Santibanez et al. Journal of the Brazilian Computer
Society (2015) 21:10
DOI 10.1186/513173-015-0030-3

Journal of
the Brazilian Computer Society

RESEARCH Open Access

A combined approach for concern

@ CrossMark

identification in KDM models

Daniel San Martin Santibdfez'", Rafael Serapilha Durelli and Valter Vieira de Camargo'

Abstract

Timna) found in literature.

precision and recall.

approaches.

Background: Systems are considered legacy when their maintenance costs raise to unmanageable levels, but they
still deliver valuable benefits for companies. One intrinsic problem of this kind of system is the presence of
crosscutting concerns in their architecture, hindering its comprehension and evolution. Architecture-driven
modernization (ADM) is the new generation of reengineering in which models are used as main artifacts during the
whole process. Using ADM, it is possible to modernize legacy systems by remodularizing their concerns in a more
modular shape. In this sense, the first step is the identification of source code elements that contribute to the
implementation of those concerns, a process known as concern mining. Although there exist a number of concern
mining approaches in the literature, none of them are devoted to ADM, leading individual groups to create their own
ad hoc proprietary solutions. In this paper, we propose an approach called crosscutting-concern knowledge discovery
meta-model (CCKDM) whose goal is to mine crosscutting concerns in ADM context. Our approach employs a
combination of a concern library and a K-means clustering algorithm.

Methods: We have conducted an experimental study composed of two analyses. The first one aimed to identify the
most suitable levenshtein values to apply the clustering algorithm. The second one aimed to check the recall and
precision of our approach when compared to oracles and also to two other existing mining technigues (XScan and

Results: The main result of this work is a combined mining approach for KDM that enables a concern-oriented
modernization to be performed. As a secondary and more general result, this work shows that it is possible to adapt
existing concern mining code-level approaches for being used in ADM processes and maintain the same level of

Conclusions: By using the approach herein presented, it was possible to conclude the following: (i) it is possible to
automate the identification of crosscutting concerns in KDM models and (i) the results are similar or equal to other

Keywords: ADM; KDM; Crosscutting concerns; Concern mining

Background

Software systems are considered legacy when their main-
tenance costs raise to undesirable levels, but they still pro-
vide valuable benefits for organizations. In general, these
systems cannot be discarded because they encompass an
extensive body of knowledge resulted from years of main-
tenance [1]. Since these systems still provide significant
business value, a better alternative is to reengineer them,

*Correspondence: daniel.santibanez@dc.ufscar.br

1 Departamento de Computacao, Universidade Federal de Séo Carlos, Caixa
Postal 676—13.565-905, Sao Carlos, Brazil

Full list of author information is available at the end of the article

@ Springer

retaining the incorporated knowledge to keep their main-
tenance cost within acceptable levels. Reengineering is
the examination and alteration of a subject system to
reconstitute it in a new form and the subsequent imple-
mentation of the new form [2]. The first required activ-
ity to obtain a useful and high-level representations of
a legacy systems is called reverse engineering (RE) [3],
and it still remains a complex goal to achieve [4]. In
2003, the Object Management Group (OMG) created
a group called Architecture-Driven Modernization Task
Force (ADMTF). Its goal was to analyze and evolve
conventional reengineering processes, formalizing them

© 2015 Santibanez et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly credited.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-015-0030-3-x&domain=pdf
mailto: daniel.santibanez@dc.ufscar.br
http://creativecommons.org/licenses/by/4.0

Santibafiez et al. Journal of the Brazilian Computer Society (2015) 21:10

and making them to be supported by models [5]. ADM
advocates the conduction of reengineering processes
following the model-driven architecture (MDA) princi-
ples [2, 5], i.e., all the main software artifacts considered
along with the process are platform-independent model
(PIM), platform-specific model (PSM) or computational-
independent model (CIM).

According to OMG, the most important artifact pro-
vided by ADM is the knowledge discovery metamodel
(KDM). By means of KDM, it is possible to represent all
system’s artifacts, such as configuration files, graphical
user interface, architectural views, and source code. It is
divided into four layers, representing physical and logical
software assets at different abstraction levels. Each layer is
further organized into packages that, by their turn, define
a set of meta-model elements whose purpose is to rep-
resent a certain independent facet of knowledge related
to legacy systems. One of the primary uses of KDM is in
reverse engineering, in that a parser reads the source code
of systems and generates KDM instances representing
them. After that, minings, refactorings, and otimizations
can be performed over this model, aiming to solve pre-
viously identified problems. The main idea behind KDM
is that the community starts to create parsers and tools
that work over KDM instances; thus, every tool that takes
KDM as input can be considered platform and language-
independent. For instance, a concern mining technique
for KDM can be used for mining concerns in systems that
are implemented in different languages. Aspect mining (or
concern mining) is another important research field very
related to reverse engineering [6, 7]. The main purpose
is to identify source code elements that contribute to the
implementation of crosscutting concerns (CCs) [8], such
as persistence and cryptography. After the identification,
the next step is the remodularization of the system using
aspect-oriented programming [9]. As the presence of CCs
is an inherent problem of legacy systems, we claim that
aspect-oriented modernization (or modularity-oriented
modernizations) is an import kind of modernization to be
performed [10].

However, although ADM/KDM had been created to
support modernization of legacy systems, to the best of
our knowledge, there is no research that investigates con-
cern mining in KDM models. Although there exist some
modernization works in the literature that cover all mod-
ernization stages [4, 11, 12], none of them detail a mining
technique for KDM. In order to overcome this limitation,
in this paper, we present an approach, named CCKDM, for
mining concerns in the KDM models. Our mining tech-
nique employs a combination of a concern library and
a string clustering algorithm. The required input of the
approach is a KDM instance representing the legacy sys-
tem, and the output is the same KDM with the concerns
clearly annotated. As our mining technique acts over

Page 2 of 20

the KDM instance, it is language-independent [13-15].
To support our approach, we have implemented an Eclipse
plug-in that assists the modernization engineer along the
process. To evaluate our approach, we conducted three
analyses using two systems: Health Watcher v10 [16]
and PetStore v1.3.2 [17]. The first analysis was focused
on the identification of which levenshtein values (for the
clustering algorithm) provide the best results for the min-
ing process. The second one was intended to charac-
terize and show the recall and precision values for our
combined approach using oracles found in the litera-
ture [18, 19]. The third analysis concentrated on compar-
ing the results of our approach with two other existing
mining techniques found on literature: XScan [20] and
Timna [21].

The most important contributions of this paper are (i)
the proposal of a concern mining approach for KDM,
what may encourage other groups to start researching on
concern/aspect-oriented modernizations or modularity-
oriented modernizations; (ii) the demonstration that
existing mining techniques (library-based and cluster-
ing), primarily non-intended to work on models, can be
adapted to KDM-based mining and the same level of
precision and recall metrics can be maintained or even
improved; and (iii) pointing out that KDM must be anno-
tated in some way to clearly identify parts that contribute
to concerns.

This article is structured as follows: The “Background”
section presents the necessary background to under-
stand this article. In the “Methods” section, the proposed
approach for identification of concern by means of KDM
and our tool are presented. In the “Results and discussion”
section, the evaluation of our approach and some related
works are presented. Finally, the conclusions and future
works are drawn in the “Conclusions” section.

Architecture-driven modernization (ADM)

In 2003, OMG initiated efforts to standardize the pro-
cess of modernization of legacy systems using models by
means of the ADMTF [22]. The goal of ADM has been
the revitalization of existing applications by adding or
improving functionalities, using existing OMG modeling
standards and also considering MDA principles. In other
words, OMG took the initiative to standardize reengineer-
ing processes.According to OMG, ADM does not replace
reengineering processes but improves them through the
use of MDA.

The basic process flow of modernization has three
phases: reverse engineering, restructuring, and forward
engineering, as can be seen in Fig. 1. In the reverse
reengineering, the knowledge is extracted and a platform-
specific model (PSM) is generated. The PSM serves as
the basis for the generation of a platform-independent
model (PIM) called KDM. Then, this PIM can serve as

Santibafnez et al. Journal of the Brazilian Computer Society (2015) 21:10

Page 3 of 20

As-Is CIM MODEL

Restructuring

Level-2

Source PIM MODEL

Level-1

Source PSM MODEL

Level-0

Source Legacy System

Reverse Engineering

Fig. 1 Horseshoe modernization model (OMG Group [24])

To-Be CIM MODEL

Level-3

Target PIM MODEL

Level-4

Target PSM MODEL

Level-5

Target Improved System

Forward Engineering

basis for the creation of a computing-independent model
(CIM) [23].

ADM solves the formalization problem by representing
all the artifacts involved in the reengineering process as
models [5]. So, ADM treats all models homogeneously,
allowing the creation of model-to-model transformation
between them. Although ADM follows all the princi-
ples of MDE, ADM does not preclude source-to-source
migrations (where appropriate) but encourages user orga-
nizations to consider modernization from an analysis and
design perspective.

Knowledge discovery meta-model (KDM)

KDM is a meta-model for representing existing software
systems, its elements, associations, and operational envi-
ronments. One of the most important characteristics of
it is its completeness and broadness, since it is able to
represent low levels details, like source regions, meth-
ods, and properties as well as higher level ones, such as
architecture, business rules, and events. Besides, another
important characteristic is that all of these low- and high-
level characteristics are linked into the same meta-model,
allowing traceability among them.

