
J Braz Comput Soc (2013) 19:475–491
DOI 10.1007/s13173-013-0112-z

ORIGINAL PAPER

BitTorrent traffic from a caching perspective

Lesandro Ponciano · Nazareno Andrade ·
Francisco Brasileiro

Received: 13 July 2012 / Accepted: 15 May 2013 / Published online: 31 May 2013
© The Brazilian Computer Society 2013

Abstract BitTorrent currently contributes a significant
amount of inter-ISP traffic. This has motivated research and
development to explore caching and locality-aware neigh-
bor selection mechanisms for costly traffic reduction. Recent
researches have analyzed the possible effects of caching Bit-
Torrent traffic and have provided preliminary results on its
cacheability. However, little is known about the specifics
of caching design that affect cache effectiveness and opera-
tion, such as replacement policy and cache size. This study
addresses this gap with a comprehensive analysis of BitTor-
rent caching based on traces of user behavior in four popular
BitTorrent sites. Our trace-driven simulation results show dif-
ferences in BitTorrent traffic caching compared to that of the
Web and other peer-to-peer applications. Differently from
Web and other peer-to-peer caching, larger caches are nec-
essary to achieve similar caching effectiveness in BitTorrent
traffic. Furthermore, in BitTorrent caching, the LRU replace-
ment policy that takes the temporal locality into account
shows the best performance. We also use a locality-aware
neighbor selection mechanism as a baseline to evaluate the
LRU caching effectiveness. We find that LRU caching can
provide greater traffic reduction than locality-aware neigh-
bor selection in several scenarios of cache size and number
of ISP clients.

L. Ponciano · N. Andrade · F. Brasileiro (B)
Departamento de Sistemas e Computação, Universidade Federal de
Campina Grande, Av. Aprígio Veloso, s/n-Bloco CO,
Campina Grande, PB 58429-900, Brazil
e-mail: fubica@dsc.ufcg.edu.br

L. Ponciano
e-mail: lesandrop@lsd.ufcg.edu.br

N. Andrade
e-mail: nazareno@dsc.ufcg.edu.br

Keywords Caching · Network management ·
Network protocols · Peer-to-peer systems · Traffic analysis

1 Introduction

BitTorrent presently generates a substantial amount of the
Internet traffic [22,34,48], and has therefore significant cost
implications for infrastructure operators. Many thousands or
even millions of users daily rely on BitTorrent to distrib-
ute high volumes of content, generating sizeable amounts of
transit traffic for Internet Service Providers (ISPs) [19,29].
This observation has motivated research and development to
reduce inter-ISP BitTorrent traffic [13,48,55].

The two main approaches to reduce this traffic are caching
[2,37,38,48] and locality-aware neighbor selection mech-
anisms [13,26,30]. Through caching, an ISP stores local
copies of objects1 accessed by its users, and reduces transit
traffic by serving future object requests using local copies.
Locality-aware neighbor selection mechanisms affect how
users of the peer-to-peer network choose peers for data
exchange. These methods aim at concentrating traffic among
users in a same ISP, keeping data transfers at the edges of the
network.

We are not aware of any commercial system that has
adopted locality-aware neighbor selection mechanisms. In
contrast, there exist some commercial initiatives to pro-
vide caching [37,38]. We believe that the simplicity of
implementing caching is what explains this state of affairs.
Regarding the research community, several studies have
addressed the effectiveness of locality-aware neighbor selec-
tion mechanisms in reducing BitTorrent inter-ISP traffic

1 In the context of this paper, an object is a generic term that can rep-
resent a file or parts of a file.

123



476 J Braz Comput Soc (2013) 19:475–491

[11,30,31,47,43], while little is known about the effective-
ness of different designs for caching BitTorrent traffic in
terms of number of cache clients, cache size, and replace-
ment policies. Previous work point only at the potential
of reducing BitTorrent transit traffic using caches [2,28],
but has not addressed the factors affecting cache effective-
ness. In particular, existing analyses do not provide evi-
dence that can be used to dimension a cache, to select which
object replacement policy should be used, or to account
how caching effectiveness varies with the cache size. This
study contributes to fill in this gap, analyzing BitTorrent
caching design considering finite cache size, and analyz-
ing a comprehensive set of object replacement policies
which come from Web and P2P literature and leverage dif-
ferent traffic characteristics. To put cache performance in
perspective, the study also uses a locality-aware neighbor
selection mechanism as baseline to evaluate the caching
effectiveness.

BitTorrent traffic has several peculiarities that can affect
the effectiveness of cache design when compared to other
traffic where cache has been used or thoroughly studied, such
as Web traffic, and other peer-to-peer traffic (e.g., FastTrack
[51], Ka-zaa [44], Gnutella [24]). The concentration of refer-
ences in BitTorrent traffic is modeled by a log-normal distri-
bution [5], while it is approximated by a Zipf distribution in
Web [12], and by a Mandelbrot-Zipf distribution in Gnutella
[24]. Object size in BitTorrent is typically larger than in the
Web and other peer-to-peer traffic [9]. Finally, the temporal
locality of access in the Web traffic is not strong [6,7,32,52],
while in BitTorrent the popularity of files decrease rapidly
with time [5,21,40]. In this study, we find that some of these
characteristics, together with new dimensions that we inves-
tigate, lead to different behavior in BitTorrent caching when
compared to Web and other peer-to-peer caching mecha-
nisms.

Our method is based on traces of user behavior in four
popular BitTorrent directories and trace-driven simulation.
This simulation also considers a set of object replacement
policies that includes referential policies that leverage traf-
fic characteristics relevant to caching—least-frequently-used
(LFU), size-based (SIZE), and least-recently-used (LRU)—
, and two policies proposed for other peer-to-peer traf-
fic: least sent bytes (LSB) [51], and proportional partial
caching (P2P) [24]. Understanding the performance of such
a set of policies at the same time unveils relevant proper-
ties of BitTorrent traffic for caching and provides a refer-
ential frame for the development of new policies for future
work.

Our main results are:

– We find that LRU leads to the highest traffic reduction
in BitTorrent caching. Both the best-performing policy
for Web caching (LFU, for the performance criteria we

evaluate [12]), and for other peer-to-peer traffic (P2P) are
outperformed by LRU.

– We show that, similar to Web caching, the effectiveness
of BitTorrent caching grows logarithmically with cache
size. However, larger caches are necessary to achieve high
effectiveness in BitTorrent traffic compared to Web and
other peer-to-peer traffic.

– We analyze the point where caching provides greater
reductions to transit traffic compared to locality-aware
neighbor selection strategies for several scenarios, putting
in perspective the requirements and performance of both
approaches. Our results suggest that caching is a viable
alternative for ISPs, specially while locality-aware mech-
anisms are not easy to adopt.

– We provide a comprehensive analysis of the characteris-
tics in BitTorrent traffic that lead to the good performance
of LRU. Our results show that a marked temporal local-
ity in BitTorrent traffic chiefly influences cache effective-
ness.

In the remainder of this paper, before presenting our results
and analyses (Sects. 5 and 6), we review the relevant back-
ground and related work (Sect. 2), present a model that sim-
plifies the simulation of BitTorrent caching (Sect. 3), and
detail our experimental setup (Sect. 4).

2 Related work

This section contextualizes this study in relation to previous
work. Because most studies on BitTorrent and peer-to-peer
caching use object replacement policies first applied to Web
traffic as baselines, we start with an overview work on Web
traffic caching. Next, we review work on caching traffic from
BitTorrent and other peer-to-peer systems. When examining
both Web and peer-to-peer traffic caching, we focus on results
related to the effect of cache size and object replacement poli-
cies on cache effectiveness. After reviewing work focusing
on caching, this section discusses locality-aware mechanisms
proposed in the literature.

2.1 Web caching

The relation between performance and cache size has been
widely studied in Web caching. In general, small files are
more popular in Web workloads, which leads to relatively
small caches producing high hit rate [35]. Moreover, the
cache hit rate increases logarithmically as a function of the
cache size [12].

Regarding object replacement policies, three main types
of policies initially used in file systems caches [35] are widely
used in the context of Web caching [39]: (i) policies based on
the object size, among which the most natural is SIZE, accord-

123



J Braz Comput Soc (2013) 19:475–491 477

ing to which the largest objects in the cache are replaced first;
(ii) policies based on the frequency of requests to the objects,
among which the most natural policy is least-frequently-
used (LFU), in which objects with lower access counts are
replaced first; and (iii) policies based on the time of the most
recent reference to each object, among which the most nat-
ural policy is least-recently-used (LRU), which determines
that the object accessed the longest ago is replaced first.

