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Abstract

This paper presents how to improve model reduction for Markov decision process (MDP), a technique that generates
equivalent MDPs that can be smaller than the original MDP. In order to improve the current state-of-the-art, we take
advantage of the information about the initial state of the environment. Given this initial state information, we
perform a reachability analysis and then employ model reduction techniques to the reachable space of the original
problem. Further, we also eliminate redundancies in the original MDP in order to speed up the model reduction
phase. We also contribute by empirically comparing our technique against state-of-the-art model reduction
techniques and MDP solvers that do not perform model reduction. The results show that our approach dominates the
current model reduction algorithms and outperforms general MDP solvers in dense problems, i.e., problems in which
actions have many probabilistic outcomes.
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Background
One of the biggest challenges in the probabilistic plan-
ning is to solve large Markov decision processes (MDPs)
[1]. This is because the number of states in an MDP
grows exponentially with the number of state variables,
a problem known as the Bellman’s curse of dimension-
ality [1]. Many techniques have been proposed to avoid
the complete enumeration of states, e.g., by exploiting the
structure of factored models [2, 3] and by using the infor-
mation of the initial state to find the states relevant for the
optimal solution by focusing on them [4, 5].
Another approach is to applymodel reduction to obtain

a smaller MDP and then solve it using an off-the-shelf
MDP solver [6]. In order to find the optimal solution for
the original MDP, both the original and reduced MDP
must be equivalent. Therefore, the problem of finding
an equivalent and reduced MDP consists of computing a
partition P of the original MDP state space S, such that
each block represents a subset Bi ⊆ S that groups equiv-
alent states according to their reward and probabilistic
transition functions.
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This paper extends the algorithms for computing
stochastic bisimulation in two directions: reachability
analysis and partition elimination. In the former, we use
the MDP’s initial state to find all the states relevant to the
optimal solution and consider only this subspace of the
original problem when applying model reduction. In the
latter, we detect and delete intermediary partitions of the
original MDP that are repeated, thus speeding up the con-
vergence to a stochastic bisimulation. We also contribute
with an empirical comparison among: the state-of-the-
art model reduction algorithms and MDP solvers (that do
not perform model reduction). The results show that our
approach dominates the current model reduction algo-
rithms in all problems, specially in sparse domain prob-
lems where reachability analysis prunes a significant part
of the state space. The experiments also show that our
technique outperforms general MDPs solvers (that do not
perform model reduction) in dense problems, i.e., prob-
lems in which actions have many probabilistic outcomes.
This is true specially when the domain suffer a significant
reduction. This happens because stochastic bisimulations
with partition elimination can summarize the dynamics of
the domain and generate equivalent problems with half of
the original MDP size.
The paper is organized as follows. The “Background”

section presents our notation, background related to
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MDPs, and algorithms to solve them. The “Aggregation
algorithms” section presents the concepts of state aggre-
gation algorithms and stochastic bisimulation, as well as
the basic algorithm to compute them. The “Stochastic
bisimulation over the reachable states” section contains
our contributions to algorithms that compute stochas-
tic bisimulations. The section “Results and discussion”
empirically compares our technique combined with
traditional planners against traditional model reduc-
tion algorithms and planners that do not employ model
reduction. Finally, the “Conclusions” section presents our
conclusions.

Markov decision processes
An infinite-horizon MDP [1] is a tupleM = (S,A,P,R, γ ),
where:

• S is a finite set of states that can be observed in
different moments in time;

• A is a finite set of actions and A(s) ⊆ A is the set of
applicable actions in the state s;

• P : S × A × S is the transition function and is given
by P(s′|s, a) that defines the probability to reach
s′ ∈ S after applying an action a ∈ A in s ∈ S. P(·|·, a)
defines a probabilistic transition matrix where each
row represents a state s, each column represents a
state s′ and an entry (s, s′) has the probability P(s′|s, a).
We say that the transition matrix is dense if at least
50 % of the entries have probabilities greater than 0;
otherwise, we called it a sparse transition matrix;

• R : S × A is the reward function that represents the
reward received after applying an action a ∈ A in the
state s ∈ S; and

• γ ∈] 0, 1[ is the discount factor used for weighting
future rewards [1].

A solution of an MDP is a policy π : S �→ A that maps
each state s ∈ S to an action a ∈ A.
The expected accumulated reward obtained when fol-

lowing a policy π from a state s is represented as Vπ (s)
and is the fixed-point solution for the following system of
equations:

Vπ (s) = R(s,π(s))+γ
∑
s′∈S

P(s′|s,π(s))Vπ (s′), ∀s ∈ S.

(1)

A policy π∗ is optimal if, for every policy π ′ and s ∈ S,
Vπ ′

(s) ≤ Vπ∗
(s). Notice that π∗ might not be unique;

however, the optimal expected accumulated reward from
a state s, denoted by V ∗(s), is unique [7]. The value
function V ∗ can be computed directly by finding the

fixed-point solution of the Bellman equations, i.e., the
following system of equations:

V ∗(s) = max
a∈A

{
R(s, a) + γ

∑
s′∈S

P(s′|s, a)V ∗(s′)
}
, ∀s ∈ S.

(2)

An MDP M = (S,A,P,R, γ ) is enumerative if all ele-
ments of all sets that constitute the MDP are explicitly
enumerated, e.g., state space S and probability tables P
are represented directly by enumerating each element
of them. Alternatively, an MDP can be represented in
a factored form based on a set of state variables X =
{X1, . . . ,Xn}. Each state is represented as a vector 
x =
(x1, . . . , xn) of assignments where each xi is either 0 or 1
to denote if the state variable Xi is active or not. Thus, the
size of the set of states in a factored MDP is 2n.
The transition function of a factored MDP is repre-

sented by a set of dynamic Bayesian networks (DBNs) [8],
one for each action. A DBN for an action a is an acyclic
directed graph that has the following two layers: (i) a layer
representing the setX of state variables in the current state
and (ii) a layer representing the set X′ of state variables in
the next state. Every arc in a DBN representing an action
is from the layer X to X′ and represents the dependencies
between state variables under an action a. Given a vari-
able X′

j , the parents of X′
j (denoted by parents(X′

j )) are all
variable Xi such that there exists an arc from Xi to X′

j .
A DBN also contains the conditional probability tables

(CPTs) that give us the probability of a state variable X′
j

being true or false given the parents of X′
j . The advantage

of using DBNs is that we do not need to enumerate all pos-
sible combinations of state variable values to represent the
transition function. Instead, it is obtained as follows:

P( 
x′|
x, a) =
n∏

i=1
P(x′

i|parents(X′
j ), a). (3)

An efficient way to represent the CPTs (and factored
reward functions) is through algebraic decision diagram
(ADD) [9]. ADDs extend binary decision diagrams (BDDs)
[10]. BDDs are decision trees represented in a more com-
pact way in order to efficiently define functions with
binary variables to a binary result, i.e., f : Bn �→ B. ADDs
are used to represent functions that map binary variables
to real values, i.e., f : Bn �→ R. Thus, to solve an MDP, we
can also represent the value function as an ADD. There
are ADD libraries to efficiently compute operations such
as addition (⊕), multiplication (⊗), and marginalization(∑

xi∈Xi

)
.
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Algorithms for solving MDPs
Value iteration and topological value iteration
The value iteration (VI) algorithm [1] uses dynamic pro-
gramming in order to find V ∗. Formally, VI solves the
following recursive equations, where t is the number of
stages-to-go:

Vt(s) =
{
any value if t = 0
maxa∈A

{
R(s, a) + γ

∑
s′∈S P(s′|s, a)Vt−1(s′)

}
otherwise.

(4)

The algorithm converges to V ∗ when the maximum
error between the last two iterations is less than a small
constant ε, for all state s ∈ S. This is expressed as:

max
s∈S

|Vt(s) − Vt−1(s)| ≤ ε. (5)

VI can take a long time to converge because it needs to
update the values of the complete set of states S in each
iteration independently of the problem structure.
Topological value iteration (TVI) [11], an extension of

VI, exploits the topological structure of the transition
graph to speed up the convergence time by decreasing the
number of updates performed.
Formally, TVI pre-processes the given MDP by per-

forming a topological analysis of the graph representing
theMDP, i.e., a graph in which the nodes are states and the
arcs are actions. The result of this analysis is a set of the
strongly connected components (SCCs) and TVI applies VI
on each SCC in reversed topological order. This decom-
position can speed up the convergence to V ∗ when the
original MDP can be decomposed into several SCCs with
similar size. In the worst case, when theMDP has only one
SCC, TVI performs worst than VI due to the overhead of
the topological analysis.

Labeled real-time dynamic programming
Stochastic shortest path problem (SSP) [7] is another
model for probabilistic planning. The main differences
between SSPs and infinite-horizon MDPs is that SSPs
contain the information about the initial state of the
environment as well as a set of goal states represent-
ing the stop criterion of the agent. Formally, an SSP is a
tuple (S, s0,G,A,P,C) where:

• as in the MDPs, S, A, and P are the set of states, set of
actions, and transition function respectively;

• s0 ∈ S is the initial state;
• G ⊂ S is the non-empty set of goal states; and
• C : S ×A represents the cost of applying action a ∈ A

in the state s ∈ S.

SSPs are relevant for this work because any infinite-
horizon MDP can be perfectly represented as an SSP
[12, Section 7.3], thus we can also use algorithms devel-
oped for SSPs to solve the problems presented in this
paper.
One example of algorithm for solving SSPs is real-time

dynamic programming (RTDP) [4] that, given an SSP and
a lower bound for V ∗, computes an optimal policy for all
the relevant states, i.e., all states reachable by the optimal
policy starting from s0. RTDP starts from s0 and visits the
set of states following a greedy policy until a goal state
is reached. This procedure is known as a trial and, for
the case of infinite-horizon MDPs converted to SSPs, a
trial can be seen as an infinite process that randomly fin-
ishes with probability 1 − γ every time a state is visited.
RTDP performs trials until it has converged to the optimal
solution.
In each state s visited in a trial, RTDP computes the

greedy policy in s (the action that maximizes Equation 4),
updates Vt(s), and samples a next state to be visited based
on the probability distribution of the greedy action. Due to
this sampling procedure, states with a low probability are
updated less often than states with a higher probability,
resulting in overall lower convergence.
Labeled RTDP (LRTDP) [5] is an algorithm that

enhances RTDP providing a faster convergence of the
optimal solution. This performance improvement is
obtained by labeling the states that have already converged
and finishes the trials when a converged state or goal is
reached. LRTDP uses the procedure CheckSolved [5] that
is responsible to decide if a state is converged or not. This
decision is done based on the concept of greedy graph of
a state s, i.e., the graph that contains all reachable states
from s following the greedy policy. The optimal solution
is obtained when all states in the greedy graph of s0 are
marked as converged.

Aggregation algorithms
Given an MDP M, an optimal policy for M can be found
by using VI, TVI, or LRTDP. Another way to find an opti-
mal policy is based on two steps: (1) getting an equivalent
model of reduced size based on the original MDP and (2)
solving the reducedmodel and applying the solution in the
original MDP. The first step is known as state aggregation
for MDPs [13].
Mathematically, state aggregation algorithms for MDPs

receive as input anMDPM = (S,A,P,R, γ ) and computes
a reduced MDP M′ = (S′,A,P′,R′, γ ) with a set of states
S′ that groups states into blocks of states, called abstract
states in M′. It is desirable that: the set of states of M′ be
much smaller than the set of states of M, i.e., |S′| � |S|
and an optimal solution forM′ to also be optimal forM.
There are many techniques for MDPs in the state aggre-

gation category. For example:
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• Stochastic bisimulations (exact/approximate) [6, 14],
a technique that receives an MDP (factored or
enumerative) and returns an enumerative MDP (or a
bounded-parameter MDP [15], i.e., an MDP whose
functions are given by intervals);

• Homomorphisms (exact/approximate) [16, 17],
techniques that are similar to stochastic
bisimulations, but can achieve greater reductions in
some special scenarios;

• Structured policy iteration (SPI) [18], one of the first
techniques to use decision trees to solve factored
MDPs;

• Stochastic planning using decision diagrams
(SPUDD) [2], a technique that is a factored version of
value iteration. This was the first algorithm that used
ADDs to solve MDPs more efficiently; and

• Symbolic real-time dynamic programming - sRTDP
[3], a factored version of RTDP that also uses
decision diagrams.

