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Abstract

Background: Service Composition is an important feature of Service Oriented Computing, yet it remains mostly a
manual process. Given the dynamic and decentralized nature of services, manual composition is a complex
undertaking. Proposals to automate this process exist, but suffer from practical problems that hinder their
implementation.

Methods: In this paper, we introduce a pragmatic approach where we reverse engineer a service composition
repository to obtain the necessary information for automated solutions to work. We then evaluate the quality of the
automated compositions based on their similarity to the ones written manually. A classic planning algorithm was
adapted in order to generate solutions closer to those expected by developers.

Results: The use of classical planning tools is too time-consuming for agile development scenarios. A simplified,
tailored implementation can be orders of magnitude faster than a generic planner, which suggests that expressive
power may need to be sacrificed in favor of usability. Our evaluation showed that ensuring the adherence of the
solution to the initial specification by enforcing the use of all input parameters was capable of significantly
increasing the quality of the solutions.

Conclusions: It is possible to increase the quality of automated composition by applying planning algorithms
specially crafted for the service composition task. Comparisons with automated planning tools highlight the
effectiveness of our proposal.

Keywords: Automated service composition, AI planning, Performance evaluation, Web services composition

Background
The Internet is being used by various organizations to
provide and consume services in order to leverage their
businesses and explore new opportunities. Amazon, for
example, offers the Simple Workflow Service [1], which
allows organizations to host and maintain businesses
processes and services using Amazon’s cloud infrastruc-
ture. With services varying from access to stock prices
and weather forecasts to advanced enterprise-wide
services, the Internet has become a playground for
innovative and ambitious applications developers. Those
able to take advantage of this ecosystem to create new
applications quickly stand better chances to leap ahead
of competitors.

The OASIS organization defines service as “a mechan-
ism to enable access to one or more capabilities, where
the access is provided using a prescribed interface and is
exercised consistent with constraints and policies as spe-
cified by the service description” [2]. New services can
be built from more general ones, which might be com-
posed to provide new functionalities. This task, however,
is highly complex and time consuming. The increasing
number of services imposes a challenge to service devel-
opers, and the lack of central organization of these ser-
vices adds to the problem.
The difficulty in composing new services out of exist-

ing ones has led researchers to pursue new ways for a
smoother service development process. The goal is to
streamline service creation in order to keep pace with
the dynamicity of technology markets. The best scenario
for efficient service creation would be to automate com-
pletely the task of composing services, although that
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brings new challenges by itself. Several approaches have
been proposed to address the automation of service
composition. They try to automate the process of find-
ing and combining services to achieve a user-specified
functionality [3].
Artificial intelligence (AI) planning is a recurring tech-

nique to approach the problem of automatic compos-
ition. Using logic-enabled semantic languages provided
by the Semantic Web (SW) [4] community, automated
composition tools are able to find service compositions
that meet the developer requirements, but only if the
underlying services are correctly described in terms of
their capabilities. Such approaches go beyond the typ-
ical Web service description by looking at enriched
input and output descriptions [5–7], and pre- and
postconditions [8, 9].
There are a few obstacles, however, that prevent the

adoption of such proposals in practice. For example, the
formal description of services is a manual process, thus,
time-consuming and error-prone, which requires new
skills from service developers. Even if services are
correctly described, the problem of finding a set of com-
bined services that are able to provide certain function-
alities is considered a complex undertaking [10, 11]. The
existing approaches tackle the problem by limiting the
complexity of the solutions, thus reducing the search
space, but also the range of possible solutions. Assuming
developers find a solution, they may not be willing to
immediately deploy it without checking if it meets their
expectations. The developer will probably have to tweak
with the result of the automated process, by fixing and
adapting the composition to ensure that it achieves its
purpose. The quality of solution will determine how
much extra effort will be put into this task.
In this paper, we approach automated composition as an

auxiliary tool for the developers (and not a replacement);
we believe that it will be a long way before complete auto-
mation of service creation can be achieved. Instead of
using manually written semantic descriptions, we use a
simple process to extract service compatibility information
from existing service compositions, the myExperiment
repository [12]. The quality of the automated solutions is
estimated by comparing them to handwritten ones in the
repository. We found that the quality of solutions using
classic AI planners is acceptable, but it can be improved
with pertinent modifications to the algorithms, what we
showed by adapting a classic AI planning algorithm.
This paper is organized as follows. First, we cover re-

lated work, followed by our approach to extract informa-
tion from existing compositions. In the sequence, we
present our modified algorithm, the methodology used
to compare compositions and our results. Finally, we
bring in-depth discussions on our findings, draw some
conclusions, and point out directions for future work.

Background and literature review
This section initially provides some background on the
service orientation paradigm and composition. It also
presents relevant related work on extracting composition
information automatically as well as approaches for
automated service composition.

