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Abstract Given the increasing number of available geno-
mic sequences, one now faces the task of identifying their
protein coding regions. The gene prediction problem can be
addressed in several ways, and one of the most promising
methods makes use of information derived from the com-
parison of homologous sequences. In this work, we develop
a new comparative-based gene prediction program, called
ExON_FINDER2. This tool is based on a new type of align-
ment we propose, called syntenic global alignment, that can
deal satisfactorily with sequences that share regions with dif-
ferent rates of conservation. In addition to this new type of
alignment itself, we also describe a dynamic programming
algorithm that computes a best syntenic global alignment
of two sequences, as well as its related score. The applica-
bility of our approach was validated by the promising initial
results achieved by EXON_FINDER2. On a benchmark includ-
ing 120 pairs of human and mouse genomic sequences, most
of their encoded genes were successfully identified by our
program.
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1 Introduction

The gene prediction problem can be defined as the task
of finding the genes encoded in a genomic sequence of
interest. In other words, given a DNA sequence, we would
like to correctly pinpoint the start and end positions of the
exons that constitute one or all of its genes. Like the search
for promoters, CpG islands and other functional genomic
regions, the search for genes, that takes place at the annota-
tion phase of any genomic project, has undeniable practical
importance.

In prokaryotic organisms, the task of gene finding seems to
be easier than in eukaryotics. In the former, most of the DNA
sequence is coding for protein. Furthermore, each prokary-
otic gene is a continuous stretch of coding bases, making
the identification of these regions a feasible task. The genes
of most eukaryotic organisms, on the other hand, are sep-
arated by long stretches of intergenic DNA and their cod-
ing fragments, called exons, are interrupted by non-coding
ones, called introns. In addition to the exons and introns, the
eukaryotic genes include a number of other elements, such as
5/-UTR, 3’-UTR and splicing (donor and acceptor) sites. The
structure of a typical multi-exon eukaryotic gene is shown in
Fig. 1.

Gene prediction methods can be roughly classified into
two main categories, called ab initio, or intrinsic, methods
and similarity-based, or extrinsic, methods (see [17,30] for
an extensive review on this topic). The first ones [1,12,
39,42,51] rely on statistical information that alone, or in
conjunction with some signals previously identified in the
DNA sequence, allows the identification of its coding, non-
coding and intergenic regions. Some intrinsic methods make
use of Hidden Markov Models (HMMs) [7,25-28,45,50]
in order to combine both signal and statistical information
concerning the target genes. The similarity-based methods
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Fig. 1 Simplified structure of a multi-exon gene

[9,13-15,21,23,38,41,53] make use of similarity informa-
tion between the genomic sequence and a fully annotated
transcript sequence, such as cDNA, EST or protein, in order
to accomplish the gene prediction task.

Recently, with the huge amount of newly sequenced
genomes, new similarity-based methods are being success-
fully applied in the task of gene prediction. In some ways
different from traditional extrinsic methods, the so-called
comparative-based methods [5,10,32,35-37,49], pioneered
by Batzoglou et al. [4] with ROSETTA, rely on similari-
ties between regions of two or more unannotated genomic
sequences in order to find the genes encoded in each of
them. The main assumption of these methods is that the func-
tional parts of the eukaryotic genomic sequences, the coding
regions, tend to be more conserved than the non-functional
ones. Finally, it is important to make reference to gene pre-
diction tools that combine extrinsic and intrinsic informa-
tion. This is the case, for example, of AUGUSTUS- PPX [22],
TWINSCAN [24], DOUBLESCAN [33] and GENOMESCAN [52].
Despite the enormous progress made to date (see Brent and
Guigd [6] and Sleator [43] for a survey on this topic), the
gene identification problem remains an interesting subject of
research.

Given the importance of genome comparison in obtaining
information about these types of data, a number of heuris-
tics algorithms aimed at constructing biologically meaning-
ful alignments were developed [3,18,29,31,47]. In order to
deal specifically with sequences whose conserved regions
are intervened by unconserved ones, such as protein and
prokaryotic gene sequences, Huang and Chao proposed in
[20] the generalized global alignment. This type of alignment
discriminates between conserved and unconserved regions
by using the concept of difference blocks. Unfortunately,
there are still situations where even the generalized global
alignment cannot be applied in a meaningful way. This hap-
pens, for example, when the sequences to be compared
include highly conserved regions intervened by conserved
and unconserved ones. This is exactly the case in stretches
of eukaryotic genomic sequences that encode one or more
genes. With the practical restrictions of the generalized global
alignment, Huang and Brutlag describe in [19] an algorithm
that computes an optimal alignment of two sequences by
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using a set of multiple parameters with different levels of
stringency.