A complete overview about state aggregation algorithms
is presented in [13]. Some of these algorithms are com-
pletely factored, that is, they never use the concept of
enumerative states set. At the same time, others can com-
bine factored and enumerative representations. We chose
exact stochastic bisimulations because with them, we can
easily compare time and reduction performance against
exact enumerative MDP planners. Moreover, we do not
need to define a criterion to compare different approx-
imate solutions because the exact solutions are unique.
Thus, from now on, we will consider that model reduc-
tion andmodel minimization are algorithms that compute
exact stochastic bisimulations.
The state aggregation algorithms forMDPs usually work

based on the concept of partitions. A partition of a set S
is a set of disjoint subsets whose union is S itself. Each
disjoint subset can also be called a block. Given an enu-
merative MDPM and a set of states S, a partition over S is
given by P = {B1, . . . ,Bk}, where P is a partition of S and
each Bi ∈ {1, . . . , k} is a block.
Two important concepts for model reduction are refine-

ment and coarsening of a partition. A partition P ′ is a
refinement of a partitionP if and only if each block ofP ′ is
a subset of some block inP , i.e., a refinement splits a block
Bi in sub-blocks generating a finer partition. If P ′ = P ,
P ′ still is a refinement of P . The concept of coarsening is
opposite to the concept of refinement: ifP ′ is a refinement
of P , P is a coarsening of P ′ [6].

Definition 1. Given that P1 and P2 are partitions of S
described by enumerative states, we can generate a par-
tition P3 that is a refinement of P1 and P2 with the
intersection of them, i.e., P3 = P1 ∩ P2 such that each
Bk ∈ P3 is computed by the intersection of two blocks

Bi ∈ P1 and Bj ∈ P2, with Bi ∩ Bj �= ∅. To compute every
Bk ∈ P3, it is necessary to do all combinations of Bi ∩ Bj.

If we use factored representation instead of enumer-
ative representation, it is possible to get more efficient
algorithms for performing model reduction [6]. Hence, let
X = {X1, . . . ,Xn} be the set of state variables of a given
factored MDP and S ⊆ 2n a set of valid states of this MDP.
A block of states can be characterized by a disjunctive nor-
mal form (DNF) expression over the boolean variables in
X, i.e., Bi can be represented as a boolean formula and we
use a label vi to identify the block. Thus, a labeled par-
tition of S is a set P = {(B1, v1), . . . , (Bk , vk)} such that
(
⋃k

i=1 Bi) = S. Furthermore, as P is a an augmented par-
tition, each pair vi, vj associated with blocks Bi,Bj must be
different and unique in the partition. Each (Bi, vi) ∈ P is a
tuple with a partition block Bi and an unique label vi that is
common to all s ∈ Bi. For instance,P = {(X1, 2), (¬X1, 3)}
is a labeled partition with two blocks: a block of states,
labeled with 2, where X1 is satisfied and a block of states,
labeled with 3, where ¬X1 is satisfied.

Definition 2. Given that P1 and P2 are labeled parti-
tions of S described by DNF expressions, we can generate
a partition P3 that is a refinement of P1 and P2 with the
intersection of them, i.e., P3 = P1 ∩ P2 where Bk ∈ P3 is
computed by the conjunction (∧) of two blocks Bi ∈ P1,
Bj ∈ P2 such that Bi and Bj are not mutually exclu-
sive DNF expressions of the kind X1 ∧ ¬X1. To compute
every Bk ∈ P3, it is necessary to compute all combina-
tions of conjunctions considering different possibilities of
Bi ∩ Bj. The label vk must be different from the labels vi
and vj. By definition, a partition of S with a single block is
represented by the boolean expression true.

For example, given the partitions (Fig. 1) P1 = {(X1, 2),
(¬X1, 3)} and P2 = {(X2 ∧ X3, 5), (X2 ∧ ¬X3, 7),
(¬X2, 11)}, their intersection will result in the refined par-
tition P3 = {(X1 ∧ X2 ∧ X3, 10), (X1 ∧ X2 ∧ ¬X3, 14),
(X1 ∧¬X2, 22), (¬X1 ∧X2 ∧X3, 15), (¬X1 ∧X2 ∧¬X3, 21),
(¬X1 ∧ ¬X2, 33)}. In general, given m partitions P1, . . . ,
Pm, it is possible to get a refinement by computing the
intersection of them as P ′ = ⋂m

i=1 Pi [6].
Figure 2 shows a sequence of refinements. In the begin-

ning of the first iteration, it is given a partition with a
single block. After the first iteration of refinements, the
partition is split into two blocks. In the next two iterations,
we get partitions of two and three blocks, respectively.
Finally, a new refinement is done and the partition does
not change. Hence, it is not necessary to split more blocks.
From this example, we could extract an MDP M′ with
|S′| = 5.
Given a factored MDP, it is possible to use its reward

and transition functions to identify blocks of states with
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Fig. 1 Refinement of partitions. Refinement of partitionsP1 with two blocks andP2, with three blocks. The refinement result is given byP1 ∩ P2,
a partition with six blocks

the same reward or transition probability. For example,
consider the domain Sysadmin, where we have n comput-
ers that must be running. Given a problem (instance) of
this domain, we can apply the actions rebootCi or noop at
each stage of the MDP. In an instance with two comput-
ers: C1 and C2, we have two state variables: runningC1
and runningC2 and three actions: noop, rebootC1 and
rebootC2. The reward function for the action noop, given
as an ADD, can be viewed in Fig. 3. For instance, if we
execute the noop action in the state where runningC1 is
true and runningC2 is false, the reward is 1. To refer to the
partitions of an MDP, we use a special notation: for each
action a ∈ A, we have a partition Pa

R with respect to the
reward function; and for each pair of action a ∈ A and
state variable Xi ∈ X that can be changed by a, we have
a partition Pa

