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Abstract

Background: Release planning (RP) is one of the most complex and relevant activities in the iterative and
incremental software development, because it addresses all decisions associated with the selection and assignment
of requirements to releases. There are many approaches in which RP is formalized as an optimization problem. In this
context, search-based software engineering (SBSE) deals with the application of search techniques to solve complex
problems of software engineering. Since RP is a wicked problem with a large focus on human intuition, the decision
maker’s (DM) opinion is a relevant issue to be considered when solving release planning problem. Thus, we
emphasize the importance in gathering the DM’s preferences to guide the optimization process through search
space area of his/her interests.

Methods: Typically, RP is modelled as a multi-objective problem by considering to maximize overall clients
satisfaction and minimize project risk. In this paper, we extend this notion and consider DM’s preferences as an
additional objective. The DM defines a set of preferences about the requirements allocation which is stored in a
preference base responsible for influencing the search process. The approach was validated through an empirical
study, which consists of two different experiments, respectively identified as (a) automatic experiment and (b)
participant-based experiment. Basically, the former aims to analyze the approach using different search-based
algorithms (NSGA-II, MOCell, IBEA, and SPEA-II), over artificial and real-world instances, whereas the latter aims at
evaluating the use of the proposal in a real scenario composed of human evaluations.

Results: The automatic experiment points out that NSGA-II obtained overall superiority in two of the three datasets
investigated, positioning itself as a superior search technique for scenarios with few number of requirements and
preferences, while IBEA showed to be better for larger ones (with more requirements and preferences). Regarding the
participant-based experiment, it was found that two thirds of the participants evaluated the preference-based
solution better than the non-preference-based one.

Conclusions: The results suggest that it is feasible to investigate the approach in a real-world scenario. In addition,
we made available a prototype tool in order to incorporate the human’s preferences about the requirements
allocation into the solution of release planning.
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Introduction
The incremental and iterative software life cycle is based
on the idea of developing an initial system implementa-
tion and evolving it through several releases in a cyclic way
[1]. Release planning (RP) addresses all decisions related
to the requirements selection and assignment to a consec-
utive sequence of releases [2]. As stated by Ruhe and Saliu
[3], good RP practices ensure that the software is built
on providing the maximum business value by offering the
best possible blend of features in the right sequence of
releases. On the other hand, poor RP decisions can result
in the following: (i) unsatisfied customers; (ii) release plans
that are unlikely to be delivered within a given schedule,
quality, and effort specifications; and (iii) release plans
that do not offer the best business values.
Given the cognitive effort involved in dealing with RP,

defining a “suitable” set of releases is inherently chal-
lenging. As “suitable,” we may consider that it properly
deals with variables that present complex relations such
as stakeholders’ preferences, technical constraints, limited
resources, and subjective business aspects. In addition,
this process can be time-consuming, requiring one to ana-
lyze an exhaustive list of possible combinations, which
tend to be extremely large if the number of requirements is
great. There are a number of existing approaches that are
based on the belief that RP can be formalized as an opti-
mization problem and widely explored by Search-based
software engineering (SBSE) as well. In summary, SBSE
proposes to apply search techniques to solve complex
problems of software engineering [4].
However, RP is a wicked problem with a large focus on

human intuition, communication, and human capabilities.
For a wicked problem, it is not clear what the problem is
and, therefore, what the solution is [3]. Additionally, turn-
ing the decision maker’s (DM) feelings as a useful part of
the resolution process may help avoid some resistance or
little confidence in the final result [5]. Instead of just pro-
viding a simple weight factor for each requirement, for
example, we emphasized the importance of providing a
refined mechanism to efficiently capture the human pref-
erences and, consequently, guide the search process. This
mechanism must intuitively enable the DM to express
his/her preferences in a broad scope, focusing the time
in essential subjective aspects. As subjective aspects, we
refer to the questions that are complex to define without
human interaction, especially implicit information. For
instance, the DM may want to allocate specific features
in different releases, establish precedence relations or
coupling relations between features according to his/her
subjective knowledge.
In other words, we have to integrate the computational

intelligence power with the human expertise to obtain
more realistic and acceptable solutions for some wicked
problems. In general, two main benefits arise from this

perspective, which are to provide meaningful insights to
the DM and increase the human engagement [6]. As dis-
cussed by Marculescu et al. [7], intuitive interaction with
domain specialists is a key factor in industrial applicabil-
ity, since it makes the system more usable and more easily
accepted in an industrial setting. Despite the promising
outlook, the definition regarding the type and how the
preferences are exploited by optimization algorithms is a
relevant challenge and has attracted attention in recent
years.
Recently, the SBSE approaches based on this assumption

have been discussed under the requirements engineering
context. Araújo et al. [8] propose an architecture for the
next release problem (NRP) based on the usage of an inter-
active genetic algorithm alongside a machine learning
model. In that work, the preferences are gathered through
a subjective mark provided by the DM to each solution,
while a machine learning model learns his/her evaluation
profile. After a certain number of subjective evaluations,
the machine learning model replaces the DM and evalu-
ates the remainder of the solutions. While considering the
NRP, Ferreira et al. [9] propose an interactive ant colony
optimization, where the DM is asked to specify which
requirements he/she expects to be present or not in the
next release. While these previous studies are focused on
the requirements selection, Tonella, Susi, and Palma [10]
present an interactive approach to the requirements prior-
itization. The information elicited from the user consists
of a pairwise comparison between the requirements that
are ordered differently in equally scored prioritization.
Regarding planning more than one release, an initial

proposal of the present work was described by Dantas
et al. [11]. It was designed as a single-objective model,
which allows the DM to express different types of pref-
erences considering the requirements allocation. Such
preferences are stored in the preference base, in which
the main purpose is to influence the search process. It
was verified in the performed experiment that there was
an unavoidable trade-off between the problem’s metrics
(score and risk) and the subjective preference. This con-
flict occurs because sometimes the solutions have to lose
some value in score or risk to satisfy the DM’s preferences.
To extend Dantas et al.’s [11] proposal, an earlier ver-

sion of this work is investigated to deal with the DM
preferences as another objective to be maximized in a
multi-objective model [12]. Notwithstanding, the pro-
posed approach included a strategy called the reference
point method [13] to mitigate the usual cognitive effort
of selecting a solution from the Pareto front. Empiri-
cal results were able to demonstrate the feasibility of the
approach in an artificial environment.
Therefore, this paper significantly extends the previous

work in twomajor aspects: (a) besides increasing the auto-
matic experiment through two more search techniques,
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one large artificial dataset, and additional results, we also
conduct a participant-based experiment to observe the
behavior of the approach in a real-world context and (b)
a prototype tool was developed and made available to
enable a novel way to incorporate the human preferences
during the release planning. The primary contributions of
this paper can be summarized as follows:

• Experimental analyses considering both simulated
and real human evaluations

• The presentation of a prototype tool for the release
planning process

The remainder of this paper is organized as follows. The
“Background” section presents the approach background,
whereas the “Mathematical formulation” section details
the mathematical model. The “Empirical study” section
discusses the empirical study, and finally, the “Concluding
remarks” section presents some conclusions and direc-
tions for future works.

Background
Search-based software engineering
Software engineers often face problems associated with
balancing competing constraints, trade-off between con-
cerns, and requirement imprecision. Software engineering
is typically concerned with a near optimal solution or
those that fall within a specified acceptable tolerance [14].
In these situations, automated optimization techniques
are natural candidates. Thus, search-based software engi-
neering (SBSE) seeks to reformulate software engineering
problems as search problems. A search problem is one in
which optimal or near optimal solutions are sought in a
search space of candidate solutions [4].
As highlighted by Harman [15], there are only two key

ingredients for the application of search-based optimiza-
tion to software engineering problems:

• The choice of the problem representation amenable
to symbolic manipulation

• The definition of the fitness function to characterize
what is considered to be a good solution

SBSE has been applied to many fields within the gen-
eral area of software engineering, such as requirements

engineering [16], software design [17], and testing [18].
A wide range of different optimization and search tech-
niques have been used by SBSE, with evolutionary algo-
rithms (EAs) being the most popular ones [19]. EAs
are generic and stochastic population-based algorithms
that are inspired by biological and natural evolution con-
cepts, such as reproduction, mutation, recombination,
and selection [20]. In this work, we evaluated four differ-
ent EAs, namely NSGA-II [21], MOCell [22], IBEA [23],
and SPEA-II [24].

Modeling preferences for the search-based release
planning
This work follows the concepts proposed by Dantas et al.
[11] and includes the human’s preferences in the release
planning using search-based techniques. As shown in
Fig. 1, such an approach is composed of three compo-
nents: interactions manager, preference base, and opti-
mization process.
The interactions manager is responsible for the user’s

interactions such as adding, modifying, or removing pref-
erences; visualizing the best solutions; and initializing or
finalizing the search process. The preference base stores
every preference to facilitate the relevant information
acquisition, for instance, the number of preferences that
are in the base and satisfied by the solution. Finally, the
optimization process is responsible for providing a solu-
tion through the search technique guided by the prefer-
ence base.
An important aspect to be highlighted is how the DM

can express his/her preferences about the requirements
allocation throughout the releases. The authors have for-
malized eight types of preferences with different purposes,
respectively named as coupling joint, coupling disjoint,
positioning precede, positioning follow, positioning before,
positioning after, positioning in, and positioning no.
The next section presents further details about the DM’s

preferences and mathematical formalization proposed by
Dantas et al. [11].

Mathematical formulation
Consider that R = {ri | i = 1, 2, 3, · · · ,N} is the set of
requirements available to be allocated to a set of releases
K = {kq | q = 0, 1, 2, · · · ,P}, where N and P are the

Fig. 1 Approach proposed by Dantas et al. [11]
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number of requirements and releases, respectively. The
vector S = {x1, x2, · · · , xN } represents the solution, where
xi ∈ {0, 1, 2, · · · ,P} stores the release kq in which the
requirement ri is allocated, and xi = 0 means that such
a requirement was not allocated. In addition, consider
C = {cj | j = 1, 2, 3, · · · ,M}, where M is the number
of clients and each client cj has a weight wj to estimate
his/her importance to the company that develops the
software. The function Value(i), which represents how
valuable requirement ri is, returns the weighted sum of the
scores that each client cj assigned to the requirement ri as
follows:

Value(i) =
M∑

j=1
wj × Score(cj, ri), (1)

where Score(cj, ri) quantifies the perceived importance
that a client cj associates with a requirement ri assigning
a value ranging from 0 (no importance) to 10 (the high-
est importance). Thus, the value of the objective related to
the overall client satisfaction is given by

Satisfaction(S) =
N∑

i=1
(P − xi + 1) × Value(i) × yi, (2)

where yi ∈ {0, 1} is a decision variable that has a value
of 1 if the requirement ri is allocated to some release and
0 otherwise. This binary variable is necessary to avoid
a requirement ri being computed when it is not allo-
cated. As suggested by Baker et al. [25], the clients are
usually satisfied when the requirements they most pre-
fer are implemented. Therefore, (P − xi + 1) is used for
Satisfaction(S) to become higher when the requirements
with a high Value(i) are allocated in the first releases, i.e,
maximizing the overall clients’ satisfaction.
In addition to maximizing the client’s satisfaction,

another relevant aspect to the project is to consider the
minimization of the implementation risk of each require-
ment. We consider the “implementation risk” as the quan-
tification of the danger to the project caused by the
possible postponement of implementation for a defined
requirement. The bigger the risk, the bigger is the proba-
bility of project failure. Identifying and dealing with risks
early in development lessen long-term costs and help pre-
vent software disasters [26]. According to Brasil et al.
[27], the risk may be defined in terms of the risk impact
analysis for the client’s business and its probability of
occurrence. As seen in Table 1, each value assume a range
from 1 to 9 considering the level of impact (low, medium,
and high) and of probability occurrence (low, medium,
and high). For example, consider a requirement r1 hav-
ing a high negative impact on the business with a low
chance of happening. This requirement will present a risk
value of 7, whereas a requirement r2 presents a risk value

