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Abstract As computer programs become increasingly
complex, techniques for ensuring trustworthiness of infor-
mation manipulated by them become critical. In this work,
we use the Coq proof assistant to formalise a λ-calculus with
trust types, originally formulated by Ørbæk and Palsberg. We
give formal proofs of type soundness, erasure and simulation
theorems and also prove decidability of the typing problem.
As a result of our formalisation a certified type checker is
derived.

Keywords Trust · Type systems · Proof assistants ·
Soundness proofs

1 Introduction

Ensuring security of information manipulated by computer
systems is a long-standing and increasingly important prob-
lem. There is little assurance that current computer systems
keep data integrity and traditional (theoretical and practical)
approaches to express and enforce security properties are, in
general, unsatisfactory [46,53].
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One of such traditional approaches to protect data confi-
dentiality is access control: privileges are required to access
files or objects containing confidential data and information
release is restricted according to some policy. Access control
checks can restrict release but not propagation of informa-
tion. Once information is released, a program can transmit it
in some form and, since it is not feasible to suppose that all
programs in a system are trustworthy, one cannot ensure that
confidentiality is maintained. In order to guarantee that infor-
mation is used only in accordance with relevant policies, it is
necessary to analyse how information flows within the pro-
gram. As modern computing systems are complex artefacts,
automating such analysis is required [46].

An approach to ensure security property of computer soft-
ware consists of the use of type systems in order to control
information flow in software [46]. In programming languages
with security types, variables and expressions types have
annotations that indicate policies to be ensured by the com-
piler on uses of such data. This approach has the following
benefits: (1) since these policies are checked at compile-time,
there is no run-time overhead; (2) once security policies are
expressed by a type system, standard techniques for guar-
anteeing type system soundness can be used to certify that
security policies are enforced in an end-to-end way in the
whole program.

However, proofs of programming language formalisms
(e.g. type systems and semantics) are usually long and error
prone. In order to give more reliability to these proofs, pro-
gramming language researchers have been developing, in
recent years, a large number of works devoted to machine
assisted proofs [1,6,28,10].

In this work, we provide a formalisation of a variant of
λ-calculus with trust types, as proposed by Ørbæk and Pals-
berg [38], using the Coq proof assistant [5]. Specifically, our
contribution is to provide a machine checked proof of:
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1. type soundness, using standard small-step call-by-value
semantics. Intuitively, type soundness property ensures
that if a program is well-typed it does not cause any run-
time errors,

2. erasure and simulation theorems [38, Sections 3.3 and
3.4]. Erasure and simulation theorems ensure that the λ-
calculus with trust types is a restriction of the simply
typed λ-calculus. Together these theorems ensure that
after type-checking a term, we can simply erase all trust
constructs and annotations and evaluate it using the rules
of the simply typed λ-calculus,

3. decidability of type checking. From this proof we extract
a certified type checker for the language.

The developed formalisation is axiom free, that is, all nec-
essary results and properties were integrally proved in Coq.
We choose Coq because it is an industrial strength proof assis-
tant that has been used in several large scale projects such
as a Certified C compiler [27] and Java Card platform [3].
The complete formalisation has approximately 1,400 lines of
code. This makes it impossible to present here all details of
the work. We only sketch the main proofs and some function
definitions are omitted for brevity, when they are trivial. The
Coq source code of this work is available on-line [43].

The rest of this paper is organised as follows. Section 2
presents a brief introduction to the Coq proof assistant and
its features used in our formalisation. Section 3 briefly
reviews the syntax and defines a small-step semantics for the
λ-calculus with trust types. Section 4 presents the non-syntax
directed type system for the λ-calculus with trust, as pro-
posed in [38], and proves its type soundness property. We also
define a syntax directed version of this original type system
and prove soundness and completeness between these two
versions. Finally, we prove that the typing problem for this
calculus is decidable. Section 6 presents related work and
Sect. 7 concludes.

2 A taste of Coq proof assistant

Coq is a proof assistant based on the calculus of induc-
tive constructions (CIC) [5], a higher order typed λ-calculus
extended with inductive definitions. Theorem proving in Coq
follows the ideas of the so-called BHK-correspondence,1

where types represent logical formulas and λ-terms repre-
sent proofs [49]. Thus, the task of checking if a piece of text
is a proof of a given formula corresponds to checking if the
term that represents the proof has the type corresponding to
the given formula.