In 2011, KDM becomes an ISO/IEC standard under
the number 19506. Moreover, KDM is defined via meta-
object facility (MOF) and determines the interchange for-
mat via XML metadata interchange (XMI) by applying the
standard MOF to XMI mapping to the KDM MOF model.
The interchange format defined by KDM is called the
KDM XMI schema. The KDM XMI schema is provided
as the normative part of this specification. According to
OMG and Perez-Castillo ([24, 25]), the goal of KDM is to
facilitate the exchange of metadata across different appli-
cations, languages, platforms, and environments, more
specifically

e represents artifacts of legacy software as entities,
relationships, and attributes

¢ includes external artifacts with which software
artifacts interact

e supports a variety of platforms and languages

e consists of a platform and language independent
core, with extensions where needed

e defines a unified terminology for legacy software
artifacts

e describes the physical and logical structure of legacy
systems

e can aggregate or modify, i.e., refactor, the legacy
system

e facilitates tracing artifacts from logical structure back
to physical structure

e represents behavioral artifacts down to, but not
below, the procedural level.

As stated before, the KDM is an OMG discovery meta-
model specification, and at the present time, it is being
adopted as ISO/IEC 19506 by the International Stan-
dards Organization for representing information related
to existing software systems. Moreover, KDM is defined
via meta-object facility (MOF). KDM determines the
interchange format via the XML metadata interchange
(XMI) by applying the standard MOF to XMI mapping to
the KDM MOF model. The interchange format defined
by KDM is called the KDM XMI schema. The KDM
XMI schema is provided as the normative part of this
specification.

The KDM meta-model consists of four abstraction lay-
ers: (i) infrastructure layer, (if) program elements layer,
(i) runtime resource layer, and (iv) abstractions layer.
Each layer is further organized into packages, as can be
seen in Fig. 2. Each package defines a set of meta-model
elements whose purpose is to represent a certain inde-
pendent facet of knowledge related to existing software
systems.

The infrastructure layer consists of the following three
packages: core, “kdm’, and source. Core package and the
package named “kdm” do not describe separate KDM
models. Instead, these packages define common meta-
model elements that constitute the infrastructure for
other packages. The source package defines the inven-
tory model, which enumerates the artifacts of the existing
software system and defines the mechanism of traceability

Santibanez et al. Journal of the Brazilian Computer Society (2015) 21:10

Abstraction
Layer

Conceptual

Core,
KDM,
source

Actio
Build

Structure

Program
Elements
Layer

Fig. 2 Layers, packages, and separation of concerns in KDM (adapted

from [24])

Resource
Layer

Infrastructure

Layer

links between the KDM elements and their original rep-
resentation in the “source code” of the existing software

system.

The program elements layer consists of the code and
action packages. These packages collectively define the
code model that represents the implementation level

assets of the existing software system, determined by the

programming languages used in the developments of the

existing software system. The code package

the named items from the “source code” and several basic
structural relationships between them. The action pack-
age focuses on behavior descriptions and control- and

data-flow relationships determined by them.
package is extended by other KDM packages

higher-level behavior abstractions that are key elements
of knowledge about existing software systems. Note that
our mining approach is strongly based on both code and

action packages. Therefore, it is important

these packages; the “KDM code package” section shows

focuses on

The action
to describe

to dig into

KDM code package
In a given KDM instance, each instance of the code meta-
model element represents some programming language
construct, determined by the programming language of
the existing software system. Each instance of a code
meta-model element corresponds to a certain region of
the source code in one of the artifacts of the existing soft-
ware system. In addition, the code package consists of 24
classes and contains all the abstract elements for modeling
the static structure of the source code. However, we are
particularly interested in MethodUnit and StorableUnit
because they describe source code elements that usually
contribute to the implementation of crosscutting con-
cerns. In Fig. 3, a chunk of the code package is depicted.
It worth to notice that the metaclasses used in this project
are highlighted.
As can be seen, the root class is ComputationalOb-
ject which has two classes, i.e., DataElement and Con-
trolElement. DataElement is a generic modeling element
that defines the common properties of several concrete
classes that represent the named data items of existing
software systems, for example, global and local variables,
record files, and formal parameters. DataElement has
five classes—StorableUnit, IndexUnit, ItemUnit, Parame-
terUnit, and MemberUnit. StorableUnit is a concrete class
that represents variables of the existing system. Index-
Unit class is a concrete class that represents an index
of an array datatype. Instances of ItemlUnit class are
endpoints of KDM data relations which describes access

more details on these packages as well as some of the
metaclasses that are used by our approach.

The runtime resources layer consists of the follow-
ing four packages: platform, Ul, event, and data. The
abstractions layer consists of the following three packages:
structure, conceptual, and build.

[ComputationalObject |
AN

Fig. 3 Chunk of the code package (OMG group [24])

DataElement
ext: String .
size: Integer 01 \ 0
— 2t A=——C DataType WethodUnit
[StorableUnit [temunit] MemberUnit _|T [CallableUnit _|[kind: MethodKind
[kind:StorableKind export: ExportKind | | [kind: CallableKind || export: ExportKind
[IndexUnit]| ParameterUnit
kind:ParameterKind
pos:Integer
<<Enumeration>> || <<Enumeration>> || <<Enumeration>> || <<Enumeration>>
ExportKind StorableKind CallableKind MethodKind
public global external method
private local regular constructor
protected static operator destructor
final external store operator
unknown register unknown virtual
unknown abstract
unknown

Santibafnez et al. Journal of the Brazilian Computer Society (2015) 21:10

to complex datatypes. ParameterUnit class is a concrete
class that represents a formal parameter, for example, a
formal parameter of a procedure. MemberUnit class is a
concrete class that represents a member of a class type.
Finally, the latter, ControlElement is a class that contains
two classes—MethodUnit and CallableUnit. MethodUnit
element represents member functions owned by a Clas-
sUnit, including user-defined operators, constructors, and
destructors. The CallablelUnit represents a basic stand-
alone element that can be called, such as a procedure or a
function.

Although KDM Code package can represent several
code structures related to structured and object-oriented
programming, there are no metaclasses for representing
aspect-oriented concepts or crosscutting concerns. How-
ever, as crosscutting concerns is a reality in legacy systems
and aspect-oriented programming is the most mature
technique for solving this problem, it is necessary to rep-
resent those concepts into KDM somehow. Without this
representation, it is very hard to conduct aspect-oriented
modernizations.

OMG recognizes the importance of customizing KDM
to specific needs by providing metaclasses for the creation
of profiles, which are light-weight extensions that rely on
stereotypes and tagged values. Another way of extend-
ing KDM is by means of a heavy weight extension, by
creating/changing existing metaclasses. Both alternatives
have pros and cons. The extension mechanism provided
by KDM for creating profiles is too simplistic, making dif-
ficult for someone to use it, but existing tools will keep
compatible with the KDM extension. The heavy weight
alternative is better in terms of use, consistency and cor-
rectness; however, existing tools may require adjustments
to work with the new KDM extension. In this paper, we
have opted for a different strategy. We have added a tag
called “concern” just in the model instances and not in the
KDM meta-model. So, we have not modified KDM,; there-
fore, our mining technique relies on the existence of this
tag in model instances.

Mining of crosscutting concerns

Concern mining is a technique that can automatically sug-
gest sets of related code fragments that contribute to the
implementation of a concern. In the literature, we can
find several types of techniques to find concerns into the
source code [26]. Some of them are focused in the code
structure while others in the code behavior of a system,
so it is recommended the use of combined techniques
in order to achieve better results in terms of precision
and recall [27]. They generally use techniques from data
mining and data analysis like formal concept analysis and
clustering and other ones such as program slicing, clone
detection, pattern matching, natural language processing,
dynamic analysis, and so on [8].

Page 5 of 20

Once the concerns have been found, software engi-
neers could perform some kind of modularization into the
source code to achieve a better understanding of the sys-
tem. Concern mining techniques generate concern seeds,
i.e., sets of related code entities that likely contribute
to the implementation (set of instances) of a concern.
These techniques focus especially on crosscutting con-
cerns, as modular concerns can be easily identified man-
ually. Depending on the intended usage of a technique, it
can be applied as frequently as once per release (for docu-
mentation) up until once per feature request or even bug
report [28].

In our work, we use the clustering-based technique
which aims at identifying groups of methods or state-
ments related to the crosscutting concerns guided by
a distance measure [28-30]. Clustering is a division of
data into groups of similar objects where each of these
subsets (groups, clusters) consists of objects that are
similar between themselves and dissimilar to objects of
other groups. In particular, we use the K-means clus-
tering which partitions a collection of #n objects into k
distinct and non-empty clusters where data being grouped
in an exclusive way, that is, each object will belong to a
single cluster. Firstly, the procedure classify a given data
through a certain number of clusters K, fixed a-priori.
Secondly, the algorithm starts with k initial objects called
centroids, then iteratively recalculates the clusters and
centroids where each object is assigned to the closest
cluster—centroid until convergence is achieved.

Methods

This section presents CCKDM, which is our approach
for mining concerns in KDM instances. The most fun-
damental goal of this work is to present a manner of
mining concerns in this meta-model, therefore, highlight-
ing two important points. The first one is how to associate
model elements to specific concerns and the second is
how to annotate these model elements so the relation-
ship becomes explicit. Figure 4 depicts the overall process,
which is divided into four steps denoted by its correspond-
ing letters and titles at the left side. More details about
each step is provided in the next sections.