Table 1 Impact analysis versus probability of occurrence

Impact analysis
Probability of occurrence

Low Medium High

Low 1 2 3

Medium 4 5 6

High 7 8 9

of 9 whether it presents a high negative impact with a
maximum chance of happening.
Thus, consider D = {d1, d2, ..., dN } where each di is the

risk value associated with the requirement ri. The value
of the objective related to risk of a solution is defined as
follows:

Risk(S) =
N∑

i=1
xi × di, (3)

where the value of Risk(S) is smaller when the require-
ments with the highest risk are allocated to the first
releases and, consequently, the overall project risk is min-
imized.
We assume that there are relations among releases and

requirements which may be defined by the DM according
to his/her subjective solution analysis. Consequently,
he/she may obtain some insights about the problem
and even adapt the decision criteria. As formalized by
Dantas et al. [11], these relations may be expressed by the
DM through defining a set of preferences. The process
of defining these preferences follows the formalization
below:

1. Coupling joint

• Representation: coupling_joint(ri, rj).
• Parameters: Requirements ri ∈ R and rj ∈ R.
• Interpretation: It is used to express that a DM

wishes a requirement ri to be placed together
with a requirement rj.

• Formal interpretation: Is satisfied if, and only if,
xi = xj.

2. Coupling disjoint

• Representation: coupling_disjoint(ri, rj).
• Parameters: Requirements ri ∈ R and rj ∈ R.
• Interpretation: It allows a DM to allocate ri and

rj to different releases.
• Formal interpretation: It is satisfied if, and only

if, xi �= xj.

3. Positioning precede

• Representation:
positioning_precede(ri, rj, [ dist]).
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• Parameters: Requirements ri ∈ R, rj ∈ R and a
minimum distance between the requirements,
with a value always greater than zero.

• Interpretation: It enables a DM to specify that a
requirement ri must be positioned at least dist
releases before a requirement rj.

• Formal interpretation: It is satisfied if at least
one of the following conditions is fulfilled:

(xi, xj �= 0 and xj − xi ≥ dist) OR
(xi �= 0 and xj = 0).

4. Positioning follow

• Representation:
positioning_follow(ri, rj, [ dist]).

• Parameters: Requirements ri ∈ R, rj ∈ R and a
minimum distance between the requirements,
with a value always greater than zero.

• Interpretation: It expresses that a requirement ri
must be positioned at least dist releases after
another requirement rj.

• Formal interpretation: It is satisfied if at least
one of the following conditions is met:

(xi, xj �= 0 and xi − xj ≥ dist) OR
(xi = 0 and xj �= 0).

5. Positioning before

• Representation: positioning_before(ri, kq).
• Parameters: Requirement ri ∈ R and a release kq.
• Interpretation: It defines that a requirement ri

may be assigned to any release before a specific
release kq.

• Formal interpretation: It is satisfied when the
following conditions are met:

(xi �= 0) AND (kq − xi ≥ 1).

6. Positioning after

• Representation: positioning_after(ri, kq).
• Parameters: Requirement ri ∈ R and a release kq.
• Interpretation: It defines that a requirement ri

may be assigned to any release after a specific
release kq.

• Formal interpretation: It is satisfied when the
following conditions are met:

(xi �= 0) AND (xi − kq ≥ 1).

7. Positioning in

• Representation: positioning_in(ri, kq).
• Parameters: Requirement ri ∈ R and a release kq.
• Interpretation: It allows the DM to place a

requirement ri in a specific release kq.
• Formal interpretation: It is satisfied if, and only

if, xi = kq.

8. Positioning no

• Representation: positioning_no(ri, kq).
• Parameters: Requirement ri ∈ R and a release kq.
• Interpretation: It defines that a requirement ri

should not be assigned in the release kq.
• Formal interpretation: It is satisfied if, and only

if, xi �= kq.

Therefore, the main contribution of this model is the
inclusion of the DM’s preferences as one of the objectives
to be optimized. Consider that T = {t1, t2, ..., tZ} is the set
that represents the preference base, where Z is the num-
ber of preferences. Each preference tk is a pair composed
of the preference type and an importance level, which
represents how valuable a preference is to the DM: the
preference based on one of the types previously presented
and the importance level ranges from 1 to 10 to distin-
guish each preference in terms of relevance. For instance,
t1 =< positioning_before(1, 2), 8 > denotes that the DM
wishes that requirement 1 be positioned before release 2
with an importance level value of 8. Therefore, the value
of the objective related to the subjective preferences is
measured as follows:

Pref(S,T) =
⎧
⎨

⎩

(∑Z
i=1 Li×satisfy(S,ti)∑Z

i=1 Li

)
if T �= ∅

0, otherwise,
(4)

where Li models the importance level defined by the DM
for each respective preference ti. The satisfy(S, ti) returns
1 if the solution S satisfies the preference ti and 0 other-
wise. The objective Pref(S,T) is the unit percentage of the
satisfied preferences’ level in the solution compared with
the total of the importance levels of all the preferences
present in the preference base. Thus, this metric measures
how satisfied, using the S solution, the user’s preferences
were.
It is important to highlight that the previous model-

ing does not define constraints capable of invalidating
solutions that do not satisfy the DM’s preferences, but
it provides soft constraints that guide the search pro-
cess through regions on space of solutions that are more
preferred by him/her.
Regarding the hard constraints, that is, the ones that

limit feasible solutions, we have considered three types
that will be described from now. Firstly, we considered the
technical interdependence relations between the require-
ments, wich are revealed a priori in the requirements
specification document. The constraint Precedence(S)
deals with precedence and coupling relations between the
requirements as a binary matrix DEPn×n, as follows:

xi ≥ xj,∀i, j|DEPij = 1, (5)

where DEPij = 1, if the requirement ri depends on the
requirement rj , 0 otherwise, and when DEPij = DEPji = 1,
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the requirements ri and rj must be implemented in the
same release. The remainder of the matrix is filled with 0,
indicating that there is no relation between the require-
ments and no technical limitation on their position assign-
ment.
Furthermore, the Budget(S) constraint treats the

resources available for each release. Thus, considering that
each requirement ri has a costi and each release kp has a
budget value bp, this constraint guarantees that the sum of
the costs of all requirements allocated to each release does
not exceed the correspondent budget:

N∑

i=1
inRelease(xi, kj) × costi < bj,

∀j ∈ {1, 2, 3, . . . ,P},
inRelease(xi, j) =

{
1, if xi = j
0, otherwise.

