Complexity of greedy edge-colouring

Frédéric Havet ${ }^{1}$, A. Karolinna Maia ${ }^{2 *}$ and Min-Li Yu ${ }^{3}$

Abstract

The Grundy index of a graph $G=(V, E)$ is the greatest number of colours that the greedy edge-colouring algorithm can use on G. We prove that the problem of determining the Grundy index of a graph $G=(V, E)$ is NP-hard for general graphs. We also show that this problem is polynomial-time solvable for caterpillars. More specifically, we prove that the Grundy index of a caterpillar is $\Delta(G)$ or $\Delta(G)+1$ and present a polynomial-time algorithm to determine it exactly.

Background

All the graphs considered in this paper are without loops but may have multiple edges.

A (proper) k-colouring of a graph $G=(V, E)$ is a surjective mapping $c: V \rightarrow\{1,2, \ldots, k\}$ such that $c(u) \neq c(v)$ for any edge $u v \in E$. The chromatic number is $\chi(G)=$ $\min \{k \mid G$ admits a k-colouring $\}$. On the algorithmic point of view, finding the chromatic number of a graph is a hard problem. For all $k \geq 3$, it is NP-complete to decide whether a graph admits a k-colouring (see [2]). Furthermore, it is NP-hard to approximate the chromatic number within $|V(G)|^{\varepsilon_{0}}$ for some positive constant ε_{0}, as shown by Lund and Yannakakis [5].

Hence, lots of heuristics have been developed to colour a graph. The most basic and widespread because it works online is the greedy algorithm. Given a vertex ordering $\sigma=v_{1}<\cdots<v_{n}$ of $V(G)$, this algorithm colours the vertices in the order v_{1}, \ldots, v_{n}, assigning to v_{i} the smallest positive integer not used on its lower-indexed neighbours. A colouring resulting of the greedy algorithm is called a greedy colouring. The Grundy number $\Gamma(G)$ is the largest k such that G has a greedy k-colouring. Easily, $\chi(G) \leq$ $\Gamma(G) \leq \Delta(G)+1$.
Zaker [6] showed that for any fixed k, one can decide in polynomial time whether a given graph has Grundy number at most k. However, determining the Grundy number of a graph is NP-hard [6], and given a graph G, it is even NP-complete to decide whether $\Gamma(G)=\Delta(G)+1$ as shown by Havet and Sampaio [3]. In addition, Asté et al.

[^0][1] showed that for any constant $c \geq 1$, it is NP-complete to decide whether $\Gamma(G) \leq c \cdot \chi(G)$.
Graph colouring of many graph classes has also been studied. One of the classes is the one of line graphs. The line graph of a graph G, denoted $L(G)$, is the graph whose vertices are the edges of G, with ef $\in E(L(G))$ whenever e and f share an end-vertex. Colouring line graphs corresponds to edge-colouring. A k-edge-colouring of a graph G is a surjective mapping $\phi: E(G) \rightarrow\{1, \ldots, k\}$ such that if two edges e and f are adjacent (i.e. share an end-vertex), then $\phi(e) \neq \phi(f)$. A k-edge-colouring may also be seen as a partition of the edge set of G into k disjoint matchings $M_{i}=\{e \mid \phi(e)=i\}, 1 \leq i \leq k$. By edge-colouring, we mean either the mapping ϕ or the partition.
The chromatic index $\chi^{\prime}(G)$ of a graph G is the least k such that G admits a k-edge-colouring. It is easy to see that $\chi^{\prime}(G)=\chi(L(G))$. Obviously, $\Delta(G) \leq \chi^{\prime}(G)$ and Shannon's and Vizing's theorems state that $\chi^{\prime}(G) \leq$ $\max \left\{\frac{3}{2} \Delta(G) ; \Delta(G)+\mu(G)\right\}$, where $\mu(G)$ is the maximum number of edges between two vertices of G. Holyer [4] showed that for any $k \geq 3$, it is NP-complete to decide if a k-regular graph has chromatic index k.
Edge colouring naturally arises in modelling some channel assignment problems in wireless network. From such a network, one can construct the communication graph whose vertices are the nodes of the network, and two vertices are connected by an edge whenever they communicate. In order to avoid interferences between the different signals arriving at a node, we need to assign distinct frequencies to the communications at each node. This corresponds to finding an edge-colouring of the communication graph.

