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Abstract An automatic music transcriber is a device that
detects, without human interference, the musical gestures
required to play a particular piece. Many techniques have
been proposed to solve the problem of automatic music tran-
scription. This paper presents an overview on the theme, dis-
cussing digital signal processing techniques, pattern classi-
fication techniques and heuristic assumptions derived from
music knowledge that were used to build some of the main
systems found in the literature. The paper is focused on the
motivations behind each technique, aiming to serve both as
an introduction to the theme and as resource for the develop-
ment of new solutions for automatic transcription.
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1 Introduction

The task of transcribing a musical piece consists of identi-
fying the musical gestures that are required to reproduce it,
based on the corresponding acoustic signal. Through tran-
scription, a vector representation of the musical signal is
obtained, which allows the analysis of several semantic fea-
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tures related to the acoustic signal. Since the end of the 1970s,
many systems for automatic music transcription (AMT) have
been proposed. However, no generic and robust solution has
yet been obtained.

Applications for AMT are all systems that receive acoustic
signals as input, but are more effective if a symbolic repre-
sentation is provided. Among them, there are some already
implemented and usable by end-users, such as query-by-
content databases [62] and educational software [17,117,
121], but improvements in the field will allow the construc-
tion of applications that require a greater accuracy, such as
music analysis and documentation devices.

Research on the theme is necessarily multidisciplinary,
involving digital signal processing, machine learning and
musical models. Therefore, researchers have split the prob-
lem into many different sub-problems. The construction of
a complete AMT system involves understanding all those
sub-problems and properly integrating the required solutions.
Also, progress in the development of new solutions requires
understanding how the existing methods are related to the
mathematical models for auditory phenomena. This means
that an overview of the problem, covering not only the tech-
niques themselves, but also the underlying motivations and
the context in which they were developed, is of great impor-
tance.

Aiming at providing that understanding, this paper
presents an overview on automatic transcription of music.
The text includes conceptual remarks, discussions and his-
torical overviews on how specific solutions fit the problem
and what are their main advantages and drawbacks. It aims
to serve as a resource for the development of new solutions
for the problem, but may also be used as an introduction to
the theme. For more specific technical details, the reader is
encouraged to refer to the bibliography or to textbooks such
as [57].
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This paper focuses on systems designed to work on poly-
phonic signals, that is, those in which more than one note
can be played at the same time. The transcription of mono-
phonic audio has been largely studied, and many efficient
solutions for it have been proposed. Research effort on auto-
matic music transcription, nowadays, is directed towards the
more difficult problem of transcribing polyphonic audio.

The organization of this paper is as follows. Section 2
brings some remarks on psycho-acoustics, on how basic mod-
els are related to simple auditory sensations and on con-
ventions used for music notation. In Sect. 3, digital signal
processing techniques for obtaining proper representations
of the signal, allowing further classification, are discussed.
Section 4 addresses the problem of finding discrete notes
using the previously obtained data. Section 5 shows the dif-
ferent transcription problems tackled in the literature, and
how their different characteristics are important in order to
build an automatic transcriber. The evaluation of automatic
transcription systems is approached in Sect. 6. Further dis-
cussions are conducted in Sects. 7 and 8 concludes the text.

2 Signals, notation and sensations

An audio signal is a signal that can trigger auditory sensa-
tions. Although this definition may involve diverse signals,
some restrictions are normally used, based on the limits of
the average human hearing. Thus, in general, an audio signal
is assumed to be a variation in the air pressure x(¢) with fre-
quency components in the range of 20 Hz to 20 kHz. The char-
acteristics of this sound pressure variation may be controlled
by a musician, either using their own voice and body or inter-
acting with musical instruments using proper gestures. When
the sound pressure variation is a harmonic signal, that is, x ()
is the sum of sinusoidal components whose frequencies are
multiples mF of a fundamental frequency (F0) F, as in

M
x(t) =D AncosQrmFt + ¢y), (1)

m=1

it triggers an auditory sensation called pitch [51], which
allows classifying sounds in a scale that goes from bass to
treble [77].

In Western culture, music is traditionally played using a
discrete set of pre-defined pitches [51]. Each one of these ele-
ments is called a musical note. Although there are different
techniques for tuning notes, it is generally accepted, for auto-
matic transcription purposes, that FO values are drawn from
an equal-tempered scale, defined by steps (or semitones) cor-
responding to a frequency ratio of /2. For historical rea-
sons, notes were called A, A# (or Bb),1 B, C, C# (or Db),
D, D# (or Eb), E, F, F# (or Gb), G and G# (or Ab), in a total

' A# is read as “A sharp” and Bb is read as “B flat”.
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Fig. 1 Example of traditional Western musical score

of 12 different tones, comprising one octave. In that notation,
it is possible to refer to the octave of a specific note using a
number, e.g., A4 is note A in the fourth octave. As a conse-
quence of the method for the construction of the scale, the
fundamental frequency assigned to the note A3 is half the
one related to A4 and so on. Conventionally, the note A4 is
tuned so its fundamental frequency is 440 Hz, and this allows
defining the FOs of all other notes by applying the /2 ratio.

In order to execute a musical piece, the musician generally
follows instructions to play a particular sequence of musical
notes. These instructions may be taught by cultural tradition,
but written notations were developed across history. Differ-
ent forms of musical notation have arisen, each one being
more adequate to specific forms of playing, understanding
and composing music [54].

In the Western culture, a common form of notation is the
score, as shown in Fig. 1. In this notation, each note to be
played is represented by a symbol (a vertical line and a note-
head) in a staff with five lines. Details on the symbol describ-
ing each note are used to represent its duration, that is, for how
long the note should be played, and the vertical positioning of
each notehead describes which note should be played. There
are many other characteristics of music that may be written
in a musical score, but a complete description is beyond the
scope of this paper.

It is important to notice that the score notation presents
relative timing, that is, note durations are represented as a
ratio of each other, and not as absolute values. This allows
a particular piece to be played faster or slower, according to
the interpretation of the musician. Less freedom is given to
the interpreter by using a notation that is more accurate in
time, for example, a piano-roll. In this notation, each note
event is represented by its onset and offset (that is, the exact
time when the note should start and stop playing), and its
pitch. For the purposes of inter-device communication using
the MIDI protocol, the pitch of each note is described by an
integer (called MIDI number) calculated by:

F
=69+ 12logy —. 2
p +12log, 776 )

Because of the extensive use of MIDI devices in the
context of electronic music, the piano-roll notation is often
referred to as MIDI notation. The piano-roll related to a par-
ticular piece may be visualized in a Cartesian plane, where
the y-axis represents the pitch p and the x-axis represents
time. This representation may be seen in Fig. 2.