Finally, the constraint ReqForRelease(S) guarantees that
each release j has at least one allocated requirement. This
constraint is described below:

N∑

i=1
inRelease(xi, j) > 0. (6)

Therefore, our multi-objective formulation of the
release planning consists of:

maximize Satisfaction(S),
maximize Pref(S,T),
minimize Risk(S),
subject to: 1)Precedence(S),

2)ReqForRelease(S),
3)Budget(S).

(7)

Reference point method
An usual and challenging task associated with multi-
objective problems is to decide which solution from the
Pareto front will be chosen. The Pareto front is a set com-
posed of the non-dominated solutions that represents the
best trade-off among the objectives to be optimized [28].
Consequently, requesting the DM to analyze and choose
a specific solution from this set can induce an excessive
and additional cognitive effort. If there are more than two
criteria in the problem, it may be difficult for the DM to
analyze the large amount of information [29]. The first
version of this work [12] proposed the use of the refer-
ence point method [13]. This method enables the DM to
adjust different “aspiration levels” to each objective based
on his/her preferences. These weights help the multi-
objective technique to achieve solutions from the Pareto
front suitable to the DM’s needs.

GivenG objectives, Eq. 8 is used to normalize the values
reached by the solution S for each objective i in the range
between 0 and 1.

�fi(S) = fi(S) − o∗
i

onadi − o∗
i
, (8)

where the vectors Onad = {
onad1 , . . . , onadG

}
and O∗ ={

o∗
1, . . . , o∗

G
}
express, respectively, the highest and lowest

values reached by the Pareto front and fi(S) represents the
fitness function value for each objective i.
Regarding the normalization, it is done in Eq. 8 only

within the reference point method, which is only used
when selecting a solution from the Pareto front, but the
solutions can be properly seen through the visualization
interface (Fig. 4). We highlight the normalization follows
a interval [0,1], where �fi close to 0 represents that a solu-
tion S is more close to the best achieved value for this
objective i.
The DMdefines the aspiration level ai for each objective

i. In our case, there are three objectives (Satisfaction, Pref,
and Risk). The aspiration level is a weight that the DM
specifies for each objective in order to subjectively differ-
entiate each one. Supposing that the DM has 100 points
available to distribute, he/she must decide how to allocate
these points for each ai according to their importance.
The ai values are used in the function MaxValue(S) that
can be defined as

MaxValue(S) = max
i=1,...,G

�fi(S) × �qi, (9)

where �qi = ai/100. The MaxValue(S) generates a bal-
ance between the �fi(S) and the DM’s opinion. Consid-
ering that DM’s opinion is represented by �qi and it is
inversely proportional to �fi(S), a solution that fulfills the
aspiration levels generates a low MaxValue. On the other
hand, when the solution S does not satisfy the DM’s in
one specific objective, it will have a �fi close to 1 that
is multiplied by the �qi, generating a high MaxValue.
Remembering that a high MaxValue implies a aspiration
level to a objective which was not properly fulfilled.
As an hypothetical release planning scenario, consider

that the DM has to distribute 100 points to the three
objectives (Satisfaction(S), Pref(S), and Risk(S)). He/she
assigned 34 points to the aspiration level a1 and 33 points
to a2 and a3. The multi-objective algorithm generates
a Pareto front with E solutions, while a vector is cre-
ated with E positions where each position represents a
solution from the Pareto front, which is associated with
a respective MaxValue defined by Eq. 9. Consequently,
the solution that has the lowest MaxValue will be con-
sidered the one that meets the majority aspiration levels
initially expressed by the DM. Finally, Eq. 10, also known
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as the scalarizing function, represents the solution search
process from the Pareto front:

minimize MaxValue(S),
subject to: S ∈ E.

(10)

Empirical study
The following sections present all of the details regarding
the empirical study in which we followed some empirical
software engineering guidelines, such as data collection
procedure and quantitative results presentation [30, 31].
First, the experimental design specifications as well as
research questions are presented. Then, the analysis and
discussion of the achieved results are explained. Finally,
the threats that may affect the validity of the experiments
are emphasized.

Experimental design
The empirical study was divided into two different exper-
iments, (a) automatic experiment and (b) participant-
based experiment. Essentially, the first one aims to analyze
the approach using different search-based algorithms,
over artificial and real-world instances, while the second
one aims to evaluate the use of the proposal in a real
scenario composed of human evaluations.

Automatic experiment
Three instances were used in this experiment, named
dataset-1, dataset-2, and dataset-3. Both dataset-1 and
dataset-2 are based on real-world projects extracted from
[32]. The first one is based on a word processor soft-
ware and is composed of 50 requirements and 4 clients.
The second one is based on a decision support system
and has 25 requirements and 9 clients. Due to the limited
size of these instances, we artificially generated dataset-3
with 600 requirements and 5 clients. After the prelimi-
nary experiments, we defined for each dataset the budget
as 60% of the maximum release cost.
In addition, we evaluated two scenarios to analyze a

different number of preferences and their impact on the
optimization process. In the first one, called LowPrefs
scenario, we randomly generated 10, 5, and 120 prefer-
ences to dataset-1, dataset-2, and dataset-3, respectively.
To the HighPrefs scenario, we generated 50, 25, and 600
preferences, which is equivalent to the same number of
requirements for each corresponding dataset.
Regarding the optimization techniques, we evaluated

four of the most used evolutionary algorithms in the
literature (NSGA-II, MOCell, IBEA, and SPEA-II) and
a random search for a sanity test. All parameters were
empirically obtained through preliminary tests and con-
figured for all evolutionary techniques: 256 individuals,
400 generations, a crossover rate of 90%, and a 1% muta-
tion rate. The Pareto front returned by the random search

was generated after 102,400 solution evaluations. As sug-
gested by Arcuri and Briand [33], we also executed each
technique 30 times to deal with the stochastic nature of
the meta-heuristics, collecting both quality metrics and
respective averages from the obtained results.
We used an off-line procedure presented by Zhang