1 Abbreviation of Brower, Heyting, Kolmogorov, de Bruijn and Martin-
Löf Correspondence. This is also known as the Curry–Howard “isomor-
phism”.

Fig. 1 Sample Coq code

However, writing a proof term whose type is that of a log-
ical formula can be a hard task, even for very simple proposi-
tions. In order to make the writing of complex proofs easier,
Coq provides tactics, which are commands that can be used
to construct proof terms in a more user friendly way.

We briefly illustrate these notions by means of a small
example, shown in Fig. 1.

The source code in Fig. 1 shows some basic features of the
Coq proof assistant: types, functions and proof definitions.
In this example, a new inductive type is defined to represent
natural numbers in Peano notation. This type is formed by
two data constructors: O, that represents the number 0; and
S, the successor function. For instance, in this notation the
number 2 is represented by the term S (S O) of type nat.

The command Fixpoint allows the definition of struc-
tural recursive functions. Function plus defines the sum of
two unary natural numbers, in a straightforward way. It is
noteworthy that, in order to maintain logical consistency, all
functions in Coq must be total.

Besides the declaration of inductive types and functions,
we can define and prove theorems in Coq. Figure 1 shows an
example of a simple theorem about function plus, namely
that, for an arbitrary value n of type nat, we have that plus
n 0 = n. The command Theorem allows us to state some
formula that we want to prove and it starts the interactive
proof mode, in which tactics can be used to produce the
wanted proof term. In an interactive section of Coq (after
enunciation of theorem plus_O_r), we must prove the fol-
lowing goal:

After command Proof., one can use tactics to build, step
by step, a term of the given type. The first tactic, intros, is
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used to move premisses and universally quantified variables
from the goal to the hypothesis. Now, we need to prove:

The quantified variable n has been moved from the goal
to the hypothesis. Now, we can proceed by induction over
the structure of n. This can be achieved by using tactic
induction, that generates one goal for each constructor
of type nat. This will leave us with the following two goals
to be proved:

The goal plus 0 0 = 0 holds trivaly by the definition
of plus. Tactic reflexivity proves trivial equalities,
after reducing both sides of the equality to their normal forms.
The next goal to be proved is:

The hypothesis IHn’ is the automatically generated
induction hypothesis for this theorem. In order to finish this
proof, we need to transform the goal to use the inductive
hypothesis. To do this, we use the tactic simpl, which per-
forms reductions based on the definition of function plus.
This changes the goal to:

Since the goal now has as a subterm the exact left hand
side of the hypothesisIHn’, we can use therewrite tactic,
which replaces some term by another using some equality in
the hypothesis. Now, we have the following goal:

This can be proved immediately using thereflexivity
tactic. This tactic script builds the following term:

Instead of using tactics, one could instead write CIC terms
directly to prove theorems. This is, however, a complex task,
even for simple theorems like plus_O_r, since the manual
writing of proof terms requires knowledge of the CIC type
system. Thus, tactics frees us from the details of constructing
type correct CIC terms.

An interesting feature of Coq is the possibility of defining
inductive types that mix computational and logic parts. This
allows us to define functions that compute values together
with a proof that this value has some desired property. The
type sig, also called “subset type”, is defined in the Coq’s
standard library as:

The exist constructor takes two arguments: the value x
of type A—that represents the computational part—and an
argument of type P x—the “certificate” that the value x has
the property specified by the predicate P. As an example of
a sig type, consider:

This type represents a function that returns the predecessor
of a natural number n, together with a proof that the returned
value p really is the predecessor of n. Defining functions
using thesig type requires writing the corresponding logical
certificate. As with theorems, we can use tactics to define such
functions.