Usually, the communications begin at different dates, and we need to assign the frequencies online. Usually, the frequencies are assigned greedily according to the following the greedy algorithm for edge-colouring, which corresponds to the greedy algorithm to colour a line graph. Given a graph $G=(V, E)$ and an edge ordering $\theta=e_{1}<\cdots<e_{n}$, assign to e_{i} the least positive integer that was not already assigned to lower-indexed edges adjacent to it. An edge-colouring obtained by this process is called a greedy edge-colouring, and it has the following property:
For every $j<i$, every edge e in M_{i} is adjacent to an edge in M_{j}.
Note that an edge-colouring satisfying (P) is a greedy edge-colouring relative to any edge ordering in which the edges of M_{i} precede those of M_{j} when $i<j$.

The Grundy index $\Gamma^{\prime}(G)$ of a graph G is the largest number of colours of a greedy edge-colouring of G. Notice that $\Gamma^{\prime}(G)=\Gamma(L(G))$. By definition, $\chi^{\prime}(G) \leq \Gamma^{\prime}(G)$. Furthermore, as an edge is adjacent to at most $2 \Delta(G)-2$ other edges $(\Delta(G)-1$ at each end-vertex), colouring the edges greedily uses at most $2 \Delta(G)-1$ colours. So $\Delta(G) \leq \Gamma^{\prime}(G) \leq 2 \Delta(G)-1$. There are graphs for which the Grundy index equals the maximum degree, stars for example. On the opposite, for any Δ, there is a tree with maximum degree Δ and Grundy index $2 \Delta-1$. Indeed, consider the trees B_{k}^{\prime} defined recursively as follows: $B_{1}^{\prime}=$ $P_{2}, B_{2}^{\prime}=P_{3}$ and the root of P_{2} is one of its vertex and the root of P_{3} is one of its leaves; B_{k}^{\prime} is obtained from the disjoint union of B_{k-1}^{\prime} and B_{k-2}^{\prime} by adding an edge between their roots, and the root of B_{k}^{\prime} is the root of B_{k-2}^{\prime}. An easy induction shows that for every positive $k, \Delta\left(B_{2 k}^{\prime}\right)=$ $\Delta\left(B_{2 k+1}^{\prime}\right)=k+1$ and that the root of $B_{2 k}^{\prime}$ has degree k and the root of $B_{2 k+1}^{\prime}$ has degree $k+1$. Now, $\Gamma^{\prime}\left(B_{k}^{\prime}\right)=k$ for every k, because one can show easily by induction the following stronger statement.

Proposition 1. For every positive integer k, there is a greedy k-edge-colouring of B_{k}^{\prime} such that the colours assigned to the edges incident to the root are all the odd numbers up to k, if k is odd, and all the even numbers up to k if k is even.

In this paper, we study the complexity of finding the Grundy index of a graph. We prove that it is NP-hard by showing that the following problem is co-NP-complete.

Minimum Greedy Edge-Colouring

Instance: A graph G.
Question: $\Gamma^{\prime}(G)=\Delta(G)$?
The proof, to be detailed in the Section 'Co-NPcompleteness results', is a reduction from 3-EDGEColourability of Cubic Graphs which was proved to be NP-complete by Holyer [4]. We recall that a cubic
graph is a 3-regular graph. The reduction also proves that it is co-NP-complete to decide if $\Gamma^{\prime}(G)=\chi^{\prime}(G)$.

3-Edge-Colourability of Cubic Graphs

Instance: A cubic graph G.
Question: Is G 3-edge colourable?
We then extend the result to a more general problem.

f-Greedy Edge-Colouring
 Instance: A graph G.

Question: $\Gamma^{\prime}(G) \leq f(\Delta(G))$?
We show that for any function f such that $k \leq f(k) \leq$ $2 k-2$, the problem f-Greedy Edge-Colouring is co-NP-Complete.

Since determining the Grundy index is NP-hard, a natural question to ask is for which class of graphs it can be done in polynomial time. Obviously, it is the case for the class of graphs with maximum degree k. Indeed, the Grundy index of a graph G in this class is at most $2 k-1$, and for every $1 \leq i \leq 2 k-1$, one can check in polynomial time whether $\Gamma^{\prime}(G) \leq j$. So we must look at classes for which the maximum degree is not bounded. In the Section 'Greedy edge-colouring of caterpillars', we consider caterpillars which are trees such that the deletion of all leaves results in a path, called backbone. We show that if T is a caterpillar then $\Gamma^{\prime}(T) \leq \Delta(T)+1$ and then give a linear-time algorithm to compute the Grundy index of a caterpillar. In view of this result, a natural question is the following:

Problem 2. Can we compute in polynomial time the Grundy index of a given tree?

