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Abstract

Background: Reorganization of rows and columns of a matrix does not modify data but may ease or impair visual
analysis of data similarities in this structure, according to Gestalt spatial proximity laws. However, there are a factorial
number of permutations of rows and columns. Matrix reordering algorithms, such as 2D sort and Sugiyama-based
reordering, permute matrix rows and columns in order to highlight hidden patterns.

Methods: We present PQR sort, a matrix reordering algorithm based on a recent data structure called PQR tree, and
compare it with the previous ones in terms of time complexity and quality of reordering, according to predefined
evaluation criteria.

Results: We found that PQR sort is an interesting method for minimizing minimal span loss functions based on
Jaccard or simple matching coefficients, specially for a given pattern called Rectnoise with a noise ratio of 0.01 or 0.02
and a matrix size of 100 × 100 or 1,000× 1,000.

Conclusion: We concluded that “PQR sort” is a valid alternative method for matrix reordering, which may also be
extended for other visual structures.
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Background
Defining spatial positioning of graphical elements is the
most effective procedure for representing any kind of data
[1]. This statement emphasizes the importance of using
spatial axes for representing any type of variable, which
may be classified in three distinct types [2]: nominal,
ordinal and quantitative.
When one represents values of ordinal or quantitative

variables in an axis, the predefined order usually yields
optimal interpretation. Nominal variables, however, do
not have a predefined order for displaying their values in
spatial axes. One may populate an axis with a list of coun-
try names in any order, e. g., [Brazil, Argentina, Uruguay,
Paraguay] or [Argentina, Brazil, Paraguay, Uruguay], with-
out data gain or loss. Consequently, little (or none at
all) attention is given to how easily users will interpret
nominal data.
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However, Figure 1 shows how spatial distribution of
axis values related to nominal variables may be relevant
for highlighting a pattern present in data. In Figure 1a,
an initial dataset is presented, organized by X-axis
(columns) and Y -axis (rows); both axes are alphanumeri-
cally ordered. In Figure 1b, after some row permutations,
a visual pattern begins to appear. Column permutations
are then applied to the matrix in Figure 1b, generating
the configuration presented in Figure 1c, which uncovers
a visual data pattern whose identification was previously
much harder to perceive.
A matrix to which row and column permutations may

be applied is called ‘reorderable matrix’ by Bertin [3].
He highlights that permuting matrices’ columns and rows
enables people to discover overall relationships present in
the data. Spence [4] adds that ‘a mere rearrangement of
how the data is displayed can lead to a surprising degree
of additional insight into that data’.
Given the relevance of row and column reorganization,

it is important to providemechanisms for supporting it on
visual structures. A possible approach for this is enabling
users to reorganize rows and columns by themselves,

© 2014 Silva et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/2.0


Silva et al. Journal of the Brazilian Computer Society 2014, 20:3 Page 2 of 13
http://www.journal-bcs.com/content/20/1/3

Figure 1 Reordering a binary matrix. (a) Original matrix. (b) The same matrix, vertically reordered. (c) The previous matrix, now horizontally
reordered. (Adapted from [4] (p. 15)).

until they find a relevant pattern. However, the number
of available permutations is of factorial order. Therefore,
algorithms should be provided to visually reveal hid-
den visual patterns on the data, reduce cognitive effort
for data understanding, and avoid manual reordering of
data. Some of these algorithms are based on heuristic
approaches, such as 2D sort and Sugiyama-basedmethods
[5].
This paper presents an interesting alternative approach

based on PQR tree, a data structure which represents
dataset permutations that agree with a set of imposed per-
mutation restrictions. The proposed approach uses this
data structure for reordering rows and columns, accord-
ing to their similarities. Also, a PQR treemay be created in
an almost linear time, a fact that encouraged us to create
this approach and to compare it to previous ones.
The paper is organized as follows. The ‘Related

research’ subsection presents related research about
matrix reordering methods. ‘Theoretical background’
subsection presents some concepts related to the prob-
lem, including Gestalt laws of pattern visual percep-
tion, the consecutive ones problem, and PQR trees.
‘Methods’ section suggests a way of reordering binary
matrices using two PQR trees. The ‘Results and discus-
sion’ section presents examples of matrices reordered
by our approach and analyzes its performance through
experiments and complexity analysis. Finally, the ‘Conclu-
sions’ section concludes the paper and proposes ideas for
future work.

Related research
Liiv [6] presents a historical overview of some matrix
reordering methods. He also defines the concept of seri-
ation as an ‘exploratory data analysis technique to reorder
objects into a sequence along a one-dimensional con-
tinuum so that it best reveals regularity and patterning
among the whole series’. Therefore, a matrix reorder-
ing algorithm is directly related to this concept. Liiv [6]

depicts the application of seriation and matrix reordering
in disciplines such as archeology, cartography, graphics,
information visualization, and bioinformatics.
Wu et al. [7] use the expression ‘matrix visualization’

to unify terms such as reorderable matrix, heatmap, and
color histogram. They also present relevant concepts in
this context, such as similarity (or proximity)matrices and
measures. One may calculate similarity measures, such as
Jaccard and simple matching coefficients, for each pair of
rows or columns of a data matrix; after that, one may use
these measures for constructing similarity matrices (for
row and column similarities). The authors also refer to
anti-Robinson and minimal span loss functions as avail-
able criteria for evaluating row and column permutations
of these similarity matrices and, consequently, for evalu-
ating the permutation of the data matrix itself. It is worth
considering that there are other alternatives for evaluating
the permutation of data matrices which are not based on
similarity (or even dissimilarity) matrices; indeed, calcu-
lating measures of effectiveness [8] and stress [9] uses only
the data matrix itself.
Mäkinen and Siirtola [5,10] propose the use of two