Service composition
A service-oriented architecture (SOA) employs “services”
as the basic unit for the separation of concerns in the de-
velopment of computing systems [13]. Services can be seen
as the means whereby consumers access providers’ capabil-
ities. Among other features, services provide loosely
coupled interaction between partners in a business process
(or any other computing activity). Composing services into
business processes is a fundamental, yet potentially com-
plex task in service-oriented design and a key feature of
SOA. SOA advocates that any service must be capable of
participating as an effective composition member.
A service composition is a coordinated aggregation of

services that have been assembled to provide the func-
tionality required to automate a specific business task
or process [13]. Service orchestration and choreography
are two common concepts used to deal with the com-
plexity of service composition [14]. Orchestration, the
most common type, refers to coordination of a single
process, specifying control and data flows. The most
representative language for orchestration is the Busi-
ness Process Execution Language for Web Services
(WS-BPEL) [15]. Service choreography refers to the
protocol that ensures harmony and interoperability
among the interacting participants (processes), in order
for the processes to cooperate with no dependency on a
centralized controller.
Service composition or creation techniques can be

broadly classified into three categories: (a) Manual ser-
vice composition occurs when service design is done
completely by a human operator, who may or may not
use a tool for assisting him/her in generating the com-
position; b) Automated service composition is based on
an intelligent technique, usually AI planning, which
automatically finds optimal services for the composition;
the ultimate goal in service composition is automation,
where from a higher-level service specification the entire
process or workflow is generated along with the constitu-
ent services and their invocations; (c) Semi-automated ser-
vice composition lies at some point along the line between
the extremes of exclusively manual or automated compos-
ition, which may include a myriad of semi-automated
techniques, such as the quasi-manual and pattern-based
ones proposed in [16]. In this paper, we focus on fully
automated service composition.
The most common approach to automated composition

is to employ AI-based planning techniques, in order to
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find execution plans that, in the end, will make up the
service composition. These approaches require the specifi-
cation of initial and final states in order to derive a path of
services that meet these requirements. The services
should also provide some kind of semantic description of
its effect in the system state, in order for them to work.

Extracting composition information
The analysis in this paper was inspired in the work pre-
sented in [17] and [18]. In these research studies, service
relations were explored based on their use in real com-
positions obtained from a repository—myExperiment
and ProgrammableWeb, respectively. Their investigation
focused on extracting these relations to obtaining useful
knowledge about services and composition. One of their
findings is that service reuse is low in both cases, i.e.,
a small number of services are frequently combined
together while the majority is used in an isolated way.
In their follow-up research, the authors used the ser-
vice relation graphs to provide to workflow developers
GPS-like routing [19] and service recommendations
[20, 21]. In this paper, we are interested in finding re-
lations that may be used in automating the creation
of complete compositions. We focus on the structure
of service and parameter relation instead of looking
at other external sources of information about the
service (e.g., authorship) since they often are neither
available nor reliable. The main differences between
our paper and those references are that references
[17] and [18] focus on workflow analysis as we do,
but not for the purpose if improving automated com-
positions. On the other hand, references [19, 20] and
[21] share some similarities in the overall approach,
but aim at service recommendation rather than at
fully automated compositions. They also lack a proper
comparison with other solutions, whereas we compared
our algorithms against planners with the specific goal of
assessing the limits of the solutions.
McCandless et al. [22] also used the idea of extracting

semantic information—parameter type information, spe-
cifically—from WSDL files for the purpose of automated
service composition. In that work, however, the authors
did not have a repository of compositions to extract
additional information on the services relations. McIl-
raith and Son [23], Traverso and Pistore [24] and Wu
et al. [25] reverse engineered OWL-S service descrip-
tions and derived abstract methods telling how to use
the services. These works use the service’s process
model, which provides an abstract description of how
clients have to interact with a multi-step service (i.e., a
service that can be partially invoked in several steps).
Unlike them, we adopt a single step, request-response
service model (equivalent to atomic processes in OWL-
S and a WSDL operation), and extract information on

how various services interact with each other from
concrete compositions.

Automated service composition
Several research studies propose automatic composition
using only the services’ input and output parameters de-
scribed with semantically enhanced types [22, 26–28].
The new composition is described in terms of what it
should receive as input and what result it should render
at the end. Services are connected together so that one
service output(s) can be used as input(s) to the next ser-
vice (or any following service) and so on, provided that
parameter types match. In such an approach, the more
meaning the parameters types carry, the more precise
will be the composition found. On the other hand, a
composition process based only on primitive types can
combine completely unrelated services.
Service composition using preconditions and effects—be-

sides input and output parameters—is a very powerful ap-
proach that can theoretically find correct-by-construction
execution plans that meet the developer’s requirements.
Such approach—used by Agarwal et al. [8], Akkiraju et al.
[9], Klusch and Gerber [29], McIlraith and Son [23],
Rodríguez-Mier et al. [30], Sohrabi et al. [31], Traverso and
Pistore [24], Wu et al. [25], among others—has a few prac-
tical obstacles in order to be put into production scenarios.
There is the need for complete formal descriptions of each
service, sometimes requiring a detailed description of ser-
vice interactions, as in [23, 24], for example. These descrip-
tions must be as detailed and as correct as possible in order
to ensure that sound compositions are generated at the
end. Finally, the ability to write descriptions using logic for-
malisms is not a typical skill of service developers, more ac-
customed to object-oriented languages and graphical IDEs.
Other approaches take a more pragmatic view of auto-