Co-NP-completeness results

The aim of this section is to prove that f-Greedy EdgeColouring is co-NP-complete for every function f such that $k \leq f(k) \leq 2 k-2$ for all k.
For the sake of clarity, we first show that Minimum Greedy Edge-Colouring is co-NP-complete.

Minimum Greedy Edge-Colouring is clearly in coNP, because a greedy edge-colouring of a graph G with at least $\Delta(G)+1$ colours is a certificate that $\Gamma^{\prime}(G)>\Delta(G)$. We show that it is co-NP-complete.

Theorem 3. Minimum Greedy Edge-Colouring is co-NP-Complete.

We now prove the co-NP-completeness by reduction from 3-Edge-Colourability of Cubic Graphs.
Let H be a cubic graph on n vertices $w_{1}, \ldots w_{n}$. Let G be the graph defined by $V(G)=V(H) \cup\left\{u_{1}, \ldots, u_{n}\right\} \cup$ $\{v, a, b, c\}$ and $E(G)=E(H) \cup\left\{u_{i} w_{i} \mid 1 \leq i \leq n\right\} \cup\left\{v u_{i} \mid\right.$ $1 \leq i \leq n\} \cup\{a v, b v, c v\}$. See Fig. 1 .

Fig. 1 Graph G obtained from a cubic graph H

In $G, d(v)=n+3$, while the degree of all other vertices is at most 4 . Thus, $\Delta(G)=d(v)=n+3$ because $n \geq 4$ has H is cubic. Moreover, every edge of G is adjacent to at most $n+3$ edges so $\Gamma^{\prime}(G) \leq n+4=\Delta(G)+1$. Hence, the Grundy index of G is either $\Delta(G)$ or $\Delta(G)+1$. The co-NPcompleteness of Minimum Greedy Edge-Colouring follows directly from the following claim.

Claim 3.1. $\chi^{\prime}(H)=3$ if and only if $\Gamma^{\prime}(G)=\Delta(G)+1$.
Proof. (\Rightarrow) Suppose that there exists a 3-edge-colouring ϕ of H. Let us extend ϕ into a greedy edge-colouring of G with $\Delta(G)+1=n+4$ colours. Set $\phi(a v)=1, \phi(b v)=$ $2, \phi(c v)=3$, and for all $1 \leq i \leq n, \phi\left(u_{i} w_{i}\right)=4$ and $\phi\left(u_{i} v\right)=i+4$. Notice that every vertex w_{i} is incident to an edge of H of each colour in $\{1,2,3\}$ since H is cubic. Then, it is straightforward to check that ϕ is a greedy ($n+$ 4)-edge-colouring of G.
(\Leftarrow) Suppose that there is a greedy $(n+4)$-edgecolouring of G. Some edge is coloured $n+4$. But such an edge has to be adjacent to at least $n+3$ edges and thus to be one of the νu_{i}, say νu_{n}. The edge νu_{n} is adjacent to exactly $n+3$ edges. So by Property (P), all edges adjacent to $v u_{n}$ receive distinct colours in $\{1, \ldots, n+3\}$.

Let us first prove by induction on $1 \leq j \leq n$ that the edge e_{j} adjacent to $v u_{n}$ labelled $n+5-j$ is one of the $v u_{i}$, the result holding for $j=1$. Suppose now that $j \geq 2$. The edge e_{j} must have degree at least $n+5-j$ since it is adjacent to $v u_{n}$ and one edge of each colour in $\{1, \ldots, n+4-j\}$ by Property (P). Hence, e_{j} must be incident to v since $u_{n} w_{n}$ is adjacent to four edges. Then e_{j} must have degree at least $n+3$ since it is adjacent to the $j-1$ edges e_{l} for $1 \leq l<j$ and one edge of each colour in $\{1, \ldots, n+4-j\}$. Hence, e_{j} is one of the $v u_{i}$.
Hence, without loss of generality, we may assume that $\phi\left(v u_{i}\right)=i+4$ for all $1 \leq i \leq n$. The edge $v u_{i}$ is adjacent to an edge-coloured 4 . This edge must be $u_{i} w_{i}$ since the edges $a v, b v$ and $c v$ are adjacent to at most two edges coloured in $\{1,2,3\}$. Thus, $\phi\left(u_{i} w_{i}\right)=4$ for all $1 \leq i \leq n$.
Now every edge $u_{i} w_{i}$ is adjacent to three edges, one of each colour in $\{1,2,3\}$. Since $\phi\left(v u_{i}\right) \geq 5$, these three edges must be the three edges adjacent to w_{i} in H. Thus, all the edges of H are coloured in $\{1,2,3\}$. Hence, the restriction of ϕ to H is a 3-edge-colouring.