methods for automatic matrix reordering: the 2D sort
method and an adapted version of Sugiyama’s algorithm.
The latter was originally developed for edge crossing min-
imization in bipartite graphs, but Mäkinen and Siirtola
applied it to matrices, considered as adjacency matrices
of graphs. Both methods run over non-binary matrices,
but they reduce the problem to binary matrices, defin-
ing that a cell is black (1) or white (0) if its value is lower
than a defined threshold or greater than it. Both meth-
ods are based on heuristics which try to construct areas
with black cells in the top-left and right-bottom parts of
the matrix, and white cells elsewhere. These methods also
only work well with relatively small matrices [10]. Based
on some experiments, Mäkinen and Siirtola indicate that
the heuristic nature of the Sugiyama’s reordering algo-
rithm produces unexpected results for some users, since
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it generates distinct results for algorithm executions that
have identical data and circumstances.
Guo and Gahegan [11] present other possible

approaches for seriation. Among them, multidimensional
scaling (MDS) and hierarchical clustering algorithms
seem to be directly related to the reorganization prob-
lem addressed in this paper. MDS algorithms try to
preserve the original distances between points in an n-
dimensional space when these points are projected into a
m-dimensional space, m < n. Setting m = 1 gives points
in a one-dimensional space, and consequently, an ordered
set of points. Hierarchical clustering algorithms also use
similarity measures to define an ordered set of elements.
Guo and Gahegan [11] present also a simple ordering
algorithm based on clustering. Given a set of clusters
(initially consisting of single elements), an interactive step
groups two clusters, creating a bigger one. Given two
clusters a, ..., b and x, ..., y, it is necessary to choose one
of four fusion possibilities: a, ..., b, x, ..., y; a, ..., b, y, ..., x;
b, ..., a, x, ..., y; and b, ..., a, y, ..., x. The fusion with higher
similarity between the elements at the clusters’ endpoints
is selected, and this choice defines element reordering.
When all clusters are fused, the new order of the elements
is defined.
Wilkinson [12] points out that not only MDS and

hierarchical clustering may be used for matrix reorder-
ing, but also singular values decomposition (SVD), non-
linear dimension reduction, and entropy minimization.
Besides, he defines five matrix types (‘canonical data
patterns’) with quantitative cells, which may serve as
a good initial set of matrices for testing permutation
methods. Our ‘Rectnoise’ experiment to be presented
in Section ‘Experiments’ is in some sense similar to
Wilkinson’s ‘block’ pattern.
Expanding the original problem, Qeli et al. [13] present

a situation containing n matrices with the same dimen-
sions. In this situation, only one matrix is visualized at any
given moment. If each matrix is reordered according to
its own data only, the cells in row 1 of matrix A may be,
say, in row 7 of matrix B and in row 5 of matrix C. This
would confuse users, which would see undesirable row
and column exchanges. In this sense, Qeli et al. propose a
heuristic algorithm for finding an optimal permutation of
these rows and columns, in such a way that this permu-
tation may be applied to all n matrices, avoiding row and
column exchange. This algorithm chooses, among the n
matrices, the one that is most similar to the other n − 1
matrices, according to a defined similarity measure.
Although the focus of this paper is the automatic reorga-

nization of matrices, the importance of human-computer
interaction must not be dismissed, given that users must
have the final word about which ordering fits better some
task. In this direction, different works, such as Siirtola
and Mäkinen [10], present not just automatic reordering

capabilities, but also interactive ones. This interaction
may be done when user manually transposes matrix
columns and rows, or when he asks software to sort indi-
vidual columns and/or rows according to their values
(which impacts the overall matrix disposition).

Theoretical background
This section presents the theoretical background of this
work, composed by Gestalt laws, consecutive ones prob-
lem, and PQR trees. The proposed reordering is related
to the Gestalt laws of pattern visual perception [14], and
more specifically to the spatial proximity law. This law
states that close elements are perceived as a group. The
objective of the reorganization proposed by this paper is
to enable users to understand a set of similar elements as
a group at the visual structure level, which therefore may
reduce the cognitive overload of the visual analysis.
In order to demonstrate this perception of grouped ele-

ments, Figure 2 highlights some cells of Figure 1 with
gray circles. These circles make evident that rows 4, 7,
and 9 in Figure 2a are similar, but these rows are not
close to each other. Therefore, a quick look at Figure 1a
would not reveal this similarity. However, if these rows
are positioned consecutively, their similarity becomes evi-
dent, because the black cells of a given column are visually
perceived as two vertical groups of cells, as presented in
Figure 2b. A subsequent column reordering (Figure 2c)
also places similar cells together, configuring bigger cell
groups. The relationships highlighted in Figure 2c include
not just the similarity among rows 4, 5, 7, and 9, but also
the one between the two columns containing black cells.
Applying the proposed reordering is a task related to