Using the command Extraction pred_certif-
ied we can discard the logical part of this function defi-
nition and get a certified implementation of this function in
OCaml [50], Haskell [23] or Scheme [16]. The OCaml code
of this function, obtained through extraction, is the following:
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3 λ-Calculus with trust types

This section reviews some motivations for the use of trust
types and gives definitions of the syntax and semantics of
the trust λ-calculus, which differ from the original defini-
tions in [38] as follows: (1) we use a small-step call-by-value
semantics, and (2) without loss of generality, we consider
only one base type: bool. Extensions to include other type
constructors are straightforward.

3.1 Motivations

Data manipulated by computer programs can be classified as
trusted or untrusted. Trusted data come from trusted sources,
like company databases, program constants, cryptographi-
cally verified network data. All other data are considered
untrusted [38].

Trust analysis is especially important in web applications,
where user input data can be used to exploit security vulnera-
bilities, using attacks such as cross-site scripting (XSS). XSS
attacks can occur when a user is able to “dump” HTML text in
a dynamically generated page [44]. Through this vulnerabil-
ity, it is possible to inject JavaScript code to steal cookies, in
order to acquire session privileges. Such a threat occurs due
to a lack of verification on input data since, ideally, HTML
code cannot be considered as valid input.

In order to avoid such invalid inputs, one can insert checks
that ensure data trustworthiness. But, how can we guarantee
that all paths, in which probably untrusted information flows,
pass all required checks? The solution proposed by Ørbæk
and Palsberg [38] is to use a type system to track the flow of
untrusted data in a program.

The language considered is a λ-calculus with additional
constructs to check if some piece of data can be trusted
and mark data as trusted or untrusted. If e is some program
expression, then trust e indicates that the result of e can be
trusted. Dually, distrust e indicates that the result of e cannot
be trusted and check e indicates that e must be trustworthy.
Well-typed programs do not have any sub-expression check
e where e has an untrusted type.

3.2 Syntax of types and terms

Type syntax is given in Fig. 2, where metavariable usage is
also given. It is exactly the type syntax of simply typed λ-
calculus with boolean constants, except that each type t has
a trust annotation to specify if t values can be trusted or not.

Fig. 2 Syntax of trust types

Fig. 3 Syntax of terms

The translation of the type syntax to a Coq inductive type is
straightforward, and is also presented in Fig. 2.

The syntax of terms consists of boolean constants, vari-
ables, abstractions and applications, and the three additional
constructs to deal with trust types, explained previously.
Figure 3 defines the syntax of terms and the corresponding
Coq data type.

The syntax of types and terms used in our formalisation is
identical to [38], except that we require type annotations in
every λ-abstraction. We restrict ourselves to type annotated
λ-terms, since our main interest is the development of a cor-
rect type checker for this language. Allowing non-annotated
λ-abstractions characterises a type inference problem that
would require a formalisation of a unification algorithm. The
formalisation of a unification algorithm has been studied else-
where [26,32]. We let a formalisation of the type inference
problem for this trust-calculus for future work.

The id type, used in the definition of term, represents a
generic identifier with a decidable function for testing equal-
ity and its simple definition is omitted to avoid unnecessary
distraction.

3.3 Small-step operational semantics

In order to prove type soundness, we follow the standard
approach of using a small-step operational semantics for
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Fig. 4 Definition of Values

proving progress and preservation theorems [39]. This dif-
fers from the approach adopted in [38], where the semantics
of the trust λ-calculus is formalised using a reduction seman-
tics, with no predefined order of evaluation, and the Church–
Rosser property and a subject reduction theorem are proved.
The Church–Rosser property ensures that computation in the
trust λ-calculus is deterministic and subject reduction guar-
antees that reduction preserves typing [2,20].

Let us first define the notion of value, i.e. a term that
cannot be further reduced according to the intended seman-
tics. We distinguish two kinds of values: primitive val-
ues and untrusted values. Primitive values (represented by
metavariable v) are boolean constants and λ-abstractions. An
untrusted value (represented by metavariable u) is a term of
the form (distrust v), where v is a primitive value. Untrusted
values arise as normal forms of terms that do not have any
check construct.

The definition of values is given in Fig. 4. Corresponding
Coq definitions for values are straightforward predicate def-
initions over term. Note that a term λ x .e is always a value,
no matter whether e is a value or not—in other words, we
can say that reduction stops at abstractions.