Several studies analyze replacement policies’ perfor-
mance in Web caching [1,6,7,41,52]. These studies show
that recency-based policies perform poorly for Web caching,
because the temporal locality of access in Web traffic is not
strong. In turn, frequency-based policies show good perfor-
mance, outperforming recency-based and size-based policies
[1,4,7]. The higher performance of frequency-based policies
occurs because of an invariant in the concentration of ref-
erences in Web traffic. The concentration of references in
Web traffic is analogous to the object’s popularity and can
be modeled by a Zipf distribution [1,6,14,15]. This means
that a small number of objects are extremely popular, while
there is a long tail of unpopular objects, a characteristic that
favors frequency-based policies in a workload [12].

2.2 Caching BitTorrent and other peer-to-peer traffic

Multiple designs are possible for caching BitTorrent and
other peer-to-peer traffic[23,28,37,38]. Lehrieder et al. sug-
gest a taxonomy of caches for peer-to-peer traffic with three
categories [28]. Transparent caches use deep-packet inspec-
tion to intercept and answer requests made by its users to
peers outside the ISP; these are currently exemplified by
PeerApp’s UltraBand technology [38]. ISP-managed ultra-
peers are high-capacity BitTorrent peers operated by the ISP
that discover peers through the regular BitTorrent protocol,
and prioritize uploading to users inside the ISP network;
these are presently illustrated by Oversi’s OverCache prod-
uct [37]. ISP-managed caches are the third category and are
based on extensions to BitTorrent that enable users to dis-
cover and prioritize downloading from caches operated by
the ISP.

Our work focuses on caching effectiveness considering
transparent caches. Moreover, we consider that the transpar-
ent cache provides a download speed to its clients that is
similar to what the client would achieve from the original
sources. As pointed out by Lehrieder et al. this design is ISP-
friendly, as it is less susceptible to increase the speed with
which illegal content is potentially distributed [28]. Also, it is
important to highlight that the ISP operates a cache to reduce
the inter-ISP traffic, and not to increase the download speed
of its customers.

Our focus on transparent caches is necessary to enable
an accurate trace-driven analysis of cache behavior. Events
recorded in the trace that potentially drive user behavior are

not changed by a transparent cache, while the other cache
designs result in different download times and, hence, in dif-
ferent trigger events. There are presently no clear models of
how users would react to the differences introduced by such
caches, and developing such a model is out of the scope of
this work.

Previous work provide evidences that it is possible to
achieve high byte hit rate when caching BitTorrent traffic
[2,3,26]. Ager et al. examined the effect of a cache with infi-
nite size on a trace of user behavior in an ISP and suggest that
caching BitTorrent traffic can yield high byte hit rates [2,3].
They also find that the performance of a cache improves with
the number of clients using it. Likewise, Karagiannis et al.
employ a cache with infinite storage on a different trace, and
comment on the cacheability of this traffic, reporting that
such a cache can lead to a byte hit rate higher than 0.9 [26].
Our work complements these efforts by (i) going one step fur-
ther and examining how cache size and object replacement
policies affect cache performance, and (ii) performing our
analyses on multiple traces of BitTorrent usage that include
different types of content and user bases. To the best of our
knowledge, this is the first study that focuses on analyzing
BitTorrent caching design considering finite cache size and
object replacement policies that leverages a wide range of
traffic characteristics.

Another thread of related work for the behavior of caches
in BitTorrent traffic is the experience with other peer-to-
peer traffic. Regarding the relation between performance
and cache size in peer-to-peer traffic, Wierzbicki et al. show
that in FastTrack traffic there are required larger cache sizes
than Web traffic to attain a given byte hit rate, because files
requested in Kazaa are typically much larger than in the
Web [50,51]. Furthermore, other studies showed that in Web,
Kazaa and Gnutella traffic the sizes of accessed files vary
substantially, and there is a strong preference for small files
[9,15,20,44], which may increase the performance of a small
cache.

Some studies analyze the effectiveness of replacement
policies for peer-to-peer caching [24,50]. The observation
that file popularity in peer-to-peer traffic does not fit well
to a Zipf distribution has motivated the development of
new replacement policies for caching peer-to-peer traffic
[5,20,50]. Wierzbicki et al. propose the policy least-sent-
bytes (LSB). This policy works on parts of requested objects,
and evicts from the cache first the parts of objects that have
served the least number of bytes. LSB performs equivalently
or better than LRU and LFU in Wierzbicki et al.’s exper-
iments. Hefeeda and Saleh propose a proportional partial
caching algorithm for Gnutella traffic named P2P [24]. This
policy segments files and admits new segments according to
the number of references to the stored segments. Hefeeda and
Saleh show that LSB performs better than LRU and LFU, but
worse than the P2P policy for Gnutella traffic.

123



478 J Braz Comput Soc (2013) 19:475–491

In this study, we evaluate both LSB and the P2P poli-
cies in the context of BitTorrent traffic. Although there are
similarities between BitTorrent and other peer-to-peer traf-
fic, there are also notable differences. In particular, previous
works have pointed out differences between BitTorrent and
other traffic with respect to locality of references [5,21,40].
We extend these results by examining other peculiarities in
BitTorrent traffic that are relevant for caching, and by inves-
tigating how LSB and P2P (together with other policies) are
affected by these peculiarities.

2.3 Locality-aware mechanisms

Multiple designs are possible for locality-aware mechanisms
that decrease BitTorrent inter-ISP traffic. Several studies
have shown that locality-aware mechanisms reduce inter-
ISP traffic and can be exploited in several ways: shifting
inter-ISP traffic to local links of content distribution networks
[47], biasing BitTorrent neighbor selection [11,30,31,47] or
uploading policies [31], and through proxy-trackers, which
intercept requests from peers in an ISP and redirects them to
active peers inside the boundaries of the same ISP’s network
[26].

Some studies relate the locality-aware and caching mech-
anisms [11,26]. Relevant to the present work, Karagiannis et
al. find that proxy-trackers deployed at the edges of the net-
work reduce the peak demand for download bandwidth in an
ISP, but overall keep the demand for download bandwidth
multiple times higher than an infinite cache [26]. Bindal
et al. using a simulation model, report that when the cache is
combined to a locality-aware mechanism, there is a reduction
on the peak and average bandwidth needed by the cache to
serve its clients [11].

Our work evaluates the effectiveness of different caching
strategies under realistic scenarios, including limits on the
cache size and analysis of multiple traces, and compares
their performance with a locality-aware neighbor selection
mechanism. We note that the comparison of caching per-
formance against that of a locality-aware mechanism aims
simply to understand the impact that these two techniques
may have on the reduction of inter-ISP traffic, and not to pro-
mote caching as an alternative to locality-aware mechanisms,
or vice-versa. It is possible, as indicated by the preliminary
studies reviewed above, that the best performance will be
attained by a suitable combination of the two mechanisms.
A study of such combinations, however, is beyond the scope
of this paper.

3 Modeling caching and locality-aware mechanisms

Our method to investigate the effect of multiple factors on
BitTorrent cache effectiveness is to simulate how a cache

would perform if submitted to different workloads derived
from real traces of user behavior. The use of simulations is
justified because, on the one hand, obtaining access to the
traffic of an ISP and submitting it to the effect of a cache is
not feasible, and, on the other hand, resorting to simulation
allows us to control experimental factors and study a wide
range of parameters and configurations.

This section details the simulation model for evaluating
the effects of caching and a locality-aware mechanism in
the traffic described by a BitTorrent trace. Before that, we
describe BitTorrent’s functioning and a model for deriving,
given a trace of user behavior, the transit traffic BitTorrent
generates.

3.1 BitTorrent overview

A BitTorrent system is composed of a set of users that partic-
ipate in torrents over time. A torrent is a group of users col-
lectively distributing and/or downloading a file.2 At a given
moment, a user may be online as a node in none, one, or
several torrents in the system. In each torrent, a node discov-
ers peers by periodically contacting a centralized discovery
component named tracker. In each contact, the node updates
the tracker on current download and upload progress, and
requests a number of randomly selected peers. The peers
with whom a node is connected at an instant in time form its
neighborhood set, and each node uses the tracker to maintain
a neighborhood set of at least 50 peers, a default value used
by several BitTorrent clients [25,46].