mated composition, using it as an auxiliary tool to the
developers. In [13, 21] and [32], service recommenda-
tions are provided to the composition developer based
on various parameters, such as the historical usage
pattern of the services, as in [21] or according to the
services the developer has already included in the com-
position, as in [32]. In [19], an analogy is made with the
GPS guiding system, where service “routes” are suggested
to the developer as he/she builds the composition. In
both [19] and [21], the myExperiment repository was
used to gather information on how to combine services,
as we did in this work, but with focus on service rec-
ommendations. Also for scientific workflows, [33] pro-
poses a recommendation service that uses sequence
mining, a data mining technique for finding frequent
sequential events in a dataset. Our paper, on the other
hand, focuses on the challenge of automated service
composition based on typical relationships between ser-
vices, such as the compatibility between input and output
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parameters. Also, unlike those papers, our approach is
based on AI planning techniques.
In this work, we use a simple distance metric to calcu-

late composition similarity, which is a rough approxima-
tion of the number of edit changes the developer would
make to the resulting composition. Another measure of
this edit distance between compositions is given in [34],
where structural features are considered. In their case,
the measure was used for matching process descriptions
of services to user queries.
Composition quality is seen as a function of the

matching of services’ input/output parameters in [26]
and [35]. Lécué and Mehandjiev [26] calculated the de-
gree of compatibility between parameters based on the
semantic matching (Exact, Plugin, Subsume, etc.), thus re-
quiring semantic descriptions. Skoutas et al. [35] investi-
gate dominance relations between matching of parameters,
introducing the notion of uncertain (probabilistic) domin-
ance to cope with cases in which it is not possible to estab-
lish a clear dominance between matches. For simplicity, in
our approach, we consider zero-one compatibility between
parameters based on historical data, although we gather
information (e.g., number of times these parameters
were combined) that could be used for computing
composition quality.

Research design and methodology
In this section, we introduce the dataset from the MyEx-
periment scientific workflow repository and our algorithm
for automated composition based on the Graphplan
planning algorithm.

Analyzing the MyExperiment repository
Semantic annotations of services are a key part of the au-
tomated composition process since it allows algorithms to
decide whether a service is appropriate for a specific task
or not. However, these semantic descriptions are not com-
monly found in services, which provide only syntactic de-
scriptions of their interfaces (i.e., WSDL). In order to
address this problem, we gather semantic information
from existing services based on their usage patterns. Our
process consists of analyzing a repository of existing ser-
vice compositions—the myExperiment project [12]—from
which the relations among services can be extracted to be
later used for creating new compositions.
In the myExperiment repository, service compositions

are called workflows, and therefore, the terms “compos-
ition” and “workflow” are used interchangeably through-
out this paper. Workflows are publicly available and can
easily be obtained via HTTP. We opted to use only
Taverna 2 [36] workflows (various languages are sup-
ported by the repository, Taverna versions 1 and 2 being
the most commonly used). Control structures inside the
workflows were not taken into account. Finally, malformed

workflows were excluded from the dataset, leaving 425
“good” workflows in the end. The total number of services
gathered from these workflows was 1094, 211 of which
were SOAP/WSDL Web services (19 %) and 22 were
RESTful Web services (2 %); the majority being internal
Taverna accessory services (e.g., data manipulation). Most
workflows make 10 or less service invocations (more than
80 %), the more invocations the less frequent in the
dataset. Another characteristic is low reuse of Web ser-
vices: 80 % of them were employed in only one workflow
(Taverna services are reused more often though).
Taverna workflows contain activities of various types,

not only Web services invocations. In this work, we
opted for using all kinds of activities as if they were
regular services, not only proper Web services, so that
complete composition could be built out of the pieces in
the repository. The activity type, input and output
parameters, and extra information (depending on the
activity type, for example, the WSDL URL for Web
services) were used to generate unique identifiers.

Input/output parameter compatibility
The first step to determine whether two services are
compatible is to check whether an output parameter of
one service can be passed as an input to the other. Our
objective was to build a parameter compatibility matrix
from the set of manually written compositions. We
analyzed the assignments of service outputs into ser-
vice inputs and added the corresponding compatibility
relations to the matrix.
The parameter compatibility matrix contains not only the

binary relation (“compatible or not”) but also the number
of times the input and output parameters were connected
in different workflows. This number can be used, for ex-
ample, to rank the output parameters that match certain
input parameters, based on how frequently the connection
output-input was used. In our experiments, however, we
simply consider if the parameters are compatible or not.
Table 1 shows an example of compatibility matrix for

a fictitious banking scenario. In such an example, the
parameter of type GetBalance_Balance can be assigned
to parameters of type SetBalance_NewBal since in two

Table 1 Parameter compatibility matrix for a simple banking
scenario

Output parameter
type

Input parameter type

GetBalance_
AccNo

SetBalance_
AccNo

SetBalance_
newBal

GetAcc
No_ID

...