[34] to generate a reference Pareto front (PFref), since
the true (optimal) Pareto front (PFtrue) is unknown to
the evaluated datasets. Consisting of the best solutions
of each technique, the PFref denotes the best available
approximation to the PFtrue. For each instance and each
scenario, we executed each evolutionary technique 30
times considering 256 individuals and 1200 generations.
Thus, we reached almost 9,216,000 solutions evaluated by
each evolutionary algorithm, as well as another 9,216,000
solutions evaluated by the random search, achieving
more than 46,000,000 evaluations. Finally, we consid-
ered PFref the best non-dominated solutions generated
by all search techniques for each instance and each
scenario.
The quality metrics collected and analyzed in this exper-

iment were the hypervolume, spread, and generational
distance. The hypervolume (HV) calculates the search
area dominated by the Pareto front and defined from a
distant point W [35]. Such a point is the worst for all
objectives when compared to the solutions of all Pareto
fronts being evaluated.

HV = volume
( E⋃

i=1
vi

)
, (11)

where E is the set of solutions from the Pareto front to
be evaluated and vi is the hypercube area formed between
each solution si and a far point W dominated by all solu-
tions. Thus, the volume function calculates the occupied
volume in the search space by the union of all the hyper-
cubes vi. In summary, HV reflects the convergence and
dispersion of the solutions regarding the PFref. Thus, the
higher the value of this metric, the closer the known
Pareto front is to the PFref.
Spread (SP) denotes the diversity accounted for by the

known Pareto front. The closer to 0 this value is, the
more distributed and sparser are the set of non-dominated
solutions from the known Pareto front.

SP =
∑G

g=1 heg + ∑|E|
i=1 |hi − h|

∑G
g=1 heg + |E|h , (12)

where G indicates the number of objectives of the prob-
lem, hi can be any distance measured between the neigh-
boring solutions, and h is the mean value between these
distance measures. heg is the distance between the extreme
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solutions of PFref and E, corresponding to the gth objec-
tive function.
Finally, the generational distance (GD) contributes to

calculating the distance between the known Pareto front
obtained by the optimization technique and the PFref.

GD =
√∑E

i=1 euc2i
n

, (13)

where the value of euci is the smallest Euclidean distance
of a solution i ∈ E to a solution from PFref.

Participant-based experiment
As previously mentioned, this experiment aims at observ-
ing the behavior and feasibility of the approach when
it is used by software engineer practitioners. We chose
NSGA-II from the automatic experiment due to its abil-
ity for generating solutions with good diversity, and it was
employed with the same configurations used in the auto-
matic experiment. To test our approach, we invited 10
participants to act as decisionmakers (DMs). First, a ques-
tionnaire with four simple questions was conducted to
identify the general profile of each participant:

• Q1: What is your current professional occupation?
• Q2: Howmuch experience do you have in the IT area?
• Q3: On a scale of low, medium, and high, how would

you rate your experience as a Software Developer?
• Q4: On a scale of low, medium and high, how would

you rate your experience with release planning?

From Table 2, all participants worked as a System Ana-
lyst or a Developer. The participants had between 1 and
21 years of experience in the software industry, result-
ing in a total of 71 years and an average of 7.1 years of
experience. In relation to the IT experience, 50% of the

Table 2 Questionnaire answers from each participant

Participants Q1 Q2 Q3 Q4

#1 System Analyst 12 years High High

#2 Developer 2 years Medium Medium

#3 Developer 6 years High Medium

#4 System Analyst 7 years Medium Medium

#5 System Analyst 4 years High Medium

#6 Developer 21 years High High

#7 Developer 1 year Medium Medium

#8 Developer 3 years Medium High

#9 Developer 10 years High Medium

#10 System Analyst 5 years Medium Low

participants selected “High” and no one selected “Low.”
Regarding the experience with the release planning pro-
cess, 30% of them assigned “High,” while 60% assigned
“Medium,” and only one assigned “Low.” Consequently,
we may assume that these results suggest a confidence
level in the evaluations and feedbacks provided by the
participants.
The participant-based experiment consists of four

major stages. In the first stage, named as “Context Guide-
lines,” each participant was briefed about the task and
scenario to be analyzed. Initially, we asked the partici-
pants (i) to perform the requirements engineer’s role in a
company where a software to be developed is a word pro-
cessor (described in dataset-1) and (ii) all details regarding
the use of our tool and how their preferences may be
expressed. Subsequently, we presented a simple require-
ments specification document about dataset-1 (see Fig. 2),
including all requirement descriptions, budget constraint,
weight values given by the clients to each require-
ment, and, finally, the relevance of each client to the
company.
After concluding general explanations, we carried

out the second stage (“Non-preferences”) attempting to
present a solution without any preferences previously
defined by the DM about the requirement allocation, i.e.,
considering just the Value and Risk objectives in the opti-
mization process. Additionally, we asked the DM to weigh
the objectives used in the reference point method to sug-
gest a solution from the Pareto front. As illustrated in
Fig. 3, a participant can adjust this weight configuration
with a slider as he/she likes; see the requirements allo-
cation throughout the releases, click “Optimize” to see
other solutions or “Stop” when he/she is satisfied with
the release plan. We also offer the opportunity to visu-
alize the neighbor solutions of the one suggested by the
reference point method. To obtain such a view, depicted
in Fig. 4, the DM just has to click on “View” on the
top menu.
After deciding which solution is suitable to his/her

needs, the DM initiates the third stage called “Preferences
Set.” In this phase, we included the DM’s preferences as an
objective to be optimized. As Fig. 5 shows, the participants
find information about the preference base on the right
side of the window, including how to manage his/her pref-
erences and to check which ones were able to be included
in the suggested solution considering the weights config-
uration. Figure 6 exemplifies and shows the specifications
required by the tool for the DM to express his/her prefer-
ences, as well as the importance level for each preference.
Similar to the previous stage, the participant continuously
interacts with the system until a solution is considered
satisfactory. However, the main difference concerns the
possibility of the DM to insert and manipulate his/her
preferences.
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Fig. 2 A sample piece of the requirements specification document