To be distributed in a torrent, a file is divided into a number
of pieces. When a peer has all the pieces of the file in a torrent,
it is called a seeder; otherwise it is named a leecher. A session
is a contiguous period during which a peer is online as seeder
or leecher in a torrent, and peers may have multiple sessions
throughout their participation in each torrent. During each
session where a peer is a leecher, it continuously requests
pieces from the peers in its neighborhood, part of which may
be in another ISP.

3.2 Estimating intra- and inter-ISP traffic

Our goal is to estimate the effect of traffic reduction
mechanisms—a cache and a proxy-tracker—on the traffic
requested for peers outside an ISP of interest. This traffic is
derived from traces of user behavior (described in detail in
Sect. 4.1) that depict the behavior of dozens of thousands of
users. In summary, the trace stores download sessions, a con-
tinuous period that the peer remain online in a swarm. For
each user session, it has available information of its start time,

2 A torrent may distribute multiple files. Nonetheless, for simplicity of
presentation, throughout the paper we refer to the single file case, and
call the content distributed in a torrent a file.

123



J Braz Comput Soc (2013) 19:475–491 479

end time, the amount of data downloaded and whether the
peer is a seeder or a leecher. The first step in this process is,
given a set of users inside an ISP, to determine the traffic that
passes through the traffic reduction mechanism. Because the
mechanisms we consider target only downstream traffic, our
task is to determine which pieces of the file users download
from outside the ISP over time.

There is a sizable issue with the complexity of precisely
simulating this in a large-scale multi-torrent system. Files
are often in the order of hundreds of megabytes [56], and,
hence, have thousands of pieces, and the simulation may
have thousands of clients downloading hundreds of different
files simultaneously. The processing required to compute the
effects caused by every piece downloaded in the system are
prohibitive.

Our approach to circumvent this difficulty is to simulate
the system with a coarser granularity, considering a file is
composed of segments that are larger than pieces. The fewer
the parts that comprise a file, the less costly it is to simulate
the system, and we show in Sect. 4.2 that if the segment size
is chosen appropriately, it is possible to reduce the cost of
processing and indexing data in the simulator while main-
taining accuracy.

Besides coping with the number of pieces to be indexed,
the simulator must also reflect the effect of piece selection
policies. In BitTorrent, peers choose which piece to down-
load next based on the rarity of pieces in their neighbor-
hood. Again, recreating the precise order in which pieces are
downloaded, incurs an impractical complexity when simulat-
ing thousands of peers participating in thousands of torrents.
To avoid this complexity, we model the effects that any piece
selection policy can have on a traffic reduction mechanism—
both a cache and a proxy-tracker. The key insight in this
model is that any piece selection policy will only determine,
for a given number of pieces that a user downloads in a period,
(i) how many of the pieces are downloaded from peers in the
same ISP, and (ii) how the traffic requested from outside the
ISP affects and is affected by the traffic reduction mecha-
nism. We now describe how to model the first aspect. The
second one is different for a cache and a proxy-tracker, and
is described in Sects. 3.3 and 3.4.

Deciding which proportion of the download that a user
performs in a session is from peers in the same ISP is done
as follows. The traces provide us with the amount of seg-
ments r requested during each session of each leecher P , and
we assume segments are downloaded at constant throughput
during the session. Following the trace, the simulator details
tracks peer discovery dynamics over time (tracker contact-
ing period is set to 20 min [36]). For each new segment node
P downloads, the chance that P downloads it from a peer
inside P’s ISP is the proportion of P’s neighborhood set that
sits inside this ISP at the moment the download starts. If P’s
request should be directed to nodes inside its ISP but none of

these nodes has the requested segment, the request is directed
to nodes outside the ISP.

Effectively, this approach implies that if a fraction f of P’s
neighbors are in its ISP, P will download a proportion f of
traffic from them. This model does not consider the effects of
the heterogeneity of peer’s connections on data provisioning.
Nevertheless, note that this approach becomes accurate as
the number of peers online grows and approximates reality
for a large enough number of peers. This happens because,
for a large number of peers, the average capacity of peers
inside and outside the ISP becomes equivalent and so does
the chance of selecting peers inside and outside the ISP for
some download.

Given the traffic directed to peers outside the ISP of inter-
est, we must next estimate the traffic reduction provided by
the caching and proxy-tracker mechanisms.

3.3 A model for BitTorrent caching

BitTorrent transparent caching works intercepting requests
for segments that peers inside the ISP sent to peers outside
the ISP. The cache intercepts this type of request, and checks
if the segment to be transmitted is already stored locally. If it
is, the segment is not downloaded again but transferred from
the cache to the requesting peer. If it is not stored locally at this
time, the request is relayed to the peer outside the ISP, and the
caching mechanism waits for an answer. As the peer outside
the ISP answers the request, the segment is transmitted to the
requesting peer, and stored in the local cache. If the cache
is full, the mechanism uses an object replacement policy to
free up space, before attempting to store the segment in the
cache.

From the model described so far, it is possible to estimate
the segments a node downloads from outside its ISP during a
period. To compute the precise byte hit or byte miss associ-
ated with this download, it is necessary to determine which
segments were downloaded by the user and in which order.
This is necessary because each segment may coincide with
a segment the cache currently stores or not. On the other
hand, as discussed before, simulating the dynamics of piece
selection is computationally prohibitive.

Our approach to this issue is to, instead of calculating the
precise byte hit resulting from a user download, compute
the limits for the best and worse effects that piece choices
can have on the cache performance. This computation is at
the same time simpler and more general than simulating a
particular piece selection policy, and our results (in Sect. 5)
show it is still possible to differentiate the performance of
alternative cache designs considering these limits.

The upper limit for the effect of piece choice on the cache
is an optimistic case: when a peer requests a segment to the
cache, we consider that, if the cache stores segments that the
peer does not own, the segment requested by the peer will be

123



480 J Braz Comput Soc (2013) 19:475–491

one present in the cache. This results in the maximum byte
hit for each request. In the pessimistic limit, conversely, we
consider that a peer requests a segment stored in the cache
only if there are no other segments that the peer may ask
from the cache. This results in the minimum byte hit rate
each request can produce.

Formally, the simulator computes the amount of requested
segments intercepted by the cache rc, and the amount of seg-
ments that resulted in hit hc, i.e, the amount of segments that
were served by the cache over a simulation time. Thus, given
the segment size s, the traffic reduction provided by caching
is tc = hc × s, and the cache byte hit rate is computed as
bc = hc/rc. For each simulation configuration, there is a
traffic reduction and a cache byte hit rate for optimistic and
pessimistic scenarios.

We use optimistic and pessimistic limits to simulate what
would be the best- and worst-case in a given configuration.
Although these boundaries do not give us the exact effective-
ness of a given cache configuration, they allow us to compare
different cache configurations. If the best simulation scenar-
ios for a configuration A is worse than the worst simulation
scenario of configuration B, we can affirm that caching in B
performs better than in A. If the interval between the best and
worst estimates of two configurations overlaps, however, we
cannot affirm that their effectiveness is different.

3.4 A model for a BitTorrent proxy-tracker

We simulate a locality-aware neighbor selection mechanism
as implemented by a proxy-tracker at the edges of an ISP
network [26]. Although multiple designs have been proposed
for increasing traffic locality, the proxy-tracker provides a
reference of the highest locality achievable by locality-aware
mechanisms. Our goal is to use the results from this reference
as a baseline for the traffic reduction provided by a caching
mechanism.

The proxy-tracker works by intercepting segment requests
from local peers and redirecting them to active peers inside
the ISP network that can fulfill such requests. To compute
the effect of this behavior on BitTorrent traffic, the simulator
computes the byte hit similarly to the optimistic limit in the
cache model. For each segment requested by a node P to a
peer outside its ISP, a hit occurs if there is some active peer in
the ISP that has a file segment that P does not have. If peers
inside P’s ISP only have segments that P already owns, P’s
request is directed to peers outside the ISP. Note that our sim-
ulation differentiates seeders and leechers. When there are
seeders peers within the ISP, the request is always satisfied.
Also, it is important to remark that considering the optimistic
limit for the byte hit of the proxy-tracker, our baseline repre-
sents an unfavorable scenario for the caching mechanism in
any comparison we perform.