We propose in this work a new type of alignment, called
syntenic global alignment, jointly with an algorithm that,
given two sequences, constructs a best syntenic global align-
ment between them and calculates the associated value of
similarity. This alignment can be seen as a generalization
of the generalized global alignment where three types of
blocks are taken into account, and the corresponding algo-
rithm is a special case of that proposed by Huang and
Brutlag.

In order to evaluate the applicability of our approach,
the proposed alignment algorithm was used in the develop-
ment of a new gene prediction tool called EXON_FINDER2.
Our program was tested on two different benchmarks that
include several pairs of real human and mouse genomic
sequences. The first benchmark includes 50 pairs of genomic
sequences taken from two traditional datasets. The second
benchmark includes 70 pairs of genomic sequences. These
pairs were obtained by us taking as base the human chro-
mosome sequences of the ENCODE project and their cor-
responding annotation. The genes encoded in a number of
sequences that constitute these benchmarks were correctly
located by our approach.

This paper is organized as follows. In the next section
we introduce the syntenic global alignment and show the
recurrences that allow us to find an optimal alignment of this
type. Details about the use of this algorithm as a tool to the
gene prediction task are given in Sect. 2.1. The experimental
results are shown in Sect. 3. In the final section we make
some concluding remarks concerning this work.

2 Syntenic global alignment

Despite their practical importance, traditional alignment
algorithms cannot be used directly in aligning two genomic
sequences that share a number of strongly similar regions
intervened by regions with a low degree of similarity.
When sequences with these features are taken as input, the
Needleman—Wunsch [34] alignment algorithm tends to align
even unrelated regions (global alignment). On the other hand,
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the Smith—Waterman [44] algorithm identifies only a high-
scoring similar region shared by the sequences (local align-
ment).

In order to deal with sequences that have intermittent
similarities, Huang and Chao proposed in [20] a variant of
the global alignment called generalized global alignment. In
such work, the notion of difference block is introduced. Such
ablock includes residues that fall inside unconserved regions
of the sequences that are being compared. With this new
block, the task is to search for a best alignment of the input
sequences allowing the use of gaps, matches, mismatches and
differences. To this end, the authors suggest a dynamic pro-
gramming algorithm that makes use of four different matri-
ces: S, I, D and H. The first one is related to matches and
mismatches. The matrices / and D deal with indels when
comparing the sequences. Finally, the matrix H corresponds
to the difference block.

The generalized global alignment can be used to dis-
tinguish between conserved and unconserved regions of
pairs of sequences. Despite this practical advantage over the
global and local alignments, the generalized global align-
ment does not give good results when applied to a pair
of sequences whose regions can be partitioned into highly
conserved, conserved and unconserved, which is actually
what occurs frequently in the real data. In order to fill this
gap, we propose in this work a new type of alignment,
called syntenic global alignment, that includes three types of
blocks:

— highly conserved blocks: blocks where regions with a
high degree of similarity are aligned;

— conserved blocks: blocks where regions with alow degree
of similarity are aligned;

— unconserved blocks: blocks where regions with no simi-
larity are aligned.

Given two sequences X = x1x3...xp and Y = yiy2...yy,,
of lengths m and n, respectively, a syntenic global alignment
of X and Y includes matches, mismatches and indels involv-
ing symbols of X and Y that fall inside highly conserved
and conserved regions of these sequences. Additionally, it
deals with symbols of X and Y that compose regions of these
sequences where no conservation is expected. An example of
a syntenic global alignment is shown in Fig. 2. Matches, mis-
matches and indels inside highly conserved blocks (resp.(or)
conserved blocks) are represented by columns with the sym-
bols ‘I’, /°, *-* (resp. 2, *\’, ‘~’). The unconserved blocks
are represented by the symbol “*’.

Let w (resp. w’) be a scoring function that assigns real val-
ues for pairs of characters lined up in highly conserved blocks
(resp. conserved blocks). Additionally, let g and & (resp. g’
and &) be real values associated, respectively, with the first

AAAAAAAAAAAAAGCCTACAGATG CATTGGACCAGTCAGTCCCCCCCCCCC
sorskskskokskskskskokkk | | ||| 111/ 1==11/177" 220000\ swskokkskokokokskokxk
GCCTACAGACGAACAGT CCAGTCGGTAAAAAAAAAAA

Fig. 2 Example of a syntenic global alignment

and subsequent spaces in a gap of length/ > 1 inside a highly
conserved block (resp. conserved block). Finally, let d be a
real value corresponding to a cost of each unconserved block.
Given these definitions, the score of a syntenic global align-
ment A is the sum of the values of each match, mismatch, gap
and unconserved block in this alignment. With these defini-
tions in mind, the problem we consider is the following: given
two sequences X = x1,Xx2,..., Xy and Y =y, y2, ..., Yn,
find an optimal syntenic global alignment of X and Y, that
is, a syntenic global alignment of these sequences with a
maximum score.