GetBalance_Balance 2

SetBalance_Status

GetAccNo_AccNo 1 3

GetCPFbyName_ID 4

...
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compositions the output Balance of service Get_Balance
was connected to the input parameter NewBal of service
SetBalance. The same reasoning follows for the remaining
cases in the matrix; blank cells—i.e., assignments that did
not occur in the compositions—are assumed to represent
incompatible parameters. This is a simplification since
the absence of use in compositions does not imply in-
compatibility necessarily, but allowing full compatibility
between parameters would render composition times
impractical and generate poor results. Further work is
required to evaluate the feasibility of non-binary par-
ameter compatibility.
After analyzing the set of compositions, we extracted

1568 input and 1422 output parameters. The resulting
compatibility matrix is very sparse, with only 0.06 % of
the possible output-input assignments present. An input
parameter is assigned in average 1.6 times, while output
parameters are used 1.5 times on average.

Service precedence
A relation explored with the purpose of improving the
composition process was the service precedence relation.
This relation, of the form “S1 precedes S2,” happens
when service S1 appears in the execution sequence of
the composition before service S2. Taverna workflows
specify data flows instead of control flows, hence not
carrying service ordering explicitly. Service precedence
is then defined in terms of the dependency of input
parameters. In other words, S1 precedes S2 if, for any
given composition, any input of S2 depends on an output
of S1 or S1 precedes any of the services S2 depends on.
The overall pattern of the workflow-based relation is

present in this graph, with a component carrying 65 %
of the nodes and several smaller components present.
Compared to the previous relation, service precedence
presents a larger network diameter and a slightly lower
cluster coefficient.
Another interesting relation is the one in which ser-

vices have direct dependencies within compositions, i.e.,
services whose input and output parameters are directly
connected. The service dependency relation is the more
restrictive one in terms of the service connections
present compared to the two previous cases. Please re-
call that, in this graph, two services are connected only
if one service uses the output of the other service in any
composition. This graph helps to illustrate how often
services are directly connected. The average degree in
this case is close to 1, i.e., in general, the output of a
service is useful to a single other service only.

Adapting a composition algorithm
The problem of composing services is very similar to the
problem of finding a suitable plan to execute a task:
starting from some given initial state (the known inputs),

find a sequence of actions (services) that achieve the
desired goal (provide the expected outputs). This perfect
match explains why automated AI planning is the pre-
ferred technique for addressing the problem of automat-
ically composing services, and it was the path chosen
here. In this work, we use classical planning with exten-
sions as well, where the generated plan corresponds to
the service composition found.
We assume services are applicable once the informa-

tion they need is available, that is, there exist some data
that match their input parameters, usually the output of
another service. Therefore, the state of the system in a
given moment is determined by the parameter instances
(data) available, and the precondition of a service is its
set of input parameters. Parameter instances are con-
sumed but cannot disappear, i.e., there are no negative
effects on invoking a service (which only adds more data
to the system). Therefore, no mutual exclusion relations
will exist between services in our approach (a service
cannot prevent another from being called by suppressing
its inputs), making the problem easier to solve. In our
case, additional constraints are added in order to im-
prove the quality of the solutions, as discussed in the
following sections.
In this paper, we use the Graphplan (GP) planning al-

gorithm [37], known as being fast and fitting well the
properties of the service composition problem. While
exploring alternatives, we also adapted and tested the
Fast Forward (FF) algorithm [38]. The results showed FF
as being faster than GP but slightly less reliable (i.e.,
failing more often to find a composition). Given the
purpose of this paper of assessing composition in general
and the simplicity of the GP algorithm, we focused the
remaining of the paper on it.
Graphplan works by building a planning graph of a re-

laxed version of the planning problem and then attempt-
ing to extract a valid plan from the planning graph. If no
valid plan is found, the planning graph is expanded fur-
ther and the process is repeated until a valid solution is
found. In the Service Composition analogy, the layers
are comprised of service invocations and the parameter
instances associated to them.
The expansion of the planning graph is polynomial

both in time and in space with the size of the planning
problem (number of actions and propositions involved).
The most computationally demanding part of the algo-
rithm is the plan extraction, which searches the state
space provided by the planning graph for a valid plan.
The Graphplan algorithm suits well the Service Com-

position problem since the problem, in its basic form, is
already “relaxed”; because services have no negative ef-
fects, no mutual exclusion happens between them. One
consequence is that the search algorithm will not fail to
build a plan once the expansion has reached a layer in
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which all intended outputs are present. The relaxed ver-
sion of Graphplan becomes polynomial to the total
number of actions, or services in our case [37]. We also
made some changes to the algorithm in order to obtain
better solutions, as will be discussed in the following
sections. These changes, however, reclaim the original
complexity of Graphplan.