More formally, the simulator computes the amount of seg-
ments intercepted by the proxy-tracker, and redirected to
peers inside the ISP (rp), and the amount of segments that
resulted in hit (h p), i.e, those segments that were served by
peers inside the ISP over the simulation. These values allows
us to compute the traffic reduction provided by the proxy-
tracker mechanism as tp = h p × s, and its byte hit rate as
bp = h p/rp.

3.5 Trace-driven simulation dynamics

For our experiments, our models described in this section
are implemented in a trace-driven simulator, which we now
detail further. For all experiments, each simulation is driven
by a workload derived from traces that describes download
and upload sessions of a set of users (Sect. 4.1 details the
real traces used). The workload is composed by a series of
user sessions ordered by their start time. For each session,
the workload contains: a user identifier, start time, end time,
number of bytes requested, and the size of the file accessed.

The simulator processes each session in the workload as
follows. At the session start time, the peer starts the session in
the tracker and requests a list of up to 50 other peers currently
online in the same torrent. The tracker returns a list of peers
randomly chosen among all peers online in the torrent. The
peer performs new requests to the tracker every 20 min (usual
period between requests to the tracker [36]) and tries to keep
a neighborhood set of at least 50 peers in case there are less
than 50 peers in the torrent, neighborhood set sizes are limited
to the number of available peers.

The content downloaded during the session is divided
in segments. All segments are downloaded at a constant
throughput, calculated as the size of all segments requested
during the section divided by the duration of the session.
When a peer P will download a segment, it randomly selects
a peer among the set of peers to which it is connected. If the
chosen peer is in P’s ISP, the segment is downloaded with no
interference from other parties. If the chosen peer is outside
P’s ISP, the simulation differs depending on the use of the
proxy-tracker or caching. The simulation is performed sep-
arately for each mechanism. Using a proxy-tracker, the peer
request is intercepted by the proxy-tracker, and it processes
the download as described in Sect. 3.4. Using caching, the
request is first directed to the cache, and can result in a cache
miss or hit as described in Sect. 3.3. All caching simulations
exclude the cache warm-up phase, i.e, the computation of
cache hits and misses start only after the cache is full.

At the end of a session, the peer closes all connections with
other peers and with the tracker. The simulation ends when all
sessions in the workload end. As the workload is processed,
the simulator calculates the traffic reduction achieved by each
mechanism.

123



J Braz Comput Soc (2013) 19:475–491 481

Table 1 Characteristics of the
traces used Trace Start Duration

(days)
#Users #Torrents #Session Download

traffic (TB)

Alluvion 2003–10–12 30 39,572 1,474 359,380 110.83

Bitsoup 2007–04–28 7 44,678 6,571 969,024 160.65

Etree 2005–03–11 10 46,801 1,589 141,945 39.47

Filelist 2005–12–11 7 46,705 3,853 7.765.819 66.15

4 Experimental setup

After presenting our approach to simulate traffic reduction
mechanisms for the BitTorrent system, we focus on our
method for analyzing the effectiveness of such mechanisms.
This section details the data used in our trace-driven simula-
tion, and the scenarios evaluated.

4.1 Datasets

We use traces of user behavior in four BitTorrent sites3 for
our analyses: Alluvion, Bitsoup, Etree, and Filelist. The four
traces were collected by three different research groups and
are available in the Peer-to-Peer Trace Archive.4 Although
these traces have been analyzed for different purposes in the
past (eg., [5,10,21]), they have not been analyzed with regard
to the cacheability of their traffic, or focusing on how traf-
fic invariants affect cache performance. Table 1 depicts the
characteristics of these data sets.

Each of the four BitTorrent sites in the traces revolves
around a directory of torrents distributing content published
by its users. Bitsoup and Filelist allow their users to publish
all types of content and are particularly popular for the distri-
bution of movies. Etree is restricted to the sharing of lossless
audio recordings of live performances. Alluvion is a com-
panion site to a popular discussion forum and, at the time of
data collection, distributed miscellaneous content produced
by the users of this forum.

The sample constituted by these four sites is neither a
comprehensive nor a random sample of BitTorrent sites.
Instead, the use of these sites is dictated primarily by fea-
sibility in data collection: these sites made it possible to
obtain detailed information about user behavior over time,
a rare feature among BitTorrent sites. Nevertheless, in spite
of not being random, this sample contains two sites of a sim-
ilar type—Bitsoup and Filelist—and two sites of consider-
ably different audience—Etree and Alluvion. Regularities
found across these four sites are evidence of generality for
our results.

3 Sometimes also referred to as BitTorrent communities.
4 http://p2pta.ewi.tudelft.nl.

Besides content directories, all four sites had, at data col-
lection time, additional Web pages that tracked the upload
and download progress together with the uptime of users in
all torrents. The traces were collected by periodically scrap-
ing these Web pages. Scrapes were hourly for Bitsoup, Etree
and Alluvion, and happened every 6 min for Filelist.

The IP addresses of users are not available in any of the
traces. With the identification schemes in the four traces, it
is neither possible to map users to ISPs nor to map names in
different traces to the same user. A second information that is
not present in the traces is the capacity of users’ Internet con-
nections. Although it is possible to deduce their experienced
upload and download speeds from the traces, it is not clear
if these correspond to the capacities of their connections.

Given the series of observations that constitutes each trace,
we reconstruct users’ sessions similarly to Andrade et al. [5].
Following this approach, a user is online during a period if
the user was online in the first and last observations of a
torrent in that period. A contiguous period online is termed
a session, and the amount downloaded in a session is that
reported in the last snapshot minus that reported in the first
snapshot defining the session. For each user session, there is
available information of its start time, end time, the amount
of data downloaded and whether the peer is a seeder or a
leecher.

It is worthwhile mentioning that there exist sites much
larger than those in our sample, such as, for example, The
Pirate Bay. Although using data from one of such sites is
desirable, obtaining such data with the level of detail in our
traces is arguably infeasible: there are millions of users and
no accessible centralized registry for their state. Furthermore,
one should note that the vast majority of BitTorrent sites
with large user bases are not nearly as large as The Pirate
Bay [57]. In this perspective, our traces represent the typical
large BitTorrent sites [57].

Besides the issue of considering average-sized sites, we
also consider a limited number of them. Although a larger
number of sites is certainly desirable for further analyses, it
is important to stress that the available studies of BitTorrent
caching and most of the literature in Web caching (discussed
in Sect. 2) has relied on experiments using one trace only.
In this respect, this work is also novel in comparing multiple
BitTorrent traces.

123

http://p2pta.ewi.tudelft.nl


482 J Braz Comput Soc (2013) 19:475–491

4.2 Evaluation scenarios

This subsection presents the settings of the simulations sce-
narios in which an ISP implements either a caching or a
proxy-tracker mechanism. The simulation is driven by a
workload derived from the traces that describes the down-
load sessions of a set of users. The content requested during
a session is divided in segments of 10 MB. We find that a
segment size lager than 10 MB would generate a significant
change in the amount of download users perform in the trace.
The cumulative distribution function (CDF) in Fig. 1 shows
that the use of this segment size does not bias the amount
of download done by users during a session when compared
with a simulation that considers piece granularity. The effect
of segment size in all other workloads is similar to the one
shown in this figure.

Users in the workload are divided between those inside
and outside the ISP we simulate. For every simulation, a pro-
portion of all peers is randomly allocated for each position.
Because previous studies have shown that the performance
of both proxy-tracker [26,30] and cache with unlimited size
[2] vary with the number of users inside the ISP, we consider
two cases for the proportion of peers inside the ISP of inter-
est: 3 and 0.3 % of all users in the workload. Considering
3 % of the users in each workload as belonging to the ISP,
our simulation fulfills two requirements in our evaluation: (i)
the population of users in the ISP is larger than 1,000 users
for all workloads, and (ii) the number of users inside the ISP
is never larger than the number of files in the workload, guar-
anteeing that our sampling does not artificially increase the
locality of reference in the workload. To contrast with the sit-
uation where 3 % of the users in each workload as belonging

0.0

0.2

0.4

0.6

0.8

1.0

0 250 500 750 1000

Session download (MB)

C
um

ul
at

iv
e 

F
re

qu
en

cy

Segments of 100 MB

Segments of 10 MB

Segments of 50 MB

Unsegmented

Fig. 1 Cumulative distribution function of the download happening in
sessions for different segment sizes in the workload alluvion

Table 2 Characteristics of an ISP formed by 3 % of the workload users

Trace Download traffic (GB) Ideal cache size (GB)

Alluvion 2,025.472 ± 88.063 344.064 ± 6.144

Bitsoup 3,177.472 ± 77.823 1,708.031 ± 39.936

Etree 581.632 ± 16.384 297.983 ± 7.168

Filelist 1,449.983 ± 36.863 376.831 ± 7.170

to the ISP we simulate, we also examine the scenario where
the proportion of users in the ISP is 10 times smaller (0.3 %).