Like most of the alignment algorithms in the literature, the
one proposed in this work is based on the dynamic program-
ming approach. Given two sequences X and Y, an optimal
syntenic global alignment between these sequences can be
found by making use of seven matrices H, S, S, I, I’, D and
D', where:

(1) HI[i][j]: stores the score of a best alignment between
x1x2...x; and y1y2 ...y, ending inside an unconserved
block;

(2) S[1[j] (resp. S’[i1[j]): stores the score of a best align-
ment between x1x; ... x; and y;y> ... y; ending with the
symbols x; and y; inside a highly conserved (resp. con-
served) block;

(3) I[i1[j1 (resp. I'[i1[j]): stores the score of a best align-
ment between x1x2...x; and y1yz...y; ending with
an insertion inside a highly conserved (resp. conserved)
block;

(4) DI[i]l[j] (resp. D'[i]1[j]): stores the score of a best align-
ment between x1x2...x; and y1yz...y; ending with
a deletion inside a highly conserved (resp. conserved)
block;

From the above definitions, the following recurrences can
be used to compute the matrices H, S, S’, I, I’, D and D’.

S[0][0] =0
S'[0][0] =0
DIO][j] = D[O][j — 1] —¢g (j > 0)
D'[01[j1 = D'[01[j — 11—¢" (j > 0)
Ii][0] = I[i — 1][0] — g (0 > 0)
I'li[0] = I'li — 11[0] — g’ (i > 0)
H[i][jl1=—d (i =0or j =0)
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I'[i][j] = max y Dlil[j — 11— (h" + &)

HI[i[j —11.
S'li = 11/]

iy —11-¢
i - 1-¢

- +g)

Sti = 1[j1—(h" +g")
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1l = 11— (' + g
H[i —1][].
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After filling out these matrices, the score of an optimal syn-
tenic global alignment will correspond to the maximum value
between S[m][n], S'[m][n], D[m][n], D'[m][n], I[m][n],
I'[m][n] and H[m][n]. An optimal syntenic alignment can
be recovered by a traceback process. Starting from the entry
where the optimal score is located, we proceed to the cell
from which it was derived, and continue in this way until the
first row or column of any matrix is reached.

The correctness of our approach is based on the prop-
erties of overlapping problems and optimal substructure (at
the blocks level) exhibited by the problem. This fact, jointly
with the observation that every position [7][ j] of each matrix
can be computed looking at a constant number of previ-
ous entries and taking the maximum for each case, ensure
that an algorithm based on the above recurrence returns in
polynomial time an optimal syntenic global alignment of the
input sequences. Since our approach involves only the com-
putation of 7mn values, one for each cell of the matrices
S,S',D,D’,I,I' and H, an optimal syntenic global align-
ment can be found in O (mn) time and space.

It is worthwhile to note that the results of our approach
are strongly dependent on the scoring function w and on the
values of g and /. Given the different degrees of conservation
associated with the regions that align inside highly conserved
and conserved blocks, the values of g and / need to be greater
than the values of g’ and &', respectively. Mismatches inside
a highly conserved block must also have a greater cost than
that associated with mismatches inside a conserved block.
The syntenic global alignment of Fig. 2, for example, was
calculated by means of a scoring function with these proper-
ties. In fact, it is an optimal syntenic global alignment of the
given sequences.

2.1 Application to the gene prediction problem

Several works in the literature state that the exons of eukary-
otic genes tend to be more conserved than its introns, which in
turn are more conserved than the intergenic regions. The dif-
ferent levels of conservation between these regions lead to a
direct application of the syntenic global alignment to the gene
prediction problem. Given two orthologous sequences, the
goal is to find an optimal syntenic global alignment between
them. Segments of these sequences aligned inside highly
conserved and conserved blocks of the resulting alignment
would correspond to the exons and introns of the searched
genes, respectively. The stretches aligned inside unconserved
blocks would correspond to the intergenic regions of the input
sequences.

Unfortunately, the use of our algorithm in its plain ver-
sion can only give some insights about the localization of
the exons encoded in the input sequences. To achieve practi-
cal results, some biological hints must be incorporated into
our approach. In the following we describe some parameters
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and modifications we introduced to the recurrences in order
to achieve better results in real-world instances of the gene
prediction problem.

