph.D. student at UMPC/Lip6 and has developed the reliable broadcast
algorithm to asynchronous systems as part of her thesis. LAR has proposed the
previous version to the algorithm to synchronous systems during his Ph.D.
under the guidance of professors EPDJr. and LA, and conducted the
implementation and experiments in this work. LA is Jeanneau’s advisor and
has written mainly the description and proofs to the algorithm. EPD Jr. has
participated in all discussions and in the written phase of the final text. All
authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
All authors agree to the submitted version.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Inria, LIP6, 4 place Jussieu,
75252 PARIS CEDEX 05, Paris, France. 2Department of Computer Science,
Western Paraná State University, Rua Universitária, 2069, Jardim Universitário,
CEP 85.814-110 Cascavel-PR, Brazil. 3Department of Informatics, Federal
University of Paraná, R. Cel. Francisco H. dos Santos, 100 Centro Politécnico,
Caixa Postal: 19081, 81531-980 Curitiba, Brazil.

Received: 26 May 2017 Accepted: 22 November 2017

References
1. Leitão J, Pereira J, Rodrigues L (2007) HyParView: a membership protocol

for reliable gossip-based broadcast. In: DSN. IEEE, Edinburgh. pp 419–429.
doi:10.1109/DSN.2007.56

2. Yang Z, Li M, Lou W (2009) R-code: network coding based reliable
broadcast in wirelessmesh networks with unreliable links. In: GLOBECOM’09.
IEEE, Honolulu. pp 1–6. doi:10.1109/GLOCOM.2009.5426175

3. Bonomi S, Del Pozzo A, Baldoni R (2013) Intrusion-tolerant reliable
broadcast. Technical report

4. Hadzilacos V, Toueg S (1993) Fault-tolerant broadcasts and related
problems:97–145. Chap. Distributed systems

5. Guerraoui R, Rodrigues L (eds) (2006) Introduction to reliable distributed
programming. Springer, Berlin, Germany

6. Chandra TD, Toueg S (1996) Unreliable failure detectors for reliable
distributed systems. J ACM 43(2):225–267. doi:10.1145/226643.226647

7. Schneider FB, Gries D, Schlichting RD (1984) Fault-tolerant broadcasts. Sci
Comput Program 4(1):1–15

8. Fragopoulou P, Akl SG (1996) Edge-disjoint spanning trees on the star
network with applications to fault tolerance. IEEE Trans Comput
45(2):174–185. doi:10.1109/12.485370

9. Kim K, Mehrotra S, Venkatasubramanian N (2010) FaReCast: Fast, reliable
application layer multicast for flash dissemination. In: ACM/IFIP/USENIX
11th International Conference on Middleware. Middleware’10. Springer,
Berlin, Heidelberg. pp 169–190

10. Ramanathan P, Shin KG (1988) Reliable broadcast in hypercube
multicomputers. IEEE Trans Comput 37(12):1654–1657.
doi:10.1109/12.9743

11. Raynal M, Stainer J, Cao J, Wu W (2014) A simple broadcast algorithm for
recurrent dynamic systems. In: Proceedings of the 2014 IEEE 28th
International Conference on Advanced Information Networking and
Applications. AINA ’14. IEEE, Victoria. pp 933–939. doi:10.1109/AINA.2014.115

12. Kephart JO, Chess DM (2003) The vision of autonomic computing.
Computer 36(1):41–50

http://dx.doi.org/10.1109/DSN.2007.56
http://dx.doi.org/10.1109/GLOCOM.2009.5426175
http://dx.doi.org/10.1145/226643.226647
http://dx.doi.org/10.1109/12.485370
http://dx.doi.org/10.1109/12.9743
http://dx.doi.org/10.1109/AINA.2014.115

Jeanneau et al. Journal of the Brazilian Computer Society (2017) 23:15 Page 14 of 14

13. Duarte Jr EP, Bona LCE, Ruoso VK (2014) VCube: a provably scalable
distributed diagnosis algorithm. In: 5th Work. on Latest Advances in
Scalable Algorithms for Large-Scale Systems. ScalA’14. IEEE Press,
Piscataway. pp 17–22. doi:10.1109/ScalA.2014.14, http://dx.doi.org/10.
1109/ScalA.2014.14

14. Rodrigues LA, Arantes L, Duarte Jr EP (2014) An autonomic
implementation of reliable broadcast based on dynamic spanning trees.
In: 10th European Dependable Computing Conference. EDCC’14. IEEE,
Newcastle. pp 1–12. doi:10.1109/EDCC.2014.31

15. Wu J (1996) Optimal broadcasting in hypercubes with link faults using
limited global information. J Syst Archit 42(5):367–380

16. Liebeherr J, Beam TK (1999) HyperCast: a protocol for maintaining
multicast Group Members in a Logical Hypercube Topology(Rizzo L, Fdida
S, eds.). Springer, Berlin, Heidelberg. doi:10.1007/978-3-540-46703-8_5.
http://dx.doi.org/10.1007/978-3-540-46703-8_5

17. Ferreira M, Leitão J, Rodrigues L (2010) Thicket: a protocol for building and
maintaining multiple trees in a p2p overlay. In: Proceedings of the 29th
IEEE International Symposium on Reliable Distributed Systems. IEEE, New
Delhi. pp 293–302. doi:10.1109/SRDS.2010.19

18. Urbán P, Défago X, Schiper A (2002) Neko: a single environment to
simulate and prototype distributed algorithms. J Inf Sci Eng 18(6):981–997

19. Bulgannawar S, Vaidya NH (1995) A distributed k-mutual exclusion
algorithm. In: Proc. of the 15th Int’l Conf. on Distr. Comp. Systems. IEEE
Computer Society, Los Alamitos. pp 153–160.
doi:10.1109/ICDCS.1995.500014

http://dx.doi.org/10.1109/ScalA.2014.14
http://dx.doi.org/10.1109/ScalA.2014.14
http://dx.doi.org/10.1109/ScalA.2014.14
http://dx.doi.org/10.1109/EDCC.2014.31
http://dx.doi.org/10.1007/978-3-540-46703-8_5
http://dx.doi.org/10.1007/978-3-540-46703-8_5
http://dx.doi.org/10.1109/SRDS.2010.19
http://dx.doi.org/10.1109/ICDCS.1995.500014

	Abstract
	Keywords

	Introduction
	Related work
	System model
	VCube topology and failure detection

	The proposed reliable broadcast algorithm
	Message types and local variables
	Algorithm description
	Example of execution
	Proof of correctness
	Discussion on the performance

	Experimental evaluation
	Simulation parameters
	Experiments without faulty processes
	Experiments with faulty processes
	Scenario with one faulty node in the subtree
	Failure of the sender process (source)
	Scenarios with random faulty nodes

	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