When simulating caching, each simulation considers,
besides the number of ISP clients, a cache size and an object
replacement policy. We simulate cache sizes up to 50 % of
the size necessary to accommodate all files requested by the
users in the ISP we simulate. This cache size is henceforth
dubbed ideal cache size. Our limit on the maximum cache
size simulated is chosen so as not to spend a larger proportion
of the trace in the warm-up phase. In all of 30 simulation for
each BitTorrent workload, no more than 43 % of the requests
in the trace was spent in the warm-up phase with cache size
of 50 % of the the ideal cache size. Table 2 presents the ideal
cache size for each workload when the simulated ISP is com-
posed by 3 % of the users in the workload. The variation in
cache sizes we analyze also allows us to model how the cache
effectiveness varies with its size.

Caching simulations consider the five object replacement
policies presented in Sect. 2: LFU, LRU, LSB, P2P, and SIZE.
This set of policies allows the comparison of three reference
policies that explore basic traffic characteristic relevant for
caching—LRU, LFU and SIZE—and two policies proposed
for caching peer-to-peer traffic: LSB, proposed for caching
FastTrack traffic [51], and P2P, proposed for Gnutella traf-
fic [24]. No object replacement policies are necessary when
simulating a proxy-tracker.

Comparisons between the performance of two scenarios
are done based on the interval defined by the byte hit rate of
the scenarios for the pessimistic and optimistic estimations in
our cache model. If two intervals do not overlap, we can claim
the cache in one of them is necessarily more efficient than the
other. In all scenarios evaluated, we focus on evaluating the
incoming traffic at the ISP, and use the byte hit rate as a metric
to measure the reduction of traffic yielded by the strategies.
Henceforth, all our results are averages of 30 simulation runs
shown with 95 % confidence intervals.

5 BitTorrent cache effectiveness

This section presents results of our simulations to analyze
the performance of BitTorrent caching under various circum-
stances. First, this analysis focuses on the effect of number of

123



J Braz Comput Soc (2013) 19:475–491 483

Fig. 2 Theoretical caching
potential with different number
of clients. Each colored area
represents the space between the
pessimistic and optimistic cases
in one scenario. The solid line
on top of an area is the
optimistic result and the line
under it, the pessimistic one. The
relative error is at most ± 0.05
for a confidence level of 95 %
a Byte hit rate b Cache size

0.00

0.25

0.50

0.75

1.00

10 100 1000

Number of Cache Clients

B
yt

e 
H

it 
R

at
e

Alluvion

BitSoup

Etree

FileList

0.0

2.5

5.0

7.5

10.0

10 100 1000

Number of Cache Clients

C
ac

he
 S

iz
e 

R
eq

ui
re

d 
(T

B
)

Alluvion

BitSoup

Etree

FileList

(a) (b)

cache clients on BitTorrent traffic cacheability. Then, it ana-
lyzes how inter-ISP traffic reduction is affected by the object
replacement policy, and the cache size. Finally, it compares
the traffic reduction achieved by caching with that achieved
by a proxy-tracker.

5.1 Effect of number of cache clients on BitTorrent traffic
cacheability

We first examine how the efficiency limit of the cache varies
when the number of cache clients increases. This limit,
termed cacheability, quantifies the caching potential of Bit-
Torrent traffic and how the scale of the user population affects
this potential. The natural measure for the cacheability is the
byte hit rate. We isolate the effect of user population from
cache size and object replacement policy by simulating a
cache of infinite size.

The population of cache users in this experiment is a ran-
domly selected and ordered sample of 5,000 clients from each
trace. We simulated ISP with up to 5,000 clients in order to
avoid artificial cache hits. Artificial cache hits are inevitably
generated when the number of ISP clients becomes larger
than the number of files in the trace. With these populations,
we simulate BitTorrent caches serving the first client, the first
two clients, the first three clients, and so on, all the way up
to 5,000. Each simulation computes the byte hit rate for all
requests simulated. There is no period of cache warm up in
this experiment, as the cache has unlimited size.

Figure 2 shows both the byte hit rate as a function of the
number of cache clients in this experiment (Fig. 2a) and the
required cache size to achieve this byte hit rate (Fig. 2b).
Our results show byte hit rates between 0.75 and 0.98 with
5,000 clients. The traces considered have a different num-
ber of peers, but 5,000 is less than 11 % of the peers in the
trace with the smallest number of peers. These results show
that (i) for BitTorrent traffic, caching achieves high byte hit

rates even with few cache clients, and (ii) the benefits from
the shared cache increases with the number of clients. How-
ever, larger cache size can be required to achieve such per-
formance. The required cache size is related to the amount
of context in the traffic. For example, in the BitSoup trace,
the largest trace in terms of number of files, the cache size
required to store the downloaded content in 7 days can reach
up to 10 TB. For longer periods, new content will appear in
traffic which will further increase the cache size required.
Although the storage capacity is not a big problem nowa-
days, the efficiency of the indexing algorithm cache tends to
decrease when size increase [8]. This puts into perspective
the demand for replacement policies that are able to expore
the cacheability of traffic when the cache size is limited.

5.2 Impact of object replacement policy and cache size

Our first experiment investigates the effect of different
object replacement policies and cache sizes on the byte
hit rate of the caching mechanism. The first questions we
address are: which replacement policy, among well-known
Web replacement policies (LFU, LRU, and SIZE) and peer-
to-peer replacement policies (LSB, and P2P), achieves the
highest byte hit rate? How effective they are when compared
to a Random replacement policy? The answer to this ques-
tion is important to inform designers and operators of caching
mechanisms that must choose which policy to implement or
use. The results of simulations for Web replacement policies
and the Random replacement policy in all traces are shown
in Fig. 3.

We find that LRU attains a higher byte hit rate than LFU,
and SIZE in nearly all scenarios. The single exception is
FileList with 50 % of the ideal cache size, where we can-
not distinguish the byte hit rates of LRU and LFU. Overall,
the maximum byte hit rate in the experiment lies between
50–80 % for all workloads with LRU and 50 % of the ideal

123



484 J Braz Comput Soc (2013) 19:475–491

Fig. 3 Comparison of byte hit
rate for LRU, LFU, SIZE, and
Random policies varying the
workload, and cache size. The
relative error is at most ±0.05
for a confidence level of 95 %.
All simulations consider ISPs
with 3 % of the users in the
workload a Alluvion b BitSoup
c Etree d FileList

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.01 0.10 0.20 0.30 0.40 0.50

Cache size as a proportion 
 of the ideal size

B
yt

e 
H

it 
R

at
e

LRU

LFU

SIZE

RANDOM

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.01 0.10 0.20 0.30 0.40 0.50

Cache size as a proportion 
 of the ideal size

B
yt

e 
H

it 
R

at
e

LRU

LFU

SIZE

RANDOM

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.01 0.10 0.20 0.30 0.40 0.50

Cache size as a proportion 
 of the ideal size

B
yt

e 
H

it 
R

at
e

LRU

LFU

SIZE

RANDOM

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.01 0.10 0.20 0.30 0.40 0.50

Cache size as a proportion 
 of the ideal size

B
yt

e 
H

it 
R

at
e

LRU

LFU

SIZE

RANDOM

(a) (b)

(c) (d)

cache size. For most cache sizes, the Random policy show to
be less effective.

Figure 4 compares the byte hit rate of LRU with the peer-
to-peer object replacement policies LSB and P2P. P2P and
LSB are undistinguishable in our experiment, while LRU
clearly achieves a higher byte hit rate than both. Our results
provide evidence that although LSB and P2P have been
shown to perform well in other peer-to-peer traffic, LRU is
more adequate for BitTorrent traffic.