Remark 4. Observe that the graph G has chromatic index $\Delta(G)$. Indeed, colour the edges adjacent to v with the colours $1, \ldots, \Delta(G)$ and then extend greedily this colouring to the other edges. Since all the remaining edges are adjacent to at most four edges, they will all get a colour less than or equal to 5 . Since $\Delta(G) \geq 5$, we obtain a $\Delta(G)$ -edge-colouring. Hence, the above reduction shows that it is co-NP-complete to decide whether $\Gamma^{\prime}(G)=\chi^{\prime}(G)$.

Theorem 3 may be generalized as follows.
Theorem 5. Let f be a function such that $k \leq f(k) \leq$ $2 k-2$ for all $k \in \mathbb{N}$. f-Greedy Edge-Colouring is co-NP-Complete.

Proof. f-Greedy Edge-Colouring is clearly in coNP, because a greedy edge-colouring of a graph G with more than $f(\Delta(G))$ colours is a certificate that $\Gamma^{\prime}(G)>$ $f(\Delta(G))$.
We now prove the co-NP-completeness by reduction from 3-Edge-Colou- Rability of Cubic Graphs.
Let H be a cubic graph on n vertices w_{1}, \ldots, w_{n}, and let G be the graph defined as in the proof of Theorem 3. Set $p=f(n+3)-(n+3)$. Then $0 \leq p \leq n+1$. For $1 \leq i \leq p$, let T_{i} be the tree with vertex set $\left\{a_{i}, b_{i}, c_{i}, t_{i}\right\} \cup\left\{a_{i, j}, b_{i, j}, c_{i, j}, s_{i, j}, t_{i, j} \mid 1 \leq j \leq n-1\right\}$ and edge set $\left\{a_{i} t_{i}, b_{i} t_{i}, c_{i} t_{i}\right\} \cup \bigcup_{j=1}^{n-1}\left\{a_{i, j} t_{i, j}, b_{i, j} t_{i, j}, c_{i, j} t_{i j}, t_{i, j} s_{i, j}, s_{i, j} t_{i}\right\}$. Let G^{\prime} be a graph obtained from the disjoint union of G and the T_{i} by adding the edge $u_{n} t_{i}$ for all $1 \leq i \leq p$. See Fig. 2 .

Observe that $\Delta\left(G^{\prime}\right)=n+3$ and the vertices of degree $n+3$ are v, t_{1}, \ldots, t_{p} and u_{n} when $p=n+1$. Moreover, every edge is adjacent to at most $n+3+p$, so $\Gamma^{\prime}(G) \leq$ $n+3+p+1=f\left(\Delta\left(G^{\prime}\right)+1\right.$. The co-NP-completeness

Fig. 2 The graph G^{\prime} obtained from a cubic graph H
of f-Greedy EdGE-Colouring follows directly from the following claim.

Claim 5.1. $\chi^{\prime}(H)=3$ if and only if $\Gamma^{\prime}\left(G^{\prime}\right)=f\left(\Delta\left(G^{\prime}\right)\right)+1$.
(\Rightarrow) Suppose that there exists a 3-edge-colouring ϕ of H. Let us extend ϕ into a greedy edge-colouring of G^{\prime} with $f\left(\Delta\left(G^{\prime}\right)\right)+1=n+p+4$ colours. We first extend it into a greedy $(n+4)$-colouring of G as we did in the proof of Theorem 3. In particular, we have $\phi\left(u_{n} w_{n}\right)=4$ and $\phi\left(u_{n} v\right)=n+4$. For all $1 \leq i \leq p$ and all $1 \leq j \leq n-1$, we set $\phi\left(t_{i} a_{i}\right)=1, \phi\left(t_{i} b_{i}\right)=2, \phi\left(t_{i} c_{i}\right)=3, \phi\left(t_{i, j} a_{i, j}\right)=1$, $\phi\left(t_{i, j} b_{i, j}\right)=2, \phi\left(t_{i, j} c_{i, j}\right)=3, \phi\left(t_{i, j} s_{i, j}\right)=j+3$, and $\phi\left(t_{i} u_{n}\right)=n+4+i$. Then it is straightforward to check that ϕ is a greedy $(n+p+4)$-edge-colouring of G^{\prime}.
(\Leftarrow) Suppose that G^{\prime} admits a greedy $(n+p+4)$-edgecolouring ϕ. For all $1 \leq i \leq p$, there is an edge e_{i} coloured $n+4+i$. This edge must have to be adjacent to at least $n+3+i$ edges by Property (P). So all the e_{i} must be in $F=\left\{v u_{n}\right\} \cup\left\{u_{n} t_{i} \mid 1 \leq i \leq p\right\}$. Now, the edge e_{p} is adjacent to an edge e_{0} coloured $n+4$. This edge is adjacent to at least $n+4$ edges: one of each colour in $\{1, \ldots, n+3\}$ and e_{p}. Hence, e_{0} also has to be in F. Since $|F|=p+1$, all the edges in F are coloured with distinct labels in $\{n+$ $4, \ldots, n+p+4\}$.