First of all, it is worthwhile to note that eukaryotic genes,
with rare exceptions, start and end with an exon. Given this
fact, the score of a best alignment ending in a conserved
(intronic) region cannot be calculated from the score of a best
alignment ending in an unconserved (intergenic) region of the
input genomic sequences. In other words, a position (i, j) of
the matrix S” can only be calculated by choosing the maxi-
mum between S'[i —1][j—1], D'[i —1][j—1], I'[i = 1][j — 1]
(extension of an intron) and S[i — 1][j — 1], D[i — 1][j — 1],
I[i — 1][j — 1] (beginning of an intron). For the same rea-
son, the matrices I’ and D’ need to be calculated by using
the values from the matrices S, S’, D, D', I and I’. Like-
wise, the score of a best alignment ending in an unconserved
(intergenic) region cannot be calculated from the score of a
best alignment ending in a conserved region (intron) of the
two sequences. In this case, a position (i, j) of the matrix H
can only be calculated by taking into account the values at
positions (i — 1, j) and (i, j — 1) of the matrices H, S, D
and /.

Some properties related to the splicing sites can also be
helpful in the gene prediction task. It is well known that most
real acceptor (resp. donor) sites include the dinucleotides AG
(resp. GT). Taking this into account, the score of a best align-
ment ending in the first position of a possible exon (resp.
intron) can only be calculated in the presence of the din-
ucleotides AG (resp. GT) in both sequences. Furthermore,
given the importance of the splicing sites during the protein
synthesis process, they tend to present a high degree of con-
servation. This allows us to consider only the matrix S to fill
the matrices S, D" and I’. In the same way, only the matrix
S” will be used to fill the matrices S, D and . This means
that we are not interested in alignments where the corre-
sponding splicing sites (one from each sequence) do not align
exactly.

Finally, it is also well known that most true start sites
(resp. stop sites) include the codon ATG (resp. TAA, TAG,
TGA). Consequently, the score of a best alignment ending in
the first (resp. last) position of the searched gene can only
be calculated in the presence of the codon ATG (resp. TAA,
TAG, TGA) in both sequences.

Given the large number of false-positive splicing sites
where all the dinucleotides AG/GT are taken as poten-
tial acceptor/donor sites, a preprocessing step of the input
sequences becomes necessary in order to identify the most
promising ones. In other words, in this step we are search-
ing for dinucleotides AG/GT with high probability (log-
likelihood score) of being true splicing sites. Given a genomic
sequence, the log-likelihood score P of each possible splic-
ing site can be calculated using the conditional probability
matrices described by Salzberg in [40]. These values are thus

o )

AG

£)

filling of matrices

D D’

Fig. 3 Schematic representation of the
S,S".D,D',I,I'"and H

taken into account in the filling of the matrices S, S’, D, D', I
and I’. This is done by considering the value from the matrix
S’ (resp. S) as a possible maximum to calculate the value of
a position (i, j) of the matrices S, D and I (resp. S, D" and
I") only if P(s[i..i + 1]) and P(¢[j..j + 1]) are greater than
a given threshold T'.

The observations above and all the restrictions to the filling
of the matrices S, D, I and H imposed by them are repre-
sented in Fig. 3, where each square represents a dynamic
programming matrix. A directed edge between two squares
means that the matrix represented by the square on the end
point can only be filled by using the values from the matrix
represented by the square at the start point of the edge.
Finally, labels in the directed edges represent the need for
some specific site in the sequences.

Despite all of the modifications proposed so far in order to
couple the syntenic global alignment and the gene prediction
problem, our approach still suffers from a problem called the
mosaic effect. Suppose that we have a sequence including a
number of pairs of high probably acceptor and donor sites
which lie close to each other. If a sequence that is bordered
by the splicing sites of one such pair presents a high degree
of conservation, it has a high probability of being labeled as
an exon by our approach. The same problem occurs when
we have a conserved sequence bordered by a start and a stop
codon. In this case, our approach will predict a small (and
probably false) gene in the input sequences. In order to over-
come the mosaic effect, two additional parameters, a and b,
are used. The first one represents a cost for entering an exon
coming from an intron (a cost to use the value of the matrix
S’ to fill the matrices S, D and I). The parameter b is a cost
for entering an exon coming from an intergenic region (a
cost to use the value of the matrix H to fill the matrices S, D
and I).
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3 Experimental results

We used the above ideas in the implementation of a new
comparative-based gene prediction tool. Our program, called
EXON_FINDER2,! takes as input two sequences in FASTA for-
mat and returns the locations of the exons predicted in these
sequences. These locations correspond to the start and end
positions of each highly conserved block in the correspond-
ing syntenic global alignment.

In order to evaluate our approach, EXON_FINDER2 was
tested on two benchmarks that include a number of pairs
of single gene sequences from human and mouse. The first
benchmark was used to compare our approach with some
other gene finding programs. In this case, the values of the
parameters used by our program were estimated in accor-
dance with the number and length of exons in each pair of
sequences. The second benchmark was used to assess the
significance of our approach on a real world situation, in
which the biologist would not know how to select the parame-
ters properly. Details about these benchmarks and the results
achieved by our approach will be given in Sects. 3.1 and 3.2
respectively.