The adequacy of LRU to BitTorrent traffic has signifi-
cant implications for cache design. This policy is trivial to
implement, has low computational complexity [42,49], and
requires little state to be kept—only the order of arrival of
objects. These requirements are significantly simpler than
those posed by most of the other policies we consider, includ-
ing those developed for peer-to-peer traffic. Our simulation
results indicate that LRU allows for the development of effec-
tive caches for BitTorrent traffic.

We now turn to the question of how the byte hit rate
varies with the cache size. This information is important to

understand how to dimension a cache for BitTorrent traffic.
To address this question, we model how the byte hit rate of
LRU grows as a function of the cache size in our experiments.
The model considers only LRU’s byte hit rate, as it achieved
the best performance in our previous experiments.

A linear regression of the byte hit rate as a function of the
logarithm of the cache size results in an adjusted R2 between
0.91 and 0.95 with errors statistically independent and nor-
mally distributed in all workloads, both for optimistic and
pessimistic scenarios. This indicates that the byte hit rate
grows logarithmically with the cache size, showing a sharp
increase when the cache size increases at first, but with a
decreasing additional gain with further increases in the cache
size.

5.3 Comparison with the proxy-tracker

To put the cache performance in perspective, we now com-
pare its traffic reduction with that of a proxy-tracker in the
same scenario. The proxy-tracker, as we simulate, represents

123



J Braz Comput Soc (2013) 19:475–491 485

Fig. 4 Comparison of byte hit
rate of LRU, P2P, and LSB
policies for the different
workloads and varying cache
size. The relative error is at most
±0.05 for a confidence level of
95 %. All simulations consider
ISPs with 3 % of the users in the
workload a Alluvion b BitSoup
c Etree d FileList

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.01 0.10 0.20 0.30 0.40 0.50

Cache size as a proportion 
 of the ideal size

B
yt

e 
H

it 
R

at
e

LRU

P2P

LSB

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.01 0.10 0.20 0.30 0.40 0.50

Cache size as a proportion 
 of the ideal size

B
yt

e 
H

it 
R

at
e

LRU

P2P

LSB

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.01 0.10 0.20 0.30 0.40 0.50

Cache size as a proportion 
 of the ideal size

B
yt

e 
H

it 
R

at
e

LRU

P2P

LSB

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.01 0.10 0.20 0.30 0.40 0.50

Cache size as a proportion 
 of the ideal size

B
yt

e 
H

it 
R

at
e

LRU

P2P

LSB

(a) (b)

(c) (d)

the best performance of a locality-aware neighbor selection
mechanism.

Given that the performance of both mechanisms vary with
the number of ISP clients [2,26,30], this experiment com-
pares these mechanisms considering two possibilities for the
number of ISP clients that differ from each other 10 times.
This analysis aims at identifying whether the difference of
performance between these polices varies with the number
of ISP clients.

Figure 5 shows the traffic reduction achieved by proxy-
tracker and LRU caching when 3 % of peers of the workload
are inside the ISP and considering different cache sizes. This
figure shows the results for FileList and Etree, which show,
respectively, the best and worst cases for the proxy-tracker
and for the LRU traffic reduction as a function of the cache
size. The results show that LRU achieves higher traffic reduc-
tion than the proxy tracker when the cache size is higher than
30 % of the ideal cache size in Etree, and 20 % of the ideal
cache size in FileList. These cache sizes are equivalent to
89.39 and 75.36 GB, respectively.

In turn, Fig. 6 shows the traffic reduction achieved by
LRU caching and by proxy-tracker when 0.3 % of peers of
the workload are in the ISP (10 times less than that present
in Fig. 5). In this figure LRU caching achieves higher traf-
fic reduction than the proxy-tracker when the cache size is
higher than 10 % of the ideal cache size (equivalent to 44
GB). Furthermore, for all workloads, the traffic reduction
achieved by caching LRU was less sensitive to variation
in the number of peers inside the ISP than that achieved
by the proxy-tracker. For example, in the LRU cache with
a size of 50 % of the optimal cache size, the reduction of
10 times in the number of peers inside the ISP has gen-
erated on average a reduction of 63.63 % in the efficiency
of caching and a reduction of 88.89 % in the the efficiency
of proxy-tracker. In Filelist, the reduction is of 50 % in the
efficiency of caching and of 84.61 % in the proxy-tracker
efficiency.

In summary, the results in this section show that the
traffic savings achieved by LRU caching increases as the
cache capacity increases, outperforming the traffic reduction

123



486 J Braz Comput Soc (2013) 19:475–491

Fig. 5 Comparison of traffic
reduction of LRU caching and
proxy-tracker. The evaluated
ISP consists of a sample of 3 %
of peers in the workload, the
other peers are in other ISPs in
the network. In the result of
LRU caching, we plot the upper
limit of the confidence interval
of the optimistic scenario and
the lower limit of the confidence
interval of the pessimistic
scenario a Etree: 1403 peers
inside the ISP b FileList: 1459
peers inside the ISP 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.01 0.10 0.20 0.30 0.40 0.50

Cache size as a proportion 
 of the ideal size

M
ea

n 
S

av
in

gs
 R

at
e

Caching LRU

Proxy−Tracker
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.01 0.10 0.20 0.30 0.40 0.50

Cache size as a proportion 
 of the ideal size

M
ea

n 
S

av
in

gs
 R

at
e

Caching LRU

Proxy−Tracker

(a) (b)

Fig. 6 Comparison of traffic
reduction for a cache using LRU
and a proxy-tracker. The
simulated ISP consists of a
sample of 0.3 % of peers in the
workload; other peers are
outside this ISP. In the result of
LRU caching, we plot the upper
limit of the confidence interval
of the optimistic scenario and
the lower limit of the confidence
interval of the pessimistic
scenario a Etree: 140 peers
inside the ISP b FileList: 146
peers inside the ISP 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.01 0.10 0.20 0.30 0.40 0.50

Cache size as a proportion 
 of the ideal size

M
ea

n 
S

av
in

gs
 R

at
e

Caching LRU

Proxy−Tracker

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.01 0.10 0.20 0.30 0.40 0.50

Cache size as a proportion 
 of the ideal size

M
ea

n 
S

av
in

gs
 R

at
e

Caching LRU

Proxy−Tracker

(a) (b)

achieved by the Proxy-Tracker mechanism. Naturally, cache
is a limited storage and its effectiveness is impacted by its
capacity. In all our analyzes, even a small cache (near 100GB)
provided a higher traffic reduction than Proxy-Tracker.
A larger cache size outperforms Proxy-Tracker because of
its availability. The cache is always in place, while Proxy-
Tracker needs that other peers are online and have requested
the content in the same ISP of the requester peer.

6 BitTorrent traffic invariants

From the results presented so far, it is clear that there
are differences in BitTorrent caching effectiveness in terms
of replacement policies and cache size when compared to
the Web and other peer-to-peer systems. These differences
may happen because of different traffic characteristics. This

section investigates which BitTorrent traffic characteristics
impact on caching effectiveness, and how these characteris-
tics differ from the Web and other peer-to-peer traffic.

Our analysis is based on more workloads than earlier stud-
ies of BitTorrent traffic [5,2,21,40], and focuses on three
traffic characteristics relevant to caching: object temporal
locality, concentration of references, and file size distribu-
tion. We model these traffic characteristics in our four BitTor-
rent workloads, and compare our results with those reported
by studies on Web, FastTrack, and Gnutella traffic.