Now applying the same reasoning as in the proof of Theorem 3, we derive that the restriction to ϕ to H is a 3 -edge-colouring.

Greedy edge-colouring of caterpillars

In this section, we show a polynomial-time algorithm solving Greedy Edge-Colouring for caterpillars. A
caterpillar is a tree such that the deletion of all leaves results in a path, called backbone. A star is a trivial caterpillar.

We first show that the Grundy index of a caterpillar T is at most $\Delta(T)+1$, and so it is either $\Delta(T)$ or $\Delta(T)+1$. Then we give a polynomial-time algorithm that computes the Grundy index of a caterpillar.

Grundy index of a caterpillar

Lemma 6. Let T be a caterpillar and $v a$ vertex in its backbone such that $d(v) \geq 3$. In every greedy edgecolouring of T, the colours $1, \ldots, d(v)-2$ appear on the edges incident to v.

Proof. By the contrapositive. Let c be an edge-colouring of T. Suppose that a colour $\alpha \in\{1, \ldots, d(v)-2\}$ is not assigned to any edge incident to v. Then, since all the edges incident to v have different colours, at least three colours strictly greater than $d(v)-2$ appear on three edges incidents to v. One of these colours, say β, must appear on an edge e incident with a leaf. But e is uniquely adjacent to edges incident to v. So e is adjacent to no edge-coloured α. Since $\alpha \leq d(v)-2<\beta$, the edge-colouring c is not greedy.

Lemma 7. Let c be a greedy edge-colouring of a caterpillar T and v an interior vertex in the backbone of T. If two edges e_{1} and e_{2} incident to v receive colours greater than $d(v)-1$, then e_{1} and e_{2} are two edges of the backbone and the edges incident to v and leaves are coloured $1, \ldots, d(v)-2$.

Proof. Suppose by way of contradiction that one of these two edges, say e_{1}, is incident to a leaf. Then e_{1} is adjacent to $d(v)-1$ other edges, and one of them, namely e_{2}, is assigned a colour greater than $d(v)-1$. Thus, e_{1} is adjacent to at most $d(v)-2$ edges whose colour is less or equal to $d(v)-1$. So, there is a colour α in $\{1, \ldots, d(v)-1\}$ such that no edge adjacent to e_{1} is coloured α. This contradicts the fact that c is greedy. Hence, e_{1} and e_{2} are edges of the backbone.
Now by Lemma 6, there must be edges incident to v of each colour in $\{1, \ldots, d(v)-2\}$. So the $d(v)-2$ edges distinct form e_{1} and e_{2}, which are the edges linking v and leaves are coloured must be coloured in $\{1, \ldots, d(v)-2\}$.

Theorem 8. If T is a caterpillar, then $\Gamma^{\prime}(T) \leq \Delta(T)+1$.
Proof. Set $\Delta(T)=\Delta$. Suppose by way of contradiction that it is possible to greedily colour T with $\Delta+2$ colours. Let e be an edge-coloured $\Delta+2$. It must be adjacent to at least $\Delta+1$ edges, one of each colour $1, \ldots, \Delta+1$. Thus, the edge e is in the backbone. According to Lemma 7, the edges e_{1} and e_{2} adjacent to e with colours Δ and $\Delta+1$ are in the backbone. Furthermore, all the edges adjacent to e which are neither e_{1} nor e_{2} are coloured in $\{1, \ldots, \Delta-2\}$. Hence, e is adjacent to no edge-coloured $\Delta-1$, a contradiction.