The step A, recovery of application structure, recovers
from the legacy KDM, source code information about the
system under analysis and persists them in a repository.
This was divided into three steps to simplify the queries,
making them clearer and easier to maintain and evolve.

The step B, API-based identification, uses an API-based
library to start the mining process. Here, we compare the
concerns terms available in the library with the source
code information previously recovered from the legacy
system. Based on this comparison, it is possible to iden-
tify, match, and annotate the first set of model elements
that contribute to the implementation of a given concern.

Santibanez et al. Journal of the Brazilian Computer Society (2015) 21:10

Page 6 of 20

+

API-based Mining C%

Clustering-based
Mining

Application Structural

Details Reporsitory ~ Concern

Concern Mining

Application Structural

Details Reporsitory Centrof

Concern Mining

A

o M

CSV Cluster Log

Manual Filtering B

Fig. 4 The concern mining process

APl-based

Library|

Nl

ids

bb, bc,..

m Legacy System Modisco m KDM Queries
rocavery ot | o SRR oo e
Application QD JMQ @j B
Structure Legacy System SQL Application Structural
KDM instance Details Reporsitory

IR

Annotated KDM Logs
Outputs

O

m
a

o)

Centroids

100

Annotated KDM Logs
Outputs

O

m
o

CSV Cluster Log

aa, ab,..

O
End

Annotated KDM

Output

Notice that the API-based library is the strategy we are
using to match keywords (concern terms) to the concerns.

The step C, clustering-based mining, aims to apply the
clustering algorithm to identify and annotate other model
element instances that contribute to the implementation
of the same given concern. So, the previously identified set
is expanded.

In step D, manual filtering, a manual filtering is per-
formed to filter out erroneously identified elements.

Recovery of application structure

The step A starts when the user provides the source code
of the legacy system or a KDM file that represents it.
If the source code is the input, then it is firstly con-
verted to a KDM instance. This is performed by means
of Modisco™ [31], which is a parser which transforms the
source code into a KDM instance.

After that, many queries are performed over the KDM
model to recover the application structure, which is rep-
resented by some instances of the KDM metaclasses. In
our case, we recover all instances of StorableUnits (vari-
ables) and MethodUnits (methods) metaclasses. We have
chosen these two source code elements because they are
most suitable to find crosscutting concerns [32].

In order to conduct this step, three activities must be
done. The first one is recovering all packages (package
metaclass), all classes and interfaces (ClassUnit and Inter-
faceUnit metaclasses), all methods (MethodUnit meta-
class), and all properties (StorableUnit metaclass) of the
system. We have decided to use object constraint lan-
guage (OCL) [33] because it is well-known and well-
documented. For example, if we apply the following

instruction, (object.alllnstances()) we can get all the
instances of an object belonging to a KDM model.

It is important to know how these elements are arranged
into the meta-model so that we can properly identify and
tag them during the annotation activity. Thus, the second
activity aims at recuperating method calls (calls meta-
class), method containers (BlockUnit metaclass), con-
tainer classes (CodeModel metaclass), method signatures
(signatures metaclass), method types, and property types
(ParameterUnit metaclass). In this second step, we used
Java model query (JMQ) which allows to navigate through
models using Java. The third and last activity is to persist
these elements into a relational database called appli-
cation structural details repository (ASDR). The entity-
relationship (ER) model can be seen in Fig. 5.

Module persists class and interface names. Method per-
sists method names, signature, and return types. Import
persists application imports. Package persists application
packages. ModuleProperty persists class properties and
its type. MethodProperty persists variables belonging to
methods.

Notice that this entity-relationship model can be seen
as a relational subset of the KDM. Considering our min-
ing purposes, we have eliminated everything that was not
of our interest, leaving only the information that really
matter. It is important to highlight that although we have
not detailed/documented the steps of creating ER models
from KDM, we believe this is a canonical step in other pro-
cesses like that. In general, the creation of these ER models
will be guided by the intention of use. For example, each
KDM metaclass that has some relation with crosscutting
concerns must be turned into a relational database.

Santibafnez et al. Journal of the Brazilian Computer Society (2015) 21:10

Page 7 of 20

Method_has_Property.

Methodfca‘ILMethod

(1,n)

Import_Module (1,n)

Fig. 5 ASDR entity-relationship model

Package_has_Module
Module_has_Method

Package =

Package_has_Package

ModuleProperty

Module_has_Property

Although OCL is a powerful language to perform
queries over MOF models, it has two main problems: (i)
it does not scale well when building complex queries [34]
and (ii) changing complex queries may induce to devel-
opers in making mistakes. It is important to note that
new queries must be created if we want to query other
packages of the KDM instance to search for crosscut-
ting concerns. Logically, this will add new entry points of
maintenance.

Whenever one wants to persist the code elements of
a KDM instance, the use of a database seems to be the
most natural approach. The entire data model in conjunc-
tion with the KDM file can be ported and reused without
to generate the KDM file and search for code structures
again if no modifications are performed. Also, the use of
standard query language (SQL) queries also must facili-
tate future maintenance because this technology is widely
used.

API-based mining
The step B is triggered by the user, and the process oper-
ates over an API-based library and the ASDR. In our
approach, the concern library is devoted to store only
concern-related APIs, that is, APIs which contribute to
the implementation of specific concerns—mostly non-
functional concerns. For example, the java.sql API pro-
vide support for “persistence” while java.security.auth
supports the implementation of the “authentication” con-
cern. APIs are extensively used by developers, and we
believe that they can provide a good starting point for con-
cern identification. In the future, we expect to modify our
approach to attend functional concerns, such as features
of a software product line [35].

In our library, a concern definition is composed of a
concern name and one or more well-known class names

which contribute to the implementation of a concern.
Figure 6 shows part of a concern library, implemented
by means of XML file. In this case, the file contains two
concern definitions, persistence and authentication. The
concern persistence is implemented by the Java pack-
age named “java.sql” with several elements which cor-
responds to Java classes. In the same way, the concern
authentication is implemented by the Java package named
“javax.security.auth” with its elements.

The concern library is used jointly with the ASDR by
means predefined SQL queries. Listing 1 shows the pre-
defined SQL query to identify methods which may imple-
ment a concern. To perform the identification, CCKDM
queries Module, Method, Import and Element tables.
These tables belong to our database model, and the table
Elements is a temporary table populated with information
of the concern library. This information depends on which

<ConcermnLibrary>
<Concern name="Persistence">
<Package name="java.sql">
<Element>Connection</Element>
<Element>PreparedStatement</Element>
<Element>ResultSet</Element>
</Package>
</Concern>
<Concern name= "Authentication">
<Package name= "javax.security.auth">
<Element>Destroyable</Element>
<Element>Refreshable</Element>
<Element>AuthPermission</Element>

</ConcernLibrary>

Fig. 6 Example of concern library

Santibafiez et al. Journal of the Brazilian Computer Society (2015) 21:10

concern is being identified at that moment. The result is
a set of elements (method and property names) related to
some of the classes of the concern library. These elements
will be the initial model seeds of our approach, and the
initial information (centroids) for our clustering algorithm
are detailed in the next section. If the user does not want
to perform the step C, then the mining process ends and
the outputs are log files and the annotated KDM with the
identified concern names.

1| SELECT MO.NAME AS MODULE_NAME,

2 M.NAME AS METHOD_NAME,

3 M.TYPE AS METHOD_TYPE,

4 M.RETURNTYPE AS METHOD_RETURN

5| FROM IMPORT I INNER JOIN

6 IMPORT_MODULE MI ON

7 LIDIMPORT = MLIMPORT_IDIMPORT

8 INNER JOIN MODULE MO ON

9 MIL.MODULE_IDMODULE = MO.IDMODULE

10 INNER JOIN METHOD M ON

1 M.MODULE_IDMODULE = MO.IDMODULE
12| WHERE LNAME LIKE ? AND

13 M.RETURNTYPE IN

14 (SELECT ELEMENT FROM ELEMENTS)

Listing 1 Methods identification implementing a concern

Clustering-based mining

The step C performs a string clustering by means of a K-
means algorithm [36] which uses the Levenshtein distance
to cluster the strings depending on their similarities [37].
This step complements the previous one because it aims at
identifying code elements which were not identified in the
previous step but have similar identifiers (names). Thus,
we suppose they implement same concerns.

The strings identified in step B, which already belong
to a certain concern, are the K centroids for our cluster-
ing algorithm (i.e., the strings where others strings will be
clustered). Algorithm 1 presents the implemented clus-
tering function in a simplified way. It receives as input
parameters a concern name ¢ and a threshold value v and
returns a matrix(n x m).

Lines 2-3 of the algorithm creates two lists which are
the initial centroids. In lines 4-5, the lists are joined and
duplicates values are removed. Line 8 calculates the Lev-
enshtein distance between all centroids and all the meth-
ods and properties of the system. In line 11, Levenshtein
values are compared with a threshold v which is given by
a user. If the threshold value is closer to 1.0, then the algo-
rithm will cluster a small quantity of strings but with more
similarities; on the other hand, if the threshold value is
closer to 0.0, then the algorithm will cluster a big quantity
of strings but with more dissimilarities. Levenshtein val-
ues are stored into a vector, and then this vector is added
into a matrix with K rows which represents the number of
centroids and T columns which represents the number of

Page 8 of 20

Algorithm 1 Modified K-means cluster.