The small-step semantics of the trust λ-calculus is an
extension of the standard call-by-value semantics for the sim-
ply typed λ-calculus. The required extensions deal with trust
specific constructs (terms trust, distrust and check).
As usual, semantics for λ-calculi rely on substitution. For any
e1, e2 and x , we define [x �→ e1] e2 to be the result of substi-
tuting every free occurrence of variable x in e2, that follows
the standard definition of capture free substitution [2,20].

The Coq function presented in Fig. 5 encodes term sub-
stitution. Function subst replaces every free occurrence of
x in t’ for t. It is straightforwardly defined by structural
recursion over t’. In tm_var and tm_abs cases we have
to check whether x is equal to the current variable. Substitu-
tion becomes trickier to define if we consider the case where
t, the term being substituted for a variable in term t’, may
itself contain free variables. However, since our interest is
on extracting a mechanically verified type checker, our def-

Fig. 5 Coq function for term substitution.

inition of the step relation may be restricted to closed terms
(i.e. terms that don’t have free variables) and thus we can
avoid the extra complexity of dealing with the problem of
free variable capture in the formalisation of substitution.2

Figure 6 presents the small-step operational semantics.
Metavariable v denotes values and u denotes an untrusted
value, as defined in Fig. 4. Most of the rules are standard,
but some deserve attention. Rules Trustc, Distrustc,
Distrustca1, Distrustca2, Trustv and Checkv are
rules for eliminating redundant uses of trust related con-
structs. For example, rule Distrustc specifies that dis-
trusting a value twice is the same as distrusting it once. The
other contraction rules have similar meanings.

We denote by →∗ the reflexive, transitive closure of the
small-step semantics. If a term e is not a value (primitive or
untrusted), and e cannot be further reduced according to the
rules of the small-step semantics, let’s say that e is stuck. An
example of a stuck term is check(distrust true); since check
only reduces trusted values, this term does not reduce to any
other term and it is not a primitive or untrusted value.

The main purpose of the type system is to rule out all pro-
grams that contain stuck expressions such as check(distrust
t), for some term t .

The following lemma states the property that the proposed
semantics is deterministic.

Lemma 1 (Determinism of small-step semantics) For any
e1, e2 and e3, if e1 → e2 and e1 → e3 then e2 = e3.

Proof Induction over the derivation of e1 → e2 and case
analysis on the last rule used to conclude e1 → e3.

2 Several techniques can be used in order to deal with the problem
of free variable capture on substitution, such as de Bruijn indexes [7],
locally nameless representation [8] and high-order abstract syntax [14].
More about the formalisation of programming languages syntax with
variable binding can be found at [1].
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Fig. 6 Small-step Operational Semantics

4 Type system

The type system proposed in [38] is based on the Curry ver-
sion of simply typed λ-calculus. Since our main interest is the
development of a certified type-checker and proofs about the
type system, we use a variation of a Church like type system
for the simply typed λ-calculus. The type system is defined
in Fig. 8, as a set of rules for deriving judgements � � e : τ ,
meaning that term e has type τ , in typing context � (which
contains type assumptions for the free variables in e). When
e is a well-typed closed term, we omit � and simply write
� e : τ .

�, x : τ is the standard notation for extending typing con-
text � with a new assumption, after deleting from � any type
assumption for x . We let �(x) = τ if x : τ ∈ �. Typing
contexts are represented in Coq by lists of pairs of identi-
fiers and types. Definitions of typing contexts, functions and
properties over them (and their corresponding lemmas) are
straightforward.

Fig. 7 Subtyping relation

Fig. 8 Type System for λ-calculus with Trust Types

Trust annotations in types are subjected to a subtyping
relation s � s′, meaning that trust type s is a subtype of s′,
which is defined as the smallest reflexive relation (encoded as
an inductive type) such that (the only non-reflexive element
of relation � is ) tr � dis.

Using the ordering relation over trust types, a subtyping
relation over types is defined in Fig. 7.

