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Abstract

Background: This paper studies the generalized probabilistic satisfiability (GPSAT) problem, where the probabilistic
satisfiability (PSAT) problem is extended by allowing Boolean combinations of probabilistic assertions and nested
probabilistic formulas.

Methods: We introduce a normal form for this problem and show that both nesting of probabilities and multi-agent
probabilities do not increase the expressivity of GPSAT. An algorithm to solve GPSAT instances in the normal form via
mixed integer linear programming is proposed.

Results: The implementation of the algorithm is used to explore the complexity profile of GPSAT, and it shows
evidence of phase-transition phenomena.

Conclusions: Even though GPSAT is considerably more expressive than PSAT, it can be handled using integer linear
programming techniques.
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Background
Propositional logic and probability theory stand as major
knowledge representation tools in many fields, and
notably in artificial intelligence. Useful combinations of
propositional logic and probability theory are already pur-
sued by Boole [3, Chapter XVIII], who was concerned
with problems where propositional formulas are asso-
ciated with probability assertions. Loosely speaking, we
have propositional sentences {φi}qi=1, each containing a
subset of atomic propositions {Aj}nj=1. We may associate
one or more of these sentences with probabilities, writ-
ing for instance P(φi) = αi. To establish semantics for
these assessments, we consider a probability measure over
the set of truth assignments. The probabilistic satisfiabil-
ity (PSAT) problem is to determine whether it is possible
to find a probability measure over truth assignments such
that all assessments are satisfied [13]. PSAT problems have
received attention in a variety of fields [4, 9, 14, 15, 17];
in artificial intelligence research, PSAT problems appear
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as a foundation for probabilistic rules [21] and first-order
probabilistic logic [16, 20, 22].
In this paper, we consider an extended version of PSAT

problems. To illustrate the PSAT problem, consider the
following situation:

Problem 1. Three friends, Alice, Bob, and Charlie,
go to the pub everyday and they have two options: “Bar
Phi” and “Bar Not Phi”. Each friend goes exactly to one
bar per night. Talking about tonight, a fourth friend,
David, says that Alice goes to “Bar Phi” with probability
6/7, that Bob goes to “Bar Phi” with probability 5/7;
and that the probability of Charlie drinking at “Bar Phi”
is 4/7. Furthermore, David states that exactly two of
them will be at “Bar Phi” tonight.

Question: Is David being consistent?

This problem can be captured by the PSAT formalism,
as it will be shown later. The idea is to check the consis-
tency of the probabilities assigned to each friend going to
“Bar Phi” tonight together with the fact that exactly two
of them being there with probability one. However flexi-
ble it may be, PSAT problem can only handle conjunction
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of probability assessments. To understand our goal, note
that the satisfiability of probabilistic formulas P(φi) = αi,
1 ≤ i ≤ q obtains when there is a probability measure
(over the truth assignments) that satisfies

P (φ1) = α1 ∧ P (φ2) = α2 ∧ · · · ∧ P
(
φq

) = αq .

One obvious generalization is to deal with disjunction
and negation of probabilistic assertions to construct more
complex formulas, such as

¬ (P (φ1) = α1) ∧ (P(φ2) = α2) ∨ (P (φ3) = α3) .

We will see that the same semantics used for PSAT can
be adopted in such an extended probabilistic satisfiability
problem. As an example of the higher expressivity
introduced by this generalization, consider a
modification of Problem 1:

Problem 2. Three friends, Alice, Bob, and Charlie,
go to the pub everyday and they have two options: “Bar
Phi” and “Bar Not Phi”. Each friend goes exactly to one
bar per night. Talking about tonight, a fourth friend,
David, says that Alice goes to her favorite bar with
probability 6/7, that Bob goes to the bar he likes most
with probability 5/7; and that the probability of Charlie
drinking at his favorite place is 4/7. Furthermore,
David states that exactly two of them will be at “Bar
Phi” tonight. Question: Is David being consistent?

The key difference between Problems 1 and 2 is that in
the former we have probabilities for each friend to go to
“Bar Phi” and we are asked about the consistency of such
assignments together with the constraint that exactly two
of them are going there tonight; in the latter, the proba-
bilities are assigned to either “Bar Phi” or “Bar Not Phi”,
and we want to check whether David is stating consistent
probabilities with which Alice, Bob, and Charlie are going
to their favorite bars. Such difference might be clearer in
the next sections, where these problems are formalized.
We can move to an even more expressive language by

allowing probabilistic formulas to be nested; that is, by
allowing a subformula of φ in P(φ) = α to be P(ϕ) = α′.
Nested probabilities may receive different interpretations,
and ours can be exemplified with a problem:

Problem 3. Alice says that the probability of her
going to “Bar Phi” tonight with probability 5/6 is 1/2;
and, with probability 1/2, she is going to “Bar Phi”
tonight with probability 1/6. Question: Can these
probabilistic statements be consistent?

A possible scenario consistent with what Alice says
could be the following: Alice initially wanted to go to the
bar, but as she likes some randomness in her life, she
decided to throw a fair die tonight. She will go drink unless
she gets a 6. In the middle of the day, she is not in the
mood. She makes her mind to go to the bar only if the
die shows up a 6. But she suddenly realizes she was too
conservative, and gives to a fair coin the responsibility of
choosing her destiny: in case of heads, she is going out
only with a 6 in the die; with the coin landing tails, she
is going to the bar unless a 6 happens to be the case. Just
for fun, she tossed the coin in the afternoon, but will only
see the outcome in the evening—right before throwing the
die. In the meantime, she is thinking about the probability
of her going out tonight. With probability 1/2, she thinks
she is in a world where the coin landed heads, and the
probability of her getting a 6 to drink is 1/6. But with prob-
ability 1/2, the actual case is with the coin showing tails,
and she is going to the bar with probability 5/6—only a 6
can spoil her night.
In such a scenario, there is a probability measure over

possible worlds (tails and heads) which have their own
probability measure over other possible worlds (going to
the bar or not). This is the case in the logic devised in ref.
[10], which finds its application in stochastic systems, for
instance. In this paper, however, we follow a different path,
keeping only a single probability measure over all possible
worlds. To give meaning to nested probabilities, we use
the lifting assumption, that “one believes the probability
of φ is α if, and only if, one believes that the probability
of the probability of φ being α is 1” [23]. In Problem 3,
one can argue that, if the probability of Alice going out is
5/6 or 1/6, with probability 1/2 each, then the probabil-
ity of her going out is actually 1/2 × 5/6 + 1/2 × 1/6 =
1/2—with probability one. As Alice states that a proba-
bility of a probability being 5/6 is not one or zero, but
1/2, she is being inconsistent under the lifting assumption.
Clearly, this assumption is restrictive, in the sense that it
claims an agent may not have uncertainty about his own
probabilistic beliefs. However, maybe surprisingly, under
this premise, we can prove that satisfiability of formulas
with nested probabilities can be reduced to satisfiability
without nesting.
The problem of deciding satisfiability of these formulas

is what we define as generalized probabilistic satisfiabil-
ity (GPSAT). The resulting language can be viewed as the
closure of probabilistic formulas with respect to Boolean
and probabilistic operators.
There are no algorithms currently available to deter-