Enforcing input parameters
General-purpose planners try to find plans with the
minimum number of actions. Similarly, the Graphplan
algorithm finds plans with minimum execution depth,
i.e., the solution found should have the fewest layers
possible. It is reasonable to assume that a faster plan is
preferred in the general case (i.e., a plan with fewer
levels). However, sometimes this leads to plans that do
not make use of all information provided in the initial
state. If we have services in the service repository that
need no inputs, it is not uncommon for the planners to
generate compositions that use none or just a few of the
inputs provided. Although correct, these compositions
may not be exactly what the developer intended, i.e.,
they may not contain the services the developer would
expect to find given his/her specification.
In order to offer more control to the developer, we

propose an extra configuration option to the composition
specification: the maximum number of unused inputs,
Δmax ≥ 0. This number tells how many of the provided
input parameters can be left unused by the resulting com-
position. If the number is 0 (zero), then all inputs must be
present in the final solution; if it equals or is greater than
the number of inputs, then we have the original behavior
of the (relaxed) Graphplan algorithm.
We implemented this feature by changing the search

procedure of the Graphplan algorithm to account for
the number of used inputs. If the search procedure
reaches the top layer, it checks the used inputs and, if it
meets the specified configuration, it then returns with
success; otherwise it backtracks and another search
round is made with another set of services. The general
behavior of the algorithm follows that of Graphplan with
mutual exclusion.
Figure 1 presents the modified GP extraction algo-

rithm. Lines 8 through the end contain the basic Graph-
plan plan extraction algorithm, where a plan maps to a
composition in our scenario. The graph G results from
the expasion phase of the algorithm, and contains k
levels of actions (services) and propositions (parameters,
both inputs and outputs of such services), the top level
being the initial set of propositions s0 (in our case, the
set of input parameters for our composition). The goal
of the extraction procedure is to reach the top level
(k = 0) while avoiding conflicting sets of actions. The
sets of mutually exclusive propositions (parameters), which

configure conflicting actions, are kept in the nogood(k) set
for each level k. As explained earlier, however, since
services are not mutually exclusive, this part of the algo-
rithm it not applicable.
When first the extract procedure is first invoked, the

set g contains the final output parameters of the com-
position. In the next invocation of extract(), this set be-
comes the inputs passed to the services that generate
the final outputs. This process is repeated for each re-
cursive call as the search continues upwards. At the top
level (k = 0), one should expect g to match the original
set of initial input parameters s0 provided by the user,
but this is not necessarily the case. To enforce this, we
modified the procedure as seem in line 2, where it is
verified if the current set of parameters g differs in at
most Δmax from the set of original input parameters s0. If
this condition holds, the solution is accepted; otherwise, a
failure is returned and the extraction continues searching
other paths.
The feature of enforcing the use of input parameters

aims at improving the adherence of the final solution to
the specification and find solutions closer to the ones a
human developer would build. One can see it as a special
case of Planning with Preferences [39].

Preferred services with reverse Graphplan
In order to improve the performance of the solution
extraction algorithm, whenever it has to select services,
we use a relevance pruning technique we call Preferred

Fig. 1 Plan extraction algorithm (extract) with unused
inputs verification
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Services, which is similar to the approach presented in
[40]. In order to compute the preferred services set, we
apply the relaxed Graphplan expansion algorithm both
in the regular direction (from the inputs to the outputs)
and in the reverse direction (from outputs to inputs).
The resulting planning graph for each phase is “re-
duced,” a process that removes unnecessary services.
The set of preferred services is given by the union of the
services comprising both the direct and the reverse
reduced planning graphs.
Graphplan in its original form does not guarantee that

all inputs provided will be part of the final solution, al-
though the solution must provide all outputs. Con-
versely, applying the Graphplan expansion in the
reverse direction, we have a planning graph where all
inputs are reachable but not necessarily all outputs are
used. The intuition is that combining the services in
these graphs would provide the set of services likely to
be part of the final solution. Before merging the graphs’
services, though, we remove from them the services
that are not in the path between an input and an out-
put. This reduction algorithm removes the invocations
at the last level whose outputs (or inputs, in the reverse
case) are not outputs of the composition (inputs, re-
spectively). It proceeds upwards, removing invocations,
whose outputs are not used in the level below, until it
reaches the top level (Fig. 2).
The set of preferred services is used in our Graphplan

variant during the solution extraction phase, which, in
hard cases, is the more time-consuming phase of the
algorithm (as for the original Graphplan algorithm). In
this phase, the algorithm has to choose between invoca-
tions at a given level that provide the same input to an
invocation in the level below. The algorithm then uses
the set of preferred services to guide this choice, ranking
the candidate invocations depending on whether the
associated service is preferred or not.

Methods
We assume that the service developer will have to deal
with the output of such automated composition tools.

Therefore, the usefulness of these tools will depend on
how much effort can be saved by applying them. Instead
of directly assessing the effort gain or loss, we approxi-
mate it by measuring how close to handwritten compo-
sitions are the automated solutions found by the
algorithms, what we call the quality of the compositions.
Since we have the original compositions from the myEx-
periment repository at hand, we are able to compare the
output of the algorithms with the original ones.
This evaluation consists of rebuilding each original com-

position from the myExperiment repository by submitting
its interface description (i.e., input and output parameters)
to the algorithms and measuring the quality of the solu-
tion found. The more similar the solutions to the original
compositions, the less effort the developer would have to
spend adapting and fixing them.