Xi
with respect to the factored probabilistic

transition function.
The partition obtained from the reward func-

tion in Fig. 4 is implicitly represented as Pnoop
R =

{(B1, v1), (B2, v2), (B3, v3)}, where: B1 = {runningC1 ∧
runningC2}, with reward 2; B2 = {(¬runningC1 ∧
runningC2) ∨ (runningC1 ∧ ¬runningC2)}, with reward
1; and B3 = {¬runningC1∧ ¬runningC2}, with reward 0.
We can do the same for the other actions generating the
partitions: PrebootC1R and PrebootC2R .
The partitions obtained from the factored probabilistic

transition functions, for the Sysadmin example, for each
pair of action and state variable are:Pnoop

runningC1,P
noop
runningC2,

PrebootC1
runningC1, PrebootC1

runningC2, PrebootC2
runningC1 and PrebootC2

runningC2. Thus, in
general, the maximum number of different partitions we
can have is |A| + (|A| × |X|), where |A| comes from the
reward function of each action and |A| × |X| comes from
the factored probabilistic transition functions considering
each pair of action and state variable.
A labeled partition can be represented using an ADD

where each leaf represents an unique label vi. The DNF

expression that characterizes a block of states Bi is given
by the disjunction of the conjunctions among state vari-
ables, obtained from different paths that go from the ADD
root to the leaf labeled with vi. For instance, Fig. 5 shows
an ADD that represents the following labeled partition:

P = {(X1 ∧ X2, 2), (X1 ∧ ¬X2, 3) ∨ (¬X1 ∧ ¬X2, 3),
(¬X1 ∧ X2, 5)}

To compute the refinement of q labeled partitions rep-
resented as ADDs, we need to get the product of ADDs
representing these partitions. Note that performing the
product of ADDs representing partitions is the same of
computing the intersection of the partitions [6]. In this
case, we need to define unique labels for them that will
also be unique after the product is computed. For this
purpose, the blocks are labeled with prime numbers.
Figure 4 shows the ADD that represents the reward

function for the action noop in the Sysadmin example that
corresponds to the tabular representation in Fig. 3.We can
make a partition based on this ADD by creating a copy
of it and changing the leaf values to distinct prime num-
bers as in Fig. 6. Figure 7 shows an example of partition
refinement showed in Fig. 1 using ADDs. To refer to the
partitions represented with ADDs, we use the following
notation: Pa

R is denoted by Pa,R
DD and Pa

Xi
is denoted by

Pa,Xi
DD .

Stochastic bisimulation concepts
This section presents a technique that receives an MDP
as input and computes an enumerative MDP of reduced
size by searching for a stochastic bisimulation [6], i.e., a
partition in which states in a same block have the same
behavior under any action in the MDP.
Thus, these states can be considered equal because the

partition can be seen as an equivalence relation [6].

Fig. 2 A sequence of refinements. A partition with one block is refined until it reaches five blocks. Note that each refinement imply in a new
partition that have at least the same number of blocks
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Fig. 3 Reward function as a table. Reward function for action noop in an instance of the domain SysAdmin with 2 computers

Definition 3. Let P be a partition of S. We say that P
is a uniform partition with respect to the reward function
if, for each Bi ∈ P , s, s′ ∈ Bi, and a ∈ A, we have that
R(s, a) = R(s′, a) [6].

Definition 4. Given two blocks Bj ∈ P and Bw ∈ P , if
the following holds for all s ∈ Bj, s′ ∈ Bj, and a ∈ A

∑
s′′∈Bw

P(s′′|s, a) =
∑
s′′∈Bw

P(s′′|s′, a),

for all s ∈ Bj, s′ ∈ Bj, and a ∈ A. Then, we say that block Bj
is stable with respect to Bw [6].

Definition 5. A block Bj is stable if it is stable with
respect to all Bw ∈ P [6].

Definition 6. (Stochastic bisimulation) A partition P is
homogeneous if P is uniform with respect to the reward

function and if all blocks in P are stable. We say that
a partition is a stochastic bisimulation if it is homo-
geneous [6].

For example, consider the MDP with five states in Fig. 8
(upper). Suppose that the following conditions hold for
this MDP:

• For all s ∈ S, A(s) = a,
• R(B1, a) = −1, and
• R(B2, a) = 0.

Based on these conditions, we can say that P = {B1,B2}
is a homogeneous partition that results in an MDP M′
containing only two abstract states (Fig. 8 (lower)).
In order to find a stochastic bisimulation, we need to

define an initial partition that can be a uniform parti-
tion with respect to the reward function. After that, we

Fig. 4 Reward function represented as an ADD. The same reward function from Fig. 3 represented as an ADD
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Fig. 5 A partition represented as an ADD and its DNF expression. A partitionP of a set of states S in which the blocks are represented by the set of
state variables X = {X1, X2}. The partition isP = {(X1 ∧ X2, 2), ((X1 ∧ ¬X2) ∨ (¬X1 ∧ ¬X2), 3), (¬X1 ∧ X2, 5)}

need to refine the partition blocks in order to make them
stable, i.e., we refine them by splitting blocks that contain
states that should not be together according to the tran-
sition function of these states. The process stops when all
blocks are stable and the resulting partition is a stochastic
bisimulation [6].

Definition 7. (Reduced enumerative MDP) Given a
partition P that is a stochastic bisimulation, the reduced
enumerative MDP [6] is defined as M′ = (S′,A,P′,R′, γ ),
where S′ is given by the blocks of P , i.e., Bi ∈ P is
an abstract state belonging to S′; R′(Bi, a) = R(s, a)
for any s ∈ Bi; and P′(Bw|Bj, a) = ∑

s′∈Bw P(s′|s, a)

Fig. 6 A SysAdmin partition represented with an ADD. Partition obtained based on the reward function from Fig. 4
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Fig. 7 Refinement of partitions with ADDs. Refinement of partitionsP1 andP2 from Fig. 1, computed using the productP1 ⊗ P2

for any s ∈ Bj and for all Bw ∈ P, Bj ∈ P and
a ∈ A.

Theorem 1. Given a stochastic bisimulation P for an
MDP M and let M′ be the reduced MDP obtained from P ,
then an optimal policy for M′ is also optimal for M [6].

The advantage of solving M′ is the possibility of doing
less updates while looking for an optimal policy. For exam-
ple, if s1, s5 ∈ S and Bi = {s1, s5} ∈ S′, we can update
only V (Bi) instead of V (s1) and V (s5), with the guarantee
(Theorem 1) that in the optimal policy, π∗(s1) = π∗(s5) =
π∗(B1).