mine satisfiability of GPSAT problems, as far as we know.
In this paper, we present the first such algorithm. The
most direct way to solve a PSAT problem is through its
linear programming formulation [14], using column gen-
eration methods to handle the exponential number of
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columns [19]. A recent alternative approach reduces PSAT
into logical satisfiability [11]. Neither of these approaches
is easily extended to deal with disjunction of constraints,
that is essential to solve GPSAT.
In this paper, we present an approach to generalized

probabilistic satisfiability, where the original problem is
written as a mixed integer linear program of a size that
is polynomial on the size of the original problem. This
technique was firstly proposed to solve probabilistic satis-
fiability in ref. [6], and this paper builds on that work to
deal with GPSAT problems.
The remaining of this section summarizes necessary

fundamentals on SAT and PSAT. The generalized prob-
abilistic satisfiability is defined in the section “The prob-
lem”, where a normal form is introduced. In the same
section, we show how a multi-agent scenario is reduced
to the single-agent case. An algorithm for GPSAT is
described in the section “Methods”, building on a reduc-
tion from PSAT to mixed integer linear programming.
Implementation and experiments, with a discussion of
phase transitions, are presented in the section “Results”.
Consider the set LLP of well-formed formulas built with

a set A = {A1,A2,A3 . . . } of atomic propositions using
the usual Boolean connectives ¬, ∧, ∨ and →. A truth
assignment (or valuation) ω is a function ω : A → {0, 1}
that takes atomic propositions to truth values, which we
denote by 0 and 1. Through the classical semantics of
propositional logic1 ω can have its domain extended to
LPL, assigning a truth value to any propositional formula.
If φ is true, write ω |= φ; if φ is false, we write ω �|= φ.
Given a finite a set of formulas {φ1, . . . φq} ⊂ LPL, the sat-
isfiability (SAT) problem is to determine whether or not
there exists a truth assignment to all variables such that all
sentences evaluate to true [5, 12]. We call such a set a SAT
instance.
If every sentence φi is a conjunction of clauses, then we

have a SAT instance in CNF. A SAT instance in CNF is
a k-SAT instance when each clause has k literals. The 2-
SAT problem has a polynomial solution, while k-SAT is
NP-complete for k > 2.
Suppose now we have q propositional sentences over n

atomic propositions, say φ1, . . . ,φq ∈ LLP , associated with
probabilities through assessments of the form P(φi) 
�
αi, where 
� is one of ≥, = or ≤. For computability, let
the probabilities αi be rational numbers. The semantics
of such an assessment is as follows. Take the set of 2n
truth assignments that can be generated for the n propo-
sitions. A probability measure P over this set satisfies the
assessments if, for each assessment P(φi) 
� αi,∑

ω|=φi

P(ω) 
� αi. (1)

The probabilistic satisfiability (PSAT) problem is to deter-
mine whether a given set of probabilistic assessments (a

PSAT instance) can be satisfied in the sense that there is
a probability measure over truth assignments such that all
assessments are satisfied. PSAT is know to be in NP, as it
has a small model, and since SAT is a subproblem where
all assigned probabilities are 1, PSAT is NP-complete [13].
A few polynomial special cases of PSAT are known [1].

Example 4 (Friends’ Favorite Bar). Consider Problem 1,
with friends {A,B,C}. Let φi represent that person i is
at the “Bar Phi” tonight, i ∈ {A,B,C}. As exactly two
friends are going to the “Bar Phi”, according to David,
no two friends can be absent tonight, represented by
¬ (¬φi ∧ ¬φj

)
with 100 % certainty, for i �= j:

P (φA ∨ φB) = P (φA ∨ φC) = P (φB ∨ φC) = 1.

Furthermore, at least one must be at “Bar Not Phi”:

P (¬φA ∨ ¬φB ∨ ¬φC) = 1.

David assigns the probability for each friend being at “Bar
Phi”:

P(φA) = 6/7, P(φB) = 5/7, P(φC) = 4/7,

and the question is if there exists a probability mea-
sure that simultaneously satisfies these seven probability
assignments. It happens that there is no such a proba-
bility assignment and this PSAT instance is unsatisfiable.
We can conclude that David is being inconsistent in his
probabilistic assertions.

There are many proposed algorithms for PSAT. The
most obvious one is to write down q constraints of the
form (1), one for each sentence, associated with assign-
ments P(φi) 
� αi. Each constraint can be written as

2n∑
j=1

ωj(φi)P(ωj) 
� αi, (2)

while truth assignments ωj are ordered from 1 to 2n (say
by the n-bit binary number obtained by writing 0 for false
and 1 for true as assigned to A1, . . . ,An). Probabilistic sat-
isfiability is then obtained when the resulting set of linear
constraints has a solution. The challenge is that we have
2n truth assignments, so the size of the linear constraints
is exponential in the input.
Themost efficient algorithms for PSAT apply linear pro-

gramming techniques to this set of constraints. As a linear
program, if there is a solution, there is one with no more
than q + 1 truth assignments with positive probability
[13]. The two-phase simplex method can be used with the
addition of q + 1 artificial variables in order to find a fea-
sible solution in the first phase. Starting with a basis with
these q + 1 artificial variables, at each iteration, a new
column (variable) enter the basis, keeping the solution fea-
sible, until the basis has no artificial variables. If this point
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is reached, a solution is found; otherwise, the linear pro-
gram has no feasible solution and the PSAT instance is
unsatisfiable. As the number of columns is exponential,
column generation techniques are used. A good survey on
this approach is [17]. Combining inference rules with lin-
ear programming techniques leads to the currently most
efficient algorithms, as showed in ref. [18].

The problem
The language we contemplate is syntactically easy to spec-
ify: simply take Boolean operations over assessments, and
allow a subformula in an assessment to be itself any
well-formed formula of the language. That is, we allow
sentences such as

(P (A1 ∨ ¬A2)≥1/2)∨¬ (P (A3)≥1/4)∨(P(A1)=1/5),

and even sentences where probabilities are nested as fol-
lows:

¬ (P(A1) ≤ 1/3) ∨ P (A2 ∧ (P(A3) ≥ 3/4)) ≥ 1/2,

both of which contain a single “clause” of (possibly
negated) assessments. Another example is the following,
where we find two “clauses” of assessments:

((P (A1) = 1/3) ∨ ¬ (P(A2) ≤ 3/5)) ∧
((P (¬A1) ≥ 2/3) ∨ ¬ (P (A1 ∨ ¬A3) = 3/7)) .

To make sense of these sentences, we must establish an
appropriate semantics. Note that in any PSAT instance,
the truth value of an assessment such as P(φi) = αi is
derived from a probability measure on the truth assign-
ments ω1, . . . ,ω2n (because the relation ωj |= φi is well
defined). This is not the case when nested probabilities
are allowed and φi may contain probabilistic subformulas.
This next section shows how to define a semantics that
characterizes when a probabilistic assessment is true in a
possible world ωj.