Lastly, in the fourth stage (“Feedbacks”), we obtained
feedback about how convinced the participants were
about the subjective satisfaction provided by both solu-
tions selected in stages 2 and 3, respectively called non-
preference-based and preference-based solutions. As seen
in Fig. 7, the participant simply estimates such evalu-
ation to each solution on a scale of “Very ineffective,”
“Ineffective,” “Indifferent,” “Effective,” and “Very effective.”

Research questions
Three research questions were asked to assess and analyze
our approach behavior. They are presented as follows:

• RQ1: Which search-based techniques, among the
evaluated ones, produce better solutions?

• RQ2: Which is the subjective benefit when
considering the DM’s preferences as an objective to
be optimized?

• RQ3: Which is the relation between the inclusion of
the preferences and the DM’s subjective evaluation in
the final solution?

Results and analysis
The results of the empirical study are presented in
this section by analyzing the previous three research
questions.

• RQ1: Which search-based techniques, among the
evaluated ones, produce better solutions?

Fig. 3 GUI used in the “Non-preferences” stage of participant-based experiment
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Fig. 4 Interface for visualizing solutions from the Pareto front

Aiming to answer this question, we analyzed the results
produced by all algorithms for each instance and the sce-
nario previously presented in the automatic experiment
design.
Table 3 presents the values of statistical tests con-

sidering the metrics hypervolume (HV), spread (SP),

and generational distance (GD) for each dataset. The
Wilcoxon test (WC) was applied, using the Bonferroni
correction, to identify the occurrence of statistical differ-
ences among the samples considering a confidence level
of 95%. The Vargha-Delaney Â12 test was used to measure
the effect size, in other words, the relative number of

Fig. 5 GUI used in the “Preferences Set” stage of participant-based experiment
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Fig. 6 Example of preferences defined by the DM. a Coupling Joint. b Positioning Before. c Positioning Follow

times that an algorithm produced superior values over
another. Further details about each statistical test may be
seen in the work of Arcuri and Briand [33]. Â12 mea-
sures the probability that a technique (table line) with a
particular parameter setting yields a higher result than

another technique (table column). For instance, consider-
ing MOCell (1) and IBEA (2), the probability of MOCell
returning a front better than IBEA’s one according to the
GD metric for dataset-1 in HighPrefs is 82.7% given that
the corresponding Â12 is 0.827.

Fig. 7 GUI presented to the DM in the fourth stage, i.e., “Feedbacks”
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Observing the data from Table 3, it is noticeable that
there was a statistical difference in most of the compar-
isons, except for 14.4% of the times in which there was no
statistical difference (values in italic).
Before analyzing the results obtained from the GD met-

ric, it is important to highlight that a value close to 0 is
desirable because it indicates that the Pareto front is closer
to the PFref. Thus, looking at dataset-1 and LowPref sce-
nario, we can note that IBEA achieved better results of
GD, due to Â12 being 1 when the other algorithms are
compared with IBEA. This means that 100% of the times,
other techniques produced results higher than IBEA, for
the GD metric. Such a behavior is verified in almost all
of the scenarios. However, in dataset-1, when the number
of preferences is high, IBEA lost to NSGA-II. Therefore,
in general, IBEA outperforms all the other algorithms
in terms of GD, and NSGA-II is the second best search
technique among the evaluated ones.
As noted in the “Automatic experiment” section, the

metric SP measures the dispersion between the Pareto
front solutions. In practice, lower values for this metric
bring about more uniformly distributed solutions from
the front. Thus, observing the statistical test results for
SP, we can see that IBEA achieves the worst results 100%
of the times in comparison with all the other techniques
for each scenario of dataset-1 and dataset-2. This obser-
vation indicates that even solutions returned by IBEA are
next to the reference Pareto front. However, these solu-
tions are not well distributed in the search space. On the
other hand, SPEA-II obtained the best results in SP for
all instances, although no statistical difference was veri-
fied in dataset-1 and dataset-2 with low preferences when
compared with MOCell.
Observing both approximations to the PFref (conver-

gence) and diversity, hypervolume (HV) is essential for
evaluating the multi-objective algorithms. Because the

HV value is near 1, the result is better. Thus, analyzing
the results from this metric for dataset-1 and dataset-2,
which are based on real data, NSGA-II shows a better per-
formance in both datasets. For instance, in almost all of
the scenarios, NSGA-II and SPEA-II achieved the high-
est HV values. Only in dataset-1 and LowPrefs scenario
did MOCell reach the higher HV values than SPEA-II
and with no statistical difference from NSGA-II, while
for dataset-3 and Low and High scenarios, IBEA outper-
formed all algorithms in more than 90% of runs.
Figure 8 shows a comparison between the best Pareto

fronts obtained by each search technique for dataset-3 on
the HighPrefs scenario taking into account the hypervol-
ume metric considering 30 runs.
Notice that in Fig. 8, all of the algorithms present differ-

ent distributions of solutions. Regarding the HV metric,
IBEA returns solutions that are more concentrated and
closer to PFref. Among the evaluated algorithms, MOCell
returns solutions that are nearer to the extreme points
from the PFref and thus has good diversity. In addition, in
that case, although SPEA-II provides solutions with better
convergence thanNSGA-II andMOCell, its front does not
have good dispersion. Consequently, it represents a bad
diversity. Finally, it is self-evident that random search was
inferior to all of the evolutionary techniques investigated
in this work.
Figure 9 shows the comparison of all the investigated

search techniques considering the average calculated from
each evaluated metric for all the scenarios and datasets.
Because the metrics have different ranges of values, their
results were normalized to the [0,1] interval.
We noticed that, on average, NSGA-II obtained the

best results in HV. However, the difference from other
evolutionary techniques was not high. Regarding the SP,
SPEA-II considerably outperformed all of the other algo-
rithms, followed by random search and MOCell. Finally,