Composition quality
The quality of a composition can be a very subjective
matter. Here, the quality of a solution is a measure of
how similar to a handwritten composition it is for the
same initial specification. The similarity between com-
positions can be measured with different levels of de-
tail. Instead of a very precise similarity measure—e.g.,
considering individual connections between services
and the order of services inside of the composi-
tions—we opted for a high-level similarity metric that
uses only the list of services present in both composi-
tions, irrespective of the order or number of occur-
rences of these services within the compositions. The
premise is that finding the correct services for a given
composition represents a fundamental part of creating
a new composition manually. If an automated process
could generate compositions with the correct services,
even if not connected in the way the developer would
expect, this could save one a considerable amount of
time. We assume that in a real scenario, a human de-
veloper will validate the compositions found by our
algorithm, as we already have an experience with a
preliminary version of it used in a service compos-
ition tool for the cloud [41].

Fig. 2 Planning graph reduction algorithm
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We used a Jaccard similarity coefficient: the percent-
age of services correctly found by the composition
process with respect to the total services on both com-
positions (automatic and manual). We chose Jaccard
mostly due to its simplicity. Also, it fits well our pur-
pose, by telling the similarity between the original set of
services and the one computed by our algorithm. Other
similarity metrics are available, such as the Dice coeffi-
cient, which is more useful for some string similarity
applications. Both Jaccard and Dice compare sets or
strings but the former consider exact matches, whereas
the latter considers bigrams. Also, there are other met-
rics but they are mostly variations or generalizations of
Jaccard or Dice, which make them more complicated
and not necessarily fit to our purposes.
Formally, the similarity between two compositions C1

and C2 is given by the formula (1):

similarity C1;C2ð Þ ¼ servicesC1∩servicesC2j j
servicesC1∪servicesC2j j ð1Þ

A similarity(Corig,Cmanual) = 0 means that the auto-
matic (Cauto) and manual (Cmanual) compositions do not
share any services, while similarity(Corig,Cmanual) = 1
means that both compositions share the same set of
services. Two closely related metrics are the hit rate (2),
which reflects the number of correct services ("hits")
found, and the error rate (3), that measures the number
of false positives, i.e., services the developer will likely
remove from the final composition.

hit Cauto;Cmanualð Þ ¼ servicesCauto∩servicesCmanualj j
servicesCmanualj j

ð2Þ

err Cauto;Cmanualð Þ ¼ servicesCauto−servicesCmanualj j
servicesCautoj j

ð3Þ

Baseline planners
In the experimental evaluation, we used a state-of-the-art
AI planner as well as the algorithm described in previous
section. We selected Fast Downward (FD) [42] planner
because of its performance in the last International Plan-
ning Competition [43]. FD is a forward planner, i.e., it
searches the state space from the initial state until a goal
state is found. Instead of using the planning graph as a
heuristic as in the Fast Forward algorithm, the FD planner
adopts another structure called “causal graph” as the base
structure for computing heuristic values. The causal graph
is defined by causal dependency relations between objects
of the planning domain: two objects have a causal depend-
ency if the state of the first object is changed by an oper-
ation whose precondition depends on the state of the

second. We used three FD heuristics (or variations) from
the IPC2011: FDSS1 [44], SelMax [45] and LAMA2011
[46]. FD uses PDDL as input language for the planning
problems.
We had to reduce the set of compositions from 425

down to 300 elements in order for the FD planner and al-
gorithm to run within our resources; our algorithms were
able to run with the complete dataset within the same
constraints. Additionally, we excluded some compositions
from the 300-workflow dataset to create a more realistic
scenario for the algorithms and prevent distortions in the
results: compositions with no output parameters (not suit-
able for the planners), compositions containing one single
service, and “isolated” compositions, whose services are
not used by any other composition in the repository.
Each individual composition attempt was allowed to use

up to 8GB of memory and to run for 30 min, which is the
time limit used in IPC competitions. We implemented
our algorithms in Java and executed with the same time
and memory constraints. The basic Graphplan algorithm
from the literature, adapted for service composition, is
identified in the evaluation as GP. Our GP variant that

supports enforced inputs is identified by GPenf ( GP
pref
enf

when the preferred services feature is used).

Results and discussion
Evaluation results are presented in this section, accord-
ing to the methodology and methods introduced in the
previous sections. Selected results cover the performance
of the planning tools, the quality of the solutions and
the use of input parameters and service precedence.
Also, we discuss our results in the end of the section.

Performance of planning tools
The first scenario we evaluated aims at measuring the
performance of standard planning tools with respect to
both quality and speed. We compared the FD var-
iants—FDSS1, SelMax and Lama2011—to our standard
Graphplan implementation (GP), using the 300-
composition dataset. Table 2 summarizes the results for
these first experiments, showing the number of cases in
which each planner succeeded, failed, or terminated due
to timeout, along with the average time per experiment
(plus/minus the standard deviation).

Table 2 Evaluation summary for the main scenario

FDSS1 SelMax Lama2011 GP

Success 199 122 194 212

Failed 3 1 4 0

Timeout 10 89 14 0

Time (avg ± sd) 519 ± 282 s 383 ± 59 s 516 ± 243 s 30 ± 65 ms
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In this scenario, we aim at rebuilding compositions
using information extracted from them in the first place;
therefore, we should expect the tools to be able to find so-
lutions to all experiments. The first notable observation is
that only the GP algorithm was capable of that; the FD-
based heuristics failed for some compositions due to time-
out or were not able to find a solution at all (before time-
out). Among the FD heuristics, the SelMax had the worst
success rate, failing in more than 40 % of the cases (in-
cluding timeout cases); its companion heuristics had fail-
ure rates below 10 %. Time figures in Table 2 are only
illustrative of the computational effort required and
should not be used as precise estimated of the compos-
ition time in real scenario. General purpose planners—-
such as FD—provide features not used in this evaluation
and are highly optimized for solution quality instead of
computational speed. They also suffer with PDDL-parsing
overhead, unlike our GP implementation.