Syntax and semantics
We start with an infinite set of atomic (or primitive)
propositions A = {A1,A2,A3, . . . }.
Our language is then defined recursively as the smallest

set L such that:2

• If φ ∈ A, then φ ∈ L;
• If φ ∈ L, then ¬φ ∈ L;
• If φ ∈ L and θ ∈ L, then (φ ∨ θ) ∈ L;
• If φ ∈ L and θ ∈ L, then (φ ∧ θ) ∈ L;
• If φ ∈ L, then (P(φ) 
� α) ∈ L, for 
�∈ {≤,≥} and

α ∈[ 0, 1]∩Q.

Parentheses are omitted whenever possible. As usual,
P(φ) = α, P(φ) < α and P(φ) > α are abbreviations for
(P(φ) ≤ α) ∧ (P(φ) ≥ α), ¬(P(φ) ≥ α) and ¬(P(φ) ≤ α),
respectively.

To give truth values to formulas in L, we define a struc-
tureM = (�,P(.)), where� is a finite set of propositional
truth assignments ωi (valuations), and P : � →[ 0, 1] is a
probability measure over �. With this machinery in hand,
we now define when a pair (M,ω) satisfies a formula
φ ∈ L, or (M,ω) |= φ:

• (M,ω) |= Ai if ω |= Ai;
• (M,ω) |= ¬φ if (M,ω) �|= φ;
• (M,ω) |= φ1 ∧ φ2 if (M,ω) |= φ1 and (M,ω) |= φ2;
• (M,ω) |= φ1 ∨ φ2 if (M,ω) |= φ1 or (M,ω) |= φ2;
• (M,ω) |= P(φ) 
� α if

∑{P(ωi)|(M,ωi) |= φ} 
� α,
for 
�∈ {≤,≥} and α ∈[ 0, 1]∩Q;

This semantics leads propositional formulas and proba-
bilistic formulas to have their truth value associated to
possible worlds (M,ω). Thismeans one can talk about the
truth value of formulas such as

φ1 ∧ (P(φ2) ≤ 0.5) ∨ (P(¬(P(φ3) ≥ 0.7)) ≤ 0.2)

in a given pair (M,ω). However, as the truth value of
P(φ) 
� α in (M,ω) does not depend on ω, for a fixed
M, P(φ) 
� α will be true either in all pairs (M,ω) or
in none of them – this captures the intuition that nested
probabilities collapse to either 1 or 0. We writeM |= φ if
(M,ω) |= φ for all ω ∈ �.
Given a formula φ ∈ L, we say that it is satisfiable

if there is a pair (M,ω), where M = {�,P(.)} and
ω ∈ �, such that (M,ω) |= φ; otherwise, we say φ is
unsatisfiable.
The generalized probabilistic satisfiability (GPSAT) is

then the problem of deciding whether or not a given φ ∈ L
is satisfiable. In this way, any formula φ ∈ L is a GPSAT
instance.

Example 5 (Friends Telling the Truth). Consider Prob-
lem 2. Using the same formalization as in Example 4, at
least two friends must be at “Bar Phi” tonight:

P(φA ∨ φB) = 1 (3)
P(φA ∨ φC) = 1 (4)
P(φB ∨ φC) = 1. (5)

Furthermore, at least one must be at “Bar Not Phi”:

P(¬φA ∨ ¬φB ∨ ¬φC) = 1. (6)

We want to check if David is being consistent, but we do
not know if the probabilities he is claiming correspond to
“Bar Phi” or “Bar Not Phi”:

(P(φA) = 6/7 ∨ P(¬φA) = 6/7), (7)
(P(φB) = 5/7 ∨ P(¬φB) = 5/7), (8)
(P(φC) = 4/7 ∨ P(¬φC) = 4/7). (9)

Now the question is if there exists a probability mea-
sure that simultaneously satisfies the first four probability
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assignments together with at least one probability assign-
ment per each clause above. More precisely, our GPSAT
instance is a formula θ , whose satisfiability we want to
check, built as the conjunction of the formulas in Expres-
sions (3) to (9).
Consider a structure M = (�,P(.)), in which � =

{ω1,ω2,ω3} is a set of possible worlds and P : � →
[ 0, 1] is a probability measure over it. Let � be such that
ω1 |= φA ∧ φB ∧ ¬φC , ω2 |= φA ∧ ¬φB ∧ φC and ω3 |=
¬φA ∧ φB ∧ φC . Make P(ω1) = 4/7, P(ω2) = 2/7 and
P(ω3) = 1/7. Note that in each world ω ∈ �, exactly two
of φA, φB, and φC are true, so

M |= P(φi ∨ φj) = 1 ,

for all pairs i �= j, satisfying the conjuncts of Expressions
(3) to (5). As ω |= (¬φA ∨ ¬φB ∨ ¬φC) for all ω ∈ �,

M |= P(¬φA ∨ ¬φB ∨ ¬φC) = 1 .

Finally, we have
∑{P(ωi)|(M,ωi) |= φA} = 6/7,∑{P(ωi)|(M,ωi) |= φB} = 5/7 and

∑{P(ωi)|(M,ωi) |=
¬φC} = 4/7, yielding:

M |= P(φA) = 6/7 ,
M |= P(φB) = 5/7 ,

M |= P(¬φC) = 4/7 ,

satisfying the clauses in Expressions (7), (8), and (9),
respectively. Hence,M |= θ and θ is satisfiable.
We conclude that David is being consistent, with a pos-

sible scenario being with only Charlie preferring the “Bar
Not Phi”. Indeed, every structure satisfying θ leads to this
scenario. Any other assignment of favorite bars for Alice,
Bob, and Charlie different from this one (only Charlie
preferring “Bar Not Phi”) makes the probabilities incon-
sistent. Therefore, it can be inferred that this scenario is
the case, given that David is consistent.

Note that this problem could be solved as a sequence
of PSAT instances: we just guess the favorite bar of each
friend and decide the corresponding PSAT instance. But
to cover all possible assignments of favorite bars leads
to an exponential quantity (on the number of friends) of
PSAT instances, thus it is a less efficient solution. As we
shall see, GPSAT is in NP, and there must exist a polyno-
mial reduction from it to PSAT, but there seems to be no
simple way of performing it.
The logic presented by Fagin, Halpern, and Megido in

ref. [9] had already dealt with Boolean combinations of
probabilistic assessments, but they kept the probabilities
applied only to pure propositional formulas, hence avoid-
ing nesting. Their semantics assigns truth values only to
probability assessments through a whole structure M,
and not a pair (M,ω). So their semantics is closer to
PSAT’s, even though they use probability “inside” the lan-
guage. Another difference is that Fagin et al. allow more

general assessments of the form a1P(α1)+a1P(α1)+· · ·+
amP(αm) ≥ α (this enabled them to axiomatize their
logic). They show that the corresponding satisfiability
problem is NP-complete, but do not propose algorithms
to solve it. One of our goals here is to provide concrete
algorithms.
In another work, Fagin and Halpern [10] investigated

a more general logic to reason about knowledge and
probabilities. Its probabilistic semantics is similar to ours
because the probabilistic formulas have truth value in spe-
cific states (worlds), but they introduce a probability dis-
tribution for each set of indistinguishable possible worlds
(states). Additionally, their logic has an epistemic modal
relation, so that multi-agent and linear combinations of
probabilities are also allowed. Again, they axiomatize their
logic, show the complexity of the related decision proce-
dure, but do not provide algorithms. Variations of logics
adding probabilities to the propositional language can be
found in ref. [7].
The logic we propose here can be seen as a particular

case of the logic in ref. [10], where there is only one agent
and all possible worlds are indistinguishable (all with
identical probability distributions). It follows that GPSAT
inherits an NP upper bound proved by Fagin and Halpern
(Theorem 4.6 in ref. [10]); and as PSAT is a subproblem of
GPSAT, the latter is also NP-complete.