All kinds of notation have their own advantages and draw-
backs. For example, although the piano-roll notation allows
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Fig. 2 Example of a piano-roll and the related acoustic signal, which
was synthesized from the score in Fig. 1

one to know exactly what is the duration intended for each
note, it is not as easily readable or interpretable by a human
being as the traditional score.

In order to obtain the transcription of a particular piece,
it is necessary to define the symbols that best describe the
piece considering the desired notation. When the transcrip-
tion process is performed by a device without human inter-
ference, it is called automatic transcription. Transcription of
music is only possible because auditory sensations related
to different musical gestures are distinguishable. To build
an automatic transcriber, it is necessary to understand the
relationship between these sensations and particular signal
models, as well as the conditions under which these models
work.

2.1 Pitch

The harmonic model in Expression 1 is known to be overly
simplistic, as audio synthesis derived directly from that
model is easily recognized as artificial. However, it is still
used in many audio-related applications. There are several
methods to detect the fundamental frequency (and, there-
fore, the pitch) of a harmonic signal. Hence, if only one note
is played at each time instant (in this case, the audio signal
is said to be monophonic), the application of the model in
Expression 1 is straightforward. When J notes are played
concurrently, the resulting signal may be described as

J M;

YO =D A jcosQamFj + ). 3)

j=1m=1

The sensation that arises from hearing this signal is that of
a sum of sounds with different pitches. This is what happens
when more than one note of a piano, for example, is played
at the same time.

Both Expressions 1 and 3 can only be used in stationary
excerpts, that is, while musical notes are sustained. When

transient behavior is found, e.g., during note onsets, differ-
ent signal characteristics are found and, therefore, different
techniques are necessary to detect them, as will be further
discussed.

2.2 Onsets

Onsets of new musical notes may be detected by a change
on the stationary behavior of the signal. A complete tutor-
ial on the detection of onsets was written by Bello [8]. Note
onsets may be detected using typical characteristics of start-
ing notes, which are:

1. Increase in the signal power, for notes with sharp attacks,
like a plucked string.

2. Change in the spectral content (that is, the frequency dis-
tribution of the signal power), for soft attacks, like a glis-
sando in a violin.

These assumptions may be used as an inspiration to build
DSP algorithms for finding onsets. These algorithms often
rely on the estimation of the progress of the frequency content
of the audio signal, which leads to the well-known time-
frequency resolution tradeoff [78]. For many years, research
focused on obtaining better frequency estimations for short
time audio frames, aiming at reaching a better estimation of
pitches and onsets. These techniques, called transforms, are
discussed in the next section.

3 Transforms

AMT is, generally, performed by digital computers. This
means that the acoustic signal is considered a sequence of
discrete values. At the same time, it is noticeable that onsets
are generally spaced by a fair amount of time—at least some
tenths of seconds. Hence, if a random frame of short length
is taken from a music signal, it will, with high probability,
contain a stationary signal. Therefore, a common approach
to AMT is dividing the input signal into frames, operating
separately in each frame and then combining the results to
obtain the transcription.

There are many different techniques to estimate the fre-
quency components of a specific frame. The inspiration
behind those techniques will be discussed below.

The model in Expression 1 can be interpreted as a Fourier
series representation. This means that the Fourier transform
of the signal x(¢) is composed of a series of Dirac delta func-
tions positioned at frequencies mF. The transform, however,
is calculated in its discrete form—the DFT—using the sam-
pled signal.2 x[n] = x(nt/fs) in a short time frame, as in:

2 In the sampling expression, f; is the sampling frequency.
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N-1 ,
X(k1=> x[nle " (4)
n=0

The DFT is a linear transform whose magnitude is inde-
pendent of the phase component of the time-domain sig-
nal. Hence, |X[k]| does not depend on any component
¢j.m of the signal in Expression 3. Also, it presents high
energy components—Ilobes—in positions that correspond to
the frequencies m F;. Since the DFT is generally calculated
over a short time interval, these lobes have a characteristic
bandwidth, which evokes once more the problem of time-
frequency resolution.

An early attempt to design an automatic music transcriber
using the DFT was made by Piszczalski [87], who noticed
that, by analyzing the two highest peaks of the DFT, it is pos-
sible to determine the fundamental frequency of a single note
in the monophonic case. Later, Privosnik [89] observed that,
in Piszczalski’s transcription system, there are cases that fail
due to the poor frequency resolution. Privosnik [89] spec-
ulates that a variable resolution transform, like the Wavelet
transform, could be a good solution for this problem.

Keren [55], and later, Hsu and Jang [52], use the multi-
resolution Fourier transform (MFT), which consists of cal-
culating magnitude coefficients using different time-domain
resolutions. This aims to improve the time-domain resolu-
tion for higher frequencies, while the frequency-domain res-
olution is improved for lower frequencies. Also, the MFT
uses prolate-spheroidal functions as bases for the transform,
instead of the complex exponentials used in the DFT. Prolate-
spheroidal functions have a considerably compact represen-
tation in both time and frequency domains [120], which
allows a limited time-domain frame to be represented by a
low number of coefficients in the frequency domain.

Sterian [106] uses the modal transform (MT) [86], which
adaptively modifies the basis function in order to minimize
the bandwidth of each lobe, so that x[n] can be repre-
sented by fewer coefficients in the frequency domain. After-
wards, Sterian [107] proposed modifications to the MT that
improved its potential use in musical applications.

It is important to notice that the DFT may be interpreted as
a filter bank. Therefore, a filter bank designed specifically to
solve the AMT problem may be potentially functional. The
music transcription systems proposed by Moorer [71] relies
on filter banks to detect the energy of each harmonic. Miwa
[70] uses linear oscillator filters to remove harmonic signals
with known fundamental frequencies, so that the filter that
eliminates the most energy of the signal indicates the exis-
tence of a musical note. Marolt [66,67] uses filter banks with
logarithmically-spaced center frequencies, aiming to simu-
late the behaviour of the human cochlea [81]. This process
yields a multi-channel signal that aims to be more correlated
to the information that is provided to the human brain. A
similar approach is used by Gillet [39].