Theorem 8 is tight since there are caterpillars T whose Grundy index is greater than their maximum degree. For example, consider the caterpillar C_{k} with backbone (t, u, v, w) for which all the vertices t have degree $k-1$, and v and w degree k. An edge-colouring in which the $k-2$ edges incident to t and a leaf are coloured with $1, \ldots$, $k-2$, the $k-1$ edges incident to w and a leaf with $1, \ldots, k-1$, the $k-2$ edges incident to v and a leaf with $1, \ldots, k-2$, the edge $t u$ with $k-1$, the edge $v w$ with k and the edge $u v$ with $k+1$ is greedy. See Fig. 3 for $k=5$.

Finding the Grundy index of a caterpillar

Theorem 8 implies that the Grundy index of a caterpillar T is either $\Delta(T)$ or $\Delta(T)+1$. Hence, determining the Grundy index of a caterpillar is equivalent to solve Minimum Greedy Edge-Colouring for it. The aim of this subsection is to prove that it can be done in a linear time.

Theorem 9. Determining the Grundy index of a caterpillar T can be done in $O(|V(T)|)$.

In order to prove this theorem, we first give some definitions and lemmas. Let T be a caterpillar with backbone $P=\left(v_{1}, v_{2}, \ldots, v_{n}\right), v_{1} \neq v_{n}$. The first edge of P is $v_{1} v_{2}$. For any edge $e=v_{i} v_{i+1} \in P$, removing e from T gives two caterpillars T_{e}^{-}and T_{e}^{+}, the first one containing v_{i} and the second one containing v_{i+1}. For convenience, the backbone of T_{e}^{-}is $P^{-}(e)=\left(v_{i}, v_{i-1}, \ldots, v_{1}\right)$ and the backbone of T_{e}^{+}is $P_{e}^{+}=\left(v_{i}, v_{i+1}, \ldots, v_{n}\right)$. Hence, the first edge of T_{e}^{-}is $\left(v_{i}, v_{i-1}\right)$ and the first edge of $T^{+}(e)$ are $\left(v_{i+1}, v_{i+2}\right)$. However, if the degree of v_{i} is 2 in $T,\left(v_{i}, v_{i-1}\right)$ is not an edge in the backbone, the case in which we say that the first edge is null. The same happens if the degree of v_{i+1} is 2 or if T_{e}^{-}or $T^{+}(e)$ are stars.

Lemma 10. Let T be a caterpillar of the maximum degree Δ with backbone $P=\left(v_{1}, \ldots, v_{n}\right)$ with a length at least 2 . Then $\Gamma^{\prime}(T)=\Delta+1$ if and only if there is an edge $e=v_{i} v_{i+1} \in E(P)$ such that

1. one end-vertex of e has degree Δ, and
2. one of the two caterpillars T_{e}^{-}and T_{e}^{+}has a greedy edge-colouring such that the first edge of its backbone is coloured Δ and the other has a greedy edge-colouring such that its first edge of its backbone is coloured $\Delta-1$. If the value of the first edge of T_{e}^{-} (similarly for T_{e}^{+}) is null, its first vertex is required to have degree Δ in the early case (edge-coloured Δ) and $\Delta-1$ in the later.

Proof. Assume that T has a greedy $(\Delta+1)$-edgecolouring. Let e be an edge-coloured $\Delta+1$. By Lemma 7 , e is in the backbone and incident to a vertex of degree Δ, proving (1). Moreover, the edge e is adjacent to an edge e_{1} coloured Δ and another one e_{2} labelled $\Delta-1$. The greedy edge-colourings induced on T_{e}^{-}and T_{e}^{+}satisfy (2). Suppose, w.l.o.g, T_{e}^{-}contains e_{1}. If the first edge of T_{e}^{-}is not null, then it is easy to see it is e_{1}, since by Lemma $7, e_{1}$ must also be in the backbone of T. If the first edge of T_{e}^{-} is null than $d\left(v_{i}\right)=2$ and the only way $e_{1}=v_{i} v_{i-1}$ be coloured Δ is if $d\left(v_{i-1}\right)$, the first vertex of T_{e}^{-}, has degree Δ. The analysis for T_{e}^{+}contains e_{2} is analogue, observing that in this case, T_{e}^{+}can be a star.