Require: Concern Name, Levenshtein Threshold
Ensure: Matrix
1: function CLUSTERING(c, t)

2: methodCentroid[] = c.getMethodByLibrary(c);
3: propertyCentroid[] = c.getPropertyByLibrary(c);
4 P = join(methodCentroid[],propertyCentroid[]);
5: eliminateDuplicates(P);
6: matrix(K, T);
7: for each pinto P do
8: values[] = levenshtein(p , propertyMethodList[]);
9: i=0;

10: for each v in values[] do

11: if v > t then

12: vector[i] = v;

13: else

14: vector[i] = 0;

15: end if

16: i=i+1

17: end for

18: matrix.addRow(vector(]);

19: end for

20: return matrix;

21: end function

non-duplicate methods and property names of the system.
In line 20, the matrix is returned and the most high value
of a given column indicates to which centroid the string
must be clustered.

Annotating concerns

As soon as the previous mining steps are over, our tech-
nique performs the annotation activity. Note that the term
“annotation” used in this work is referring to the action of
tagging the model element with a simple word and is not
related with the term used to tag classes or models using
an “@” symbol.

This activity is carried out by adding a new tag which
is an attribute called “concern” in KDM instances (XMI
files). This tag can be attached in methods and attributes,
and its value is the name of a concern recuperated from
the concern library.

It is important to take into account that KDM model is
saved as an XMI file which follows the XML guidelines,
so it is necessary to use the XML query language. In our
case, we used XQuery, a powerful query language that
provides the means to extract and manipulate data from
XML documents or any data source that can be viewed
as XML. Listing 2 shows an extract of the XQuery code
in charge of inserting an annotation applied to a method
with name $method. The name of the attribute is “con-
cern’; and the value of the attribute is given by the variablel
${concern).

2 [@xsi:type="code:MethodUnit" and
@name=$method and empty(@concern)]
return insert node attribute concern {$concern} as last
into $a

w

Listing 2 Insert an annotation into a KDM instance

Santibafnez et al. Journal of the Brazilian Computer Society (2015) 21:10

Figure 7 shows part of a KDM instance of the Health-
Watcher system. It has two annotations that make evi-
dent the presence of persistence concern affecting some
model elements. The first annotation, on the top of the
figure, shows that the stmt attribute contributes to the
implementation of the persistence concern. The type of
this code element is PreparedStatement which is a class
belonging to the Java persistence API. In the bottom of the
figure, there is another annotation for the code element
resultSet. In this case, this code element is a class of type
ResultSet which also belongs to the Java persistence API.

Manual filtering

In step D, the goal is to show the preliminar result to the
user and let somebody to perform a manual filtering. The
visualization of the result is supported by our CCKDM
tool, which is described in the next section. This filtering
step, also supported by our tool, gives the user the pos-
sibility of excluding erroneously identified elements. The
result is presented in a comma-separated value (CSV) file
containing all the strings identified by our cluster algo-
rithm. To exclude an annotated element, the user must tag
with an “X” at the end of each line of the CSV file.

Figure 8 shows part of a CSV file, generated by
CCKDM. The file was generated after executing the step
C for identifying persistence into HealthWatcher. The
first column exhibits two centroids, con and Resposta.
Variable con clustered 9 elements and Resposta 10 ele-
ments. Each clustered element is composed of three
or two strings, depending whether it is a method, an
attribute of a class, or a variable. For example, the line

-
<codeElement concern="Persistence" xsi:type=}
_name="stmt"
type="/0/@model.1l/@codeElement.0/@codeElement
kind="1local">
<attribute tag="export" value="none"/>
<source language="java">
<region file="/0/@model.2/@inventoryElement
</source>
<codeRelation xsi:type="code:HasValue" to="/I
from="/0/@model.0/@codeElement.0/@codeEleme
@codeElement.2/@codeElement.0/@codeElemen
/@codeElement.1l/@codeElement.0/@codeElemen
</codeElement>
</codeElement>
<codeElement xsi:type="action:ActionElement" |
kind="variable declaration">
<source language="java">
<region file="/0/@model.2/@inventoryElement.3
Lc =

SOHH

_name="resultSet"
type="/0/@model.1/@codeElement.0/@codeElement
kind="1local">
<attribute tag="export" value="none"/>

Fig. 7 Annotated concerns into KDM instance

Page 9 of 20

** Persistence **

con 0.9
|command|getCommand|HW Servlet
|command|handleRequest|HWServiet
|command|retry|HW Servlet
|code|-|Address
|code|-|ComplaintState
|code|-|DiseaseType
|code|-|HealthUnit
|code|-|Situation

resposta 0.9
|request|-|ServletRequestAdapter
|response|-|ServletResponseAdapter
|response|search|ComplaintRepositoryArray
|response|search|Disease TypeRepositoryArray
|response|search|EmployeeRepositoryArray
|response|search|HealthUnitRepositoryArray
|response|search|SpecialityRepositoryArray
|[response|search|SymptomRepositoryArray
|response|exists|ComplaintRepositoryRDB
|response|exists|Disease TypeRepositoryRDB

X X X X X

XX X X X X X X

Fig. 8 CSV file

|command|getCommand|HW Servlet of the Fig. 8 indi-
cates that the variable called command belonging to the
method getCommand, and class HWServlet may imple-
ment the same concern that the con variable implements.
The line |code|-|Address indicates that the attribute code
of the class Address may implement a concern. Finally,
another possibility of line which is not shown in the figure
could be |-|method|class where the method “method” is
the clustered element. For all the elements tagged with a
“X’} their respective annotations into the KDM file will be
removed.

Listing 3 presents an extract of the XQuery code to
delete an annotation. In this case, the XQuery code deletes
the attribute “concern” of a code element where its type is
a MethodUnit.

[@xsi:type="code:MethodUnit" and
@name=$method and
not(empty(@concern))]/@concern

3| return delete node $a

o

Listing 3 Delete an annotation into a KDM model instance

It is important to highlight that in our annotation strat-
egy, we have not changed the KDM meta-model, neither
creating a profile nor creating a new metaclass. We do
not see any problem with that because we consider our
model instances as an internal and intermediary rep-
resentations, that is, it can be discarded or ignored as
long as they had been used. That means whether one
wants to proceed in the modernization process, someone
needs to make transformations on this model, for exam-
ple, generating a new KDM instance from other extended
KDM:s.

Santibanez et al. Journal of the Brazilian Computer Society (2015) 21:10

CCKDM tool

Overview

In this section, we present the developed Eclipse plug-
in named CCKDM (sourceforge.net/projects/cckdm/)
which implements our approach. Figure 9 shows the main
window that is presented to users after the step A is
executed, and Fig. 10 shows the API-based library man-
agement.

In Fig. 9, we can identify three sections denoted by the
letters A, B, and C. Section A exhibits some information
related with the size of the project in terms of num-
ber of classes, interfaces, methods, and properties. It also
exhibits method fan-in metric providing evidence of pos-
sible crosscutting concerns by means of counting the most
used methods.

Section B exhibits concern definitions available in the
library, but users have the possibility to add or delete con-
cerns by means our library manager. Users must choose at
least one definition to start the mining process.

Section C exhibits options related with the clustering
step. Users may activate or deactivate this step, filter get-
ter and setter methods, set the Levenshtein value, and
perform manual control for annotated concerns identified
with our clustering algorithm.

Page 10 of 20

In Fig. 10, we can identify two sections denoted by
the letters D and E. Section D allows users to add
new API-based concern definitions in the following
way: [ConcerName], [PackageName), [ClassElement...].
Section E shows loaded concerns where users can delete
elements.

Another important feature to be commented is the log
viewer tab of the main window. It presents the result of
the process after the mining process is over, and it is con-
formed by two log files. The library log file shows all the
elements identified and annotated by the first part of the
process, and the cluster log file shows the centroids with
identified and annotated clustered elements.

Usage process

The user starts the process by choosing an eclipse project
which contains the source code or by choosing a KDM
file. If the user starts the process by choosing an eclipse
project, the Modisco plugin will discover and create the
associate KDM model.

As long as the user has triggered the process, the col-
lect data activity begins. The tool performs OCL queries
and Java model queries (JMQ) over the KDM model to
get some code structures and store them into a database

Crosscutting Concerns into KDM

N° Properties:

Mining of Crosscutting Concern | Library Management = Log Viewer = License
Project Name: Healthwatcheroo Run CCKDM
Java Project Values A
o |] 118 : .
N° Classes: Methods Fan-In: | \1athod Fan-In
N® Interfaces: 17 BRERE 150
rollbackTransaction : 96
N° Methods: 894 errorPageAdministratc 39
1290 errorPage =1l

-

Available Concerns

Persistence Logging Authentication

rCIustering Options

) _ Levenshtein Threshold
Deactivate Clustering

Filtering methods
~ (setters & getters)

Controlled Annotation
[0.5]

Fig. 9 Main window

Santibafnez et al. Journal of the Brazilian Computer Society (2015) 21:10

Page 11 of 20

L]

Mining of Crosscutting Concern | Library Management

CCKDM

Search for Crosscutting Concerns into KDM

Log Viewer

X

License

-

Project Name: Healthwatcher D
Management
[concern], [package], [element, ...] per line.