@ Springer

The idea of using a multi-resolution time-frequency fil-
ter bank had been previously proposed by Brown [20], who
developed the constant-Q transform (CQT). This transform
uses complex exponential bases, similarly to the DFT, but
the frame length is different for each coefficient, so that the
ratio between the bandwidth of a spectral lobe 6 f and the fre-
quency f, given by Q = f/4f, is kept constant. Therefore,
to obtain the k-th frequency bin of the transform, it is nec-
essary to use N[k] = f/%fs Q time-domain coefficients. The
transform 1is calculated using a complex exponential basis
and each component is normalized:

Nlk]—1 27iOn

X[] x[n]e” NI (5)

Nk] =

The CQT was used by Chien [23], and later, by Costantini
[24-26], Benetos and Dixon [11] and Kirchhoff et al. [56].

In another attempt to improve the time-frequency resolu-
tion, Hainsworth [46] used a technique called time-frequency
reassignment (TFR), which was proposed by Kodera [59].
This technique consists of reallocating the energy of a DFT
coefficient to a close position in the frequency domain, con-
sidering the behavior of three subsequent frames. It allows
the resolution of the DFT to be enhanced by improving the
precision of the frequency estimation related to each coeffi-
cient. However, the TFR technique does not allow the sep-
aration of spectral lobes that have not been resolved pre-
viously (i.e., merged lobes will not be split), which may
worsen its performance in lower frequencies. Later, Barban-
cho [6] proposed to first estimate the onset and offset of each
note and then calculate a lengthier DFT using an adaptive
window.

The problem of improving the time-frequency resolution
was also addressed by Foo [36], who designed a fast filter
bank (FFB) in which the transition between the pass band and
the rejected band of each filter is masked by the response of
the other filters [63]. The FFB provides a frequency-domain
representation for the signal in which spectral lobes are nar-
rower than those yielded by the DFT. Foo [36] observed that
by applying the FFB instead of the DFT improved the per-
formance of the AMT system.

In a more recent work, Triki [113] verified that, in acoustic
signals, each harmonic partial is modulated in both amplitude
and frequency. Therefore, he proposed a frequency domain
transform in which the chosen bases may, under some math-
ematical constraints, change in amplitude and frequency as
a function of time. By choosing bases that are more cor-
related to the input signal, it is possible to obtain spectral
representations in which relevant coefficients are more con-
centrated. Although more accurate, it demands iterative esti-
mation methods, which cause a great loss in speed.

Another possible transform to obtain a frequency domain
representation is the chroma spectrum. Used by Oudre
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Table 1 Reference table for transforms

References Technique

[87,89]
[39,66,67,70,71,81]

Framewise DFT

Specialized filter banks for
detection—different approaches,
all based on the harmonicity
principle for pitch generation
(Expression 1)

[52,55] Multi-Resolution Fourier Transform [120]

[106] Modal Transform [86]

[11,23-26,56] Constant-Q Transform [20]

[46] Time-Frequency Reassignment [59]

[36] Fast Filter Bank [63]

[6] DFT limited by pre-detected onsets/offsets

[113] Bases are modulated in amplitude and
frequency

[79,80] Chroma spectrum

[79,80], it consists of a frequency domain spectrum in which
there are only 12 coefficients, each corresponding to a spe-
cific musical note (octaves are ignored). In this transform, all
energy related to the fundamental frequencies corresponding
to a note is concentrated in a single coefficient. For example,
the coefficient corresponding to A will be the combination
of all energy concentrated on 55, 110, 220 Hz, and so on.

The time-frequency resolution tradeoff is an important
problem in AMT. Although more accurate models for obtain-
ing frequency-domain representations have been broadly
studied, it is noticeable that, lately, the conventional DFT
has been preferred over other transforms. That is because the
DFT presents some advantages. First, it allows exact recon-
struction of the original signal from the transform, which
means that all information contained in the time-domain sig-
nal is also contained in the frequency-domain representation.
Since musical notes are macro events comprising several sub-
sequent DFT analysis windows, it is reasonable to assume
that all necessary information to characterize musical notes
is present in the DFT magnitude spectrum. Last, the DFT is
broadly studied and its behavior is well-known.

Martin [68] states that most errors of his AMT system
are due to the existence of harmonically related consonant
notes. This is caused by ambiguities related to the sum of
harmonic signals, as in Expression 3. In that model, if a partial
is found, it is impossible to determine with 100 % accuracy
the harmonic series to which it belongs. For that matter, it is
necessary to use more complex decision systems, which will
use the information from the frequency-domain to find the
correct fundamental frequencies of those harmonic series.
These will be discussed in the next section.

Table 1 summarizes the information presented in this sec-
tion, showing what techniques were used to obtain the fre-
quency domain representation of the audio signals analyzed.

It is important to note that, although the multi-resolution
analysis may prove useful, many recent, state-of-the-art
methods rely on a simple framewise DFT analysis.

4 Pattern classification techniques

The final goal of an automatic music transcriber is to obtain
a proper description of the musical gestures that have been
performed to generate the signal received as input. According
to discussions in Sect. 5, that means to infer the pitch, the
onset and the offset of each note. The harmonic model in
Expression 1 implies that it is necessary to detect what are
the frequency partials of a frame of audio in order to infer the
pitches of the active notes in that frame. As seen in Sect. 3,
there are many different methods to highlight these partials,
but, so far, this text has discussed approaches that explicitly
decide what are the pitches of the active notes at some time.

The simplest technique to detect partials is based on peak-
picking and thresholding in the frequency domain, which
corresponds to selecting all local maxima whose absolute
value is above a pre-defined threshold [60,68,106,108,113].
A slightly more complex approach involves low-pass filter-
ing the DFT of the analyzed signal so that spurious peaks
are eliminated [7]. Another simple operation that may be
performed is to apply a parameter estimation algorithm.
Hainsworth [45] uses the method proposed by MacLeod [64],
which works by obtaining parameters according to a maxi-
mum likelihood criterion. In the system proposed by Moorer
[71], sub-harmonic spurious components are eliminated by
disallowing fundamental tone candidates that do not present
even harmonics.