The meaning of the typing rules for boolean constants,
variables, subtyping and abstractions is standard. Con-
stants and functions written by the programmer are consid-
ered as trusted, following [38]. The rules T-Trust and
T-Distrust “cast” the trust type of an expression to
trust and untrust, respectively, and rule T-Check
checks whether an expression has a trusted type. In rule
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Fig. 9 Functions for least upper bound over trust types

T-App, the annotated type of the actual argument is required
to match the annotated type of the formal argument. This
includes trustworthiness. The trust of the result of an appli-
cation is the least upper bound of the trust of that func-
tion result type and the trust of the function type itself.
We let s ∨ s′ denote the maximum between the trust
types s and s′.

In order to define the Coq inductive predicate for the typ-
ing relation, we need a function to compute the least upper
bound of a pair of trust types. The definitions of the least
upper bound and trust type update functions are given in
Fig. 9. Function lub_trustty has a straightforward defi-
nition and update_trusty receives as parameters a type
τ = t s and a trust annotation s′ and updates the trust anno-
tation on type τ to s ∨ s′.

We can now proceed to prove that the type system enjoys
the type soundness property. In order to do this, we need to
prove some lemmas about the typing relation, namely, inver-
sion lemmas for the typing relation and canonical forms lem-
mas [39]. We will not state each one of these “infrastructure”
lemmas here, but only sketch the key ones. Type soundness
of the λ-calculus with trust types essentially guarantees that
well typed terms do not stuck by checking trustworthiness
of an untrusted term. This comes as a consequence of two
properties: (1) progress, which guarantees that any well typed
closed term reduces to a value; and (2) preservation, that
ensures that term reduction preserves types. These results
are formalised below.

Theorem 1 (Progress) If � e : τ , then either e is a value,
or it is an untrusted value, or there exists some term e′ such
that e → e′.
Proof Induction over the derivation of � e : τ using canon-
ical form lemmas.

Lemma 2 (Substitution lemma) If �, x : τ ′ � e : τ and e′
is such that � � e′ : τ ′, then � � [x �→ e′] e : τ .

Proof Induction over the structure of e using the correspond-
ing inversion lemma for the typing relation in each case.

Fig. 10 Syntax Directed Type System for λ-calculus with Trust Types

Theorem 2 (Preservation) If � e : τ and e → e′, then
� e′ : τ ′, for some τ ′ s.t. τ ′ ≤ τ .

Proof Induction over the derivation of � e : τ and case
analysis over the last rule used to conclude e → e′, using
Lemma 2.

Corollary 1 (Type soundness) If � e : τ and e →∗ e′, then
e′ is not stuck (i.e., e′ is not of the form checke′′, where e′′
has an untrusted type).

Proof Induction over e →∗ e′ using Theorems 1 and 2.

4.1 Syntax directed type system

The type system presented in Fig. 8 has the drawback of
allowing applications of rule T-Sub at any place in the type
derivation for some expression e. This makes this set of rules
not immediately suitable for implementation. This section
presents a syntax-directed version of the type system for the
trust λ-calculus and proves its soundness and completeness
with respect to the original type system.

The syntax directed type system is presented in Fig. 10 as a
set of rules for deriving judgements of the form � �D e : τ .
The rules are almost the same as the ones in Fig. 8 except for
the application rule that now includes, as a premise, a test of
the subtyping relation τ ′ ≤D τ , which represents a function
that is true if and only if τ ′ ≤ τ holds. Termination, soundness
and completeness of the subtyping test function follows the
approach in [39] and their proofs are straightforward.
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The next theorems state soundness and completeness of
the syntax directed type system, and their proofs are in the
companion Coq scripts.

Theorem 3 (Soundness) If � �D e : τ , then � � e : τ

Proof Induction on the derivation of � �D e : τ .

Theorem 4 (Completeness) If � � e : τ , then � �D e : τ ′
for some τ ′ such that τ ′ ≤ τ .

Proof Induction on the derivation of � � e : τ .

Finally, we prove that the typing problem for the trust
λ-calculus is decidable, that is, we prove that, given a typing
context � and term e, it is decidable whether there exists a
type τ such that � �D e : τ . Because of the constructive
nature of this proof, a certified algorithm for type checking
an expression can be extracted from it. This theorem is stated
as the following piece of Coq source code.

Predicatehas_type_alg represents the syntax directed
type system of Fig. 10. Intuitively, this theorem means that
either there exists a type t such that has_type_alg ctx
e t is provable or there is no such type t.