To assess the accuracy of the programs, we made use of the
following measures introduced by Burset and Guigé in [8]. In
what follows, the term “predicted” will refer to the informa-
tion about the genes retrieved by the programs, whereas the
terms “annotated” and “really” will refer to the information
about the genes as found in the databases.

(1) Specificity at the nucleotide level (Sp, = TJ—EFP): pro-
portion of nucleotides predicted as coding that are really
coding;

(2) Sensitivity at the nucleotide level (Sn, = %): pro-
portion of really coding nucleotides correctly predicted
as coding;

(3) Specificity at the exon level (Spe = %): proportion of
predicted exons that match an annotated exon;

(4) Sensitivity at the exon level (Sn. = %): proportion
of annotated exons in the input sequence that have been
correctly predicted.

At the nucleotide level, the quantity approximate correla-
tion, AC, defined as

1( TP TP TN TN )

AC = —
2 TP+FN+TP+FP+TN+FP+TN+FN

has been introduced to summarize sensitivity and specificity
in a single measure. At the exon level, the average A, =
(Spe + Sn¢)/2 is used instead.

! This name was chosen in reference to other (similarity-based) gene
prediction tool developed by the authors, called EXON_FINDER1, whose
details can be seen in [2].

@ Springer

In the above definitions, TP (true positives) is the num-
ber of really coding nucleotides correctly predicted as cod-
ing, TN (true negatives) represents the number of really
non-coding nucleotides correctly predicted as non-coding,
FP (false positives) is the number of really non-coding
nucleotides incorrectly predicted as coding and FN (false
negatives) is the number of really coding nucleotides incor-
rectly predicted as non-coding. On the level of complete
exons, one defines NCE as the number of correctly predicted
exons, NPE as the number of predicted exons and NAE as the
number of annotated exons. Here, like Burset and Guig6, we
consider an exon as correctly predicted when both its limits
are identical to the limits of an annotated exon in the input
sequences. About the predicted exons whose limits are dif-
ferent from the limits of an annotated exon, we will refer to
them as mispredicted exons (when there is some intersection
between the predicted exon and an annotated exon) or over-
predicted exons (when there is no intersection between the
predicted exon and an annotated exon).

3.1 Comparison with previous approaches

Our approach was first evaluated on a benchmark whose
sequences were taken from the dataset used by Jareborg et al.
[37] in the training and testing of the SGP- 2 gene prediction
program (IMOG and SCIMIT dataset). All the genes encoded
in each of these sequences were evaluated experimentally and
the sequences themselves have been used as a standard set
to the evaluation of earliest comparative-based gene predic-
tion programs. Detailed information about these sequences
is shown on Table 1.

For a better insight into the accuracy of our program,
the results of EXON_FINDER2 were compared with those
achieved by the other three comparative-based gene predic-
tion tools, namely UTOPIA [5], PROGEN [35] and AGENDA
[46]. All of these programs were run with their suggested
default parameters.

The average values of specificity and sensitivity achieved
by our program, at both nucleotide and exon levels, are shown
in the first line of Table 2.

The values in Table 2 show that 85 % of the nucleotides
predicted as coding by EXON_FINDER2 are in fact cod-
ing nucleotides. This value of specificity is similar to that
obtained by UTOPIA but it also shows that our program is less
specific at the nucleotide level than AGENDA and PROGEN.
With respect to the value of sensitivity at the nucleotide level,
Table 2 shows that 93 % of the really coding nucleotides were
correctly predicted as such by our program. This value of sen-
sitivity is greater than that achieved by AGENDA, but less than
that achieved by UTOPIA and PROGEN. With respect to the
behavior of EXON_FINDER? at the exon level, it outperforms
Utopia with a 16 % improvement of the exon specificity and
a5 % improvement of the exon sensitivity. Our program also
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Table 1 Additional information about the first dataset