Once the parameters (magnitude and frequency) of the
existing partials are found, it is necessary to group them in
order to find musical notes. Piszczalski [87] simply assumes
that only a single note sounds at each time frame, without
any other noise. This is not true in the general case, but may
represent some specific, useful cases, like solo flute or voice.
Sterian [106] proposes using multiple time frames, group-
ing partials that do not change in magnitude or frequency by
more than a pre-defined threshold. The result of this group-
ing process is a set of tracks, which are grouped using the
harmonicity criterion. Tanaka [108] uses a rule-based sys-
tem that groups partials considering that they start and end
in similar instants, their amplitudes change slowly and they
are harmonically related. Lao [60] and Triki [113] add a
rule according to which all partials of the same series must
have a similar amplitude. Hainsworth [45] separates the tasks
of finding notes and classifying them, so that an algorithm
based on framewise energy variation finds note onsets and,
after that, notes are classified according to the found partials.
Similar approaches were also used by Rao and Rao [92] and
Uchida and Wada [114]. Finally, Dressler [31] used a chain
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of pitch formation rules to detect the predominant pitch in an
existing mixture.

The process of peak-picking and thresholding is interest-
ing because it filters a great amount of noise and yields few
data points. This allows the extraction of information with
rule-based systems that rely on psycho-acoustic principles.
On the other hand, when a higher number of musical notes are
present, this process comprises two phenomena. First, peaks
related to partials of different notes will merge, which means
that peak-picking becomes more likely to fail. Second, since
there may exist a great difference between the loudness of
the mixed notes, finding a suitable threshold level will tend
to be a harder task.

When the coefficients of a particular frame are interpreted
as a vector, the problem of characterizing events in that frame
may be considered as a pattern classification problem [33],
and many techniques, specifically designed for solving clas-
sification problems, may be used.

A pattern classification technique is an algorithm that
receives as input a set of characteristics o and yields a label
s(0) as output. This label characterizes the class to which
the object—in this case, the frame—belongs, based on the
characteristics 0. The transcription systems discussed up to
this point may be considered rule-based pattern classifica-
tion systems, which are designed taking into account spe-
cialist knowledge. The techniques that will be discussed in
the following, however, also gather information from a train-
ing dataset.

Artificial neural networks are broadly used classifiers,
with the multi-layer perceptron (MLP) being the most
emblematic representative [50]. This ANN architecture is
based on calculating the function:

- 1CED)]

where the matrices A and B, obtained by supervised training,
contain weight parameters, x is an input vector, y is an output
vector and f(.) is a sigmoidal function [50], like tanh(.).

The mathematical model in Expression 6 is shown to be
capable of universal approximation, that is, it is mathemati-
cally capable of modelling any function. Obtaining the para-
meters that yield the approximation of a particular function
depends on a supervised learning algorithm, generally using
a gradient descendent approach that iteratively minimizes
the approximation error for a given dataset, but often leads
to local minima [33].

It is important to notice that, in the domain of a trans-
form that presents the characteristics discussed in Sect. 2.1,
the magnitude of a particular coefficient may indicate the
existence of a frequency component, its non-existence or
a state of doubt about its existence. A possible mathemat-
ical model for these states is a sigmoidal function f(x).

@ Springer

For x — =00, the function assumes negative or positive
saturation values, which represent either existence or non-
existence, and for intermediate values the sigmoid function
presents a smooth transition, which represents an increasing
value for the hypothesis of existence of the component. MLP
networks were used in [9,55,66,67,89], in which one com-
plete network is designed to detect if a particular note is active
or inactive; therefore, there are as many networks as possible
notes to detect. By using multiple networks, the dimension of
the input is considerably reduced, which decreases the sus-
ceptibility of the network to converging to local minima and
having sub-optimal performance.

In order to avoid local minima, recent works have preferred
to use support vector machines (SVM). A SVM is a machine
learning technique that does not minimize an approxima-
tion error considering a dataset, but maximizes the distance
between the clusters that are to be classified. The training
step is unimodal and performed in a single pass (that it, it is
not necessary to iterate several times over data, as it is the
case for MLP networks). SVM variations were used in [24—
26,37-39,88,112,119] to classify musical notes and chords
using short time spectral representations, and in [112,118] to
classify the timbre of already labeled musical notes.

Recently, deep-belief networks (DBNs) were applied to
the problem of transcription by Nam et al. [73]. These net-
works can be briefly explained as a multi-layer neural net-
work in which each layer is trained independently. DBNs
have shown to yield better results than those obtained using
SVMs in the databases used by the authors.

Neural networks tend to produce a black box machine,
that is, the final transformation obtained may not correspond
to the way a specialist would reason over the problem. A
more semantically meaningful approach to obtain detection
functions is to use probabilistic techniques, which also play
an important role in music transcription. Among those tech-
niques, it is important to discuss the Bayesian classifier. This
decision technique relates a vector of observations o to the
strength of the hypothesis that the observed object belongs to
the class s ;, using two factors. The first is the probability that
o is generated by using a known model of the class behav-
ior, which gives P(ols;). The second is the prior probability
of the class s;. Using the Bayes theorem, the probability of
finding the class s; given the observation vector o is:

P(ols;) P(s))

P(sjlo) = P)

)

Since P (o) is equal for all candidate classes s, the deci-
sion algorithm may discard it and simply choose the class
given by argmax; P(o[s;)P(s;).

Expression 7 produces a decision system with theoret-
ical minimum probability of error (MPE), which means
that Bayesian decision systems may, ideally, reach the best
possible classification performance, given the input data.
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However, both P(ols;) and P(s;) are unknown and must
be estimated, which bounds the performance of the classifi-
cation systems to the quality of the estimation [33]. Bayesian
decision systems were used in [22,41,58,105,111].

When dealing with framewise classification of musical
signals, it must be noted that there is a strong correlation
between the classes of adjacent frames, because there is a
good chance that no new note events happened between these
frames. This means that the prior probability of observing a
specific class depends on the previous decision.

This premise is used in hidden Markov model (HMM)
structures [90]. HMMs are discrete-time systems in which
the g-th state depends on the state in the instant ¢ — 1, that is,
P(sjq) = P(sjq4lsj,q—1), whichis a property ignored by the
Bayesian decision process. Each state may be interpreted as a
classification decision, and, with a carefully chosen topology,
states will represent the desired musical events. HMMs were
used in [37,53,93,96,98,101], with different topologies and
data sets.