Factoredmodel reduction
Model reduction with factored splits (MRFS) is an algo-
rithm to compute a homogeneous partition for factored
MDPs [6]. MRFS can find a stochastic bisimulation using
concepts of MDPs partitions combined with an opera-
tion called structure-based split (SS) [6], that refines a
single block Bj ∈ P with respect to a block Bw ∈ P
in order to generate sub-blocks stable with respect to
Bw ∈ P . The SS operation receives a block Bj ∈ P ,
a block Bw ∈ P and returns a partition P ′ that is a
refinement of P in which Bj is replaced by sub-blocks
B′
j = {B′

1, . . . ,B′
l} such that any sub-block in B′

j is stable

Fig. 8 A stochastic bisimulation example. An MDPM of five states partitioned in two blocks (upper) that is reduced to an MDPM′ with two abstract
states (lower)
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with respect to Bw (Definition 4). This is computed as
follows [6]:

SS
(
Bj,Bw,P

) = (
P − {Bj}

) ∪
(⋂
a∈A

BS
(
Bj,Bw, a

))
,

(6)

where BS
(
Bj,Bw, a

) = Bj ∩
(⋂

Xi∈vars(Bw) Pa
Xi

)
represents

a block split considering one action and vars(Bw) is the
set of state variables used to represent block Bw [6]. When
BS(Bj,Bw, a) is done, we have a partition of block Bj that
is stable with respect to Bw considering only action a. To
have B′

j stable with respect to Bw, SS calls BS for each
action a ∈ A and compute the intersection of the resul-
tant partitions. The usage of vars(Bw) instead of all state
variables in X is a way to efficiently compute the parti-
tions, ignoring variables that will not affect the transition
to block Bw.
With SS, model reduction does not enumerate all states

explicitly while refining blocks, since the splits are done
using only the state variables in vars(Bw) to refine a block
Bj with respect to a block Bw [6]. MRFS works as fol-
lows. The process starts with a uniform partition with
respect to the reward function. After that, while the cur-
rent partition P contains a pair of blocks Bj,Bw ∈ P
such that Bj is not stable with respect to Bw, the process
calls SS using Bj and Bw as parameters. In the refined
partition, the sub-blocks of Bj are stable with respect to
Bw [6].
MRFS can also be computed with ADDs [19] by gener-

ating a partition for each MDP function and refine them.
To do this efficiently, we can ignore some of these parti-
tions considering that in the factored MDP structure, we
can have state variables that are irrelevant to model reduc-
tion [20]. Thus, model reduction can consider only the
essential state variables, named Xe. One way to compute
Xe is to add the state variables in PA

R to Xe and, after that,
recursively add the parents of those variables looking for

the factored MDP DBNs [20]. Using the set Xe, we can
compute MRFS with ADDs as follows:

PDD = PA,R
DD ⊗ PA,Xe

DD , (7)

where PA,R
DD = ⊗

a∈A P
a,R
DD and PA,Xe

DD =⊗
a∈A

(⊗
Xi∈Xe P

a,Xi
DD

)
.

Methods
In the next sections we present the techniques that we use
to improve model reduction performance.

Stochastic bisimulation over the reachable states
Suppose we have an MDP in which there is initial state
information, that is, anMDPwhere we know a given initial
state s0 ∈ S. MRFS can be improved if we use the reach-
able states information given s0, specially in problems
that have sparse transition matrixes, i.e., where the set of
reachable states can be much smaller than the complete
set of states.
Let Sreachable|s0 be the set of reachable states given s0.

If this set is computed before we look for a stochastic
bisimulation, it is possible to get a reachability parti-
tion PS|s0

DD = {(
Breachable|s0 , 1

)
,
(
B¬reachable|s0 , 0

)}
, in which

Breachable|s0 represents the block of reachable states given
s0

(
Sreachable|s0

)
and B¬reachable|s0 represents the block of

unreachable states given s0
(
S\Sreachable|s0

)
.

Figure 9 summarizes three different kinds of partitions
that could be done over a set of states S:

(a) a partition in which the states in S are divided into
|S| blocks, i.e., each block contains a single state;

(b) a partition over S in which each block can contain
more than one state; and

(c) a partition over S that has refinements only in the
subset Sreachable|s0 .

If we consider only partitions of item (c) to com-
pute stochastic bisimulations, we can have the following
advantages:

Fig. 9 Different partitions of S. The first box represents a set of states. The second box is a partition of the first box, and the third box is also a
partition of the first box but only over the reachable states given s0
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• model reduction begins with smaller partitions, what
makes computing more efficient; and

• the reduced model can be smaller than (b).

To find PS|s0
DD , it is necessary to visit all the reachable

states given s0. This procedure is done layer by layer, sim-
ulating each action of the MDP in each reachable state
(similarly to a breadth-first search [21]). Reachable states
can be efficiently computed representing the sets of states
in each layer as BDDs [22] and using BDD operations such
as union, intersection, and marginalization. Algorithm 1
shows howwe compute the reachable states given anMDP
M and a state s0.

Algorithm 1: GetReachabilityPartition (M, s0)
Input:M: a factored MDP, s0: an initial state

represented in the factored way
Output: PS|s0

DD : a reachability partition.

PS|s0
DD ← {0};

PS|s0
DDprev

← {0};
CurrentLayerDD ← {0};
CurrentLayerDD ← CurrentLayerDD ∪ {s0 �→ 1};
while true do

NextLayerDD ← ∅;
PS|s0
DDprev

← PS|s0
DD ;

foreach a ∈ A do
if NextLayerDD = ∅ then

// Consider that GetSuccessorsByAction do
what it is proposed to do and ;
// return a new layer of DD.;
NextLayerDD ←
GetSuccessorsByAction(CurrentLayerDD, a);

end
else

NextLayerByActionDD ←
GetSuccessorsByAction(CurrentLayerDD, a);

NextLayerDD ←
NextLayerDD ∪ NextLayerByActionDD;

end
end
PS|s0
DD ← PS|s0

DD ∪ NextLayerDD;
if PS|s0

DDprev
= PS|s0

DD then
break;

end
CurrentLayerDD ← NextLayerDD;

end
return PS|s0

DD ;

Reachability-basedmodel reduction
Reachability-based MRFS (ReachMRFS) is an extended
version of MRFS that computes stochastic bisimulations
over Sreachable|s0 . Hence, it is required to compute first
the reachability partition, PS|s0

DD (Algorithm 1), and after
that, we compute MRFS considering only the states in
Breachable|s0 .
The algorithm ReachMRFS (Algorithm 2) works as fol-

lows. In the first external foreach, partitions Pa,R
DD are

multiplied by the partitionPS|s0
DD , resulting in the partitions

Qa,R
DD (i.e., partitions based on the reward function for an

action a over the reachability partition), where unreach-
able states are labeled with 0. As reachability partition has
only two blocks, labeled with the values 0 and 1, when
we compute the product of this partition with other MDP
partitions, some leaves get the value 0 and others stay the
same. In this way, many leaves can receive a value 0, which
reduces the number of leaves and enables us to have a
more compact representation. Furthermore, if we com-
pute the refinements among partitions that were already
simplified, the number of blocks in the refined partition
is smaller than the number of partitions using all the pos-
sible states. The partitions Qa,R

DD are used to compute a
uniform partition with respect to the reward function
(i.e., for all action a ∈ A) over Sreachable, that we call
PA,R
DD .