6.1 Object temporal locality

Temporal locality indicates how likely it is that an object ref-
erenced in the recent past is referenced in the near future
[7,33]. A standard to measure the temporal locality in a
workload is the Least Recently Used Stack Model (LRUSM),

123



J Braz Comput Soc (2013) 19:475–491 487

Fig. 7 Temporal locality for
each BitTorrent site as measured
by the Least Recently User
Stack Model (LRUSM). The
normal workload reflects the
temporal locality in BitTorrent
traffic. Scrambled data indicates
only the locality resulting from
file popularity a Alluvion
b Etree c BitSoup d FileList

Position in LRU Stack

F
ra

ct
io

n 
of

 R
ef

er
en

ce
s

10−5

10−4

10−3

10−2

10−1

100

1 10 20 30 40 50 60 70 80 90100

Original

Scrambled

Position in LRU Stack

F
ra

ct
io

n 
of

 R
ef

er
en

ce
s

10−5

10−4

10−3

10−2

10−1

100

1 10 20 30 40 50 60 70 80 90100

Original

Scrambled

Position in LRU Stack

F
ra

ct
io

n 
of

 R
ef

er
en

ce
s

10−5

10−4

10−3

10−2

10−1

100

1 10 20 30 40 50 60 70 80 90100

Original

Scrambled

Position in LRU Stack

F
ra

ct
io

n 
of

 R
ef

er
en

ce
s

10−5

10−4

10−3

10−2

10−1

100

1 10 20 30 40 50 60 70 80 90100

Original

Scrambled

(a) (b)

(c) (d)

which works as follows: when an object is referenced in the
workload, it is placed on top of a stack. All other objects
already in the stack are pushed down by one position. When
the object is subsequently referenced, its current position in
the stack is accounted for in the experiment, and the object is
moved back to the top of the stack. Other objects are pushed
down, as necessary.

In LRUSM, temporal locality manifests through a high
probability of references to positions at, or near, the top of
the stack. At the same time, a high probability of references
to the top-positioned objects in the LRUSM can be a result of
the sheer popularity of files. To isolate the effect of temporal
locality, we compare the behavior of LRUSM in our origi-
nal workloads with that of a modified version of the work-
load where the order of requests is scrambled. The scrambled
traces neutralize the effect of temporal locality in the work-
load, isolating the effect of file popularity in the LRUSM
[18].

Figure 7 shows the comparison between the normal and
scrambled workloads. In this figure the original access are
represented by an area formed by the optimistic and the pes-
simistic scenarios. The distance between the optimistic and
pessimistic scenarios is impacted by the temporal locality.

For example, in FileList (Fig. 7d) the distance between these
scenarios is small and tends to a line because of the strong
temporal locality found both in segments and in file accesses.

Filelist (Fig. 7d) and Etree (Fig. 7b) have a considerably
higher number of requests made to the few first positions in
the stack when compared to the other two workloads. We
conjecture that this happens because of the widespread use
of automated download mechanisms by users of these sites.
In fact, we observed that the proportion of requests for a
file happening on the first hours after the file publication is
typically higher in these two workloads than in the other two.

We conjecture that the typical life cycle of files in BitTor-
rent traffic [21] is the main characteristic that contributes to
high temporal locality (and the good performance of LRU).
In BitTorrent, when a file is released, it usually receives many
downloads in the first hours and days of its distribution. This
number of downloads achieves a peak and, after a certain
time, it quickly reduces and tends to zero. The larger num-
ber of downloads that the file experiences when it released
contributes to the temporal locality.

In spite of this peculiarity, however, the effect of tem-
poral locality is noticeably higher in our BitTorrent traffic
workloads than that reported in Web traffic studies [7,52].

123



488 J Braz Comput Soc (2013) 19:475–491

This observation justifies the higher byte hit rate achieved
by LRU recency-based replacement policy in our BitTorrent
caching simulation.

6.2 Object popularity

After considering temporal locality, we analyze the object
popularity in isolation. Figure 8 depicts the popularity of
objects in our BitTorrent workloads. We find that in BitTor-
rent traffic the object popularity is well modeled by a Weibull
or Log-Normal distribution, which implies in the absence of
a long-tail and in a less pronounced concentration of refer-
ences in the most popular files, as compared to typical Web
traffic.

As a result, this concentration of references hampers the
performance of the LFU object replacement policy in BitTor-
rent caching, which does not show the best performance as
in Web caching. In Web traffic, few highly popular files are
never replaced in the cache and are responsible for increasing
the hit and the byte hit rate.

6.3 File size distribution

The third traffic characteristic that typically affects cache
performance is the correlation between file reference and file
size. In Web, FastTrack, Gnutella and Kazaa traffic, there is
a wide variation in the size of objects, and smaller files are
often more popular [9,15,17,20,44].

Figure 9 shows the cumulative distribution of file sizes
in the BitTorrent sites used in this study. These results show
that the size of files shared through BitTorrent is one order of
magnitude larger than those accessed through Web and other
peer-to-peer file-sharing systems [35,45,52].

Regarding the correlation between file reference and file
size, we observe that in the workloads we have studied there
is no strong correlation between the size of a file and the num-
ber of requests it receives. The low correlation can be seen
in Fig. 10. To quantify it, we use the non-parametric statis-
tic Kendall’s τ coefficient [27], and measure the association
or statistical dependence between file sizes and their popu-
larity. There is only a weak correlation: in all workloads τ

is between 0.09 and 0.25 (Alluvion = 0.11, BitSoup = 0.25,
Etree = 0.09, FileList = 0.15), with p value <0.001. It is
likely that the low tendency for users to request smaller files
more frequently accounts for the poor performance of the
SIZE object replacement policy in BitTorrent traffic, when
compared to its performance in Web traffic.

In summary, our results indicate that LRU is the best per-
forming policy for BitTorrent traffic mainly due to a pro-
nounced temporal locality in file access. The adequacy of
LRU for this traffic also benefits from a combination of a less
concentrated distribution of popularity among files and low
correlation between file sizes and popularity, which are the

Fig. 8 Distribution of BitTorrent files popularity, frequency of file
accesses versus file ranking

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10
−1

10
0

10
1

10
2

10
3

10
4

File Size (MB)

C
um

ul
at

iv
e 

F
re

qu
en

cy

Alluvion

BitSoup

Etree

FileList

Fig. 9 Cumulative distribution function (CDF) of files size in the Bit-
Torrent sites Alluvion, BitSoup, Etree, and FileList

characteristics leveraged by other object replacement poli-
cies. These results have implications both for cache designers
and operators. In particular, for cache designers, the under-
standing that LRU is an effective object replacement pol-
icy significantly reduces the complexity of implementing the
cache. For operators, our results provide a model for dimen-
sioning BitTorrent caches, and a thorough evaluation of cache
performance with multiple workloads.

6.4 Limitations

Our study, albeit aiming at capturing the central feature of
the relation between BitTorrent traffic and caching, relies,
as any simulation study, in a model that has a number of
assumptions and simplifications. In the following, we discuss
potential limitations in our approach stemming from such
assumptions that should be considered by future work.

123



J Braz Comput Soc (2013) 19:475–491 489

10 0

10 1

10 2

10 3

10 4

10 −110 010 110 210 310 4

File Size (MB)

F
ile

 A
cc

es
se

s

10 0

10 1

10 2

10 3

10 4

10 −110 010 110 210 310 4

File Size (MB)
F

ile
 A

cc
es

se
s

10 0

10 1

10 2

10 3

10 4

10 −110 010 110 210 310 4

File Size (MB)

F
ile

 A
cc

es
se

s

10 0

10 1

10 2

10 3

10 4

10 −110 010 110 210 310 4

File Size (MB)

F
ile

 A
cc

es
se

s

(a) (b)

(c) (d)

Fig. 10 Correlation between file reference and file size. Kendall’s τ

correlation coefficient shows weak correlation in all BitTorrent sites:
a Alluvion τ = 0.11, b Etree τ = 0.09, c BitSoup τ = 0.25, d FileList
τ = 0.15

• In this work, we assume that peers’ request for segments
are chosen in proportion to the number of peers in-si-
de/out-si-de the ISP. Indirectly, this implies that, in our
model, an equal number of peers inside and outside the
ISP are able to provide the same aggregated throughput
to the downloader. It is possible that in some situations
the peers inside the same ISP as the downloader are able
to provide a higher aggregate throughput. However, it
is not clear that this higher throughput indeed manifests
often, perhaps due to frequent last-mile congestion. Woj-
ciechowski and Pouwelse overview this phenomenon and
present an experiment that illustrates this argument [54].

• In a real situation, over a download session, BitTor-
rent peers experiment fluctuation in their throughput, for
example, due to connection instability and/or to con-
nection sharing with other protocols. In this work we
compute the average throughput in the session (the ratio
between the amount of data downloaded in the session
and duration of the session) and we assume that seg-
ments are downloaded at this constant throughput. When
observed in the perspective of each peer, this may impact
the time a content is requested, and, therefore, the time
the content enters and the time in which it is removed
from the cache. When observed in a cache perspective,
we believe our simplification has not a significant impact
on the results because the cache that has thousands of
clients with different fluctuations in throughput; thus,

fluctuations in single peer is diluted when viewed from
the perspective of the cache.