The same way that probabilistic approaches allow the use
of a wide framework of theorems and proven results, another
important framework of such kind—the linear algebra—may
be used. In this case, a very common model for the detection
of musical notes is:

X = BA. ®)

In this model, each column x, must contain a short time
frame of the input signal, in a vector representation that does
not change significantly if the pitch itself does not change—
for example, the absolute value of the DFT of that frame.
The representation x,, is factorized as a combination a, of
the basis vectors stored as columns of the B matrix, hence
x, ~ Ba,. Therefore, ay 4 is the strength of activation of
the d-th basis vector during time frame g. Also, the model
inherently has a non-negativity constraint, which holds at
least for A since it does not make any sense to have a note
“subtracted” from the mixture. The representation used in
this model is, in general, some kind of spectrogram, hence the
values of X and B are also non-negative. Therefore, finding
the factors B and A is often referred to as “non-negative
matrix factorization” (NMF).

Since the factorization model in Expression 8§ is inexact,
an approximation must be calculated. This depends on the
choice of a suitable error measure. The first one that was
used in AMT was the Euclidean distance, that is, the error €
is given by:

€ =|X—BA]. )

Smaragdis [103] used an iterative gradient-based approach
to obtain both B and A from a spectrogram X . Although it is
a non-supervised learning technique, experiments show that
B usually converges to basis vectors corresponding to notes
and A converges to their corresponding activation weights.

Additionally, Smaragdis [103] observed that note events that
are never found separately (notes that are never out of a chord)
are notrecognized by the system, and, at the same time, some
spurious events are recognized. Later, Bertin [13] showed that
NMF yields better results than a singular value decomposi-
tion (SVD). Sophea [104] and Vincent [115] proposed the
use of prior knowledge on the pitches, both restricting the
values on the base matrix B so that only values correspond-
ing to the fundamental frequency and the overtones would be
allowed to be different than zero. In parallel, Grindlay [43]
used instrument data to obtain the base matrix B straight from
data, hence it would not have to be updated while searching
for the values of A.

Bertin [14] converted the usual NMF approach to a prob-
abilistic framework, in which the values of the spectrogram
and the factor matrices are interpreted as probabilities. This
was useful to connect the factorization results to a hypothe-
sis of temporal smoothness, that is, the expectancy of notes
lasting for long time intervals was incorporated to the sys-
tem. This probabilistic framework is called “Bayesian non-
negative matrix factorization” and was later used in experi-
ments for automatic transcription of polyphonic music [15].
A similar technique, namely, probabilistic latent component
analysis (PLCA), was used by Han to solve the problem of
transcription [48]. Although the calculations performed in
the Bayesian approach may be modelled as matrix factor-
ization problems, the use of a probabilistic framework may
allow not only a more meaningful interpretation of both the
results and the hypothesis over which the system is built on,
but also the use of an important set of tools and algorithms,
as seen above.

Under the hypothesis that the base matrix B is informed
a priori, it is possible to interpret the factorization of each
column of X, in Expression 9, as an independent problem,
that is:

€ = llxq — Bay|| (10)

with the constraint that a; 4 > 0, Vd, thus obtaining the
corresponding weight vector a,.

The hypothesis of time independency allows the construc-
tion of causal algorithms for transcription, which is a pre-
requisite for real-time applications. A gradient-based rule
may be used, but an algorithm specifically designed to solve
the problem in Expression 10 was proposed by Hanson and
Lawson [49]. It was used in the context of AMT by Nieder-
mayer [74], Mauch and Dixon [69] and Tavares et al. [109].

Bertin [16] observed that the Euclidean distance may not
be the best error measure for the approximation of Expression
8, using the Itakura-Saito divergence instead, defined as:

X X
€r(xly) = - —log— — 1. (11)
y y
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Bertin [16] argues that this divergence could be more suit-
able for transcription because it is invariant to linear gain (that
is, d(x]y) = d(x[2y)).

However, the Itakura—Saito distance is not convex, as
opposed to the Euclidean distance. For this reason, Bertin
proposes using the §-divergence, given by:

P41y —payP~!

=y . BeM\{0, 1}
eg(xly) = x—log;—i+(x—y), B=1 (12)
’;‘—log’ﬁ—l, B=0.

Since the S-divergence is convex for € [1, 2], Bertin
[16] proposes minimizing the cost function for § = 2 and
then gradually reducing it until it converges to zero, in which
case the B-divergence is equivalent to the Itakura—Saito diver-
gence. The -divergence was also used by Dessein et al. [29],
simply assuming 8 = 0.5.

The factorization problem in Expression 8 is close to a
source separation problem, in which a number of sources are
mixed into different channels. In this case, the sources are
the individual notes, each with its own activation level, and
the mixture is the final spectrogram. Obtaining the factor-
ization B A, under this assumption, is equivalent to solving
a blind source separation problem. This interpretation was
used by Abdallah [1] and later, by Boulanger-Lewandowsky
et al. [19], to build a transcription system based on the
assumptions that the activation of the notes is independent
and the activation matrix is sparse, that is, few notes are
active at each frame. A similar idea was used by Vincent
[116], who also incorporated the idea of time dependency
for notes and applied the system to recordings, instead of
the synthesized harpsichord samples used by Abdallah [1].
The fact that few notes can be played at the same time was
exploited by Tavares et al. [109], who applied computer
vision techniques to detect which notes can be played in
a vibraphone given the position of the mallets, restricting
the search space and reducing false positives. Lee et al. [61]
incorporated sparseness in the factorization process by min-
imizing the L1 norm, shown in Expression 13, in the factor-
ization process

N
Lxly) =D 1% = yall. (13)
n=1

Benetos and Dixon [11] observed that, in the constant-
Q transform (CQT) domain, templates assigned to differ-
ent notes are equivalent to shifting other templates in the
frequency domain. Later, Kirchoff et al. [56] improved this
approach, allowing the use of more than one spectral tem-
plate per note. The property of shift-invariance was indirectly
used by Argenti et al. [4], who used 2D (time-frequency)
templates for musical notes, hence considering the spectral
changes that happen during the execution of a musical note.
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Although factorization methods have shown to be effec-
tive, they are computationally expensive and may become
prohibitive for large, real-time problems. An inexact solu-
tion, however, may be obtained by using the Matching Pur-
suit algorithm proposed by Mallat and Zhang [65]. This
algorithm consists of iteratively selecting, within the dic-
tionary B, the vector whose inner product with the input
vector is the greatest. The base function is subtracted from
the input so that it becomes maximally orthogonal to that
base function, and then the algorithm proceeds by analyz-
ing the remainder of that subtraction. The matching pur-
suit technique, which may be seen as a “greedy” heuristic
to minimize Expression 10, may converge to a local mini-
mum, and it will tend to give results that differ from the ones
yielded by NNLSQ algorithm when the basis functions are
more correlated. It was used for the task of transcription by
Derrien [28]. A mixed algorithm developed by O’Hanlon et
al. [76] uses a greedy approach to select the notes that are
the most efficient to model a mixture, but applies NNLSQ,
with a sparsity constraint, to improve the estimation of their
ratios.