Table 1 continued

Pair Seql Seq2 LG1 LG2 NE Pair Seql Seq2 LG1 LG2 NE
COXD U66875 U34801 1,569 1,910 3 MIT36 M96264 U41282 4,286 4,023 11
ENOB X56832 X61600 7,194 5,472 11 MIT39 L19686 U20156 2,167 920 3
HIT HUMHISHIT =~ MUSHISTA 874 851 ! Pair Pair identification, Seql accession field of the first genomic
H4 M16707 V00753 1,098 968 1 sequence, Seq2 accession field of the second genomic sequence, LG/
HS71 M11717 X74271 2,691 5918 1 length of tt]xs é‘lrst gt;)nom;c sequence, LG2 length of the second genomic
KCRB  X15334 M74149 4200 4,521 7 Scduence e numberotexons
MIF L19686 U20156 2,167 920 3 Table2 A | " i d ivity. in both nucleotid
MT3 $72043 $72046 2015 1,845 3 able verage values of speci city and sensitivity, in both nucleotide
and exon levels, achieved by the evaluated tools
PAP1 L15533 D63360 4,497 4,292 5 Tool S S C S S a
PSPA  M68519 $48768 4732 4942 4 2 Po_ O Pe O v
ROMI M96759 M9670 2,841 2,787 3 EXON_FINDER2 0.85 0.93 0.84 0.54 0.57 0.56
RS7 725749 AF043285 7,513 6,637 6 AGENDA 0.97 0.82 0.84 0.68 0.62 0.65
SPEE M64231 767748 7,623 3,915 7 PROGEN 0.95 0.98 0.94 0.38 0.66 0.76
MIT1 X57152 X80685 5917 7,874 6 UTOPIA 0.86 0.98 0.89 0.38 0.52 0.45
MIT10 X03072 M34570 4,522 5,607 4
MIT101  AJ006693 M37759 3,448 3,366 1 ) )
MIT102  L19546 U21795 4038 5.267 3 outp.erforms PROGEN Wlth 2'1 16 % improvement of the exon
MITI03  MI11725 X13588 2.840  2.140 ) specificity, but in general it is less accurate than PROGEN and
MITI04  X12706 X06271 3230 6727 4 AGE}TDA at the exonfle"el"ﬁ - obtained b .
MIT105 ~ M11749 MILI6 2806 3257 3 tThe 1°W1 V?‘ée ‘1’ Sfl’ef“ city ;’ tg‘“edt zho‘" apll’)macf
MIT107 ~ D00097 M29535 1,394 1350 o o the nucieotide fevel 1 mamly due fo the number o
nucleotides that were incorrectly predicted as coding at the
MIT108  L15533 D63360 4,497 4,292 5 . .
boundaries of the annotated exons in the sequences, where the
MIT11 M81829 M81831 1,634 1,265 1 .. . . .
rate of conservation is relatively high when compared with
MIT110  J04990 M96801 3,734 3,438 5 . . . . . .
that presented by the intronic and intergenic regions. This
MIT4 U12202 X71972 4,942 5,820 > problem becomes more evident when the first and last exons
MIT40 AF049259 U13921 5,698 4,678 8 of the genes are considered. The pair H4, which includes the
MIT111 ~ M38193 M22526 4,505 4,348 3 sequences M16707 and V00753, is a useful example of this
MIT112  X05153 M87863 3,310 3,045 4 drawback. Both of these sequences encode a gene with a sin-
MIT114  X06882 X13987 1,570 2,404 2 gleexon. They start at the positions 613 and 258 and end at the
MITL1S  X74322 U60528 2,609 5,416 3 positions 924 and 569 of M16707 and V00753, respectively.
MITL16  X04143 124429 1,675 949 4 The single-exon gene predicted by EXON_FINDER? starts at
MIT12 Y00508 J04192 2,100 1,574 1 the positions 477 of M16707 and 115 of V00753 and ends at
MIT13 X65921 L33715 2,016 2,850 4 the correct positions 924 and 569 of these sequences. Look-
MIT14 M28638 M73741 4,206 4,181 3 ing at the alignment of M16707 and V00753 constructed by
MIT17 M38217 M30441 2,397 1,994 1 our program, we can see a high degree of conservation at
MIT18 J04718 X57800 6,340 4,970 6 the 5’-UTR regions of the target genes (Fig. 4). This fact, in
MIT19 U73304 U22948 5,665 1,654 1 conjunction with the presence of a start codon (ATG) on both
MIT2 M20543 M12347 3,778 4,007 7 sequences, leads to the prediction of genes starting about
MIT21 M61180 X53257 1,029 1,284 1 140 nucleotides earlier than their real start positions. Fig-
MIT23  MI16405 X63473 2595 1,707 1 ure 5 shows a graphical representation of some mispredicted
MIT24  MS59830 M35021 2876 3.518 | exons spanning out of the intergenic and intronic regions of
MIT25  DI3370 D38077 3730 4042 4  thesequences MI6707and XOS153. -
MIT26 124498 000937 5378 3.100 4 ' Despite the satglsfactory values of specificity and sensitiv-
MIT3 X60484 X13235 859 637 | ity z}llt the nucieotllde(;evel,hEXONh_FINDER'prerformshpO(l)rly
MIT31 X03473 U18295 2530  2.893 | at 1t e ?XOH ’gv?t. tri}e1 thing I atl?OItlltlrl utesbto tfe ow
MIT32 V01512 — 3565 3.967 4 value of specificity at the exon level is the number of exons
overpredicted by our approach. From a total of 384 pre-
MIT33 D10995 M85151 2,635 2,348 1 . . . .
dicted exons, 57 have no intersection with an annotated exon.
MIT34 M61829 M73491 4,705 1,894 1