Fig. 8 The best Pareto fronts produced by each algorithm for datatset-3 and HighPrefs scenario on 30 runs, considering only HV metric
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Fig. 9 Comparison between all search techniques considering metrics HV, SP, and GD

observing the GD results, the best algorithm was IBEA,
followed by NSGA-II and SPEA-II.
Regarding the execution time of the meta-heuristics,

NSGA-II and MOCell obtained the smallest execution
times with a little difference between them. To deter-
mine which algorithm presents a better time perfor-
mance, a statistical test was performed for these two
algorithms shown in Table 4. Thus, NSGA-II achieved
better time results for dataset-3 considering both scenar-
ios and dataset-1 considering only the HighPrefs scenario,
whileMOCell was shown to be superior for dataset-2 con-
sidering both scenarios and dataset-1 in the LowPrefs sce-
nario. However, even though NSGA-II is better in some
scenarios and MOCell in others, the magnitude of the
differences in time between these algorithms was small.
The greatest difference among all the meta-heuristics for
all instances is 151,344 ms. Thus, due to this magnitude
of time, we considered the execution time irrelevant in
comparison with the Pareto front quality metrics.
In summary, IBEA has proven to be a good choice

because it presents qualified solutions for all the datasets,
as demonstrated by GD. However, its solutions do not
present a wide coverage of the search space for instances

with a low number of requirements. If the diversity in
Pareto front is a required aspect, NSGA-II is more rec-
ommended for scenarios composed of a small number of
requirements.
To support replication, all the datasets, results, and

source code are available online for public access1. In addi-
tion, an interactive 3D chart version of Fig. 8 is available
to provide a better visualization of Pareto front for all the
scenarios.

• RQ2: Which is the subjective benefit when
considering the DM’s preferences as an objective to
be optimized?

To evaluate such a subjective benefit, we analyzed the
subjective evaluation provided by each participant to
the non-preference-based and preference-based solutions
from the participant-based experiment. Figure 10 depicts
that 7 out of 10 participants evaluated the preference-
based as solution more satisfactory than the non-
preference-based solution. In addition, more than half
of the participants considered the preference-based solu-
tion as “Effective” or “Very Effective,” while 5 participants

Table 4 Wilcoxon and Vargha-Delaney statistical values from NSGA-II and MOCell, considering the execution times

Algorithm Datasets

MOCell

LowPrefs scenario HighPrefs scenario

WC Â12 WC Â12

NSGA-II Dataset-1 1.1E−09 0.958 0.00013 0.212

Dataset-2 4.6E−10 0.968 2.2E−09 0.950

Dataset-3 5.1E−10 0.032 5.1E−10 0.032
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Fig. 10 Subjective evaluations defined by the participants to the non preference-based and preference-based solutions

judged the non-preference-based solution as “Ineffective”
regarding their subjectivity interests. Only participant
#2 negatively evaluated the preference-based solution as
“Ineffective.” The relation between the inclusion of the
preferences and the subjective evaluation will be investi-
gated in the next research question.
Therefore, answering RQ2, such analysis suggests a con-

siderable benefit when considering the DM’s preferences
as an objective of the optimization process. In addition,
in Table 5, we provide more information, i.e., the num-
ber of preferences added and time spent to perform the
experiment for each participant.
On average, there were 5 preferences per participant. As

can be seen, participant #3 added the smallest number of
preferences, only one, while participant #9 added 13 pref-
erences, the greatest quantity. In relation to the time taken
to perform the experiment, each participant took on aver-
age 23 min. Participant #7 took the greatest amount of
time, 35 min, while #8 was the one who took the smallest
amount of time, 5 min.

Table 5 Number of preferences and time for each participant on
the experiment

Participants Number of preferences Time (min)

#1 5 30

#2 6 13

#3 1 12

#4 4 25

#5 3 33

#6 6 24

#7 3 35

#8 2 5

#9 13 26

#10 11 29

• RQ3: Which is the relation between the inclusion of
the preferences and the DM’s subjective evaluation
regarding the final solution?

The subjective evaluation is provided by each partic-
ipant to the preference-based solutions, while the value
of the Pref(T , S) objective is obtained by Eq. (4). As seen
in Fig. 11, we trace an adjusting line through the solu-
tions, indicating that there is a correlation between such
variables. However, a metric was necessary to evaluate
the intensity of this relation because some solutions were
visually far apart.
To evaluate the correlation between the subjective eval-

uation and Pref, we used the Spearman’s rank coefficient
[36]. This metric is a uniform value between −1 and 1 and
indicates no correlation if this value is equal to 0. In addi-
tion, the farther from 0 this value is, the more correlated
the series are. The value rs calculated for the data series is
0.74, indicating that these values are directly proportional.
The two-tailed p value of 0.0144 also suggests that this
correlation is statistically significant with a significance
level α = 0.05.
In Fig. 12, the subjective evaluation values are often

close to the corresponding Pref ones. The cases in which
they are not may suggest that there are other aspects that
influence the DM’s satisfaction and are not covered by the
available types of preferences in this work.
Regarding the analysis presented above, we can con-

clude that there is a directly proportional relation between
the subjective evaluation and the objective Pref. However,
some samples suggest that the preference types adopted
may not cover all of the DM’s wishes.

Participants’ feedback
At the end of the participant-based experiment, each
participant was invited to answer a feedback question-
naire about the experience using the tool. We asked four
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Fig. 11 Distribution of preference-based solutions based on subjective evaluation and Pref

questions covering different aspects of usability (three
objective questions and one subjective question):

• Q1: How efficient do you judge the experience at
interactively assisting the tool to plan the releases to
be?