Add Concern(s) Clear

Concern View

~

E

+ Persistence
+ Logging
+ javax.security.auth
+ java.security
- javax.ejb
SessionBean
SessionContext

Fig. 10 Concern library management

(Derby DB). When this activity is over, the main window
is shown to the user.

In the main window region C, the user can select some
parameters for the clustering algorithm. The first param-
eter provided by the tool is to activate/deactivate the
clustering capability. The second parameter is to filter get-
ter and setter methods in a way that the names of these
methods will not be taken into account by the cluster-
ing algorithm. The third parameter enables the controlled
annotation. That means users can choose which of the
identified method, and property must be annotated into
the KDM file. Finally, to indicate the level of similarity
between the centroids and method/property names, the
Levenshtein distance is used. If the Levenshtein value is
closer to 1.0, then the compared strings are more similar;
on the other hand, if it is closer to 0.0, then the compared
strings are less coincident.

The user also must select at least one concern of the
region B in the main window to proceed with the concern
mining process. Region A of the main window presents
some information of the loaded project, such as the num-
ber of classes, number of interfaces, number of methods,
and properties. These information can provide an idea

of the size of the project to be analyzed. Our tool also
provides information about the fan-in value of methods,
where high value may indicate the presence of crosscut-
ting concerns.

Once the user has selected the concerns to be identified,
it can start the process of concern mining by triggering the
button Run CCKDM. The first part of the process finalizes
with the identification of concern seeds by using Derby
DB along with the concern library (an XML file generated
by our tool). Specifically, this activity consists in identify-
ing and getting all the method names and property names
which implement a given concern, matching entries of
the concern library with APIs used by the application.
The retrieved data is annotated into the KDM model by
using BaseX (an XML database) where XQuery queries
are performed.

The second part of the process corresponds to the
clustering step, and it is performed by default but users
may deactivate it. After identifying concerns by means
of our concern library, our tool complements the search
of concerns with a modified K-Means string clustering
algorithm using the Levenshtein distance. All the strings
identified by the concern library are the initial centroids of

Santibafiez et al. Journal of the Brazilian Computer Society (2015) 21:10

our cluster algorithm. Then, property names and method
names that were not identified by the concern library are
clustered in some centroid depending on the similarity
of the strings. The concern seeds are annotated into the
KDM model as we described above.

Finally, the last step of the process is an alternative activ-
ity. If the user performed the second part of the process,
one of the created logs is the CSV cluster log. This log can
be annotated by users to have better control on the identi-
fication process. They can indicate if the identified string
name belongs or not to a concern. For that, users mark
with an X letter into a CSV file as depicted in Fig. 8. After
that, an annotated KDM file and logs are generated again.

Results and discussion

As previously said, the experimental study we have con-
ducted encompasses two analysis. The first one aimed
to identify what levenshtein values contribute the most
for elevating precision and recall values. The second one
intended to investigate the recall and precision of our
approach. To conduct this second one, we have com-
pared our recall and precision results with oracles and
also with two other existing mining techniques found in
literature: XScan [20] and Timna [21].

XScan identifies certain groups of code units that poten-
tially share some crosscutting concerns and recommends
them for creating and updating aspects. Those code units,
called concern peers, are detected based on their similar
interactions (similar calling relations in similar contexts,
either internally or externally).

Timna is a framework for enabling automatic combina-
tion of aspect mining analyses. Firstly, each method of an
application is tagged manually with the tag “candidate’, if
it is determined to be a good candidate for refactoring or
“not a candidate’, if it is not. Secondly, Timna applies four
aspect mining techniques separately. These techniques are
fan-in analysis, no parameters, code clone and pairings.
Thirdly, some classification rules are applied, taking into
account the computed attributes to decide whether the
method implements a concern or not.

In Table 1, we summarize the applications under study.
As we can see, they have a reasonable size (KLOC < 9K)
which make them suitable to perform a manual analysis of
concerns to calculate the precision and recall metrics.

The HealthWatcher is a real health complaint system
developed to improve the quality of the services provided
by health care institutions. The system has a web-based

Table 1 Applications software under study

System LOC Classes Methods Properties
1 HealthWatcher v10 8K 18 894 1290
2 PetStore v1.3.2 9K 228 1917 3002
3 ProgradWeb 5K 133 254 4182

Page 12 of 20

user interface for registering complaints and performing
several other associated operations. PetStore models an
e-commerce application where customers can purchase
pets online using a web browser. ProgradWeb is an aca-
demic management system currently used by the Federal
University of Sdo Carlos, Brazil.

The next sections present both analysis we have con-
ducted. In the “Analysis of levenshtein values” section,
the levenshtein values analysis is shown, and in the
“Recall and precision analysis” section, the recall and
precision analysis is presented.

Analysis of levenshtein values

As expected, our clustering algorithm gets different
results depending on which levenshtein value is chosen.
If levenshtein value is closer to 0, then false positives
increase affecting the precision. On the other hand, if lev-
enshtein value is closer to 1, then false negatives increase,
affecting recall. For example, in HealthWatcher, there is
a variable called con related with the database connec-
tion; if we take it as a centroid with a levenshtein value
of 0.1, the algorithm will cluster variables like city, bair-
roOcorrencia, and facade. If the levenshtein value is 0.9,
the algorithm will not cluster variables because there are
no similar variables at this level.

Clearly, high and homogeneous values of precision and
recall would be optimal, but due to heuristic nature of our
clustering algorithm and because method and property
names may vary, it is difficult to get similar values in differ-
ent applications. Therefore, the idea behind this analysis
is to determine which levenshtein values are more suitable
to apply when using our approach.

In Table 2, we show the results of our clustering algo-
rithm taking into account five levenshtein values. In this
case, we are considering just the results of the algorithm
without taking into consideration the concern library.
That is why many values are not so good. We took out
dissimilar words manually to perform our clustering anal-
ysis. For example, if the concern library-based mining
pointed out the word “connection” twice, then we dis-
carded this repetitive word. So, the chosen words/terms
were the centroids to the cluster algorithm which we ran
for different levenshtein values. Notice that the first three
levenshtein values (0.3, 0.4, and 0.5) have presented the
more homogeneous values.

In order to help us in the identification of the most sig-
nificant levenshtein values, we have built a box-plot which
can be seen in Fig. 11. This graphic was generated with the
statistical software R and uses the precision and recall as
a variable of study for each one of the five representative
thresholds with the data in Table 2.

We can see that there are some differences in the medi-
ans. For example, average thresholds 0.3, 0.4, and 0.5 have
higher values of precision and recall than thresholds 0.6

Table 2 Precision and recall for persistence among different levenshtein values

Levenshtein values (only clustering algorithm)

0.3 04 0.5 0.6
Systems Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%) Precision (%)
HealthWatcher v10 34.31 100 4153 58.03 46.68 5223 46.02
PetStore v1.3.2 3735 100 38.08 68.29 41.14 50.88 5043
ProgradWeb 49.03 100 2847 47.24 29.23 36.77 25.58

01:1Z (S107) A1210§ 423ndWwio) upijizpig 3yl Jo [pUINOf *|D 13 Z3UeqIUeS

0zJo €1 abeq

Santibanez et al. Journal of the Brazilian Computer Society (2015) 21:10

50

45

40

35

Average of the precision and recall

| Thresholds: Levenshtein values
T T T T T
0.3 0.4 0.5 0.6 0.7

25

Fig. 11 Box plot for precision and recall according to the given

thresholds

and 0.7. We can also observe that the variability of thresh-
olds 0.6 and 0.7 is greater than 0.3, 0.4, and 0.5. Hence,
based on this conclusions, we took into account thresh-
olds 0.3, 0.4, and 0.5 to perform comparisons with others
concern mining techniques.

Recall and precision analysis
In order to analyze the recall and precision of our
approach, we have conducted two sub-analysis.The first
one was focused on comparing its results with some ora-
cles, and the second one was intended to compare it with
existing mining techniques available in the literature.
Precision and recall are well-known metrics usu-
ally employed in the concern mining field to evaluate
approach effectiveness:

e Precision is the ratio of the number of true positives
retrieved to the total number of irrelevant and
relevant code elements retrieved. It is usually
expressed as a percentage.

TruePositives

(1)

" TruePositives + FalsePositives
e Recall is the ratio of the number of true positives
retrieved to the total number of relevant code
elements in the source code. It is usually expressed as
a percentage.

TruePositives

()

" TruePositives + FalseNegatives

Oracle-based analysis
To conduct the oracle-based analysis, we applied our
approach for mining persistence and logging concerns in

Page 14 of 20

HeathWatcher v10 and in PetStore 1.3.2. After the appli-
cation, we have calculated the recall and precision of our
approach by comparing its results with the oracles found
in the literature [38, 39] and with our own manual analysis.

The first three columns of Tables 3 and 4 show the recall
and precision results of our approach when mining per-
sistence (Table 3) and logging (Table 4). As commented,
in order to calculate the precision and recall values, we
needed an oracle as a base for the comparison. Fortu-
nately, both systems, HealthWatcher v10 and PetStore
1.3.2 were available [38, 39] with the persistence and log-
ging concerns clearly identified. The process of checking
and calculating these metrics were very time-consuming
because we needed to compare the annotated source code
(oracle) with the annotated XML files (KDM instance).