Some of these predicted exons are located outside the genes.
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PStP:477
GAAAAGAAATGACGAAATG T CGA GAGGGCGGGGACAATTGAG
sokkkkokkkookokkok | | | == /[====/11/11/11II/1111/11
ATGATGCAACATCCAGAGCCCGGATAATTTAG

PStP:115

AACGCTTCCCGCCGGCGCGCTTTCGGTTTTCAATCTGGTCCGATACTC

CEZEZ000EEEEEZ 00 e Z 0 e e e e e e e e e e/ e
AAAGGTTCCCGCCCGCGCGCTTTCAGTTTTCAATCTGGTCCGATCCTC

TTGTATATCAGGGGAAGACGGTGCTCGCCTTG ACAGAAGCT GTCT

L/ZVEEEE/ 0/ 0/ /0 =27 70 00 =170 ==/ 11 /7= 1/
TCATATATTAGTGGCACTC CACCTC CAATGCCTCACCAGCTGGTGT

TSTp:613
ATCGGGCTCCAGCGGTCATGTCCGGCAGAGGAAAGGGCGGAAAAGGC
A0 770 e Z e e/
TTCAGATTACATTAGCTATGTCTGGCAGAGGAAAGGGTGGAAAGGGT

TStP:258

TTAGGCAAAGGGG

ARRRRRRRRRVA
CTAGGCAAGGGTG

Fig. 4 A stretch of the syntenic global alignment of the sequences
M16707 and V00753 that reveals a high degree of conservation on the
boundaries of their single-exon genes. PStP Predicted start position,
TStP true start position

A useful example of this drawback is the pair that includes
the sequences M68519 and S48768. In each one of these
sequences, two additional exons that do not have intersection
with the annotated ones were overpredicted by our program.
Both of these exons are located outside the corresponding
genes. This fact leads to a unsatisfactory value of speci-
ficity of EXON_FINDER2 at the exon level. Only 54 % of
the predicted exons are in accordance with annotated exons.
Figure 5 shows a graphical representation of some overpre-
dicted exons inside the intergenic regions of the sequences
L15533, M68519, M96759 and X03072.

Regarding the sensitivity of our approach, only 57 % of
annotated exons were correctly predicted by our tool. The
large majority of missed exons correspond to small and
unconserved ones. This occurs, for example, with the first
exons in the sequences M96264 and U41282. Both of them
are small exons, and the corresponding global pairwise align-
ment shows a number of consecutive spaces.

3.2 Automatic parameter setting

In addition to the tests whose results were detailed in the pre-
vious section, other experiments were made in order to best
evaluate the practical usefulness of our approach. To this

0 450 900 1350 1800 2250 2700 3150 3600 4050 4500
I T N Y Y A
M16707
Annotation
M16707
Prediction
i X05153
Annotation . - l I
X05153 ;
Prediction 4{ D I !
L15533 ;
0 E m m 1
f L15533 f
Prediction j D D—«{ D
: X03072 :
: 1X03072 |
Prediction [ B ! [ ! I ! }
M68519 :
= u 0 —
M68519
Prediction «{ D D I | I
M96759
3 M96759
Prediction { }ig{ H } J
L
0 450 900 1350 1800 2250 2700 3150 3600 4050 4500

Fig. 5 Examples of mispredicted and overpredicted exons by EXON_FINDER2. The real exons are represented by black boxes, and the predicted

ones by gray boxes
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end, we create a benchmark from the human chromosome
sequences of the ENCODE (ENCyclopedia of DNA ele-
ments) project [11]. These sequences span 1 % of the human
genome sequence and the corresponding annotation [16] has
been used as the “golden standard” to assess the performance
of computational methods developed for the identification of
functional elements.

The new pairs of sequences used as input of our program
were constructed in the following way. From the sequences
ENmOO01, ENm002, ENm003, ENm004, ENm005, ENm006
and ENmO07, we chose all the annotated (VEGA-Known)
protein-coding genes with maximum length 5,000bp and no
alternative splicing. At the second step, a homologous for
each of these genes was taken from the HomoloGene Data-
base [48]. To each sequence obtained, we left 100 bp of inter-
genic region at their 5" and 3’ side. A total of 20 pairs were
obtained following these criteria. Details of each one of these
pairs can be viewed in Table 3.