Algorithm 2: ReachMRFS(M, PS|s0DD , Xe)

Input:M: a factored MDP; PS|s0DD : a reachability
partition, Xe: the essential state variables.

Output: P : a partition in which exists a stochastic
bisimulation over the reachable states and 1
block that contains all the unreachable states
given s0.

PA,R
DD ← 1;

foreach a ∈ A do
Qa,R

DD ← Pa,R
DD ⊗ PS|s0

DD ;
PA,R
DD ← PA,R

DD ⊗ Qa,R
DD;

end
PA,Xe
DD ← 1;

foreach a ∈ A do
Qa,Xe

DD ← 1;
foreach Xi ∈ Xe do

Qa,Xe
DD ← Qa,Xe

DD ⊗ Pa,Xi
DD ⊗ PS|s0

DD ;
end
PA,Xe
DD ← PA,Xe

DD ⊗ Qa,Xe
DD ;

end
PDD ← PA,R

DD ⊗ PA,Xe
DD ;

return PDD;
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In the second external foreach, we compute a partition
with stable blocks over the reachable states in the same
way, by getting a simpler partition PA,X

DD . Finally, in the last
two lines, we compute the stochastic bisimulation over
reachable states and return it.
While MRFS computes the partition intersections as

in Fig. 7, ReachMRFS use the reachability partition to
simplify the computation. The advantages appear in two
ways: (1) the program needs less space to store the ADDs
in main memory and (2) the products among partitions
can be done faster because many leaves are equal to 0,
specially in problems with a sparse transition matrix. The
benefits of ReachMRFS can be seen in Figs. 10 and 11
that shows the reduction in the size of the ADDs and
hence, in the resulting partition when compared with the
refinement in Fig. 7.

Reachability-basedmodel reductionwith partitions
elimination
Another improvement to efficiently compute stochastic
bisimulations is the elimination of repeated partitions
computed by the algorithms MRFS and ReachMRFS.
These algorithms use partitions based on reward and
transition functions. In a general way, the maximum num-
ber of distinct MDP partitions used by these algorithms is
at most |A| + (|A| × |X|). However, in practical situations,
these partitions are not all distinct and if we compute
the stochastic bisimulation using all these partitions, the
process can be very slow.
Let P and P ′ be partitions of an MDP. We say that

P = P ′ if |P| = |P ′| and if for each Bi ∈ P there is a
block Bj ∈ P ′ with the same DNF characterizing both of
them. Based on this concept, a partition P ′ obtained from
a function f (reward or probabilistic transition) is repeated
if the reduction algorithm found a partition P (before P ′),
obtained from a function g (reward or probabilistic tran-
sition), and we have P = P ′. Given a list of partitions L,
we say the partitions are distinct among themselves if for
each partition Pi ∈ L obtained from an MDP function,
L does not have Pj obtained from another MDP function
such that Pi = Pj.
ReachMRFS-V2 (Algorithm 3) is a version of ReachM-

RFS that starts computing partition elimination and then
computes the refinements among the partitions in L.

Results and discussion
In [23], we have shown that ReachMRFS-V2 can be much
more efficient than MRFS, specially in sparse domains. At
the same time, in dense domains, the overhead of reach-
ability analysis does not affect the general performance of
model reduction because we use efficient ADD operations
to find the reachable states. In this work, we complete
those results by including VI and TVI to solve the reduced
MDP. Furthermore, we also solve the original MDP M

Algorithm 3: ReachMRFS-V2 (M, PS|s0DD , Xe)

Input:M: a factored MDP, PS|s0DD : a reachability
partition, Xe: a set of essential state variables in
the MDP.

Output: P : a partition in which exists a stochastic
bisimulation over the reachable states and 1
block that contains all the unreachable states
given s0.

P ← 1;
Pdistinct ← ∅ /* initializes a map that say if a partition
is repeated or not.*/ ;
foreach a ∈ A do

Pdistinct .add(Pa
R �→ true);

foreach Xi ∈ Xe do
Pdistinct .add(Pa

Xi
�→ true)

end
end
for i = 1 to |Pdistinct| do

if Pdistinct[ i]= true then
for j = i + 1 to |Pdistinct| do

if Pdistinct[ i]= Pdistinct[ j] then
Pdistinct[ j]← (Pdistinct[ j] �→ false);

end
end

end
end
L ← ∅;
for i = 1 to |Pdistinct| do

if Pdistinct[ i]= true then
L.add(Pdistinct[ i] );

end
end
/* Computes the refinements using the partitions in L
and the reachable states in PS|s0DD . */ ;
foreach Pi ∈ L do

P ← P ∩ Pi ∩ PS|s0DD ;
end
return P ;

using these three algorithms to identify the trade-offs of
applying model reduction.
For all algorithms, we use γ = 0.99 and ε = 10−3.