5 Erasure and simulation

As pointed out in [38], the type system for the λ-calculus with
trust types is just a restriction of the classic (in our formalisa-
tion) Church type system for λ-calculus. This notion is for-
malised by an erasure function that converts terms, types and
contexts from the trust calculus to simply typed λ-calculus.

Intuitively, the erasure function removes trust annotations
from types, as well as trust constructs from terms. These
functions are given in Fig. 11.

Following [38], we write these erasure functions using
notation |φ|, where φ is used as a term, type or context.

Lemma 3 (Lemma 12 of [38]) For any trust types τ and τ ′
such that τ ≤ τ ′ we have that |τ | = |τ ′|.
Proof Induction over the derivation of τ ≤ τ ′.

The relationship between the trust calculus and original
λ-calculus is stated by the next theorem, where the judge-
ment � �C e : t denotes the Church style type system for
the λ-calculus presented in Fig. 12. The proof of this theo-
rem uses some lemmas relating erasure and operations over
typing contexts and types, that are necessary just for “lift-
ing” the erasure functions. Since these lemmas are simple

Fig. 11 Erasure functions

Fig. 12 Church style type system for λ-calculus

consequences of these function definitions, they are omitted
here.

Theorem 5 (Erasure) If � � e : τ , then we have that
|�| �C |e| : |τ |.
Proof Induction over � � e : τ .

For any well typed term, we can erase all trust,
distrust and check constructs and evaluate the resulting
term using a standard semantics of λ-calculus. In practice,
this means that after type-checking a term, we can erase all
trust related constructs and evaluate the term without any
performance penalties [38]. This fact is expressed by the fol-
lowing theorem.
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Theorem 6 (Simulation) If � e : τ and |e| →∗ e′ then
there exists e1 such that e →∗ e1 and |e1| = e′.

Proof Induction over e.

6 Related work

Language support. The use of language based techniques for
protecting information has as its most prominent example the
security mechanism implemented by the Java run-time envi-
ronment, which defines a set of security policies for applets
[30,54].

Recently, an extension of Haskell was designed to deal
with some language features that can be used to bypass the
type system, referential transparency and module encapsula-
tion [51]. The approach used by Safe Haskell is to classify
modules and packages as safe, trust and unsafe based on
its source code or in compiler pragmas that can be used to
declare a possibly unsafe module as trustworthy. The Safe
Haskell extension is available in the GHC compiler version
7.2 [45]. The authors used it to implement a web-based ver-
sion of a Haskell interpreter, but no formal description of the
safety inference process was given.

Type systems for security. The work of Volpano et al. was
the first to use type systems to enforce security policies by
a compiler [52]. They defined the lattice based analysis pro-
posed by Denning in [15] as a type system for a prototyp-
ical imperative language with first order procedures. Their
type system relies on polymorphism, thus allowing that com-
mands and expression types depend on the context in which
they occur. The calculus proposed by Ørbæk and Palsberg in
[38] does not support polymorphism as well as our formal-
isation. In order to provide polymorphism in the λ-calculus
with trust types, we need to deal with the combination of
structural subtyping and parametric polymorphism that was
developed in [22,47]. We leave this extension for future
work.

Another proposal for a type system for ensuring security
was described in [19], where a type system for a purely func-
tional language was given and extensions like concurrency
support were also discussed. The core calculus presented in
[19] supports products and sums types and their related term
constructs (projections and case expressions, respectively)
and they prove type soundness results for closed expressions
like the present work. Extending the formalisation of the
λ-calculus with trust types with sum and product types is
straightforward (e.g. [39, Chapter 15]).

The JFlow type system [35] is used in a language that
extends Java with security types. Unlike other works in secu-
rity type systems [52,19], JFlow applies the idea of a type
system to ensure security policies over information flow on a
full programming language, but no formal soundness proof is

presented. A production compiler for this language is avail-
able [34] and was used in the development of a secure vot-
ing system [13]. Later, Simonet et al. uncovered a couple of
flaws in JFlow type system [41], during his development of
an extension of ML with types for information flow control,
called Flow-Caml [42]. Following ML tradition of provid-
ing full type inference, Simonet developed a type inference
algorithm for polymorphism and subtyping that was used as
basis for Flow-Caml type system [47].