Fig. 3 The caterpillar C_{5} and a greedy edge-colouring with 6 colours

Conversely, assume that there is an edge $e \in E(P)$ satisfying (1) and (2). Let ϕ^{-}and ϕ^{+}be the greedy edgecolourings of T_{e}^{-}and T_{e}^{+}, respectively as in (2). Let ϕ be the edge-colouring of T defined by $\phi(e)=\Delta+1, \phi(f)=$ $\phi^{-}(f)$ for all $f \in T_{e}^{-}$and $\phi(f)=\phi^{+}(f)$ for all $f \in T_{e}^{+}$. We claim that ϕ is a greedy edge-colouring. Clearly, since ϕ^{-}and ϕ^{+}are greedy, it suffices to prove that e is adjacent to an edge of every colour i in $\{1, \ldots, \Delta\}$. Since ϕ^{+}and ϕ^{-}satisfy (2), then e is adjacent to an edge-labelled Δ and an edge-labelled $\Delta-1$. Now, e is incident to a vertex v of degree Δ. This vertex is incident to e and an edge f with a colour greater than $\Delta-2$ in the greedy edge-colouring of T_{f} in $\left\{T_{e}^{+}, T_{e}^{-}\right\}$. So, the $\Delta-2$ edges incident to v which are not e nor f have all one colour in $1, \ldots, \Delta-2$. Hence, e is adjacent to an edge of every colourin $\{1, \ldots, \Delta\}$.

Lemma 11. Let T be a caterpillar with backbone P of length at least 2 and first edge $e=u v$. Then T has a greedy edge-colouring such that e is coloured k if and only if one of the following holds:

1. $d(u) \geq k$ or $d(v) \geq k$
2. $d(u)=k-1$ and T_{e}^{+}admits a greedy edge-colouring such that the first edge of P_{e}^{+}is coloured $k-1$.

Proof. Let $e=u v$ with u the first vertex of P. Assume first that T has a greedy edge-colouring such that e is coloured k and that e is incident to no vertex of degree k. Then the edges incident to u must be coloured by $1, \ldots, d(u)-1$ and the edges incident to u and a leaf are coloured by $1, \ldots d(v)-2$. Hence, the edge adjacent to e and coloured $k-1$ must be the first edge of P_{e}^{+}is coloured $k-1$ by Property (P). So the edge adjacent to e and coloured $k-2$ must be incident to u, and thus $d(u)-1 \geq k-2$, that is $d(u) \geq k-1$.

Assume now that (1) holds. Let x be a vertex in $\{u, v\}$ with degree at least k. One can colour all the edges incident to x with $1, \ldots, d(v)$ such that e is coloured k and then extend this edge-colouring greedily to obtain the desired greedy edge-colouring of T.

Finally, assume that (2) holds. Let ϕ be a greedy edgecolouring of T_{e}^{+}such that the first edge of P_{e}^{+}is coloured $k-1$. One can extend it by assigning k to $e, 1, \ldots, k-2$ to the $k-2$ edges incident to u and leaves and $1, \ldots, d(v)-2$ to the edges incident to v. It is routine to check that this a a greedy edge-colouring of T.

Proof of Theorem 9. Theorem 8 and Lemma 10 imply that Algorithm 1 return the Grundy index of T provided that we have a subroutine FirstEdge (T, P, k) that returns 'yes' if a caterpillar T with backbone P admits a greedy edge-colouring such that the first edge of P is coloured k.
Such a subroutine FirstEdge may be obtained by Algorithm 2 according to Lemma 11.

```
Algorithm 1: GrundyIndex(T)
    Input: A caterpillar \(T\) with backbone of length at
                least 2.
    Output: \(\Gamma^{\prime}(T)\).
    Let \(P=\left(v_{1}, v_{2}, \ldots, v_{n}\right)\) be the backbone of \(T\).
    Compute \(d\left(v_{i}\right)\) for all \(1 \leq v_{n}\) and compute
    \(\Delta=\Delta(T)\).
    for \(i=2\) to \(n-2\) do
        \(e:=v_{i} v_{i+1} ;\)
        if \(d\left(v_{i}\right)=\Delta\) or \(d\left(v_{i+1}\right)=\Delta\) then
            if FirstEdge \(\left(T_{e}^{+}, P_{e}^{+}, \Delta\right)=\) TRUE and
            FirstEdge \(\left(T_{e}^{-}, P_{e}^{-}, \Delta-1\right)=T R U E\) then
                    return \(\Delta+1\);
            if \(\operatorname{FirstEdge}\left(T_{e}^{+}, P_{e}^{+}, \Delta-1\right)=\) TRUE and
            FirstEdge \(\left(T_{e}^{-}, P_{e}^{-}, \Delta\right)=\) TRUE then
                    return \(\Delta+1\);
    Return \(\Delta\);
```

```
Algorithm 2: FirstEdge( \(T, P, k\) )
    Input: A caterpillar \(T\) with backbone \(P\) and an
        integer \(k\).
    Output: TRUE if there is a greedy
                \(k\)-edge-colouring of \(T\) with first edge of
                \(P\) coloured \(k\), and \(F A L S E\) otherwise.
    1 Let \(u\) be the first vertex of \(P\) and \(v\) its second, if
    there is one. (So the first edge of \(T\) is either \(u v\) or
    null.)
    if first edge \(=\) null then
        if \(d(u) \geq k\) then
            return TRUE;
        return FALSE;
    if \(|P|=1\) then
        if \(d(u) \geq k\) or \(d(v) \geq k\) then
            return TRUE;
        return FALSE;
    if \(d(u) \geq k\) or \(d(v) \geq k\) then
        return TRUE;
    if \(d(u) \geq k-1\) then
        return \(\operatorname{FirstEdge}(T-u, P-u, k-1)\);
    return FALSE;
```