Quality of the solutions
The quality of the solutions, measured by the similarity
metrics is presented in Table 3. Overall, the quality of
the solutions generated by the FD heuristics and the GP
algorithm are around 75 %, with the exception of the
SelMax heuristic. This heuristic, however, has the worst
performance in terms of success rate, being able to solve
only 60 % of the cases tested.
As previously mentioned, general-purpose planners

focus on finding the shortest plan (in number of services
or time steps); using all the inputs provided is not a
priority. To illustrate such a fact, Fig. 3 presents the
composition found by both the FDSS1 and GP planners
for a given workflow in the myExperiment repository.
The solution for this case does not use all the original
input parameters—NumRunYear is left unused. As a
result, it lacks one of the Web services of the original
solutions—wsdl : RunDynamicSimple – and the solution
quality is 0.67.

Using input parameters
We addressed this problem with extensions that enforce
the use of the inputs provided by the developer. We
tested these algorithms against the FDSS1 heuristic. In
Table 4, we present the results for the enforced GP, with

and without the use of Preferred Services (GPenf and G

Ppref
enf respectively); the results for FDSS1 and basic GP

are repeated for easy reference.
Observing, only the quality obtained by the algo-

rithms, the improvement seems unimpressive. The
modified algorithms matched the quality provided by
the FD planner, being also able to improve the hit
rate—i.e., number of correct services found—from 0.79
to 0.83. The real value of the modified GP algorithms,
however, comes out when we look only at the cases in
which they made a difference: instances where trad-
itional planning algorithms did not use all the informa-
tion provided by the developer in the solution. The
average quality for these cases rose from 0.45, using the
FDSS1 heuristic, to 0.71 using the enforced GP algo-

rithm with preferred services (GPpref
enf ), as can be seen in

Table 5. The hit rate also increased considerably: while
the FD planner found around half the services the devel-
oper wanted, our algorithm was able to find as many as
80 % of them.

Using service precedence
Finally, we experimented with the service precedence in-
formation extracted from the composition repository. The
service precedence relation can be used to determine if a
service X is a prerequisite for service Y, even if they are
not directly connected. Intuitively, if we observe that ser-
vice X precedes service Y in all compositions where ser-
vice Y is used, then one can assume that X is needed in
order to invoke Y, i.e., X is an implicit precondition of Y.
For this evaluation, we made the precedence relation an
explicit precondition of the services in our repository. No
modifications were made to the algorithms, since they are
able to handle these simple preconditions natively. We
evaluated the main scenario with precedence information
using the FDSS1 planner and the basic GP algorithm; the
results are shown in Table 6.
The use of the additional information had an impact

on the quality of the solutions in both cases. Graphplan
outperformed FDSS1 with respect to the hit rate metric
(0.86 against 0.83) but suffered from the large number of
services in its solutions, which reduced its overall simi-
larity. In this evaluation, service precedence was used as
a hard precondition: a service is only added to a solution
if all services it requires appear before its use in the
composition. In the future, we plan to use the prece-
dence information in a softer way, deferring instead of
pruning away the services that do not have all of their
required services fulfilled.

Discussion
Automated Service Composition has already been stud-
ied for a number of years and several proposals have

Table 3 Composition metrics—main scenario

FDSS1 SelMax Lama2011 GP

Similarity 0.77 0.88 0.75 0.73

Hit rate 0.79 0.90 0.77 0.78

Error rate 0.08 0.04 0.10 0.14

Services (avg) 4.14 4.18 4.07 4.74

Depth (avg) 3.24 3.27 3.25 3.33
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emerged with varied levels of maturity. Nonetheless, the
use of automated composition techniques by service de-
velopers has not taken off yet, despite the efforts of the
Web services community. In our opinion, this is due, in
part, to the fact that some complex approaches seek to
reduce the role of the developer in the (automated)
composition process, while even trying to replace him/

her altogether; other simpler approaches, conversely,
may be too dependent on the developer, requiring con-
stant feedback in order to find solutions. We think that
automated composition can be an important item in the
developer’s utility belt—akin to code completion and
refactoring in modern integrated development environ-
ments—but for that to happen it must be simple to use,

Table 4 Composition metrics enforcing the use of input
parameters

FDSS1 GP GPenf GPprefenf

Similarity 0.77 0.73 0.78 0.77

Hit rate 0.79 0.78 0.83 0.83

Error rate 0.08 0.14 0.12 0.12

Services (avg) 4.14 4.74 4.92 5.01

Depth (avg) 3.24 3.33 3.44 3.49

Table 5 Composition quality enforcing the use of input
parameters

FDSS1 GPprefenf

Similarity 0.45 0.71

Hit rate 0.54 0.82

Error rate 0.31 0.18

Services (avg) 3.77 5.20

Depth (avg) 3.03 3.91

Fig. 3 Workflow generated by FDSS1 (GP generates an identical workflow)