the so-called consecutive ones problem. A binary matrix
has the consecutive ones property for its columns when
there is a permutation of its rows that makes all 1-cells
(cells that have value 1, or the black cells in the previ-
ous figures) consecutive in each column [15]. Discovering
this permutation (if it exists) is the consecutive ones prob-
lem for columns. One may define a similar problem for
rows. More formally, the consecutive ones problem may
be stated as follows: Given a collection of m subsets
S1, S2, ..., Sm, called here restrictions, of a setU, the consec-
utive ones problem consists in answering whether there is
a valid permutation of the elements in U, that is, a per-
mutation that keeps the elements of each Si consecutive
[16].
Meidanis et al. [15] proposed a solution for the consec-

utive ones problem by using so-called PQR trees to repre-
sent all valid permutations and also situations in which the
consecutive ones property does not hold. The purpose of a
PQR tree is to reduce substantially the factorial permuta-
tion possibilities of the elements of U to a smaller subset,
according to restrictions imposed on these permutations
in order to consider them valid. These restrictions are
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Figure 2Matrices of Figure 1 with some highlighted cells. (a) These cells are not close to each other. (b) After row reordering, the similarity of
rows 4, 7, and 9 becomes evident. (c) After column reordering, the similarity of columns B and F also becomes evident.

the subsets S1, S2, ..., Sm from the consecutive ones prob-
lem, whose elements, if possible, are consecutive in the
PQR-tree generated permutations.
Given a universe set U of elements to be permuted and

a set of restrictions to be applied to U, a PQR tree is
created to represent permutations of U. If the input has
the consecutive ones property, then this tree represents
only valid permutations. Otherwise, all the permutations
represented by the resulting tree are non-valid, because
conflicting restrictions cannot be fulfilled. However, in
this case, the PQR tree can often pinpoint the elements
and restrictions involved in the conflicts.
In a PQR tree, as defined by Meidanis and Munuera

[17], each element of U becomes a leaf. Each non-leaf
node defines that the leaves of all its descendants must be
consecutive in the permutations represented by the tree.
Also, the type of a non-leaf node defines how its chil-
dren may be reordered among themselves. The children
of a P-node may be arbitrarily reordered. The children
of a Q-node, in turn, only support two permutations: the
current left-to-right order in which they were drawn and
the inverse order. R-nodes are similar to P-nodes because
they also allow arbitrary permutations of their children;
however, the children of an R-node are elements in which
the consecutive ones property fails [16]. That is, R-node’s
children are elements whose restrictions forbid the exis-
tence of the consecutive ones property inU, because these
restrictions are in conflict. So, a PQR tree containing

R-nodes indicates that U does not have the consecutive
ones property. Figure 3 summarizes the algorithm’s inputs
and outputs.
As an example, consider an instance of a consecu-

tive ones problem in which U = {
a, b, c, d, e, f , g

}
and

the restrictions are S1 = {a, c, e}, S2 = {
b, f , g

}
, and

S3 = {a, c, d}; that is, the restriction set is C ={{
a, c, e

}
,
{
b, f , g

}
,
{
a, c, d

}}
. A PQR tree that represents

this restriction set is presented in Figure 4a. In Figures 4
and 5, a P-node is represented by a circle and a Q-node
is represented by a rectangle. Therefore, this tree rep-
resents 48 (that is, 2! 2! 2! 3!) possible permutations of
U, some of which are

{
d, a, c, e, g, f , b

}
,
{
d, c, a, e, b, g, f

}
,

and
{
f , g, b, e, c, a, d

}
. If one permutes P-, Q-, and R-

nodes’ children appropriately (i.e., obeying the permuta-
tion properties of these nodes), one will obtain a list of
all permutations represented by a PQR tree. This example
tree has no R-nodes; therefore, any permutation repre-
sented by the tree obeys all given restrictions, and the
instance has the consecutive ones property.
As a second example, consider the restriction set C ={{
a, c, e

}
,
{
b, f

}
,
{
b, g

}
,
{
f , g

}
,
{
a, c, d

}}
. Figure 4b shows

a PQR tree that represents these restrictions. It is very
similar to the previous tree, but it has an R-node repre-
sented by a circle with an ‘R’ inside it. This means that
nodes b, g, and f are related to conflicting restrictions - in
this case,

{
b, f

}
,
{
b, g

}
, and

{
f , g

}
- that cannot be satisfied

simultaneously. Therefore, this instance does not have the

Figure 3 Schema of the PQR tree creation algorithm’s inputs and outputs.
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Figure 4 Examples of PQR trees. (a)Without R-nodes and (b)with
one R-node.

consecutive ones property. Permutations represented by
this tree will comply with all defined restrictions, except
those identified as conflicting.
Another important concept related to PQR trees is fron-

tier, which is a list of the leaves of a PQR tree, read from
left to right. When the tree has no R-nodes, this list rep-
resents one of the valid permutations represented by the
tree, and therefore, it is a possible and easy to obtain solu-
tion for the PQR tree-related problem. We do not give an
in-depth explanation about the theory behind PQR trees.
Interested readers should consult more specific works
[15-17].
Currently, there are only two algorithms to create PQR

trees [16,17]. The algorithm by Telles and Meidanis [16]
is an almost linear time, incremental algorithm. It gen-
erates a PQR tree in time O(α(r)(n + m + r)), where n
is the number of elements in the universe set, m is the
number of restrictions, r is a sum of the sizes of all restric-
tions, and α is a function that grows very slowly, known as
the inverse of Ackermann’s function. This algorithm starts
with a PQR tree composed by a P-node containing all ele-
ments of U as its children. While the restriction set is not
empty, its main loop removes a restriction from this set
and applies it to the current tree, generating a new tree
[16].
The order in which a given set of restrictions is inserted

into a PQR tree and the order of the elements of U
may generate distinct, but equivalent PQR trees. There-
fore, their frontiers may be different, depending on these

Figure 5 PQR trees for reordering Figure 1a’s rows and columns.

factors. However, two executions of the algorithm with
exactly the same arguments will provide exactly the same
result.