Barthe et al. [4] describe a security type system for a low
level language with jumps and calls and prove that infor-
mation flow types are preserved by the compilation from a
high level imperative language. A mechanised proof that the
type system proposed in Barthe’s work is sound was given in
[24], using the Coq proof assistant. Compared to the present
work, Kammüler’s formalisation deals with the problems of
the lack of structure present in low level languages which
make control flow more intricate than in a pure functional
language.

As pointed out by Ørbæk and Palsberg in [38], security
analysis focus on avoiding that classified information leaks
out of a system to unprivileged users. The formalised type
system ensures that untrustworthy information does not flow
into the system. So, a trust type system can be seen as the
“dual” of security type systems.

Use of Proof Assistants. Proof assistants have been used
with success in several verification tasks. The Compcert
project aims to develop a certified C compiler for embed-
ded systems programming, using Coq proof assistant [27].
Several intermediate results were reported such as a mech-
anisation of a subset of C semantics [6], verification of the
Compcert back-end [28] and a formalisation of C memory
model [29]. The works of Chlipala describe compilers for
small functional languages also using Coq proof assistant
[10,11] and proofs about low level programs using separa-
tion logic [12]. The main differential of Chlipala works was
the use of dependent types and proof automation to enable
maintainability of proof scripts. Coq was also used with suc-
cess in the formalisation of well known mathematical theo-
rems such as the four colour theorem and the Feit–Thompson
theorem by Georges Gonthier team at Microsoft-INRIA joint
research center [17,18].

Agda is a dependently typed language [37], based on Mar-
tin Löf’s type theory [31], that can be used as a proof assistant.
Licata et al. [33] developed a library, called Aglet, for embed-
ding secure-typed programming in Agda. Security policies
are, in Aglet, proof terms that ensure some security policy.
In order to ease the task of writing proof terms, this library
provides an implementation of proof search procedure.

Isabelle/HOL [36] is a proof assistant that has been used
in several projects like the formalisation of a general purpose
operating system kernel, in which C code can be extracted
from the produced Isabelle theories [25]. The Archive of
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Formal Proofs [21] is a online repository for Isabelle develop-
ments that contains several formalisations of programming
languages and mathematical theorems, such as the formal
proofs of Volpano et al. type system for security [48,52].

A common issue in the formalisation of programming lan-
guages metatheory using proof assistants is how to deal with
languages whose syntax supports variable binding. The main
issue with variable binding is the possibility of variable cap-
ture in substitutions. Several techniques were developed to
avoid variable capture such as de Bruijn indexes [7], high-
order abstract syntax [14], locally nameless [8] and nominal
logic [40]. For a detailed survey on binding techniques we
refer the interested reader to [1]. In our work, we decided to
avoid the extra complications of dealing with binding tech-
niques (such as de Bruijn indexes and high-order abstract
syntax) considering the formalisation of typing properties
for closed terms only. There is a library for using the locally
nameless approach for Coq proof assistant [9], but it relies on
nonconstructive features that would not allow us to extract a
verified type-checker from the developed formalisation.

7 Conclusion

We presented an axiom-free, fully constructive Coq formal-
isation of λ-calculus with trust types. The major differences
between the original formulation of the trust λ-calculus and
its presentation in this work is the use of a small-step seman-
tics, instead of a reduction semantics, and a Church style,
instead of a Curry style, type system. This allowed us to give
concise proofs of type soundness, erasure and simulation the-
orems.

We also presented a syntax directed formulation of the
original type system, that is sound and complete with respect
to the former. Decidability of type checking is proved using
this syntax directed version and a correct type checker can
be extracted from this proof.

Future directions for extending this work include: (1) a
reviewed formalisation which deals with free variables cap-
ture on substitutions, that could be used as a basis for the
formalisation of other properties of the calculus; (2) modi-
fying the type system in order to account for polymorphism;
(3) formalising the type inference problem for the calculus
and extracting a certified type inferencer; and (4) extending
the calculus to a high level functional language.
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