GPSAT normal form
The algorithm for GPSAT to be proposed decides satisfi-
ability only for formulas without nested probabilities and
with all propositional formulas in a probability assessment
(like in PSAT). That is, the algorithm cannot handle a for-
mula such as P(P(φ) ≥ 0.2) ≤ 0.1 or φ1 ∧ P(φ2) ≤ 0.5.
As we now show, any GPSAT instance can be reduced
in polynomial time to a normal form that complies with
these constraints and preserves satisfiability.
We say a formula φ ∈ L is in normal form if it is the

conjunction of two formulas � ∧ 	, where

• � is the conjunction of 3-clauses over probabilistic
assessments in the form P(Ai) ≥ α, in which each
assessment is over a different atomic proposition Ai,
and

• 	 is a probabilistic assignment P(γ ) ≥ 1, in which γ

is a conjunction of propositional 3-clauses.

Note that probability values that are smaller than one can
be assigned only to atomic propositions, and additionally,
every atomic proposition occurrence is a subformula of no
more than one probabilistic assessment in � .
An example of a formula in normal form is:

((P(A1) ≥ 0.3) ∨ ¬ (P (A2) ≥ 0.1) ∨ ¬ (P(A3) ≥ 0.4))∧
(P ((A1 ∨ ¬A2 ∨ A3) ∧ (A1 ∨ A2∨¬A3)) ≥ 1) .
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This normal form is based on the PSAT normal form
introduced by Finger and De Bona [11], and, although it
may seem quite restrictive, we can show that all formu-
las in L can be brought to the normal form. Before we
apply techniques from Finger and De Bona, a sequence of
intermediate results is needed.
A formula in normal form has no nested probabilities

nor propositions outside the scope of a probability assign-
ment. A particular case of a result in ref. [7] (Theorem
1) can be used to eliminate these undesired subformulas.
First, we introduce an auxiliary notation. We call a prob-
abilistic atom any formula P(φ) 
� α in L such that φ ∈
LPL is purely propositional. Let L′ ⊂ L be the language
formed by the Boolean closure of probabilistic atoms:

• If φ is a probabilistic atom, then φ ∈ L′;
• If φ ∈ L′, then ¬φ ∈ L′;
• If φ ∈ L′ and θ ∈ L′, then (φ ∨ θ) ∈ L′;
• If φ ∈ L′ and θ ∈ L′, then (φ ∧ θ) ∈ L′.

Now we can state the result we need:

Lemma 6. For every φ ∈ L, there exists θ ∈ L′, such
that φ is satisfiable if, and only if, θ is; furthermore, θ is
computed in polynomial time.

Proof Sketch. Let I be the set of indexes of all atomic
propositionsAi occurring in φ outside the scope of a prob-
ability assignment. To build φ0, for all i ∈ I, substitute
P(Bi) ≥ 1, where Bi is a fresh atomic proposition, for all
occurrences of Ai out of a probability assessment; this is
done in linear time in the size of φ.
Given φ0, construct φ′

0 by substituting a new atomic
proposition Ci for a expression P(ψ) 
� α (
� is ≤ or ≥)
inside the scope of probability assessment. Define φ1 =
φ′
0∧((P(Ci) ≥ 1)∨P(Ci) ≤ 0))∧(¬(P(Ci) ≥ 1)∨(P(ψ) 
�

α)) ∧ ((P(Ci) ≥ 1) ∨ ¬(P(ψ) 
� α)). Note that φ1 can be
computed in polynomial time. Construct φm+1 from φm
until there is no more nesting of probabilities, obtaining
θ ∈ L′. As the number of nested probabilities has a linear
upper bound on the size of φ, the whole process of build-
ing θ is polynomial in time. To verify that θ is satisfiable iff
φ is, see the complete proof (Theorem 1 in ref. [7]).

So, by using Lemma 6, we have a formula which is
a Boolean combination of probability assignments over
pure propositional formulas. If each probabilistic atom
of a formula φ is replaced by a new atomic proposition
Bi, then we have a formula θ from classical propositional
logic. Using standard techniques, by adding new atoms,
we can build a 3-SAT instance θ ′ which is (Boolean) sat-
isfiable iff θ is. Replace the atomic propositions Bi by the
corresponding probabilistic atoms and the new atomic
propositions by probabilistic atoms of the form P(Ci) ≥

1, where Ci a fresh atomic proposition. Now we have a
GPSAT instance φ′ that is satisfiable only if φ is. For our
normal form transformation procedure, we start from a
formula like φ′, which is the conjunction of 3-clauses, each
formed from probabilistic atoms or their negation using
only ≥. Observe that a probability assessment in the form
P(ψi) ≤ αi is equivalent to the assignment P(¬ψi) ≥
1 − αi.

Theorem 7. For all formulas φ ∈ L, there is a formula
θ ∈ L in normal form that is satisfiable iff φ is; θ can be
computed in polynomial time.

Proof. Given a formula φ with 3-clauses of probabilistic
atoms, we construct � from φ, and 	 from scratch. For
each P(ψi) ≥ αi in φ, substitute a new atomic proposition
Bi for ψi to construct � . Let 	 be assignment P(γ ) ≥ 1,
where γ is the conjunction of the clauses corresponding
to (ψi) ↔ Bi, (¬ψi∨Bi)∧(ψi∨¬Bi), for all Bi introduced.
Using propositional techniques again, one can transform
γ into a 3-SAT in polynomial time, possibly adding fresh
atomic propositions. We have built θ = � ∧ 	 in poly-
nomial time, it remains to prove that θ is satisfiable iff
φ is.
(←) Suppose (M,ωj∗) |= φ, with M = (�,P(.)).

We can extend M to satisfy θ . For each ωj ∈ �, make
ωj |= Bi iff (M,ωj∗) |= ψi to form �′. Create a struc-
ture M′ = (�′,P(.)). Observe that (M′,ωj∗) |= P(Bi) ≥
αi iff (M′,ωj |=)P(ψi) ≥ αi, for all i. It follows that
(M′,ωj∗) |= � . As φi ↔ Bi holds in all worlds ωj for all i,
(M′,ωj∗) |= P(γ ) ≥ 1. Thus (M′,ωj∗) |= θ .
(→) Now suppose (M,ωj∗) |= θ , with M = (�,P(.)).

For all ωj ∈ � with P(ωj) > 0, since (M,ωj∗) |= P((¬ψi ∨
Bi) ∧ (ψi ∨ ¬Bi)) ≥ 1, (M,ωj) |= Bi iff (M,ωj) |= ψi, for
all i. Hence (M,ωj∗) |= P(Bi) ≥ αi iff (M,ωj∗) |= P(ψi) ≥
αi, for all i. Finally, (M,ωj∗) |= φ.