Methods
This paper proposes a method for visually grouping simi-
lar columns and similar rows in a binary matrix, in order
to provide a better visual perception of these groups. The
proposed reordering has two independent phases: per-
muting columns (aiming to group columns with similar
elements in each row) and permuting rows (aiming to
group rows with similar elements in each column). Given
that these phases are independent, they may be executed
in this order or in the inverse one.
The problem takes the form of the consecutive ones

problem, which in turn suggests PQR trees as an appro-
priate tool for its solution. Our method, called PQR sort,
constructs two PQR trees: one for representing row per-
mutations and another for column permutations. For each
matrix column, the set of rows whose value is 1 in this
column becomes a restriction to be inserted in the row-
related tree. Analogously, for each matrix row, the set of
columns whose value is 1 in this row becomes a restriction
to be inserted in the column-related tree.
For example, consider the matrix in Figure 1a. Looking

at column A of this matrix, one will group all rows that
have value 1 in this column (rows 1, 3, and 8) and then cre-
ate a restriction {1, 3, 8}. Using the same logic for the other
columns, the following restrictions will be also created:
{2, 4, 6, 7, 9, 10}, {2, 6, 8, 10}, {1, 3, 8}, {2, 6, 10}, {4, 5, 7, 9},
and {2, 6, 10}. When the same algorithm is executed to
create restrictions for column permutations, the following
restrictions are defined: {A,D}, {B,C, E,G}, {A,D}, {B, F},
{F}, {B,C, E,G}, {B, F}, {A,C,D}, {B, F}, and {B,C, E,G}.
Figure 5 depicts the PQR trees that summarize these

restrictions. Observe that the frontiers of these trees
represent the orders of Figure 1c’s rows and columns:
{1, 3, 8, 2, 6, 10, 4, 7, 9, 5} and {A,D,C, E,G,B, F}, respec-
tively. Next, we discuss how to choose a permutation
among the found ones and whether the existence of R-
nodes on PQR trees would affect this choice.
Figure 5 shows that no R-node was generated in either

of the two trees. In such cases, the problem is solved
by the adoption of one of the permutations represented
by the PQR tree created. There is no reason to use any
other permutation than the one available in the PQR tree
frontier.
However, there may be conflicting restrictions, and

therefore the R-nodes in the resulting PQR tree (as in
the situation presented in Figure 4b). In these situations,
it is necessary to decide how to order R-node’s children.
An R-node represents a set of rows (or columns) that are
in some sense inter-related, with possible inner similar-
ities. So, placing these rows (or columns) together may
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be interesting, even knowing that some of the restrictions
will not be obeyed. In this sense, the R-node has the role of
spatially grouping these rows or columns. Therefore, our
first approach to this problem is to keep R-node’s children
in the same order they are in the frontier.
It is possible that grouping R-node’s children have a neg-

ative impact on the results. However, this impact should
be minimal for R-nodes with few children. Two com-
ments must be made before we pass to the test section.
First, users do not need to inform PQR sort about the
restrictions to be considered. Instead, the algorithm cal-
culates them from the input matrix. Second, for two equal
input sets, the algorithm creates two equal PQR trees,
which represent the same set of permutations and whose
frontiers have the same elements in the same order. There-
fore, we may state that PQR sort also presents the same
output for the same input. If distinct matrix organizations
were provided to a user each time he/she runs the reorder-
ing algorithm (for example, due to algorithm random
factors), users probably would have difficulties related to
their mental models about the matrix data. Therefore, the
algorithm’s consistent behavior helps avoid this problem.

Results and discussion
This section compares the PQR sort to other approaches
for matrix reordering.We present a complexity analysis of
the algorithms and evaluate their results for reorganizing
synthetic and real-world matrices.

Complexity analysis
The asymptotic time complexities of PQR sort, 2D sort,
and Sugiyama-based algorithms in the case of n×nmatrix
reordering (square matrices were used for convenience
only) are the following:

• PQR sort : For reordering binary matrices, PQR sort
has two restriction defining steps, each using O(n2)
time, and two PQR tree creation steps, each having
time complexity O(α(r)(n + m + r)) [16] (see
section ‘Theoretical background’). Given that m = n
and r ≤ n2 in our algorithm, the complete algorithm
is in O(n2α(n2)).

• 2D sort [5]: Mäkinen and Siirtola did not analyze the
time complexity of 2D sort. However, a simple
analysis reveals that this algorithm is a conditional
loop of two steps; each step calculates weighted row
(or column) sums (O(n2)) and then sort rows (or
columns) according to these sums (O(n log n)). This
loop repeats until no row or column exchanges
occur. Then, the time needed is in O(n2t), where t
represents the number of loop iterations.