Observing Table 3, it is possible to see that using a 0.3
levenshtein we got 100 % of precision and recall analyzing
HealthWatcher, that is, there are no false negatives or pos-
itives. However, notice we got 95 % of precision analyzing
PetStore. This happened because our clustering algorithm
have recognized more similar words in PetStore than in
HealthWatcher increasing the number of false positives, as
most of these words (properties and method names) had
no relation with the concern.

For logging concern, the values are presented in Table 4.
With a value of 0.3 levenshtein, our approach reached
100 % of effectiveness for precision and recall for the
two systems without finding false negatives or positives.
For levenshtein values of 0.4 and 0.5, the precision still
remains within a good level as in Table 3, but the recall
decreases. That is normal because higher values of leven-
shtein implies that strings will match more precisely and
as a consequence will generate false negatives.

The scenario changes for PetStore in Table 3; while
the levenshtein value increases, the precision increases
and the recall decreases; that is because on one hand,
false negatives increase and on the other hand, false pos-
itives decrease. In Table 4, the recall for PetStore slightly
decrease but it still is a good value.

The recall is sensitive to false negatives, and on the other
hand, precision is sensitive to false positives. If the lev-
enshtein values are higher, then false positives increase,
and if the levenshtein values are lower, then false negatives
increase.

Obviously, our cluster algorithm failed in some cases
because although some variables are similar to the cen-
troids; the semantic is completely different. For example,
the centroid variable statement is related to persistence,
but it also clustered the variables nameFont, nameY,
names, timer, paint, and context, which are related to the
interface layer. However, it also clustered correctly the
variable oafee that is a persistence field.

It is clear that our cluster algorithm helps to find vari-
ables which are related with a particular concern, but it is

Table 3 Comparison values of precision and recall for persistence

Persistence effectiveness analysis

Comparative analysis

CCKDM-0.3 CCKDM-0.4 CCKDM-0.5 XScan Timna
Systems Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%)
HealthWatcher v10 100 100 100 80 100 76,11 N/A 100 N/A N/A
PetStore v1.3.2 95 100 95.73 84.15 98.79 7544 N/A N/A 93.80 N/A

N/A not available

01:1Z (S107) A1210§ 423ndWwio) upijizpig 3yl Jo [pUINOf *|D 13 Z3UeqIUeS

0z Jo 51 3bed

Santibanez et al. Journal of the Brazilian Computer Society (2015) 21:10

Table 4 Comparison values of precision and recall for logging

Page 16 of 20

Logging effectiveness analysis

CCKDM-0.3 CCKDM-0.4 CCKDM-0.5
Systems Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%)
HealthWatcher v10 100 100 100 80.8 100 79
PetStore v1.3.2 100 100 90.3 852 886 822

not foolproof. Nevertheless, empirically, we can say that
the algorithm adds value to the whole solution but we
have to be careful to choose the right levenshtein value
and complement with other techniques taking account the
semantic of the variable.

Comparison with existing mining techniques

In the second analysis, we have compared the recall
and precision of our approach with two other exist-
ing approaches, named XSCan and Timna, however just
for the persistence concern. ProgradWeb was discarded
because we did not find approaches that have used this
system to analyze precision and recall metrics.

The last two columns in Table 3 aims at supporting a
comparison with XScan and Timna approaches. Regard-
ing XScan and Timna, we have relied on the precision
and recall data available in publications about these tools.
Unfortunately, these publications just presented the recall
value of HealthWatcher using XScan and the precision
value of PetStore using Timna. When we compare the
precision and recall values of CCKDM with XScan and
Timna, it is possible to see it reaches similar or equal val-
ues. Therefore, we can say that there are indications that
CCKDM has similar effectiveness.

Based on our analyses, the following generalizations can
be delineated:

- It seems possible to adapt any source code mining
technique to KDM, as the program element layer do
represent all source code details.

- As can be seen in our analyses, good recall and
precision values were obtained using our combined
technique for mining persistence. Therefore, this can
enable other groups to proceed researching on
concern-oriented modernizations. Clearly, we cannot
guarantee the same level of recall and precision, but
maybe it is possible to keep improving these metrics
by using other mining techniques or even mining
other type of concerns.

- Since good recall and precision values could be
obtained mining persistence and logging, we claim
that other concerns, which are strongly supported by
APIs, can reach the same levels. The persistence and
logging Java APIs provides very good staring point for
the mining. After that, our clustering algorithm
expands the initial set. So, the initial seeds are totally

dependent on the key words from the API. However,
we cannot quantify that because software engineers
can use just part of an API to implement a system.

- The use of naming conventions increase the
effectiveness of the precision of our clustering
algorithm because more variables could be clustered
and identified with a particular concern. On the other
hand, the absence of naming conventions impacts
negatively the precision metric because the semantic
of a variable may change completely, and if it is
clustered, there is no certainty that the variable
implements the concern. In fact, the data illustrated
in Table 2 supports our state because HealthWatcher
and PetStore systems follow good practices in naming
conventions, and values of precision does not change
drastically among of the five levenshtein values. On
the other hand, the precision for ProgradWeb are not
so good among of the five levenshtein values, and in
the manual checking, we observe that it does not
follow a consistent naming convention.

Threats to validity

The lack of representativeness of the subject programs
may pose a threat to external validity. We argue that this is
a problem that all software engineering research, since we
have theory to tell us how to form a representative sample
of software. Apart from not being of industrial signifi-
cance, another potential threat to the external validity is
that the investigated programs do not differ considerably
in size and complexity. To partially ameliorate that poten-
tial threat, the subjects were chosen to cover a broad class
of applications. Also, this experiment is intended to give
some evidence of the efficiency and applicability of our
implementation solely in academic settings. A threat to
construct validity stems from possible faults in the imple-
mentations of the techniques. With regard to our mining
techniques, we mitigated this threat by running a carefully
designed test set against several small example programs.
Similarly, XSCan and Timna have been extensively used
within academic circles, so we conjecture that this threat
can be ruled out.

Related work

Concern mining or aspect recommendation has been a
popular research topic in recent years. Static mining and
history-based mining are two major techniques based

Santibafnez et al. Journal of the Brazilian Computer Society (2015) 21:10

on source code analysis. The static technique analyzes
source code of a version of software to extract seeds
of concerns. A fan-in value, which is the number of
unique callers of each method/function, was first intro-
duced by Marin and others [7] and further generalized by
Zhang and others [29] to propose clustering-based fan-
in analysis (CBFA). The history-based mining technique
was first adopted by Breu and others [40], who proposed
history-based aspect mining (HAM). HAM clusters
methods/functions that add or remove a call to the
same method/function and groups together methods/-
functions that are called by the same cluster as concern
seeds.

Lengyel et al. [41] proposes a semi-automatic approach
to identify crosscutting constraints. The approach uses
several algorithms to support the detection of the cross-
cutting constraints in meta-model-based model transfor-
mations. The input of the approach is a transformation
(transformation rules and a control flow model), and the
expected output is the list of the crosscutting constraints
separated as aspects. Van Gorp et al. [42] proposed a UML
profile to express pre- and post-conditions of source code
refactorings using object constraint language (OCL) con-
straints. The proposed profile allows that a CASE tool to
(¢) verify pre- and post-conditions for the composition of
sequences of refactorings and (ii) use the OCL consult-
ing mechanism to detect bad smells such as crosscutting
concerns.

The differential of our approach described herein in
relation to the others is that our approach mines crosscut-
ting concerns by using KDM instead of another models or
source code. It is important to note that to the best of our
knowledge, there is no previous research that addresses
mining crosscutting concerns by using KDM model as
input.

Rodriguez-Echeverria et al. [11] present an approach to
modernize legacy web systems into rich internet applica-
tions (RIA). This process starts with the transformation of
the source code into a KDM instance, using the user inter-
face information extracted from the system. The KDM
model is then mined and refined by searching for RIA
patterns, which are stored in a repository. Annotations
are then introduced in the KDM to signal the identified
patterns. After the pattern recognition and signaling, the
KDM is ready to be restructured according to the iden-
tified patterns. This work presents some similarities with
our approach in the way how the concern identification
is performed. Both approaches use a KDM model and
a pattern repository to identify concerns. In our case,
this repository is the API-based library. We also perform
annotations, but they do not present the way how this is
performed and which tag is used. The main differences are
that we use a middle representation before start with the
concern identification and a combination of OCL, JMQ,

Page 17 of 20

and SQL queries while their work uses predefined QVT
pattern expressions to mine the KDM model.

Ricardo Pérez-Castillo et al. [12] propose a reengineer-
ing process that follows model-driven development prin-
ciples to recover Web services from legacy databases. The
proposed process takes a legacy relational database as to
be transformed into a PSM model, according to a SQL-92
meta-model. This work uses a UML model as PIM while
we use a KDM model. The PIM is generated using a SQL-
92 meta-model as PSM so it is SQL language-dependent
which does not allow to discover web services on non-SQL
repository. KDM represents the entire legacy system so
in that sense their proposal is restricted to the used PSM
meta-model.