Different from the previous round of tests, when the para-
meters of the program were tuned manually, with this new
benchmark it was done automatically by means of a genetic
algorithm. The quality of the results on each round of this
algorithm was evaluated based on the correct positions of the
exons on the homologous sequence. Our idea was to test an
automatic parameter choice, which would probably be used

Table 3 Additional information about the second dataset

Pair Seql Seq2 LGl LG2 NE
IL3 3,562 24,495 2,550 2,351 5
CSF2 1,437 116,630 2,375 1,982 4
IL5 3,567 24,497 2,079 2,872 4
IL13 3,596 116,553 3,137 2,585 4
APOAS 116,519 140,638 2,499 2,240 3
GDF9 2,661 59,304 3,600 3,949 2
APOA4 337 11,808 2,594 2,615 3
APOC3 345 11,814 3,164 2,247 3
APOAL1 335 11,806 1,870 1,757 3
OLIG2 10,215 304,103 3,262 3,380 1
OLIG1 116,448 60,394 2,154 2,139 1
AVPR2 554 25,108 2,271 1,629 3
EMD 2,010 25,437 2,095 3,017 6
RPL10 6,134 81,764 3,963 2,207 6
UBL4 8,266 293,864 2,877 1,329 4
SLC10A3 8,273 501,665 3,348 3,807 1
LAGE3 8,270 293,863 2,356 2,005 3
F8A1 8,263 501,601 1,702 1,747 1
NDUFA3 4,696 691,001 4,309 2,640 4
LENG1 79,165 292,535 4,070 4,021 4

Pair Pair identification, Seq/ genelD of the first genomic sequence,
Seq2 genelD of the second genomic sequence, LG length of the
first genomic sequence, LG2 length of the second genomic sequence,
NE number of exons

Table4 Average values of specificity and sensitivity, in both nucleotide
and exon levels, achieved by EXON_FINDER?2 on the second benchmark

Tool Spn Sny AC Spe Sne Ay

EXON_FINDER2 0.88 0.92 0.87 0.53 0.70 0.62

by a biologist in a real-world application. In this case, given
a sequence where one gene exists, the first step would be to
search for a homologous of it and run our program using in
a useful way some information concerning the homologous
gene.

The values of specificity and sensitivity achieved in this
case are presented on Table 4.

As it can be seen, the results of EXON_FINDER2 on this
round of tests are a little bit better than that obtained with
the first benchmark. From a total of 65 real exons, 46 were
correctly predicted by our approach. Moreover, from the 86
exons predicted by our approach, 25 have no intersection with
a real exon. From these, 13 are located inside the intronic
regions of the input sequences and 12 are located outside the
gene. Interestingly, all but three of the 12 exons overpredicted
outside the genes are located at their 3’-intergenic regions.
About the 13 exons overpredicted inside the intronic regions
of the input sequences, they correspond to small exon of
average length 26 bp.

These further results show that our approach can be suc-
cessfully used in the task of gene finding, especially if com-
bined with modifications to incorporate biological informa-
tion and with the use of an automatic tool to tune the various
parameters involved.

4 Discussion

Despite its practical importance and the number of meth-
ods developed to date, the gene identification remains an
open and interesting problem. Given the increasing number
of homologous sequences in the databases and the assump-
tion that the exons tend to be more conserved than the introns
inside a genome, comparative-based gene prediction pro-
grams start to be extensively used in the task of gene identifi-
cation. In this work we presented a new gene prediction tool,
whose implementation is based on a new type of alignment
proposed by us and called syntenic global alignment.
Unlike classical alignments, the syntenic global align-
ment is composed of three types of blocks: highly conserved,
conserved and unconserved blocks. The score of a syntenic
global alignment is the sum of the values of each match,
mismatch, gap and unconserved block in the alignment. An
optimal syntenic global alignment of two input sequences
can be constructed by means of an algorithm that makes use
of seven dynamic programming matrices. In order to evaluate
the applicability of the syntenic global alignment, the corre-
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sponding algorithm was used in the development of a new
tool to the gene prediction problem called EXON_FINDER2.

Regarding the first experimental results, the outcomes
were quite promising considering the fact that our method
uses only information about the different rates of conserva-
tion related to the regions of the input sequences. The main
drawback of our approach is due to the existence of well
conserved regions outside the target genes. This leads to a
number of overpredicted exons and additional bases incor-
rectly identified as coding at the 5'-UTR and 3’-UTR regions
of the annotated genes and, consequently, to a low value of
specificity and sensitivity at the exon level. Further tests were
performed with the parameters being automatically tuned by
a genetic algorithm. Similar results for specificity and sensi-
bility were obtained, showing that our approach can be suc-
cessfully used in the task of gene finding.

One way to obtain better results with the proposed tool in
the context of the gene prediction problem is to use statistical
information that can give better insights into the localization
of the real start and stop codons in the sequences. Additional
information, such as reading frame and codon usage, can also
be incorporated into the EXON_FINDER2 in order to improve
its results. These works are in progress in the hope that better
values of specificity and sensitivity at both the nucleotide
and the exon level can be achieved in the future. The study
of other applications to the syntenic global alignment is also
a promising object of research.
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