The decision algorithms described above are those that,
historically, have been more frequently used in AMT,
but it is also important to mention other relevant tech-
niques. Knowledge-based blackboard systems, like [68],
are algorithms that successively incorporate information
from multiple, independent agents. Each agent is respon-
sible for dealing with a particular situation, and its out-
put may generate a situation that will be dealt with by
other agent. After multiple iterations with all agents, the
system yields the final transcription. Reis [94] uses a
genetic algorithm, which generates random music, esti-
mates its spectrum and uses the Euclidean distance from
the estimated spectrum to the true spectra to evaluate
the transcription proposals. Different proposals are com-
bined, changed, replicated and rejected using evolutionary
strategies, and after some iterations the desired transcrip-
tion is obtained. Later, Reis et al. [95] incorporated vari-
ance on the spectral envelope and a dynamic noise level
analysis, significantly outperforming the previous approach
[94].

All these proposals, although using considerably differ-
ent techniques, are based on similar premises, which were
discussed in Sect. 2. These premises are based on physical
concepts that, except for a few refinements, have remained
the same for a considerably long time [77]. There are, how-
ever, particularities of specific transcription problems that
must be discussed more thoroughly. This discussion, held in
the next section, allows choosing the adequate techniques for
each application.

The information presented in this section is condensed
in Tables 2 and 3. These tables list, respectively, techniques
based on peak-picking and vector classification.
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5 An overview of AMT tasks

Human music transcribers are generally specialized in one or
a few music genres. This restriction is often brought to AMT
research, because it allows the designer to make stronger
assumptions on specific signal characteristics, which would
be impossible if a generic transcriber were built. In this Sec-
tion, the most common restrictions for AMT problems will
be discussed.

The most common music category that is dealt with in
AMT research is the piano solo. The first systems for that
task were designed in the 1990s, by Martin [68], Privosnik
[89] and Keren [55]. Later, more sophisticated techniques
were proposed [2,6,14,16,18,19,24,25,29,44,66,73,76,82,
83,85,88,93,95,103,113,115]. The piano is a polyphonic
instrument, that is, more than one note can be played at

Table 2 Reference table for

the same time. Also, there is no direct contact between the
musician and the vibrating string that produces the sound
(by pressing a key, the musician triggers a mechanical inter-
face), hence a predictable behavior may be expected from
the spectral envelope related to each note. Moreover, since it
is assumed that there is only one instrument in the acoustic
signal, all detected notes should be assigned to it, making
timbre analysis unnecessary.

There are also AMT systems that aim to transcribe
acoustic signals acquired from an unknown (but unique)
instrument. Since timbre is not known a priori, no assump-
tions can be made regarding the spectral envelope of the
detected system. This problem was investigated in 2002, by
Chien [23], and after that by [7,60,67,84,96].

The transcription of percussive instruments, also a com-
mon problem, involves the detection of unpitched events, that

peak-picking based
classification techniques

References

Technique

Peak detection
[60,68,106,108,113]
(7]

[45]
[71]
Peak grouping
(87]
[106]

Peak-picking and thresholding

Peak-picking and thresholding, low-pass filter in
frequency domain eliminates spurious notes
Peak-picking, maximum likelihood criterion [64] is used

Peak-picking, specialist rule system filters peak hypothesis

Partial grouping with monophonic assumption

Assumes that partial amplitudes and frequencies
do not change significantly across frames
Partials of same notes begin and end in similar instants

All partials of the same series should have similar amplitudes
Notes are classified after onset/offset is detected

Chain of pitch formation rules highlight predominant pitch

Table 3 Reference table for

vector-based pattern References

Technique

classification techniques
9,55,66,67,89]

24-26,37-39,88,112,119]

73]
48
1,19,61,116]

—

[
[
[
[
[
[

[4,11,56]

[74]
[22,41,58,105,111]
[37,53,93,96,98,101]
[68]

[28,76]

[94,95]

13-16,26,29,43,75,85,103,104,115]

Multi-layer perceptron

Support vector machines
Non-negative matrix factorization
Deep-belief networks

Probabilistic latent variable analysis

Non-negative matrix factorization with sparsity
constrain
Shift-invariant factorization

Non-negative least mean squares
Bayesian decision system
Hidden Markov models
Blackboard system

Matching pursuit

Genetic algorithm
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Table 4 Reference table for different problems of transcription

References

Problem

[2,6,14,16,18,19,24,25,29,44,55,66,68,73,76,82,83,85,88,89,93,95,103,113,115]

[7,23,60,67,84,96]

[4,7,9,96]

[43,72]
[3,40,41,45,97-100,109,112]

Piano solo

Unknown, unique instrument

Polyphonic, generic instrument

Polyphonic music with instrument recognition

Specific music genres and/or instruments

is, labelling drum sounds. Such problem, studied by Gillet
[37-39], will not be addressed in this paper.

There are also AMT systems that were designed to deal
with generic polyphonic audio. Bello [9,7], Ryynanen [96]
and Argenti [4] proposed methods capable of dealing with
polyphonic audio containing multiple, different instruments,
although instruments are not distinguished from each other
(i.e., the transcription system assumes that all notes were
produced by the same instrument). Muto [72] proposed a
system capable of classifying the timbre of notes found in
signals containing flutes, pianos, violins and trumpets. The
idea of explicitly classifying the timbre of notes is also used
by Grindlay [43].