Boussaidi et al. [4] present an approach that helps
constructing distinct architectural views from legacy sys-
tems. The first step of the approach aims at selecting the
most relevant concepts and relationships of KDM that
are relevant for the targeted view. The second step aims
at revealing the system’s structure by means of various
pattern-driven clustering algorithms to decompose the
system. The third step of the approach enables user to
modify and adjust the resulting view and documented the
results using a KDM model. This work also has some sim-
ilarities with our approach. First of all, they select relevant
KDM entities and relationships which could be related
with the concerns of interest. We also perform a simi-
lar activity by identifying methods and properties which
may implement certain concerns. Then, they apply several
clustering algorithms to reconstruct the desired architec-
ture. In our case, we apply our concern mining process
to identify crosscutting concerns. Finally, we annotate
the concerns into the KDM model. This work does not
present annotations but a KDM extension.

Conclusions
In this paper, we have presented a concern mining
approach to be used in the context of architecture-driven
modernization (ADM). The goal is to provide modern-
ization engineers a methodology and a tool that assists
them in identifying crosscutting concerns in KDM mod-
els, enabling an aspect-oriented modernization to be per-
formed. Besides the practical characteristic of this work,
the process we have presented should also serve as general
guidelines to those who need to create mining approaches
for other domains/contexts. This is the first work in con-
cern mining area that uses a standardized model in the
context of ADM to perform search of concerns, and we
believe that ADM standards will be widely used in a near
future because is an OMG initiative, and it has the support
of several important IT organizations.

Our mining technique employs a combination of a
concern library and a string clustering algorithm. The
required input of the approach is a KDM instance

Santibanez et al. Journal of the Brazilian Computer Society (2015) 21:10

representing the legacy system, and the output is the same
KDM with the concerns clearly annotated. As we have
shown, it is possible to adapt a concern mining approach
source code oriented to a concern mining approach model
oriented. We also have shown that the precision and recall
values remained good.

In terms of design, we have sought the simplicity. For
example, although OCL is a powerful language to per-
form queries over MOF models and meta-models, it is
not so intuitive to manage when we must perform com-
plex queries. That is why our approach uses OCL simple
queries and a SQL database to perform complex queries.
We argue that people which may maintain the tool will
be more familiarized with SQL queries than OCL. It is
important to note that OCL queries are reusable and SQL
queries too if the database model is not modified.

Another advantage of using a database is the persistence
of the data. The entire data model in conjunction with
the KDM file can be ported and reused without generat-
ing the KDM file and searching for code structures again
if no modifications are performed to the source code.
Finally, it is clear if we annotate the KDM file, then it could
not serve as source of entry to our approach because the
new attribute called "concern" is not part of KDM. To use
our annotated KDM file, the KDM meta-model must be
extended to support this new feature which is a trivial task
by using Eclipse model development tools (MDT).

As it was previously presented, we have employed a
relational DB in our solution. We claim the creation
of relational subsets of KDM is a canonical activity in
many contexts. As relational databases are a well accepted
technology, many modernization engineers may prefer to
mine relational database than a model. The creation of
relational subsets from KDM is usually guided by the
information to be queried. The first step is to identify
which are the metaclasses that hold the information of
interest. The second one is to filter out, from these meta-
classes, the attributes that do not contain relevant infor-
mation. After that, one can create corresponding tables
for the metaclasses chosen. A possible work is to generate
automatically a relational DB from KDM. As this is already
done in many UML tools, we believe it is almost the same
to do that for KDM.

Although we have evaluated our approach just using
Java applications, applying it for applications implemented
in other languages just require to update the concern
library with APIs provided by other languages. For exam-
ple, the library <sqlh> support the implementation of
persistence concern in C++. Clearly we also need a tool,
like Modisco, to generate a KDM instance from C++
applications. We remark the easy way to add new concerns
to the concern library which makes it an extensible tool.
The central resource of our mining approach is a library
based on APIs; the clustering algorithm takes the firstly

Page 18 of 20

identified elements as its centroids, then other similar ele-
ments (which are not API-dependent) are also identified.
That is the reason the precision and recall values reach
so good values when compared to other techniques. Nev-
ertheless, we believe it is possible to improve the values
of the metrics even more combining our static analysis
with a dynamical approach. We also are conscious that
few approaches are conducted in just one step. In most
of the cases, the software engineer needs to go back in
the process to update results or to provide new informa-
tion. An important point of our approach is the manual
filtering step, allowing to filter out elements which were
erroneously identified.

During the development of our approach, several obser-
vations were noticed. Although Modisco™is a robust
framework and provides a well-documented AP], it is
still under strong development so some implementations
of CCKDM may need to be updated in the near future.
Another issue related with Modisco™is that the process for
generating the KDM file could take several hours if the
program is huge and in some cases, the KDM file is never
generated. In fact, that is the main reason why we could
not use JHotDraw [43] for our experimental study because
Modisco™was not able to generate the KDM.

In the future, we plan to improve our annotation fea-
ture, for example methods could implement more than
one concern. In that case, it is necessary to annotate
them with multiple tags. We also are interested to inves-
tigate and identify other types of concerns like design
patterns and architectural styles. To do that, other pack-
ages of the KDM specification must be studied, taking into
account semantic issues. Finally, in terms of functionality
extension, we are interested in integrate CCKDM with a
visualization tool.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

This work is part of DSM master thesis and VWC was his advisor. DSM carried
out most of the investigation, implementation, experiments, and writing. VWWC
gave important ideas to the project and also contributed in the writing and
revision of this manuscript. RSD gave important ideas about CCKDM tool
design and the implementation of the cluster algorithm and suggested a way
to carry out the experiments; he also gave an important contribution in writing
and revising the paper. All authors read and approved the final manuscript.

Acknowledgements

Daniel Santibafiez would like to thank the financial support provide by CAPES.
Rafael Serapilha Durelli would like to thank the financial support provided by
FAPESP, 2012/05168-4. Valter Vieira de Camargo would like to thank FAPESP,
2012/00494-0. We also would like to thank the Universidade Federal de Sdo
Carlos (UFSCar) for giving the ProgradWeb system and be used in the
experiment.

Author details

! Departamento de Computacao, Universidade Federal de Sao Carlos, Caixa
Postal 676—13.565-905, Sao Carlos, Brazil. 2Instituto de Ciéncia Mateméticas e
de Computagao—ICMC, Universidade de Sao Paulo, S&o Carlos, SP, Brazil.

Santibafnez et al. Journal of the Brazilian Computer Society (2015) 21:10

Received: 30 July 2014 Accepted: 10 June 2015
Published online: 01 August 2015

References

1.

Ulrich WM, Newcomb P (2010) Information systems transformation:
architecture-driven modernization case studies. Morgan Kaufmann
Publishers Inc,, San Francisco, CA, USA

Chikofsky EJ, Cross Il JH (1990) Reverse engineering and design recovery:
a taxonomy. I[EEE Softw 7(1):13-17

Canfora G, Di Penta M, Cerulo L (2011) Achievements and challenges in
software reverse engineering. Commun ACM 54:142-151

Boussaidi GE, Belle AB, Vaucher S, Mili H (2012) Reconstructing
architectural views from legacy systems. In: Reverse Engineering (WCRE),
2012 19th Working Conference On, Kingston, Ontario, Canada.

pp 345-354. http://dx.doi.org/10.1109/WCRE.2012.44

Perez-Castillo R, de Guzman IG-R, Avila-Garcia O, Piattini M (2009) On the
use of adm to contextualize data on legacy source code for software
modernization. In: Proceedings of the 2009 16th working conference on
reverse engineering. WCRE '09. IEEE Computer Society, Washington, DC,
USA. pp 128-132

von Detten M, Meyer M, Travkin D (2010) Reverse engineering with the
reclipse tool suite. In: Proceedings of the 32nd ACM/IEEE international
conference on software engineering—volume 2. ICSE '10. ACM, New
York, NY, USA. pp 299-300

Marin M, Deursen AV, Moonen L (2007) Identifying crosscutting concerns
using fan-in analysis. ACM Trans Softw Eng Methodol 17:3-1337

Durelli R, Santibdfez DM, Anquetil N, Delamaro ME, Camargo VWV (2013) A
systematic review on mining techniques for crosscutting concerns. ACM
SAC, Coimbra, Portugal

Bhatti MU, Ducasse S, Rashid A (2008) Aspect mining in procedural object
oriented code. In: Proceedings of the 2008 The 16th IEEE international
conference on program comprehension. IEEE Computer Society,
Washington, DC, USA. pp 230-235

Santos BM, Honda RR, de Camargo W, Durelli RS (2014) Kdm-ao: An
aspect-oriented extension of the knowledge discovery metamodel. In:
Software Engineering (SBES), 2014 Brazilian Symposium On, Maceio,
Alagoas, Brasil. pp 61-70. http://dx.doi.org/10.1109/SBES.2014.20
Rodriguez-Echeverria R, Conejero JM, Clemente PJ, Preciado JC,
Sanchez-Figueroa F (2012) Modernization of legacy web applications into
rich internet applications. In: Proceedings of the 11th international
conference on current trends in Web engineering. ICWE'1 1. Springer,
Berlin, Heidelberg. pp 236-250

Pérez-Castillo R, de Guzman IGR, Caballero |, Piattini M (2013) Software
modernization by recovering web services from legacy databases. J Softw
Evol Process 25(5):507-533

Deltombe G, Goaer OL, Barbier F (2012) Bridging kdm and astm for
model-driven software modernization. In: SEKE, San Francisco Bay, USA.
pp 517-524

Pérez-Castillo R, de Guzman IGR, Caivano D, Piattini M (2012) Database
schema elicitation to modernize relational databases. In: Maciaszek LA,
Cuzzocrea A, Cordeiro J (eds). ICEIS (1). SciTePress, Wroclaw, Poland.