Note that a GPSAT instance in normal form has no
proposition outside the scope of a probabilistic assign-
ment. This means that if (M,ωj∗) |= φ, for some M =
(�,P(.)) and φ = � ∧	 in normal form, then (M,ωj∗) |=
φ for all ωj ∈ �. We may write simply M |= φ in such
case.
The normal form allows us to see a GPSAT instance�∧

P(γ ) = 1 as an interaction between a probability problem
(represented by �) and a SAT instance γ . Solutions to the
instance can be seen as solutions to � constrained by the
SAT instance γ . This is formalized as follows.

Lemma 8. A normal form GPSAT instance φ = � ∧
P(γ ) = 1, with q clauses in � , is satisfiable iff there is a
structure M = (�,P(.)) such that |�| ≤ q + 1, M |= �

and, for all ω ∈ �, and ω |= γ .
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Proof. (←) Suppose first there is a structure M =
(�,P(.)), such that |�| ≤ q+1,M |= � and, for allω ∈ �,
and ω |= γ . Trivially,M |= P(γ ) = 1 andM |= φ.
(→) Now suppose that φ = � ∧ P(γ ) = 1 is satisfiable.

Then there is a pair M = (�,P(.)) such that (�,P(.)) |=
� ∧ P(γ ) = 1. Without loss of generality, we can sup-
pose that P(ω) > 0 for all ω ∈ �—one could just rule
out any ω ∈ � with zero probability. If there is a ω ∈ �

such that ω |= ¬γ , then (�,P(.)) |= P(¬γ ) > 0 and thus
(�,P(.)) �|= P(γ ) = 1, a contradiction. So, ω |= γ for all
ω ∈ �. As (�,P(.)) |= � , (�,P(.)) satisfies at least one
probabilistic atom per clause in � . Let P(Aij) 
�ij αij be
a probabilistic assignment satisfied in the jth-clause, with

�ij∈ {≥,<}, so (�,P(.)) |= P(Aij) 
�ij αij , for 1 ≤ j ≤ q.
Suppose M = (�,P(.)) is such that (�,P(.)) |= P(Aij) =
βij , for 1 ≤ j ≤ q. Using Caratheodory’s Lemma [8], there
is a M′ = (�′,P′(.)) such that �′ ⊆ �, |�′| ≤ q + 1
and (�′,P′(.)) |= P(Aij) = βij for all 1 ≤ j ≤ q. Hence,
M′ |= P(Aij) 
�ij αij for 1 ≤ j ≤ q and M′ |= � . Finally,
as �′ ⊆ �, ω |= γ for all ω ∈ �′

Amulti-agent setup
The language of our logic can be extended to deal with
more than one probability measure. This may be useful
in the case where different agents might assess differ-
ent probability measures to the same set of events. For
instance, we can modify Problem 1 to consider three
probability measures, one for each friend.

Problem 9. Three friends, Alice, Bob, and Charlie,
go to the pub everyday and they have two options: “Bar
Phi” and “Bar Not Phi”. Each friend goes exactly to one
bar per night. Talking about tonight, each friend has its
own probability assessments: Alice says that she goes
to “Bar Phi” with probability 6/7, Bob tells he goes to
“Bar Phi” with probability 5/7; and Charlie states that
the probability of him drinking at “Bar Phi” is 4/7.
Furthermore, the three friends agree that exactly two
of them will be at “Bar Phi” tonight.

Question: Are Alice, Bob, and Charlie being
consistent?

While in Problem 1, there is one probability measure
(David’s), in Problem 9, Alice, Bob, and Charlie have
different opinions about the probabilities, and each one
states his own belief. To formalize this situation, we extend
the language of GPSAT to consider the case withN proba-
bility measures, so that probability assignments may con-
strain the values of one out of the N different probability
measures.We call this languageLN , and its syntax is iden-
tical to L’s except from the construction of the probability
assessment:

• If φ ∈ L, then (Pi(φ) 
� α) ∈ L, for 
�∈ {≤,≥},
α ∈[ 0, 1]∩Q and i ∈ {1, 2, . . .N}.

To give truth values to formulas in LN , we define a
structure M = (�,
), where � is a finite set of propo-
sitional truth assignments ωi (as before), and 
 is a set
of N probability measures Pi : � →[ 0, 1] for 1 ≤ i ≤
N . For a formula φ ∈ LN , we change the definition of
(M,ω) |= φ by modifying only the semantics of the
probability assignment:

• (M,ω) |= Pi(φ) 
� α if
∑{Pi(ωj)|(M,ωj) |= φ} 
� α,

for 
�∈ {≤,≥}, α ∈[ 0, 1]∩Q and i ∈ {1, 2, . . .N}.
It is clear that, if N = 1, the former GPSAT logic is recov-
ered. Using the language L3, we can model Problem 9:

Example 10 (Friends’ Favorite Bar Revisited). Let φi,
with i ∈ {A,B,C}, be the same as Example 4. Let P1,
P2, and P3 be the probability measures that Alice, Bob,
and Charlie, respectively, assign over the possible worlds.
We then assign, for each friend, the probability of him
being “Bar Phi” tonight, constraining his own probability
measure:

P1(φA) = 6/7, P2(φB) = 5/7, P3(φC) = 4/7,

As they agree that two friends are going to the “Bar Phi”,
the formulas ¬(¬φi ∧ ¬φj), for i �= j, must have 100 %
probability in all three probability measures:

Pi(φA ∨ φB) = Pi(φA ∨ φC) = Pi(φB ∨ φC) = 1,

for i ∈ {1, 2, 3}. Furthermore, since they agree that at
least one must be at “Bar Not Phi”:

Pi(¬φA ∨ ¬φB ∨ ¬φC) = 1,

for all i ∈ {1, 2, 3}.
The question is if there are three probability measures

(P1, P2, and P3) that satisfy these 15 probability assign-
ments. We show that it is the case. Let � be such that
ω1 |= φA ∧ φB ∧ ¬φC , ω2 |= φA ∧ ¬φB ∧ φC and ω3 |=
¬φA ∧ φB ∧ φC . Let 
 = {P1,P2,P3}; and P1(ω1) = 6/7,
P1(ω3) = 1/7, P2(ω2) = 2/7, P2(ω3) = 5/7, P3(ω1) =
3/7, P3(ω2) = 4/7, and P1(ω2) = P2(ω1) = P3(ω3) = 0.
As in Example 4, within each ω ∈ �, the formulas stat-
ing that exactly two friends are going to “Bar Phi” tonight
are all satisfied, so they have probability one for the three
friends:

(�,
) |= Pi(φj ∨ φk) = 1,

(�,
) |= Pi (¬φA ∨ ¬φB ∨ ¬φC) = 1,

for all pairs j �= k and i ∈ {1, 2, 3}. Additionally, it is the
case that

(�,
) |= P1(φA) = 6/7∧P2(φB) = 5/7∧P3(φC) = 4/7.
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Differently from Example 4, the three friends are each
one consistent. However, they do not agree with each
other’s probabilities; for instance, P1(φA) = 6/7 �= 2/7 =
P2(φA).