The methodology employed in experiments is to exe-
cute each algorithm until convergence enforcing a time
and memory cutoff of 1 h and 3GB, respectively. The
results are presented as the average and 95 % confi-
dence interval over 30 executions for each pair of plan-
ner and problem. The experiments were conducted on
a 2.4-GHz machine with 16 cores running a 64-bit ver-
sion of Linux and our implementation was developed
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Fig. 10 Partitions over the set of reachable states given s0. The partitionsP1 andP2 of Fig. 7 are multiplied by the resulting partitionPS|s0
DD ,

resulting inQ1 andQ2

in Java using the official RDDL Simulator (RDDLSim)
[24]. Our implementation is available in the following
repository: http://github.com/felipemartinsss/repository/
tree/master/AIPlannersForRDDLSim.
The benchmark problems were taken from the Inter-

national Probabilistic Planning Competition (IPPC-2011),
which were specified in RDDL (Relational Dynamic Influ-
ence Diagram Language) [24], a language to represent fac-
tored MDPs. In the IPPC-2011, there were eight domains
with ten instances each and we selected the following
domains for our experiments: Crossing Traffic, Elevators,
Game of Life, Navigation and Skill Teaching.
Table 1 presents the comparison between ReachMRFS-

V2 and MRFS using VI, TVI, and LRTDP as planners to

solve the reduced MDP. As expected, the performance
of the ReachMRFS-V2 dominates the performance of
MRFS in all the problems, i.e., the slowest ReachMRFS-
V2 planner (usually ReachMRFS-V2 + LRTDP) is faster
than all planners that use MRFS planners. This is due the
reachability analysis and partition elimination applied by
ReachMRFS-V2.
Another interesting trend in Table 1 is that TVI

(LRTDP) is the best (worst) planner for solving the
reduced MDPs generated by both ReachMRFS-V2 and
MRFS. The reason for this trend is the fact that all the
states in the reducedMDPs are reachable from their initial
states. Therefore, the sampling procedure of LRTDP is
inefficient in comparison with the topological analysis

Fig. 11 Refinement of partitions considering reachable states. The same computation of Fig. 7, but considering that we have information of the
initial state and the reachability partition (computed in Fig. 10)

http://github.com/felipemartinsss/repository/tree/master/AIPlannersForRDDLSim
http://github.com/felipemartinsss/repository/tree/master/AIPlannersForRDDLSim
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Table 1 Average and 95 % confidence interval of the time, in seconds, to solve each problem using ε = 10−3

Problem ReachMRFS-V2 + TVI ReachMRFS-V2 + VI ReachMRFS-V2 + LRTDP MRFS + TVI MRFS + VI MRFS + LRTDP

Cross.

1 3.64 ± 0.04 4.10 ± 0.03 5.71 ± 0.08 19.41 ± 0.60 19.87 ± 0.65 20.86 ± 0.59

2 3.65 ± 0.03 4.14 ± 0.05 6.53 ± 0.16 19.36 ± 0.60 19.80 ± 0.58 21.82 ± 0.67

3 15.29 ± 0.11 22.74 ± 0.21 26.72 ± 0.40 - - -

4 15.17 ± 0.14 22.49 ± 0.34 25.05 ± 0.34 - - -

Elevators

1 4.45 ± 0.04 4.90 ± 0.07 16.08 ± 0.33 100.10 ± 4.56 97.57 ± 5.49 101.99 ± 4.07

2 161.60 ± 1.42 155.99 ± 1.35 1788.44 ± 14.60 - - -

3 146.87 ± 1.04 149.76 ± 1.24 1468.64 ± 11.85 - - -

4 16.86 ± 0.65 15.35 ± 0.26 146.66 ± 1.22 - - -

7 72.25 ± 0.83 90.99 ± 0.86 3599.00 ± 0.11 - - -

Game

1 137.10 ± 0.48 192.98 ± 0.80 215.95 ± 1.31 161.62 ± 1.04 211.74 ± 1.31 234.31 ± 1.65

2 118.89 ± 0.35 174.03 ± 0.97 239.72 ± 1.27 140.83 ± 0.97 191.77 ± 1.16 260.07 ± 2.40

3 114.57 ± 0.49 168.88 ± 0.48 233.54 ± 1.51 137.38 ± 0.83 187.54 ± 1.21 253.25 ± 1.87

Navigation

1 1.76 ± 0.01 1.97 ± 0.01 2.41 ± 0.03 21.09 ± 0.76 20.36 ± 1.00 21.39 ± 0.82

2 2.29 ± 0.02 2.59 ± 0.02 2.91 ± 0.03 189.90 ± 8.69 191.50 ± 6.66 194.26 ± 6.82

3 2.72 ± 0.07 3.45 ± 0.03 3.26 ± 0.02 - - -

4 4.61 ± 0.04 4.80 ± 0.04 4.83 ± 0.04 - - -

5 4.32 ± 0.05 4.80 ± 0.05 5.18 ± 0.06 - - -

6 6.66 ± 0.07 7.17 ± 0.07 8.03 ± 0.09 - - -

7 8.53 ± 0.06 8.84 ± 0.07 9.64 ± 0.07 - - -

8 11.40 ± 0.09 12.24 ± 0.11 13.39 ± 0.10 - - -

9 20.33 ± 0.21 21.58 ± 0.21 22.94 ± 0.22 - - -

10 36.53 ± 0.51 37.55 ± 0.47 38.55 ± 0.45 - - -

Skill

1 2.76 ± 0.02 2.86 ± 0.03 4.48 ± 0.07 19.24 ± 1.17 18.98 ± 1.00 18.07 ± 0.85

2 2.75 ± 0.04 2.87 ± 0.03 4.51 ± 0.12 18.72 ± 0.95 18.20 ± 0.87 17.46 ± 0.60

3 27.91 ± 0.23 26.15 ± 0.23 112.63 ± 0.80 175.94 ± 5.73 176.50 ± 7.12 328.26 ± 11.62

4 27.55 ± 0.26 25.92 ± 0.30 100.38 ± 0.79 178.21 ± 7.62 172.60 ± 7.85 311.95 ± 12.43

If a solution is not found in the given time and memory thresholds, then ‘-’ is shown. Best performance over all planners (columns) is shown in bold font. In the columns, Algorithm 1 + Algorithm 2 refers to the algorithm used in
reduction phase (Algorithm 1) and the algorithm used to solve the reduced MDP (Algorithm 2)
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Table 2 Average and 95 % confidence interval of the time, in seconds, to solve each problem using ε = 10−3

Problem ReachMRFS-V2 + TVI ReachMRFS-V2 + VI ReachMRFS-V2 + LRTDP TVI VI LRTDP

Cross.