• Sugiyama-based (or barycenter heuristic-based)
matrix reordering [5]: The complexity analysis is
similar to that of 2D sort. The difference is that the

Sugiyama-based method calculates the average of
1-cells’ positions in each row (or column) instead of
calculating row (or column) sums. Therefore, the
time complexity is O(n2t).

According to these analyses, it is not clear which algo-
rithm has the lowest complexity, because the number of
iterations of barycenter heuristic and 2D sort conditional
loop is hard to foresee.

Experiments
We designed two experiments for evaluating the perfor-
mance of 2D sort, Sugiyama-based reordering (hereafter
called Sugiyama) and PQR sort in terms of execution
time and of ‘quality’ of the reordered matrices. These
experiments were executed by a evaluation software that
creates sets of binary matrices, reorganizes them using the
three reordering algorithms and then evaluates the results
according to predefined criteria, as depicted in Figure 6.
In the first experiment (whichwe called ‘Block’), we ana-

lyzed the performance of the reordering algorithms when
applied to matrices that have the Block pattern [12]. The
following matrix exemplifies this pattern:

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1 1
1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This example presents a 3-bit pattern [000, 001, 010,
011, 100, 101, 110, 111] expanded along matrix dimen-
sions. Other values could be used for creating other k-bit
patterns. Therefore, given a n × p data matrix X and an
integer positive variable k, we may define xi,j, 0 ≤ i < n,
and 0 ≤ j < p as follow. First, we define the dimensions of
each block in the matrix as (blockHeight, blockWidth).

blockHeight = n/2k

blockWidth = p/k
After that, we define the bit pattern of each row i as

rowPattern(i).
rowPattern(i) = �i/blockHeight�
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Figure 6 Steps for executing part of our experiments. The whole experiment will set ‘experiment type’ as ‘Block’ or ‘Rectnoise’ and will define
some values for size and density.

The position of the bit of a row pattern that defines the
value of a given column j of a row is given by bitPosition(j).

bitPosition(j) = � j/blockWidth�.
The following expression defines the value of any xi,j cell

that obeys the Block pattern. In this expression, ‘&’ is the
binary AND operator.

xi, j =
{
1 if (rowPattern(i)&2bitPosition(j)) > 0
0 otherwise

In our experiment, we used k = 3. The indepen-
dent variables of this experiment were matrix size and
noise ratio (where noise is, in fact, the inversion of the
values of some cells). Given a set of noise ratios D =
{0.01, 0.02, 0.05, 0.10} and a set of matrix sizes S =
{100 × 100, 1000× 1000}, we defined eight matrix types
{d, s}, d ∈ D, and s ∈ S. For each matrix type, we created
a set of 60 matrices to be reordered. The evaluation soft-
ware fills each matrix according to the Block pattern and
the predefined noise ratio. After that, the software shuf-
fles its columns and rows. Our purpose here was to create
matrices in which there are known similarities between

some lines and some columns. Noise ratios were not set to
values greater than 0.10 because we perceived empirically
that greater ratios could destroy the original visual pattern
even before any shuffling procedure.
Given these matrices, it was necessary to choose how

to evaluate them. As a first approach, we choose to eval-
uate them based on similarity matrices. For each matrix,
our evaluation software calculates column and row simi-
larity matrices. These matrices depend on what similarity
coefficient will be considered. Cox and Cox [18] and Wu
et al. [7] present 17 similarity coefficients for binary data.
Neither list have Euclidean distance and correlation coef-
ficients; Wu et al. [7] argue that these coefficients cannot
be applied directly to binary data sets. Cox and Cox [18]
state that choosing a coefficient depends on the situation
and that using more than one can help reach robustness
against choice.
Wu et al. [7] classify binary variables according to sym-

metry: ‘a variable is symmetric if both of its states are
equally valuable’, that is, given two possible states, nei-
ther is more relevant than the other. Otherwise, the
variable is called asymmetric, and therefore, one of its
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states is rarer and more important than the other. More-
over, they argue that asymmetric variables are usually
sparse in nature. Wu et al. [7] also state that it is a
common practice to use Jaccard coefficient for sparse
data instead of simple matching coefficient. We con-
clude that one can use Jaccard coefficient for evaluating
asymmetric variables and simple matching for evaluat-
ing symmetric ones. Therefore, we selected these two
similarity coefficients for our experiments, in order to
cover both types of variables. The evaluation software
constructs then two sets of similarity matrices for each
matrix, one for each of these coefficients. Each set has
similarity matrices for columns and rows related to its
coefficient.
In the next step, the evaluation software uses evalu-

ation functions whose resulting values summarize the
‘quality’ of each similarity matrix (and, therefore, the
‘quality’ of their respective original binary matrices). Wu
et al. ([7], pp. 688–689) describe two types of evaluation
functions. Anti-Robinson loss functions are global crite-
ria for quantifying how far a similarity matrix is from a
Robinson matrix and therefore how ‘smooth and pleas-
ant’ the visual effect of the original matrix is not. Minimal
span loss function is a sum of the coefficients of neighbor
columns (or rows); lower values of this function represent
a good matrix permutation in terms of local structures.
We choose to work with these two types of functions in
our experiments, in order to cover both global and local
structures. Given this, the evaluation software calculates
the minimal span loss function and the anti-Robinson
loss function AR(i) of the similarity matrices for eval-
uating the reordered matrix according to the selected
coefficients.
The evaluation software outputs a set of files, where