• Q2: How much easier was it to express your opinions
considering the available preferences?

• Q3: Would you use this tool in your workplace?

Fig. 12 Relation between subjective evaluation and the Pref value

• Q4: What changes would you suggest regarding the
tool interface?

First, for Q1, 80% of the participants selected “Effec-
tive” or “Very effective” on a scale of “Very ineffective,”
“Ineffective,” “Indifferent,” “Effective,” or “Very effective.”
Complementing such a result, for Q2, 50% considered
“Easy” to express the preferences on a scale of “Very
hard,” “Hard,” “Indifferent,” “Easy,” and “Very easy.” These
answers reinforce the conclusions achieved in RQ3 about
the subjective benefit from considering the DM’s prefer-
ences in the optimization process.
We used a scale from 1 (“No way”) to 5 (“Certainly”) for

Q3. Four participants rated with 5, another four with 3,
and only one with 2. This feedback encourages the inves-
tigation of the presented tool in a real-world scenario of
release planning.
Regarding the subjective question (Q4), the answers

were generally divided between improving the require-
ments allocation visualization and providing a better way
to adjust the weight configuration for each one of the
objectives.

Threats to validity
Below, we discuss the threats to the validity of our empir-
ical evaluation, classifying them into Internal, External,
Construction and Conclusion [37].
Taking into account the internal characteristics of the

experiments, we have to notice that preliminary tests were
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carried out for defining the search technique parametriza-
tion. However, some specific settings on a given algorithm
can obtain better results for some instances. Despite the
fact that two datasets were based on real data, some infor-
mation was necessary to be randomly generated (risk val-
ues and number of releases), that is, they do not represent
a fully real-world scenario. The risk of implementing each
requirement, which did not originally exist, was manually
defined by a Developer and appended to the instances.
The number of releases was changed from 3 to 5 and 8
for dataset-1 and dataset-2, respectively. This choice was
made to increase the variation of the DM’s preferences.
Regarding the participant-based experiment, the par-

ticipants may have changed their behavior since they
knew that they were under evaluation, corroborating the
Hawthorne’s effect [38]. To mitigate this problem, the par-
ticipants received an explanation about the approach but
not about the assumptions that were under investigation.
We believe that our empirical study has a weakness

regarding the generalization of the achieved results. For
instance, the datasets based on real information have few
requirements, which makes it hard to conclude that the
results would be similar for large-scale instances. Such a
circumstance was the motivation to generate and use the
artificial dataset with a large number of requirements. A
similar problem is encountered in the participant-based
experiment because the number of participants was not
high enough to represent expressive scenarios.
Concerning the experiment construction threats, the

metrics that we used to estimate client’s satisfaction and
overall risk are based on values that are defined a pri-
ori by the development team. These estimated values may
vary as the project goes on, which requires rerunning
the approach to adapt these changes. Despite this limita-
tion, this strategy is widely used in the literature, such as
[3, 39, 40]. In addition, it is known that meta-heuristics
can vary their final solutions and execution time accord-
ing to the instance. Unfortunately, we did not investigate
time concerns. In addition, there is no longer an expla-
nation about the evaluated metrics. Nevertheless, all of
them have been widely used in the related works as well as
the multi-objective optimization literature. Still, consid-
ering the participant-based experiment, the major metric
used to measure the satisfaction of each participant was
a subjective evaluation provided for the final solution
following a scale of “Very ineffective,” “Ineffective,” “Indif-
ferent,” “Effective,” and “Very effective.” This feedback may
not properly represent the DM’s feeling.
Finally, the threats to the experiment conclusions’ valid-

ity are mainly related to the characteristics of the algo-
rithms that were investigated. Meta-heuristics present a
stochastic behavior, and thus, distinct runs may produce
different results for the same problem. Aiming at mini-
mizing such a weakness, for each combination between

datasets, scenarios and the DM’s preferences for the
search algorithmswere executed 30 times in the automatic
experiment. Given all obtained results, we conducted sta-
tistical analyses as recommended by Arcuri and Briand
[41]. Analyzing the conclusions of the participant-based
experiment, some of themmay be affected by each partic-
ipant’s understanding level after receiving an explanation
about the study as well as their experience on release
planning using automatic tools.

Conclusions
Release planning is one of the most complex and relevant
activities performed in the iterative and incremental soft-
ware development process. Recently, the SBSE approaches
have been discussed based on the strength of the com-
putational intelligence with the human expertise. In other
words, it allows the search process to be guided by the
human’s knowledge and, consequently, provide valuable
solutions to the decision maker (DM). Thus, we claim
the importance of providing a mechanism to capture the
DM preferences in a broader scope, instead of just requir-
ing a weight factor, for instance. Besides increasing the
human’s engagement, he/she will progressively gain more
consciousness of how feasible the preferences are.
The evaluated multi-objective approach consists of

treating the human’s preferences as another objective to
be maximized, as well as maximizing the overall client sat-
isfaction and minimizing the project risk. In sum, the DM
defines a set of preferences about the requirements alloca-
tion, which are stored in a preference base responsible for
influencing the search process.
Therefore, we have significantly extended our previous

work through the accomplishment of new experimen-
tal analysis considering both simulated and real human
evaluations. The automatic experiment points out that
NSGA-II obtained overall superiority in two of the three
datasets investigated, positioning itself as a good search
technique for smaller scenarios, while IBEA showed a bet-
ter performance for large datasets, since the loss in the ini-
tial diversity of the algorithm decreases as the number of
requirements increases. Regarding the participant-based
experiment, it was found that two thirds of the partici-
pants evaluated the preference-based solution better than
the non-preference-based one, encouraging the investi-
gation of the presented tool in a real-world scenario of
release planning. In addition, we made a novel tool for
the release planning process to be able to incorporate the
human preferences during the optimization process1.
As future work, we intend to evolve our GUI to provide

a more intuitive interaction, solutions visualization and
preferences specification by the DM. We also intend to
compare our approach with other search-based proposals,
which explore the human’s preferences in the optimization
process.
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