In practice, Example 10 can be seen as three sepa-
rated GPSAT instances. As the three probability measures
are independent from each other, the consistency check
can take place within the probability assignments of the
same agent. Alice’s probability measure has to satisfy only
P(φA) = 6/7, P(¬φA∨¬φB∨¬φC) = 1 and P(φi∨φj) = 1
for i �= j. Analogously, Bob’s probability measure must
model P(φB) = 5/7, and Charlie’s, P(φC) = 4/7, each
together with the constraint that exactly 2 of the friends
are going to “Bar Phi” tonight. Indeed, this correspon-
dence between satisfiability of formulas inLN and GPSAT
can be formalized as a polynomial reduction. To prove
that, we depart from formulas φ ∈ LN without nesting, as
it can be eliminated with a slightmodification of Lemma 6:

Lemma 11. For every φ ∈ LN , for a fixed N ∈ N, there
exists a θ ∈ LN in which all probabilistic formulas are
not subformulas of another probabilistic formulas, such
that φ is satisfiable if, and only if, θ is. Furthermore, θ is
computed in polynomial time and (M,w) |= θ implies
(M,w) |= φ.

Proof. To prove by induction, we show how to decrease
the number of nested probabilities, keeping the satisfi-
ability and the connection between the models. Given
a formula φ with nested probabilities, construct φ′ by
substituting a new atomic proposition B for a basic prob-
abilistic formula Pi(ψ) 
� α, that is subformula of another
basic probabilistic formula Pj(ψ ′) 
�′ α′, with 1 ≤ i, j ≤ N
and 
�, 
�′∈ {≤,≥}. Define φ′′ = φ′ ∧ ((Pj(B) ≥ 1) ∨
(Pj(B) ≤ 0)) ∧ (¬(Pj(B) ≥ 1) ∨ (Pi(ψ) 
� α)) ∧ ((Pj(B) ≥
1) ∨ ¬(Pi(ψ) 
� α)). Clearly, this can be done in polyno-
mial time. Now we need to prove that φ′′ is satisfiable iff
φ is.
(←) Suppose (M,ω∗) |= φ, with M = (�,
). We can

change M to satisfy φ′′. For each ω ∈ �, make ω |= B
iff (M,ω∗) |= Pi(ψ) 
� α to form �′. Create a struc-
ture M′ = (�′,
). If (M,ω∗) |= Pi(ψ) 
� α, then
(M′,ω) |= B for all ω ∈ �′ and (M′,ω∗) |= Pj(B) ≥ 1.
Else, (M′,ωj) |= ¬B for all ω ∈ �′, and (M′,ω∗) |=
Pj(B) ≤ 1. Anyway, (M′,w∗) |= ((Pj(B) ≥ 1) ∨ (Pj(B) ≤
0)) ∧ (¬(Pj(B) ≥ 1) ∨ (Pi(ψ) 
� α)) ∧ ((Pj(B) ≥ 1) ∨
¬(Pi(ψ) 
� α)). Furthermore, as (M′,ω) |= Pi(ψ) 
� α iff
(M′,ω) |= B, for all ω ∈ �′, it is the case that (M′,ω∗) |=
φ′. Hence, (M′,ω∗) |= φ′′.
(→) Suppose now (M,ω∗) |= φ′′. Note that the last two

clauses in φ′′ state that Pj(B) ≥ 1 ↔ Pi(ψ) 
� α. There-
fore, (M,ω∗) |= Pj(B) ≥ 1 iff (M,ω∗) |= Pi(ψ) 
� α.
But (M,ω∗) |= Pj(B) ≥ 1 iff (M,ω) |= Pj(B) ≥ 1 for

every ω ∈ �; and (M,ω∗) |= Pi(ψ) 
� α iff (M,ω) |=
Pi(ψ) 
� α for every ω ∈ �. Hence, for every ω ∈ �,
(M,ω) |= Pj(B) ≥ 1 iff (M,ω) |= Pi(ψ) 
� α. Then,
due to the clause ((Pj(B) ≥ 1) ∨ Pj(B) ≤ 0)), for every
ω ∈ � with πj(ω) > 0, we have that (M,ω) |= B iff
(M,ω) |= Pi(ψ) 
� α. Finally, as (M,ω∗) |= φ′, (M,ω∗)
|= φ.

We now prove the desired reduction.

Theorem 12. Given a formula φ ∈ LN , for a fixed N ∈
N, there is a formula θ ∈ L such that φ is satisfiable if,
and only if, θ is; furthermore, θ is computed in polynomial
time.

Proof. Using Lemma 11, we first eliminate nested prob-
abilities from φ, keeping its (un)satisfiability, and this
is done in polynomial time. Suppose, without lost of
generality, that φ is built using n atomic propositions
A1,A2 . . . ,An. To construct θ from φ, for each i ∈
{1, 2, . . .N}, transform any probabilistic atom Pi(ϕ) 
� α

into P(ϕi) 
� α, in which ϕi is constructed from ϕ by
replacing eachAj byA(i−1)∗n+j. Note that θ ∈ L hasN dis-
junct sets of n atomic propositions, and each set is used
to build formulas whose probability was constrained in φ

for a different probability measure. Clearly, θ is computed
in polynomial time on the length of φ. It remains to prove
that θ is satisfiable if, and only if, φ is.
(→) Suppose θ is satisfiable, so there is a structureM =

(�,P(.)) such that (M,ω∗) |= θ for some ω∗ ∈ �. Let
�′ = {ω1,ω2, . . . ,ω2n} be a set with the all possible valua-
tions on A1,A2, . . . ,An—the atomic propositions in φ. For
each i ∈ {1, 2, . . . ,N} and all 1 ≤ j ≤ 2n, make Pi(ωj) =∑{P(ω)|ω ∈ �s.t.ω(A(i−1)N+k) = ωj(Ak)for all 1 ≤ k ≤
n}. Make 
 = {P1,P2, . . . ,PN } and M′ = (�′,
). It
follows that, for any probabilistic atom Pi(ϕ) 
� α in φ,
M′ |= Pi(ϕ) 
� α iff M |= P(ϕi) 
� α, where P(ϕi) 
� α

is the corresponding probabilistic atom in θ . Let ω′∗ ∈ �′
be such that ω′∗(Ak) = ω∗(Ak) for all 1 ≤ k ≤ n. Note
that every atomic proposition outside of the scope of a
probability assignment in θ is satisfied in (M,ω∗) iff it is
satisfied in (M′,ω′∗). We can conclude that (M′,ω′∗) |=
φ.
(←) Now suppose φ is satisfiable, so there is a struc-

ture M = (�,
), with 
 = {P1,P2, . . . ,PN }, such
that (M,ω∗) |= φ for some ω∗ ∈ �. Without
lost of generality, we assume � = {ω1,ω2, . . . ,ω2n},
since if less valuations are needed to satisfy φ, oth-
ers can be inserted with zero probability. Make �′ =
{ωj1,j2,...,jN |1 ≤ jk ≤ 2n, 1 ≤ k ≤ N} such that
ωj1,j2,...,jN (A(i−1)n+k) = ωji(Ak), for ωji ∈ �. That is,
each valuation ωj1,j2,...,jN ∈ �′ can be seen as the aggre-
gation of partial valuations ωj1 , . . . ,ωjN over the disjunct
sets of atomic propositions, A1, . . . ,An, An+1, . . . ,A2n,
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until A(N−1)n+1, . . . ,ANn. Each partial valuation ωjk is a
“translation” of ωjk ∈ � to the kth set of atomic propo-
sitions A(k−1)n+1, . . . ,A(k−1)n+n. Let P(ωj1,j2,...,jN ) be equal
to the product P1(ωj1) × P2(ωj2)×, . . . ,×PN (ωjN ). Create
a structure M′ = (�′,P(.)). As