each file presents values related to a givenmatrix type. For
each non-reorderedmatrix and for the reordered versions
provided by the reordering algorithms, each file presents
loss function values of each coefficient for row and col-
umn similarities. The file also contains mean and standard
deviation for these values. We expected that the PQR sort
could provide good permutations of matrices that have
this pattern, given that creating blocks of cells with value
1 is one of the objectives of the consecutive ones problem,
which is directly related to our solution.
The second experiment (which we called ‘Rectnoise’)

was very similar to the first one, but with different
input matrices. In this experiment, the evaluation soft-
ware fills each matrix of size wsize × hsize with 10
rectangles filled with 1-cells. The rectangles’ dimen-
sion wrect × hrect is random, but is limited in such
a way that 1 ≤ wrect ≤ wsize/4 and 1 ≤ hrect ≤ hsize/4.
Also, each rectangle starts at a random position (x, y),
0 ≤ x < wsize − wrect and 0 ≤ y < hsize − hrect. After that,
the software adds noise and shuffles its columns and

rows. The software creates a set of 60 matrices to be
reordered, according to the same set of noise ratios and
matrix sizes of the first experiment. Due to the direct rela-
tionship between this experiment and consecutive ones
problem, we also expected good performances of our
method.

Results
In this section, we analyze the experiments’ results pro-
vided by our evaluation software. These results came from
a set of hypothesis tests, in which we tried to understand
two ideas. First, we wanted to know if the three reordering
algorithms have any positive effects (i.e., if they decrease
the values of the loss functions). Second, we wanted to
understand which reordering algorithm gives us the best
values of the loss functions in a time that is appropriate for
providing a fast feedback for users. We believe that these
results are general enough to be extended to non-square
matrices as well.
Given that we have 60 matrices and that we can only

estimate themeasures’ variance, wewill analyze the exper-
iments’ results based on dependent t tests for paired
samples. Given two different reordering algorithms, A
and B, the null hypothesis of each test is that the loss
function values based on a given similarity coefficient
are equal for their resulting matrices. This hypothesis is
defined as D = 0, where D = X − Y , X and Y are
the values of a loss function for algorithms A and B,
respectively. The alternative hypothesis is D �= 0, which
implies that X �= Y . In this last case, the better algo-
rithm is defined by D’s sign. Alternatively, X or Y may
be the loss function value for the original matrix. With-
out loss of generality, we only analyzed the results of row
similarity matrices instead of analyzing the two similarity
matrices.
As part of the t test, we calculated the mean values

of D for each experiment, matrix type (size and noise
ratio), and possible pairs of A and B algorithms. There-
fore, we defined the winner algorithm for each pair {A,B},
and based on these results, we defined which algorithm
has the best (or the worst) values among the three algo-
rithms, for each experiment and matrix type. Most of the
tests have statistically significant results (significance level
of 0.01).
Tables 1 and 2 summarize the results of our experiments

and present the reordering algorithms that returned the
best, medium, and worst values for each situation, in
terms of quality and execution time. In some situations,
there is a clear winner in both criteria, for example, the
PQR sort provides the best values for the minimal span
function with simple matching coefficient in 100 × 100
matrices of the Rectnoise experiment, in the shortest
execution time. In other situations, there is a trade-off
between quality and execution time.
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Table 1 Summary of the best (•), medium (◦) andworst (×) reordering algorithms for the first experiment (Block)

Experiment: block
Matrix sizes and noise ratios

100× 100 1,000× 1,000

Evaluator Coefficient Algorithm 0.01 0.02 0.05 0.1 0.01 0.02 0.05 0.1

Anti-Robinson

Jaccard

2D sort × × × × × × × ×
Sugiyama • • • • • • • •
PQR sort ◦ ◦ ◦ × ◦ ◦ ◦ ◦

Simple matching

2D sort • • • • • • • •
Sugiyama × ◦ ◦ ◦ ◦ ◦ ◦ ◦
PQR sort ◦ × × × × × × ×

Minimal span

Jaccard

2D sort ◦ • • • • • • •
Sugiyama × × × × × × × ×
PQR sort • ◦ ◦ • ◦ ◦ ◦ ◦

Simple matching

2D sort ◦ • • • • • • •
Sugiyama × × × × × × × ×
PQR sort • ◦ ◦ ◦ ◦ ◦ ◦ ◦

Execution time

2D sort • • • • • ◦ ◦ ◦
Sugiyama ◦ ◦ × • × × × ×
PQR sort × × × • ◦ • • •

However, regarding execution time, we must consider
that we want to provide responsive interaction, and there-
fore, we expect fast execution time (preferably in the order
of 100 ms). Feedbacks in the order of 1 s are also accept-
able, given that users’ flow of thought stay uninterrupted
and no extra feedback is necessary. Figure 7 presents mean

execution times for the reordering algorithms in both
experiments with both matrix sizes. Figure 7a,c shows
that in most cases, the algorithms spent less than 10
ms for reordering 100 × 100 matrices. For reordering
1, 000 × 1, 000 matrices, Figure 7b,d indicates that 2D
sort and PQR sort execution times are lower than 1 s

Table 2 Summary of the best (•), medium (◦), andworst (×) reordering algorithms for the second experiment (Rectnoise)