Dantas et al. Journal of the Brazilian Computer Society  (2016) 22:6 Page 10 of 13



non-intrusive, relatively fast, and more robust to human
failures. Moreover, the developer should be able to rely
on the solutions provided by the algorithms or at least
have some expectation of how reliable (or not) the com-
positions generated automatically are.
In this work, we have focused on some of the prob-

lems that hinder the applicability of automated compos-
ition in practical scenarios. To circumvent the lack of
semantic information that is common for real-life ser-
vices, we opted for using a publicly available repository
of scientific workflows, from which we extracted the
information necessary for the planning algorithms. We
measured the accuracy of the automated compositions
compared to ones written manually in order to estimate
how helpful these tools would be to composition devel-
opers. The results showed that the overall quality of
compositions obtained by both standard planning tools
and our algorithms is acceptable (around or above
75 %), but there was room for improvement for specific
cases. We identified that the cases in which not all
input information was used in the solutions had lower
average quality, and that, by applying an algorithm
designed to address this problem, the quality was increased
from 45 to 71 %.
The results also showed that a tailored implementation

is able to perform faster than a more general one by or-
ders of magnitude, while providing similar quality. This
finding, however, comes with the caveat that the PDDL
domain description may affect execution times. In our
experiments we used a PDDL mapping supported by the
all selected planners, although other planners support
simpler ways of describing the domain. PDDL processing
itself has a cost in the overall performance of the plan-
ners as well.
Another interesting result was that using more informa-

tion associated to the services (i.e., service precedence)
could improve the solutions (comparing with plain GP) at
the expense of significantly increasing the time required
to compute them. In our experiments with and without
service precedence, the average time (and standard devi-
ation) was 29 ms (65 ms) and 388 ms (1006 ms), respect-
ively. Service precedence also improved hit rate compared
to GP with enforced inputs: 0.86 against 0.83.

The decision of what composition tool to use—a gen-
eric planner or our tailored algorithms—varies according
to the requirements of the composition developer. If the
developer has little or no constraint on the time required
to compute the solutions, using a generic planner such
as the Fast Downward along with precedence informa-
tion is a good option since it generates compositions
with the best quality on average (but takes several mi-
nutes doing so). However, if response time is an issue, as
in an iterative development approach, the results
show that our algorithms, especially the Graphplan
with Enforced Inputs and Preferred Services, provide
the best balance between composition quality and
computation time.
There are other planning strategies that can mimic the

features implemented in our algorithms, namely, plan-
ning with preferences (enforced inputs). For the evalu-
ation in this work, however, we were able to compare
our algorithms to classical planning tools only, and even
then, the evaluation encountered several obstacles due
to the inability of the tools to handle large domains.
However, as a thorough comparison could not be carried
out, we cannot rule them out right away. This compari-
son is a subject for future work.

Conclusions
Automated composition using standard planning algo-
rithms can indeed provide solutions with encouraging
quality levels. It is possible, however, to increase the
quality by applying planning algorithms specially crafted
for the service composition task. In particular, ensuring
the adherence of the solution to the initial specification
by enforcing the use of all input parameters showed that
it was capable of increasing the quality of the solutions.
We measured the quality of the solutions and overall
performance of the planning tools and our algorithm. A
real-life composition repository was used in the evalu-
ation, generating a planning domain large enough to
cause several state-of-the-art planners to crash.
The evaluation also showed that using classical plan-

ning tools is too time-consuming for agile development
scenarios. A simplified, tailored implementation can be
orders of magnitude faster than a generic planner, which
suggests that expressive power may need to be sacrificed
in favor of usability. Irrespective of the tool, some
problem instances will still require more time than the
developer may be willing to wait, as timed-out cases
happened to most algorithms. Our opinion—shared by
other authors [21]—is that the algorithms either find a
solution “quickly” or hang indefinitely looking for it.
In this work, we focused on simpler, dataflow-oriented

compositions where the main elements are services and
the connections between them. Current composition
languages, such as WS-BPEL, allow for more elaborate

Table 6 Composition metrics for service precedence

Without service precedence With service precedence

FDSS1 GP FDSS1 GP

Similarity 0.77 0.73 0.81 0.77

Hit rate 0.79 0.78 0.83 0.86

Error rate 0.08 0.14 0.09 0.14

Services (avg) 4.14 4.74 4.13 5.76

Depth (avg) 3.24 3.33 3.35 3.53

Dantas et al. Journal of the Brazilian Computer Society  (2016) 22:6 Page 11 of 13



compositions, resembling traditional programming lan-
guages. In our opinion, however, these control structures
would require much richer composition specifications
than the basic input/output approach. The richer the
specification, the more complex will be the developer’s
job of describing the composition in the first place, to the
point where specifying the composition could eventually
take the same effort as writing the composition itself.
With that in mind, and for the purpose of having auto-
mated composition assist—not replace—the developer,
having full-blown control-structures in solutions might be
overkill. We want to investigate this subject further and
verify to what extent these insights are valid or not.
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