∑2n
j=1 Pi(ωj) = 1 for all

1 ≤ i ≤ N , it follows that (�,
) |= Pk(φ) 
� α iff
(�′,P(.)) |= P(φk) 
� α, in which ϕk is constructed from
ϕ by replacing Aj by A(k−1)N+j for all 1 ≤ j ≤ n. Finally,
suppose ω∗ = ωq ∈ �. There is a ω′∗ = ωq,j2,...,jN ∈ �′
such that every atomic proposition outside of the scope
of a probability assignment in φ is satisfied in (M,ω∗) iff
it is satisfied in (M′,ω′∗); which yields (M′,ω′∗) |= θ ,
finishing the proof.

This result enables us to focus on how to solve GPSAT,
as any formula of LN , with probability assignments for
different probability measures, can be transformed into a
GPSAT instance in polynomial time.

Methods
Assume our GPSAT instance is in normal form with q
clauses, each with three (possibly negated) assessments
{P(Aj) ≥ αj} and a sentence γ in CNFwithm clauses, each
clause with three literals. So our problem is parameterized
by the number of atomic propositions, n, the number of
clauses with probability assessments, q, and the number
of 3-clauses in γ , m. Such a parameterized normal form
neatly separates the probabilistic and the propositional
aspects of general probabilistic satisfiability.
Suppose, without loss of generality, the kth clause

contains assignments over A3k−2, A3k−1, and A3k . By
Lemma 8, if a normal form GPSAT instance is satisfiable,
there is a structure with nomore than q+1 possible worlds
that satisfy it. So we can search for only q+1 valuations, as
long as they all satisfy γ . Our problem becomes: find the
(q+1) truth assignments ωj satisfying γ and the following
disjunction of restrictions, for 1 ≤ k ≤ q

i=3k∨
i=3k−2

q+1∑
j=1

ωj(Ai)P(ωj) 
�i αi, (10)

where 
�i∈ {<,≥} .
Hence, we have 3q(q+ 1) optimization variables (values

of ωj(Ai), denoted by ai,j); all of them are binary with val-
ues 0 and 1. Furthermore, we have a probability measure
over q + 1 truth assignments, represented by the real-
valued variables p1, . . . , pq+1 ∈[ 0, 1], that must sum up to
1. Following the approach of [6], we find {ai,j} and {pj} by
solving a mixed integer linear program.
Note that, for each k, (10) is a disjunction of con-

straints and may contain strict inequalities—both char-
acteristics not common to standard integer linear pro-
gramming formulations. Since probabilities are bounded,
one can eliminate disjunctions of inequalities by adding

fresh integer variables, for instance. Strict inequalities like∑q+1
j=1 ωj(Ai)P(ωj) < αi can be replaced by a non-strict

one
∑q+1

j=1 ωj(Ai)P(ωj) ≤ αi − ε for a suitably chosen
ε > 0. We leave these tasks for the integer programming
solver to handle. So, we do not formally reduce GPSAT to
mixed integer linear programming, but use techniques of
the latter (described for instance in ref. [24]) to solve the
former.
The elements ai,j for a fixed j corresponds to a truth

assignment that satisfies γ . We explore the well-known
connection between SAT and integer programming to
find such a truth assignment [5]. Start by generating a vec-
tor aj with n binary variables {ai,j}ni=1, all with values 0 and
1. Now take one clause of γ ; suppose it is written as

(
∨k′
l′=1Ail′

)
∨

(
∨k′′
l′′=1¬Ail′′

)
.

For this clause, generate the linear inequality:
⎛
⎝

k′∑
l′=1

ak,il′

⎞
⎠ +

⎛
⎝

k′′∑
l′′=1

(
1 − ak,il′′

)
⎞
⎠ ≥ 1. (11)

Consider the m inequalities generated this way (one per
clause in γ ). A vector aj that satisfies these m inequalities
yields a truth assignment ωj for γ such that ωj(Ai) = aij,
assigning true to Ai when ai,j is one, and assigning false to
Ai when ai,j is zero.
We generate the truth assignments by generating (q +

1) sets of variables aj and their related inequalities. These
valuations correspond to the possible worlds ωj ∈ �, with
repetitions allowed3. Now we have to force the probability
measure over these worlds to satisfy a probabilistic literal
in each clause of � . To do so, note that each probabilistic
atom in � that is not negated represents an inequality as
follows:

q+1∑
j=1

ai,jpj ≥ αi, (12)

where pj denotes P(ωj). When the atom is negated, the
constraint becomes:

q+1∑
j=1

ai,jpj < αi, (13)

The inequalities in (12) and (13) do not have to hold for
all 3q probabilistic atoms. Only one per clause in � must
hold. So, we have the following disjunction of constraints
for each clause 1 ≤ k ≤ q:

3k∨
i=3k−2

q+1∑
j=1

ai,jpj 
�i αi, (14)

where 
�i denotes < if the probabilistic atom P(Ai) ≥ αi
is negated; otherwise, it denotes ≥. The challenge is to
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reduce the bilinear term ai,jpj to linear constraints. We
do that by introducing a new fresh variable bi,j and the
constraints:

0 ≤ bi,j ≤ ai,j and ai,j − 1 + pj ≤ bi,j ≤ pj. (15)

Note that if ai,j = 0, then bi,j = 0; and if ai,j = 1, then bi,j =
pj. The constraints from Expression (14) can be rewritten
as:

3k∨
i=3k−2

q+1∑
j=1

bi,j 
�i αi, (16)
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for each clause 1 ≤ k ≤ q and with 
�i∈ {<,≥}.
A last restriction ensures P(.) is a probability measure:
q+1∑
j=1

pj = 1. (17)

The whole procedure is presented in Algorithm 1; it
basically collects constraints from Expressions (11), (15),
(16), and (17). Note that variables ai,j ∈ {0, 1} are
restricted to be integers, while bi,j and pj range within
the real interval [ 0, 1], leading to an instance of mixed
integer linear programming . The algorithm produces a
MILP instance that has a solution if and only if the original
GPSAT instance is satisfiable.
It remains to prove that the mixed integer program gen-

erated has polynomial size on the length of the GPSAT
instance and can be generated in polynomial time. Fist, we
sum up the number of variables introduced at the line 1 of
Algorithm 1:

• variables ai,j: q + 1 valuations times n atomic
propositions;