Experiment: Rectnoise
Matrix sizes and noise ratios

100× 100 1,000× 1,000

Evaluator Coefficient Algorithm 0.01 0.02 0.05 0.1 0.01 0.02 0.05 0.1

Anti-Robinson

Jaccard

2D sort × ◦ ◦ • • • • •
Sugiyama • • • • × ◦ × ×
PQR sort × × × × ◦ × ◦ ◦

Simple matching

2D sort • • • • ◦ • ◦ ◦
Sugiyama × ◦ ◦ • • • • •
PQR sort × × × × × × × ×

Minimal Span

Jaccard

2D sort × × × × ◦ • • ◦
Sugiyama ◦ × × × × × × •
PQR sort • • • • • • × ×

Simple matching

2D sort ◦ ◦ ◦ • ◦ • • •
Sugiyama × × × × × × × •
PQR sort • • • • • • ◦ ×

Execution time

2D sort • • • ◦ ◦ ◦ ◦ ◦
Sugiyama × × × × × × × ×
PQR sort • • • • • • • •
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Figure 7 Execution time (in milliseconds) for Sugiyama, 2D sort, and PQR sort. (a) Block experiment, matrix size 100× 100. (b) Block
experiment, matrix size 1000× 1000. (c) Rectnoise experiment, matrix size 100 × 100. (d) Rectnoise experiment, matrix size 1000× 1000. Time axis
in logarithmic scale. The error bars stand for a confidence interval of 99.7%.

and that Sugiyama may surpass this limit (indeed, it may
reach approximately 3 s). Due to these conclusions, we
opted for not considering time in our analysis, given that
the time spent for reordering matrices with the tested
characteristics would not impact user interaction in terms
of feedback (except for the Sugiyama case).

Block experiment’s results
We considered three situations in Block experiment’s
results:

• If the objective is to optimize the anti-Robinson
function with Jaccard coefficient, Sugiyama returns
the best reordering for both matrices.

• If we aim to optimize the anti-Robinson function
with simple matching coefficient, 2D sort returns the
best results for both matrices.

• If the objective is to optimize minimal span function
(with simple matching or Jaccard coefficient), we
identified three sub-cases:

– For 100 × 100matrices with noise ratio 0.1,
the PQR sort returns the best results.

– For the remaining 100 × 100 cases, the 2D
sort returns the best results.

– For 1, 000× 1, 000matrices, the 2D sort also
wins.

Rectnoise experiment’s results
We perceived three cases in the Rectnoise experiment’s
results:

• In order to optimize the anti-Robinson function with
Jaccard coefficient:

– For 100 × 100matrices, Sugiyama returns the
best results. One may prefer to run 2D sort
for noise ratio 0.1 (similar result quality at
possibly lower time than Sugiyama).

– For 1, 000× 1, 000matrices, 2D sort produces
the best results.

• If we desire to optimize the anti-Robinson function
with simple matching coefficient, the choices are
almost the inverse of the previous situation:
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– For 100 × 100matrices, the 2D sort returns
the best results (and in lower time than
Sugiyama).

– For 1, 000 × 1, 000matrices, Sugiyama
produces the best results. One may prefer to
run 2D sort for noise ratio 0.02 (similar result
quality at possibly lower time than Sugiyama).

• If we aim to optimize the minimal span function
(with any of the studied coefficients):

– PQR sort provides the fastest and best results
for 100 × 100matrices;

– PQR sort also returns the fastest and best
results for 1, 000 × 1, 000matrices whose
noise ratio is 0.01 or 0.02. For other ratios, 2D
sort and Sugiyama provide the best results.

Summary of PQR sort contributions
The previous analysis indicates weaknesses and strengths
of the three methods. We highlight the good performance
of PQR sort for minimizing minimal span function for
both the studied coefficients. In this sense, its best results
were in 100× 100 matrices; also, for 1, 000× 1, 000 matri-
ces, it returned the best results for noise ratios 0.01 and
0.02. This result points out that the PQR sort has a good
potential to reveal local structures that the shuffling pro-
cess hide from us. PQR sort weakness in matrices with
greater noise ratios may be related to the insertion of big
R-nodes in the PQR trees it uses, which would hamper the
construction of useful trees for those situations.
On the other hand, due to its poor performance onmin-

imizing anti-Robinson loss functions, PQR sort seems not
to be useful for providing insights related to global struc-
tures hidden in shuffled matrices. For this functions, 2D
sort and Sugiyama still provide the best results.
We also believe that the strategy for creating restrictions

in our PQR trees was responsible for the failure of PQR
sort in the Block experiment. Given that the step of cre-
ating restrictions does not take in consideration similarity
measures between columns (or rows), again some R-nodes
may mix blocks from the matrix which should be distinct.
Therefore, future adaptations of PQR sort should consider
similarity measures in order to improve the restriction set.