Let us now examine the complexity of Algorithm 1. Let us first observe that FirstEdge(T, P, k) makes a constant number of operations before calling FirstEdge $(T-u, P-u$, $k-1)$. Hence, an easy induction show that it makes $O(k)$ operations in total.
Algorithm 1 first computes (line 1) the degrees of all the v_{i}, which can be done in time $O(|V(T)|)$ and then takes the maximum of all these values which can also be done in time $O(|V(T)|)$.
In a second phase (line 2 to 8), for each edge $e \in P$ which is incident to a vertex of degree Δ, Algorithm 1 makes at most four calls of FirstEdge with last parameter $\Delta-1$ or Δ. Hence, for each $e \in P$ it makes $O(\Delta)$ operations, according to the execution time of Algorithm 2. Let S be the set of vertices of degree Δ. The number of edges of P incident to a vertex of degree Δ is at most $2|S|$. But every vertex in S is adjacent to at least $\Delta-2$ leaves. Hence, $|V(T)| \geq|S|+$ $(\Delta-2)|S|$, so $|S| \leq|V(T)| /(\Delta-1)$. Hence, in this second phase, the algorithm makes at most $O\left(2 \times \frac{|V(T)|}{\Delta-1} \Delta\right)=$ $O(|V(T)|)$ operations.
Thus, in total, Algorithm 1 makes $O(|V(T)|)$ operations.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The authors discussed the problem and the solutions proposed all together, and also the three helped to write in each section. All authors read and approved the final manuscript.

Acknowledgements

This study is partly supported by CAPES/Brazil, Fortaleza, Brazil

Author details

${ }^{1}$ Projet Coati I3S (CNRS, UNSA) and INRIA, Sophia Antipolis, Valbonne, France
${ }^{2}$ Departamento de Computação, ParGO, Universidade Federal do Ceará, Fortaleza, Brazil. ${ }^{3}$ Department of Maths and Statistics University of the Fraser Valley, Abbotsford, BC, Canada

Received: 5 February 2014 Accepted: 15 September 2015
Published online: 09 November 2015

References

1. Asté M, Havet F, Linhares-Sales C (2010) Grundy number and products of graphs. Discret Math 310(9):1482-1490
2. Garey MR, Johnson DS (1979) Computers and intractability. A guide to the theory of NP-completeness. A Series of Books in the Mathematical Sciences, San Francisco, California
3. Havet F, Sampaio L (2010) On the Grundy number of a graph. In: Proceedings of the International Symposium on Parameterized and Exact Computation(IPEC), Lecture Notes on Computer science. Springer, Berlin Heidelberg. p 6478
4. Holyer I (1981) The NP-completeness of edge-coloring. SIAM J Comput 2:225-231
5. Lund C, Yannakakis M (1994) On the hardness of approximating minimization problems. J. Assoc. Comput. Mach. 41(5):960-981
6. Zaker M (2006) Results on the Grundy chromatic number of graphs. Discrete Math 306(23):3166-3173

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

[^0]: *Correspondence: karol.maia@inria.fr
 ${ }^{2}$ Departamento de Computação, ParGO, Universidade Federal do Ceará, Fortaleza, Brazil
 Full list of author information is available at the end of the article