While instrument-related restrictions may give informa-
tion about how a particular signal behaves, genre-related and
instrument-related particularities may provide more robust
information regarding how a particular song is composed.
AMT systems designed to deal with specific music genres or
instruments are found in [3,40,41,45,97-100,109,112].

As stated earlier, there is no AMT system that is, at the
same time, generic and robust. The designer of an automatic
transcriber must be aware of which musical gestures will be
modelled and which will not—for example, if the system
should either transcribe the tempo swing of a piano player or
not. Such decision must consider the user’s needs. In general,
most transcription systems are limited to determine which
notes are played and their onsets and offsets. This neglects
details on specific playing techniques, like pedalling, but, as
will be seen, even this simplified version of the generic prob-
lem of AMT remains unsolved. The next section conducts a
discussion on the evaluation of AMT systems.

Table 4 summarizes the information presented in this sec-
tion.

6 Evaluation

Evaluating an AMT system means detecting how well it
performs, and, furthermore, collect evidence that it may be
applied by an end user. The first AMT systems [71,87] were
evaluated by visual comparison of ground-truth and auto-
matically obtained scores. This practice remained for some
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time, but with the growth of scientific efforts towards AMT,
it became necessary to use objective performance measures
that could not only be automatically calculated over large
databases, but also be immediately applied for the perfor-
mance comparison of different transcribers.

Recall, precision and F-measure are the most frequently
used measures. They derive from information retrieval [5]
and are used in the music information retrieval exchange
(MIREX) [30]. They are defined in Expressions 14, 15 and
16, respectively.

Recall — # of correctly' transcribed notes. (14)
# of notes in ground-truth
# of correctly transcribed notes

15)

Precision = - - —.
# of notes in automatic transcription

Recall x Precision
F — measure = 2 —. (16)
recall + Precision

There is an inherent tradeoff between Recall and Preci-
sion that regards the sensitivity of the automatic transcriber.
If the sensitivity is too high, many notes will be yielded,
the probability of correctly transcribing notes in the ground-
truth will be higher, and hence Recall will tend to grow. The
increased sensitivity tends to lead the system to yield more
false positives, which will cause the Precision to decrease.
Conversely, a lower sensitivity parameter tends to lead to
higher Precision, with the drawback of lowering the Recall.
The F-measure accounts for this tradeoff, representing the
harmonic mean between Recall and Precision.

These measures, however, depend on a definition of cor-
rectness for a transcribed note. Most modern AMT systems
focus on converting audio to a MIDI-like representation in
which notes are described by their onsets, offsets and pitches.
This allows transcribing tempo fluctuations as played by the
musician, but requires a manual annotation of evaluation
datasets.

For a yielded note to be considered correct, it is frequently
required that its pitch be within half a semitone from the
pitch of the corresponding note in the ground-truth. This is
justified because deviations less than half a semitone allow
obtaining the correct pitch by a simple rounding process. The
requirements regarding time, however, are harder to define,
as there are many aspects to consider.
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The human listening aspect is an important one. An onset
difference starts to be perceptually evident above about
10 ms. Onset deviations of more than 20 ms tend to harm
the listening experience, but may be used for score follow-
ing purposes. A deviation over 100 ms is harmful to most
applications.

It is also necessary to consider a feasibility aspect. In most
AMT systems, the length of the analysis window is between
12 and 43 ms. In live applications, this length is the minimum
delay between playing a note and obtaining a response from
the system. In offline scenarios, it becomes a timing error, as
it impacts in the time-domain analysis resolution.

Last, there is a practical aspect to be considered. It is hard
to manually annotate onsets in an audio file below a preci-
sion of around some tenths of milliseconds. This aspect was
partially solved by using either MIDI synthesizers, MIDI-
controlled instruments or by recording musicians that were
playing against a MIDI recording.

All of these aspects become even more important when
offsets are considered. They are harder to identify (both man-
ually and automatically), and the auditory relevance of their
deviations is harder to define numerically. For this reason,
many AMT systems ignore offsets and only work with onsets.

Once the timing tolerances are defined, the Recall,
Precision and F-measure may be immediately calculated.
Although they allow a quick comparison between methods,
they show little about the nature of the errors. Furthermore,
the impact of the tolerances in the final outcome is not mea-
sured, which may generate misleading results.

To account for that, another evaluation method consists
in evaluating the transcription in short frames, of around
10 ms. For each frame, the number of active notes in the
ground-truth and in the automatic transcription are counted,
as well as the number of correctly transcribed notes. These
numbers are summed, allowing to calculate Recall, Precision
and F-measure. In this case, the measures do not depend on
a subjective choice of timing, and long notes are considered
proportionally to its duration.

Both the notewise and the framewise evaluation meth-
ods, however, fail to yield information regarding the cases in
which the transcription algorithm fails. Tavares et al. [110]
developed a method that yields histograms for time and pitch
deviations. This method highlights information that may be
useful, such as detecting the typical time delay, the number
of pitch errors for each pitch class and so on. On the other
hand, it neglects the need for a unique performance measure.

Daniel and Emiya [27] observed that Recall, Precision and
F-measure do not necessarily reflect the perceptual accuracy
of a transcription. In reality, different types of errors are per-
ceived differently, for example, timing deviations are less per-
ceptible than pitch deviations. To account for that, Fonseca
and Ferreira [35] proposed a perceptually-motivated evalua-
tion method based on applying different evaluation processes

to the decaying and sustained parts of a note. This method
has shown to be perceptually more accurate than the usual
measures.

The standardization of performance measures comprises
an important step towards the comparison of AMT systems.
However, performance comparison also requires executing
different methods over the same dataset. Henceforth, signifi-
cant effort has been made to provide adequate datasets aiming
at future research.

An important step towards test standardization was taken
by Goto et al. [42], who developed the Real World Computing
database. It comprises audio and MIDI files for 115 popular
music songs, 50 classical pieces and 50 jazz pieces. All of
them were recorded especially for the database. This database
was used by Ryynanen and Klapuri [96-99], Benetos and
Dixon [11], Raczynski et al. [91], Simselki and Cemgil [102]
and Argenti et al. [4]. However, each one of these works used
a different subset of the RWC database.