Examples
We also provide some examples of real-world binary
matrices. The first example is a symmetric matrix of char-
acter coappearance in Victor Hugo’s novel Les Misérables.
These coappearance data were first compiled by Knuth
[19] and further transformed into a CSV file [20], from
which we constructed our adjacency matrix.
Figure 8 has a set of matrices representing this adja-

cency matrix. In these matrices, blocks of 1-cells (black

cells) represent sets of characters that interact each other,
and continuous or almost continuous rows (and respec-
tive columns) of 1-cells may indicate main characters.
Figure 8a presents the original adjacency matrix of the
novel, in the order of characters provided by the CSV file.
We may see five blocks and two ticked rows (and respec-
tive columns), where the biggest row refers to the main
character, and the other row seems to be an important
character that interacts with 1/4 of his colleagues. 2D sort
(Figure 8b) produces a reordered matrix in which only
two clear blocks of characters may be perceived, and a
third and very incomplete block at the bottom right cor-
ner. The last row refers to the main character. Sugiyama
(Figure 8c) algorithm permutation presents three blocks
and an almost central ‘cloud’ of sparse 1-cells, which is dif-
ficult to analyze; a ‘cross’ indicates themain character. The
matrix reorganized by PQR sort (Figure 8d) is the only
one that has a continuous row (and column) representing
the main character, which seems to interact with approx-
imately 50% of the novel characters (the other matrices
may not help conclude this fact). Also, it is possible to see
five blocks of characters along the main diagonal, as in the
original matrix.
Even though there is not a clear winner solution in

this example, we believe that the original matrix and the
reordered matrix produced by PQR sort revealed more
useful information than the other two matrices. The sec-
ond real example is based on the online dictionary of
library and information science (ODLIS) [21], from which
a graph of terms was extracted [22]. It consists on a
directed network with 2909 vertexes and 18,419 arcs,
which we transformed into a 2, 909 × 2, 909 adjacency
matrix. Each vertex represents a term in the dictionary;
there is an edge (r,s) if and only if the dictionary uses
the term related to s in order to explain the term related
to r.
Figure 9a presents the original ODLIS adjacency matrix

(rows for edge source and columns for edge destination).
2D sort (Figure 9b) gradually increased the density of 1-
cells near to the right border; it also created two curved
lines, which seem to be meaningless in this example.
The matrix reordered by Sugiyama (Figure 9c) seems to
reveal three groups of 1-cells, which in this case, may
be related to three distinct subjects. In a more detailed
analysis, if we consider this matrix as a torus, left bor-
der group would be the continuation of the right border
one, and therefore, the number of groups is reduced to
two. PQR sort (Figure 9d) created a matrix with a sin-
gle dense region of dots whose width is approximately
1/8 of the matrix width and whose height is similar to
the matrix one. The format of this region points out
that the majority of the ODLIS’ terms may be explained
using almost 1/8 of the terms used to describe items in
the dictionary.



Silva et al. Journal of the Brazilian Computer Society 2014, 20:3 Page 12 of 13
http://www.journal-bcs.com/content/20/1/3

Figure 8 Adjacency matrix of character coappearance in Les Misérables. (a) Original adjacency matrix of character coappearance, with 77 × 77
cells. (b-d) The same matrix after being reordered by 2D sort, Sugiyama, and PQR sort. Characters’ names were omitted.

In this example, Sugiyama presented an interesting
global pattern hidden in the data, while PQR sort high-
lighted local structures. They seem to be more insightful
than the result of 2D sort and the original matrix.

Conclusions
This work presented PQR sort as an alternative approach
for matrix reordering, based on the use of PQR trees. Our
experiments were executed in matrices of size 100 × 100
and 1, 000×1, 000, and revealed the usefulness of PQR sort
for some situations. We highlight that PQR sort provides
good results if we want to minimize the minimal span
loss function (and, therefore, to reveal local structures)
calculated over similarity matrices whose coefficient is
Jaccard or simple matching, specially for the Rectnoise
pattern with noise ratio 0.01 or 0.02, as summarized in
Subsection ‘Summary of PQR sort contributions’. In most
situations, time performance was not relevant, given that
execution time of the compared algorithms was lower
than 1 s, which may be considered a fast feedback; in par-
ticular, PQR sort mean execution time was about 0.1 s.
Besides, real-world examples pointed out how the permu-
tations provided by PQR sort may help observe hidden
visual patterns on the data, even formedium-sizematrices
(about 3, 000× 3, 000).

Some future directions are under consideration for this
work:

• Improving PQR tree restrictions: We believe that it is
possible to improve the definition of PQR tree
restrictions in our method, in order to better
incorporate the concept of similarity among rows (or
columns). Also, ongoing work points out that a
correct ordering of restrictions at the creation of PQR
trees may provide better results.

• Reordering algorithms and metrics: Many algorithms
can be applied to matrix reordering. In this paper, we
compared our method to only two previous ones. In
addition, there are many metrics for assessing the
quality of a reordering. Comparison of other
reordering algorithms based on a broad set of metrics
is under execution.

• Matrix data: In this paper, we manipulated only
binary matrices. However, we believe that PQR sort
may be extended for dealing with quantitative and
nominal cells.

• Visual structures: Last but not least, it is worth to
consider that PQR tree-based reorganization may
improve other visual structures and techniques, such
as 3D matrices, parallel coordinates, and even

Figure 9 ODLIS adjacency matrix. (a) Original adjacency matrix with 2, 909× 2, 909 terms. Row terms are explained by column terms according
to the adjacency. (b-d) The same matrix after being reordered by 2D sort, Sugiyama, and PQR sort. Original images have one pixel per cell; they
were resized and sharpened for this paper.
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high-dimensional approaches. Indeed, a recent result
published by our research group points out success
on hybridizing PQR sort and barycentric heuristic
algorithms for reordering directed acyclic graphs [23].
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