Algorithm 1 GPSAT solution based on mixed integer
linear programming.
Input: Propositions {Aj}nj=1, � with 3-clauses of (possibly
negated) assignments over A3i−2, A3i−1 and A3i for 1 ≤
i ≤ q, a sentence γ , from 	 = P(γ ) ≥ 1 in CNF with m
3-clauses.
Output: “Satisfiable” if � ∧	 is satisfiable; “Unsatisfiable”
otherwise.
1: 
 Variables ai,j are binary; variables bi,j and pj are

real-valued in [ 0, 1].
2: for j ∈ {1, . . . , q + 1} and each clause

(∨k′
l′=1Ail′ ) ∨ (∨k′′

l′′=1¬Ail′′ ) of γ do
3: Generate linear constraint

(
∑k′

l′=1 ail′ ,j) + (
∑k′′

l′′=1(1 − ail′′ ,j)) ≥ 1.
4: end for
5: for each clause

∨k′
l′=1 P(Al′) ≥ αl′ ∨ ∨k′′

l′′=1 ¬P(Al′′) ≥
αl′′ do

6: Generate disjunction of linear constraints
(
∨k′

l′=1
∑q+1

j=1 bl′,j ≥ αl′) ∨ (
∨k′′

l′′=1
∑q+1

j=1 bl′′,j < αl′′).
7: end for
8: for i ∈ {1, . . . , 3q} do
9: for j ∈ {1, . . . , q + 1} do

10: Generate linear constraints 0 ≤ bi,j ≤ ai,j and
ai,j − 1 + pj ≤ bi,j ≤ pj.

11: end for
12: end for
13: Generate linear constraint

∑q+1
j=1 pj = 1.

14: Submit constraints to an integer programming solver.
15: return Satisfiable if linear constraints have a solution,

Unsatisfiable otherwise.

• variables bi,j: q + 1 valuations times 3q atomic
propositions in � ;

• variables pj: one per valuation, q + 1.

Now we count the constraints created together with the
time consumption of the loops in Algorithm 1 that gener-
ate them:

• loop at lines 2–4: (q + 1)m inequalities with three
variables each;

• loop at lines 5–7: q disjunctions of three inequalities
with q + 1 variables each;

• loop at lines 8–12: (q + 1)3q pairs of inequalities on
three variables each;

• command at line 13: 1 equality with q + 1 variables.

Summing up, Algorithm 1 generates (m + 6q + 1)(q +
1) + 2q = O((m + q)q) inequalities on (n + 3q +
1)(q + 1) = O(nq) variables. Therefore, the resulting
mixed integer linear program has polynomial size and is
built in polynomial time on the length of the correspond-
ing GPSAT instance. Note that the total running time of
Algorithm 1 depends largely on the command at line 14,
that calls a solver for the MILP instance; as the decision
version of mixed integer linear programming is itself an
NP-complete problem, it might take exponential time.

Results and discussion
We have coded our GPSAT method using the Java lan-
guage with calls to CPLEX version 12, extending the
implementation from [6] to solve PSAT, and run experi-
ments in a iMac computer with 4 GBytes of memory.
We were particularly interested in investigating whether

phase transition phenomena can be identified in our solu-
tions to GPSAT. Until the recent work of Finger and De
Bona [11], there was little evidence of phase transition
for PSAT in the literature. Baiotelli et al. [2] have shown
empirical results for the 2CPA problem—that is equiva-
lent to the PSAT in normal form with only two literals
per clause—in which a typical phase transition shape is
seen. However, 2CPA is not exactly a normal form of
PSAT, even though it is NP-complete. As our normal form
extends Finger and De Bona’s, and GPSAT is also NP-
complete, we expect to find evidence of phase transition
also for GPSAT. Consequently, we examine the behavior of
GPSAT using instances � ∧ 	 in normal form for various
values ofm/n for fixed q and n, looking for hard instances
instead of randomly trying out large instances that in the
end may be easy.
Following the approach from Finger and De Bona [11],

we fix the number of clauses in � , q, and the total number
of probabilistic literals in � , 3q. Each probability assess-
ment P(Ai) 
�i αi in � was generated in such a way
that 
�i∈ {<,≥} and αi ∈[ 0, 1] were chosen under a
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Fig. 3 GPSAT phase transition. Ratio of satisfiable instance and average computation time for each numberm of clauses in	, with n = 50 and q = 15

uniform distribution, discretizing [ 0, 1] using two dec-
imal digits. Clauses with three literals each in γ were
randomly generated by selecting atomic propositions ran-
domly out of the n propositions; each literal was negated
or not with probability 1/2. We varied the number m of

clauses in γ in order to explore the complexity profile of
GPSAT form/n. For each pointm/n, 100 random GPSAT
instances in normal formwere generated, submitted to the
implementation of Algorithm 1, and the average compu-
tation time was registered together with the percentage
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q = 10
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Fig. 5 GPSAT phase transition. Ratio of satisfiable instance and average computation time for each numberm of clauses in 	, with n = 100 and
q = 15

of satisfiable formulas. Figures 1, 2, 3, 4, and 5 shows
the results of such experiments, for different values of q
and n.
An easy-hard-easy pattern, typical from phase transi-

tion phenomena, is seen in Figs. 1, 2, 3, 4, and 5. The hard-
est instances were found close to the transition between
regions of satisfiable and unsatisfiable instances; further-
more, unsatisfiable instances were found harder to solve
than satisfiable ones. If q = 0, the problem is Boolean
satisfiability, and the point of approximately 50 % of sat-
isfiable instances is around m/n = 4.3 [12]. Here we
add some probabilistic constraints, so the phase transition
point has moved leftwards, as expected.
Comparing to the results in ref. [6] solving GPSAT

seems harder than PSAT. This is not surprising, since it
is known that disjunctive linear programming is consider-
ably harder than linear programming.

Conclusions
In this paper, we have introduced the generalized prob-
abilistic satisfiability problem, a normal form for it, and
an algorithm to solve it. GPSAT is considerably more
expressive than PSAT, allowing negation and disjunction
of probabilistic assessments and probabilistic nesting as
well, but it is still NP-complete. Based on an integer lin-
ear programming solution to PSAT, we introduced an
integer linear programming solution for GPSAT. Evidence
for phase transition was found in our initial experiments,

but an exhaustive investigation is needed to confirm and
understand this phenomenon in GPSAT and PSAT.
As future work, it would be interesting to enlarge our

language to embed linear combinations of probabilistic
assignments and conditional probabilities. Another path
would be to generalize the coherence checking prob-
lem, as we did for PSAT, for de Finetti’s framework for
probability.

Endnotes
1 ω(¬φ) = 1 iff ω(φ) = 0; ω(φ1 ∧φ2) = 1 iff ω(φ1) = 1

and ω(φ2) = 1; ω(φ1 ∨ φ2) = 1 iff ω(phi1) = 1 or
ω(φ2) = 1; ω(φ1 → φ2) = 1 iff ω(φ1) = 0 or ω(φ2) = 1.

2 For simplicity, we left the connective → outside the
language, without loss of generality.

3 If a solution can be reached with less than q + 1
valuations with positive probability, then some aj can be
repeated with zero probability.
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