pp 126-132. http://dblp.uni-trier.de/db/conf/iceis/iceis2012-1.html
Mainetti L, Paiano R, Pandurino A (2012) Migros: a model-driven
transformation approach of the user experience of legacy applications.
Lecture notes in computer science (including subseries lecture notes in
artificial intelligence and lecture notes in bioinformatics) 7387
LNCS:490-493. cited By (since 1996) 0

Tabares MS, Moreira A, Anaya R, Arango F, Araujo J (2007) A traceability
method for crosscutting concerns with transformation rules. In:
Proceedings of the early aspects at ICSE: workshops in aspect-oriented
requirements engineering and architecture design. EARLYASPECTS '07.
IEEE Computer Society, Washington, DC, USA.p 7

Mesbah A, van Deursen A (2005) Crosscutting concerns in j2ee
applications. In: Proceedings of the seventh IEEE international symposium
on Web Site evolution. IEEE Computer Society, Washington, DC, USA.

pp 14-21

Marin M, van Deursen A, Moonen L (2004) Identifying aspects using fan-in
analysis. In: Proceedings of the 11th working conference on reverse
engineering. IEEE Computer Society, Washington, DC, USA. pp 132-141
Neto AC, de Medeiros Ribeiro M, Dosea M, Bonifacio R, Borba P, Soares S
(2007) Semantic dependencies and modularity of aspect-oriented

20.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

Page 19 of 20

software. In: Assessment of contemporary modularization techniques,
2007. ICSE Workshops ACoM '07. First International Workshop On.

pp 11-11

Nguyen TT, Nguyen HV, Nguyen HA, Nguyen TN (2011) Aspect
recommendation for evolving software. In: Proceedings of the 33rd
international conference on software engineering. ICSE '11. ACM, New
York, NY, USA. pp 361-370

. Shepherd D, Palm J, Pollock L, Chu-Carroll M (2005) Timna: a framework

for automatically combining aspect mining analyses. In: Proceedings of
the 20th IEEE/ACM international conference on automated software
engineering. ACM, New York, NY, USA. pp 184-193

Force OAT (2012) Why do we need standards for the modernization of
existing systems? http://adm.omg.org/legacy/ADM_whitepaper.pdf
Bianchi A, Caivano D, Marengo V, Visaggio G (2003) Iterative
reengineering of legacy systems. IEEE Trans Softw Eng 29:225-241

OMG Object Management Group (OMG) architecture-driven
modernisation. http://www.omgwiki.org/admtf/doku.php?id=start
Perez-Castillo R, de Guzman IG-R, Piattini M (2011) Knowledge discovery
metamodel-iso/iec 19506: a standard to modernize legacy systems.
Comput Stand Interfaces 33(6):519-532

Kellens A, Mens K, Tonella P (2007) A survey of automated code level
aspect mining techniques. Springer, Berlin, Heidelberg

Mens K, Kellens A, Krinke J (2008) Pitfalls in aspect mining. In: Proceedings
of the 2008 15th working conference on reverse engineering. IEEE
Computer Society, Washington, DC, USA. pp 113-122

Cojocar GS, Czibula G (2008) On clustering based aspect mining. In:
Intelligent Computer Communication and Processing, 2008. ICCP 2008.
4th International Conference On, Cluj-Napoca, Romania. pp 129-136.
http://dx.doi.org/10.1109/ICCP.2008.4648364

Danfeng Z, Yao G, Xianggun C (2008) Automated aspect recommendation
through clustering-based fan-in analysis. In: Proceedings of the 2008 23rd
|IEEE/ACM international conference on automated software engineering.
|IEEE Computer Society, Washington, DC, USA. pp 278-287

von Detten M, Becker S (2011) Combining clustering and pattern
detection for the reengineering of component-based software systems.
In: Proceedings of the Joint ACM SIGSOFT conference—QoSA and ACM
SIGSOFT symposium—ISARCS on quality of software
architectures—QoSA and architecting critical systems—ISARCS.
QOoSA-ISARCS "11. ACM, New York, NY, USA. pp 23-32

Bruneliere H, Cabot J, Jouault F, Madiot F (2010) Modisco: A generic and
extensible framework for model driven reverse engineering. In:
Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering. ASE '10. ACM, New York, NY, USA. pp 173-174.
http://doi.acm.org/10.1145/1858996.1859032

Ceccato M, Marin M, Mens K, Moonen L, Tonella P, Tourwé T (2006)
Applying and combining three different aspect mining techniques. Softw
QJ14(3):209-231

Warmer J, Kleppe A (2003) The Object Constraint Language: Getting Your
Models Ready for MDA. 2nd edn. Addison-Wesley Longman Publishing
Co., Inc,, Boston, MA, USA

Habela P, Kaczmarski K, Stencel K, Subieta K Ocl as the query language for
uml model execution. In: Bubak M, van Albada G, Dongarra J (eds).
Computational Science — ICCS 2008. Lecture Notes in Computer Science.
Springer Vol. 5103. pp 311-320. http://dx.doi.org/10.1007/978-3-540-
69389-5_36

Figueiredo E, Cacho N, Sant’/Anna C, Monteiro M, Kulesza U, Garcia A,
Soares S, Ferrari F, Khan S, Castor Filho F, Dantas F (2008) Evolving
software product lines with aspects: an empirical study on design
stability. In: Proceedings of the 30th international conference on software
engineering. ICSE '08. ACM, New York, NY, USA. pp 261-270

Han J (2005) Data mining: concepts and techniques. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA

Levenshtein V (1966) Binary codes capable of correcting deletions,
insertions and reversals. Sov Phys Doklady 10:707

McFadden RR, Mitropoulos FJ (2013) Survey of aspect mining case study
software and benchmarks. In: Southeastcon, 2013 Proceedings of IEEE,
Fort Lauderlade, Florida, USA. pp 1-5. http://dx.doi.org/10.1109/SECON.
2013.6567402

Vitek J (ed) (2008) ECOOP 2008 - Object-Oriented Programming, 22nd
European Conference, Paphos, Cyprus, July 7-11, 2008, Proceedings.

http://dx.doi.org/10.1109/WCRE.2012.44
http://dx.doi.org/10.1109/SBES.2014.20
http://dblp.uni-trier.de/db/conf/iceis/iceis2012-1.html
http://adm.omg.org/legacy/ADM_whitepaper.pdf
http://www.omgwiki.org/admtf/doku.php?id=start
http://dx.doi.org/10.1109/ICCP.2008.4648364
http://doi.acm.org/10.1145/1858996.1859032
http://dx.doi.org/10.1007/978-3-540-69389-5_36
http://dx.doi.org/10.1007/978-3-540-69389-5_36
http://dx.doi.org/10.1109/SECON.2013.6567402
http://dx.doi.org/10.1109/SECON.2013.6567402

Santibanez et al. Journal of the Brazilian Computer Society (2015) 21:10

40.

41.

42.

43.

Lecture Notes in Computer Science, Vol. 5142. Springer, Paphos,Cyprus.
http://dx.doi.org/10.1007/978-3-540-70592-5

Breu S, Zimmermann T (2006) Mining aspects from version history. In:
Proceedings of the 21st [EEE/ACM international conference on
automated software engineering. IEEE Computer Society, Washington,
DC, USA. pp 221-230

Lengyel L, Levendovszky T, Angyal L (2009) Identification of crosscutting
constraints in metamodel-based model transformations. In: EUROCON
2009, EUROCON '09. IEEE, St. Petersburg, Russia. pp 359-364. http://dx.
doi.org/10.1109/EURCON.2009.5167656

Van Gorp P, Stenten H, Mens T, Demeyer S (2003) Towards automating
source-consistent uml refactorings. In: Stevens P, Whittle J, Booch G (eds).
«UML» 2003 - The Unified Modeling Language. Modeling Languages and
Applications. Lecture Notes in Computer Science. Springer, San Francisco,
CA, USA Vol. 2863. pp 144-158. http://dx.doi.org/10.1007/978-3-540-
45221-8_15

Marin M, Moonen L, Deursen AV (2007) An integrated crosscutting
concern migration strategy and its application to jhotdraw. In:
Proceedings of the Seventh IEEE International Working Conference on
Source Code Analysis and Manipulation. SCAM '07. IEEE Computer
Society, Washington, DC, USA. pp 101-110. http://dx.doi.org/10.1109/
SCAM.2007.4

Page 20 of 20

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

http://dx.doi.org/10.1007/978-3-540-70592-5
http://dx.doi.org/10.1109/EURCON.2009.5167656
http://dx.doi.org/10.1109/EURCON.2009.5167656
http://dx.doi.org/10.1007/978-3-540-45221-8_15
http://dx.doi.org/10.1007/978-3-540-45221-8_15
http://dx.doi.org/10.1109/SCAM.2007.4
http://dx.doi.org/10.1109/SCAM.2007.4

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Architecture-driven modernization (ADM)
	Knowledge discovery meta-model (KDM)
	KDM code package

	Mining of crosscutting concerns

	Methods
	Recovery of application structure
	API-based mining
	Clustering-based mining
	Annotating concerns

	Manual filtering
	CCKDM tool
	Overview
	Usage process

	Results and discussion
	Analysis of levenshtein values
	Recall and precision analysis
	Threats to validity
	Related work

	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