1 3.64 ± 0.04 4.10 ± 0.03 5.71 ± 0.08 4.51 ± 0.03 2594.45 ± 58.66 3.16 ± 0.05

2 3.65 ± 0.03 4.14 ± 0.05 6.53 ± 0.16 4.47 ± 0.04 2007.41 ± 37.64 2.92 ± 0.04

3 15.29 ± 0.11 22.74 ± 0.21 26.72 ± 0.40 18.95 ± 0.16 - 12.79 ± 0.18

4 15.17 ± 0.14 22.49 ± 0.34 25.05 ± 0.34 19.50 ± 0.31 - 17.43,0.18

Elevators

1 4.45 ± 0.04 4.90 ± 0.07 16.08 ± 0.33 5.83 ± 0.16 135.46 ± 3.61 13.50 ± 0.38

2 161.60 ± 1.42 155.99 ± 1.35 1788.44 ± 14.60 240.45 ± 6.25 - 555.47 ± 7.06

3 146.87 ± 1.04 149.76 ± 1.24 1468.64 ± 11.85 217.75 ± 5.41 - 980.74 ± 8.64

4 16.86 ± 0.65 15.35 ± 0.26 146.66 ± 1.22 14.61 ± 0.20 1964.44 ± 32.10 82.39 ± 1.09

7 72.25 ± 0.83 90.99 ± 0.86 3599.00 ± 0.11 78.90 ± 1.17 208.30 ± 3.48 1363.33 ± 11.72

Game

1 137.10 ± 0.48 192.98 ± 0.80 215.95 ± 1.31 557.46 ± 6.35 514.48 ± 4.60 917.27 ± 14.06

2 118.89 ± 0.35 174.03 ± 0.97 239.72 ± 1.27 440.28 ± 5.33 399.34 ± 3.72 1263.55 ± 9.63

3 114.57 ± 0.49 168.88 ± 0.48 233.54 ± 1.51 406.64 ± 4.95 369.03 ± 3.74 1399.49 ± 7.12

Navigation

1 1.76 ± 0.01 1.97 ± 0.01 2.41 ± 0.03 1.40 ± 0.01 43.49 ± 0.96 2.01 ± 0.02

2 2.29 ± 0.02 2.59 ± 0.02 2.91 ± 0.03 1.47 ± 0.01 365.03 ± 10.71 2.16 ± 0.04

3 2.72 ± 0.07 3.45 ± 0.03 3.26 ± 0.02 1.64 ± 0.01 - 2.46 ± 0.03

4 4.61 ± 0.04 4.80 ± 0.04 4.83 ± 0.04 3.30 ± 0.03 - 3.85 ± 0.23

5 4.32 ± 0.05 4.80 ± 0.05 5.18 ± 0.06 2.56 ± 0.03 - 3.50 ± 0.08

6 6.66 ± 0.07 7.17 ± 0.07 8.03 ± 0.09 3.60 ± 0.05 - 6.62 ± 0.40

7 8.53 ± 0.06 8.84 ± 0.07 9.64 ± 0.07 5.10 ± 0.09 - 5.66 ± 0.26

8 11.40 ± 0.09 12.24 ± 0.11 13.39 ± 0.10 4.61 ± 0.03 - 5.69 ± 0.10

9 20.33 ± 0.21 21.58 ± 0.21 22.94 ± 0.22 5.59 ± 0.07 - 6.66 ± 0.14

10 36.53 ± 0.51 37.55 ± 0.47 38.55 ± 0.45 7.93 ± 0.09 - 7.73 ± 0.12

Skill

1 2.76 ± 0.02 2.86 ± 0.03 4.48 ± 0.07 4.09 ± 0.02 38.62 ± 0.98 1.49 ± 0.02

2 2.75 ± 0.04 2.87 ± 0.03 4.51 ± 0.12 4.11 ± 0.03 41.03 ± 1.00 1.56 ± 0.02

3 27.91 ± 0.23 26.15 ± 0.23 112.63 ± 0.80 38.25 ± 0.71 - 12.44 ± 0.38

4 27.55 ± 0.26 25.92 ± 0.30 100.38 ± 0.79 38.84 ± 0.75 - 11.95 ± 0.34

If a solution is not found in the given time and memory thresholds, then ‘-’ is shown. Best performance over all planners (columns) is shown in bold font. Results for all Reach MRFS planners are the same as in Table 1
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applied by TVI since no state in the reduced MDPs can be
ignored.
In Table 2, we compare ReachMRFS-V2 against no

model reduction using VI, TVI, and LRTDP as planners.
For the Crossing Traffic domain, model reduction

initially does not pay off and LRTDP has the best
performance; however, as the size of the problem
increases (problem #4), the reduced MDP is considerably
smaller and ReachMRFS-V2 + TVI has the best overall
performance.
In the Elevators domain, ReachMRFS-V2 + TVI is the

overall best planner with ReachMRFS-V2 + VI being a
closer runner-up. The reason for such performance is that
the reachability analysis suffices to reduce the problem to
a few thousand states. However, the reachable space con-
tains only one strongly connected component, what is the
worst case for TVI, therefore the overhead of the model
reduction pays off when compared with TVI.
For the Game of Life domain, ReachMRFS-V2 + TVI

dominates all the other planners and solve all the instances
from three to ten times faster than the approaches with-
out model reduction. This performance improvement is
because the Game of Life problems are dense and all their
states are reachable. Therefore, all the reduction obtained
by ReachMRFS-V2 is due to the stochastic bisimulations.
For the Navigation domain, TVI has the best perfor-

mance in almost all the instances because all the model
reduction is due only to the reachability analysis; there-
fore, the stochastic bisimulations represent an expensive
overhead.
For the Skill Teaching domain, LRTDP dominates all the

other approaches because this domain is sparse and most
of the model reduction is due to the reachability analy-
sis. For instance, the problem number 4 has 224 possible
states, only 1053 of them are reachable from s0, and the
reduced model has 702 states. Therefore, the stochastic
bisimulation contributes with a negligible reduction in the
model.

Conclusions
The experiment results show that model reduction always
pays off when we have information about the initial state.
ForMDPs with dense transition function, the results show
that stochastic bisimulation computation can explore the
domain structure and, combined with the TVI planner to
solve the reduced model, can have the best performance.
For instance, the Game of Life domain problems with
nine variables were solved in 2–3 min with ReachMRFS-
V2 + TVI (while without the reduction, LRTDP takes
15–23 min). For sparse domains like Elevators and Cross-
ing traffic, the results show that there is an overhead of
the model reduction. However, for 8 out of 26 problems,
this overhead pays off and ReachMRFS-V2-based plan-
ners are the best overall considered planners. It is a future

research topic to find a general rule for deciding whenever
ReachMRFS-V2 should be applied or not.
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