Aiming at the evaluating transcription of piano solos,
Poliner and Elis [88] used a dataset consisting of 92 pieces
downloaded from the Classical Piano MIDI Page (http:/
www.piano-midi.de/) and rendered using standard software
(Apple iTunes). A similar dataset was used by Costantini
et al. [25], who not only used the same database construc-
tion method, but also published an explicit list of all MIDI
files used in the process. Nam et al. [73] also used this
database, and performed additional tests on it with previ-
ous methods [67,96]. The evaluation performed on this data-
base was mostly performed using frame-level note detection.
Table 5 shows the average accuracy (F-measure) achieved by
each method, as well as a brief description of the techniques
employed.

Using synthesized data may lead to scenarios that do not
contain aspects such as room reverberation and instrument
resonances. The MAPS (standing for MIDI aligned piano
sounds) dataset [34] provides high-quality recordings of a
Yamaha Disklavier, that is, an automatic piano. It contains
31 GB of recordings with corresponding ground-truths, and
may be freely downloaded. It was used by Dessein et al. [29],
Nam et al. [73] and O’Hanlon et al. [76]. Table 6 shows the
F-measure (both notewise and framewise) reported in each
work.

Table 5 Performance comparison for methods using the Poliner—Ellis
database

References  Accuracy (%) Technique
[88] 70 SVM
[25] 85 SVM with memory
[73] 79 DBN
[96] 46 HMM and specialist signal processing
[67] 39 MLP networks
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Table 6 Performance comparison for methods using the MAPS data-

base
References Results Technique
Notewise Framewise
(%) (%)
[29] 71.5 65.5 NMF with beta-divergence
[73] - 74.4 DBN
[67] - 63.6 MLP networks
[76] 78.2 76.3 Sparse NMF decomposition

Unreported results are identified with a dash

The MIREX quartet [10] is also an important dataset, used
as adevelopment set in polyphonic transcription tasks. It con-
tains a recording of the fifth variation of the third movement
from Beethoven’s String Quartet Op.18 N.5, performed by a
woodwind quintet. Each part (flute, clarinet, oboe, bassoon
and horn) was recorded separately, and individual annota-
tions are available. This dataset allows a high control on the
effects of mixing different instruments together. It was used
by Benetos and Dixon [11].

Following a similar idea, Duan et al. [32] developed the
MIR-1K dataset, which comprises chorales by J. S. Bach
performed by violin, clarinet, saxophone and bassoon. Each
part is recorded and annotated separately. This dataset was
used by Duan et al. [32] and by Hsu and Jang [52].

Benetos et al. [12] developed and used the score-informed
Piano Transcription Dataset, containing seven recordings
with intentional execution mistakes. It was designed to be
used in tasks in which these mistakes must be detected. How-
ever, it can also be used for the evaluation of regular transcrip-
tion tasks, since the mistakes are carefully annotated.

Further discussion, highlighting some important aspects
of the topics cited above, is conducted in the next section.

7 Discussion

Research in AMT has had two major focuses. Most work up
to the first half of the decade of 2000 focused on obtaining a
transform capable of providing more information about the
signal to be analyzed. Afterwards, focus changed to the devel-
opment of better pattern classification techniques. It is useful
to notice that most of the more recent proposals are based on
the traditional DFT and, although no clear reason for that
was presented, it is reasonable to assume that the facility of
interpretation, the broad studies on its properties and the fact
that many off-the-shelf computational packages are available
are some of the factors that influenced that decision.

The harmonic model that is commonly used to infer
pitch (Expression 1), by itself, will lead to ambiguities.
Since the fundamental frequencies of simultaneous notes are,
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frequently, harmonically related, there is a considerable
amount of superposition among partials related to each one of
these notes [41]. In the presence of noise, either white or due
to frequency components that are not part of the model (e.g.,
the noise of the bow scratching the strings of a violin), it is
possible to find multiple hypotheses that may explain the par-
tials found in a specific frame [21,68]. Incorrect estimations
resulting from this are common, and no system capable of
determining multiple fundamental frequencies without sig-
nificant flaws has yet been proposed.

It is important to note that there are two main approaches
to solve the problem of transcription. The first one is to pro-
gram sub-systems that apply specialist knowledge aiming
to detect psycho-acoustic clues that may lead to the correct
transcription, and then combine the results into the desired
transcription. If the signal behavior that triggers a particu-
lar sensation is known and properly modelled, then its use
will imply good results. However, that assumption holds only
partially, both because of errors resulting from inexact math-
ematical modelling and because of errors due to the opera-
tion of some algorithms in ill-conditioned situations. Also, as
noted by Hainsworth [47], it must be considered that music
transcription, when performed by human beings, demands
a high level of training and specialization, hence psycho-
acoustic models obtained by analysis of non-expert subjects
may be ignoring some aspects that are important to build an
automatic transcriber. This leads to the second approach to
AMT, which is defining a machine learning process that auto-
matically estimates key parameters from a data corpus. These
will present all training problems that are typical of machine
learning processes, that is, the need for a great amount of data
for training, the fact that parameters are not likely to be easily
interpretable and the impossibility of theoretically granting
that the results are not subject to particularities of a particular
database. Machine learning algorithms, however, have been
shown to deliver good performance, not rarely outperforming
systems built from specialist knowledge.

As it can be seen in Tables 5 and 6, the best transcription
results have been obtained when machine learning algorithms
are mixed with specialist knowledge. The use of memory for
SVMs [25] and sparsity for the NMF [76] lead these systems
to outperform previous ones. This indicates that a direction
for future AMT research lies on adding specialist knowledge
to machine learning processes.

8 Conclusion

This paper has presented an overview on automatic tran-
scription of music. Discussion was conducted so that the
two different stages—the digital signal processing, which
calculates clues to characterize notes, and the classification
process, which ultimately determines note onsets, offsets and
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pitches—can be properly understood, and what features are
desirable in solutions for both stages. It also presents histor-
ical remarks on how techniques have evolved in the last 20
years, and the concepts and inspirations behind the most com-
monly used techniques. The general models that relate phys-
ical characteristics of a signal to auditory sensations were
also discussed, as well as the specific transcription tasks that
are dealt with by most AMT systems.

Although there are many techniques that estimate freq-
uency-domain representations for signals, it was noted that
the discrete Fourier transform is the most used. Also, it was
noted that techniques that consider long-term characteristics
of the signals tend to outperform the others. This suggests
that future work in AMT should focus on the development
of machine learning techniques that exploit characteristics
that are often found in music, such as sparseness in time and
frequency and a tendency for continuity in spectral represen-
tations.
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