• We analyze BitTorrent traffic data collected in specific
periods in time: 2003, 2005 and 2007. On the one hand,
although collected at different periods, these data show
similarities in the three main characteristics relevant to
replacement policy evaluation: file size distribution, tem-
poral locality, and files popularity. Furthermore, previous
studies show that these features have not changed much
in recent years[16,53,57]. On the other hand, it is impor-
tant to highlight that our results are sensitive to changes
in these traffic characteristics.

7 Concluding remarks

This study contributes to the understanding of how caching
reduces the inter-ISP traffic associated to BitTorrent work-
loads. We analyzed the impact of cache sizes and well-known
object replacement policies on BitTorrent caching effective-
ness. To put cache performance in perspective, we compared
its traffic reduction with that achieved by a proxy-tracker,
which represents the best performance of a locality-aware
neighbor selection mechanism. Furthermore, we investigated
which BitTorrent traffic characteristics impact on caching
effectiveness, and how these characteristics differed from the
Web and other peer-to-peer traffic.

Regarding object replacement policies, LRU shows the
best performance in all of our experiments. This result con-
trasts with that of experiments with Web and other peer-to-
peer traffic in the literature, and points out that peculiarities
in BitTorrent traffic must be accounted for when designing
caches for this system. Examining further such peculiarities,
we could identify the characteristics of BitTorrent traffic that
lead to the good performance of LRU: a significant temporal
locality, concentration of references that fits a Log-Normal
distribution, and a weak correlation between file sizes and
their popularity.

The adequacy of LRU to BitTorrent traffic has signifi-
cant implications for cache design. This policy can be triv-
ially implemented, has low computational complexity, and
requires a small amount of state to be kept. These require-
ments are significantly simpler than those posed by most of
the other policies that we considered in our study, includ-
ing those developed for peer-to-peer traffic. In summary, our
results indicate that LRU allows for the development of effec-
tive and scalable caches for BitTorrent traffic.

Analyzing the effect of cache size on its effectiveness,
we found out that the byte hit rate of a BitTorrent cache
grows logarithmically with its size. This result provides a
model for cache provisioning. Putting the traffic reduction
obtained with a certain cache size in perspective, our com-
parison of caching and the use of a proxy-tracker shows

123



490 J Braz Comput Soc (2013) 19:475–491

that for the workloads we consider, reasonable cache sizes
can outperform locality-aware mechanisms. Naturally, both
mechanisms can also be used in conjunction. Nevertheless,
the deployment of locality-aware mechanisms depends on
its adoption by a large user base. Our results suggest that
caching is a viable alternative for ISPs while locality-aware
mechanisms are not adopted.

Overall, our study presents a comprehensive analysis of
BitTorrent traffic relevant to cache design and it performs
a wide evaluation of the effectiveness of several different
designs for caching BitTorrent traffic. Nevertheless, our find-
ings may be extended in various directions which we left out
of our scope. First, given that our results show that a marked
temporal locality in BitTorrent traffic chiefly influences cache
effectiveness, future research should extend our evaluation
exploring optimizations in a LRU-based cache. Such opti-
mizations can focus on the development of an efficient cache
implementation, analyzing, for example, how variations in
the number of cache users impacts on replacement policy
effectiveness. Furthermore, future research should explore
a hybrid approach that combines both caching and locality-
aware mechanisms. Our results show that the traffic reduc-
tion achieved by each one of these strategies leaves a margin
for applying further reduction techniques. In this direction,
future work should analyze if the traffic reductions achieved
by each mechanisms are indeed complementary, and how
each mechanism impacts on the effectiveness of the other.

References

1. Abrams M, Standridge CR, Abdulla G, Fox EA, Williams S (1996)
Removal policies in network caches for world-wide web docu-
ments. In: SIGCOMM ’96: Conference proceedings on Applica-
tions, technologies, architectures, and protocols for computer com-
munications. ACM, New York, pp 293–305

2. Ager B, Kim J, Schneider F, Feldmann A (2010) Revisiting
cacheability in times of user generated content. In: Proceedings
of the 13th IEEE global internet, symposium

3. Ager B, Schneider F, Feldmann A (2009) Cacheability of bulk con-
tent for isps. In: SIGCOMM ’09: poster session of the 2009 con-
ference on applications, technologies, architectures, and protocols
for, computer communications

4. Aggarwal C, Wolf JL, Yu PS (1999) Caching on the world wide
web. IEEE Trans Knowl Data Eng 11(1):94–107

5. Andrade N, Santos-Neto E, Brasileiro F, Ripeanu M (2009)
Resource demand and supply in bittorrent content-sharing com-
munities. Comput Netw 53(4):515–527

6. Arlitt MF, Williamson CL (1996) Web server workload characteri-
zation: the search for invariants. Performance evaluation review of
the ACM special interest group on performance evaluation (ACM-
SIGMETRICS) 24(1):126–137

7. Arlitt MF, Williamson CL (1997) Internet web servers: workload
characterization and performance implications. IEEE/ACM Trans
Netw 5(5):631–645

8. Badam A, Park K, Pai VS, Peterson LL (2009) Hashcache:
cache storage for the next billion. In: Proceedings of the 6th
USENIX symposium on networked systems design and imple-

mentation, NSDI’09. USENIX Association, Berkeley, CA, USA,
pp 123–136

9. Basher N, Mahanti A, Mahanti A, Williamson C, Arlitt M (2008)
A comparative analysis of web and peer-to-peer traffic. In: Pro-
ceeding of the 17th international conference on world wide web.
ACM, New York, pp 287–296

10. Bellissimo A, Levine BN, Shenoy P (2004) Exploring the use of
bit torrent as the basis for a large trace repository. Technical Report
04–41, University of Massachussets

11. Bindal R, Cao P, Chan W, Medved J, Suwala G, Bates T, Zhang A
(2006) Improving traffic locality in bittorrent via biased neighbor
selection. In: Proceedings of the 26th IEEE international confer-
ence on distributed computing systems, ICDCS ’06. IEEE Com-
puter Society, Washington, pp 66–66

12. Breslau L, Cao P, Fan L, Phillips G, Shenker S (1999) Web caching
and zipf-like distributions: evidence and implications. In: Proceed-
ings of the 1999 conference on computer communications. New
York, NT, USA, pp 126–134

13. Choffnes DR, Bustamante FE (2008) Taming the torrent: a practi-
cal approach to reducing cross-isp traffic in peer-to-peer systems.
SIGCOMM Comput Commun Rev 38:363–374

14. Clevenot-Perronnin F, Nain P (2005) Stochastic fluid model for
p2p caching evaluation. In: Proceedings of the 10th international
workshop on web content caching and distribution. IEEE Computer
Society, Washington, pp 104–111

15. Cunha C, Bestavros A, Crovella M (1995) Characteristics of www
client-based traces. Tech. Rep. TR-95-010, Boston University,
Boston

16. Dán G, Carlsson N (2010) Power-law revisited: large scale mea-
surement study of p2p content popularity. In: Proceedings of the
9th international conference on peer-to-peer systems, IPTPS’10.
USENIX Association, Berkeley, p 12

17. Faber AM, Gupta M, Viecco CH (2006) Revisiting web server
workload invariants in the context of scientific web sites. In: SC
’06: Proceedings of the 2006 ACM/IEEE conference on supercom-
puting. ACM Press, New York, p 110

18. Feitelson D (2011) Workload modeling for computer systems per-
formance evaluation. Tech. rep.

19. Garetto M, Figueiredo D, Gaeta R, Sereno M (2007) A modeling
framework to understand the tussle between isps and peer-to-peer
file-sharing users. Perform Eval 64(9–12):819–837

20. Gummadi KP, Dunn RJ, Saroiu S, Gribble SD, Levy HM, Zahor-
jan J (2003) Measurement, modeling, and analysis of a peer-
to-peer file-sharing workload. Operating systems review of the
ACM special interest group on operating systems (ACM-SIGOPS)
37(5):314–329

21. Guo L, Chen S, Xiao Z, Tan E, Ding X, Zhang X (2005) Mea-
surements, analysis, and modeling of bittorrent-like systems. In:
IMC ’05: Proceedings of the 5th ACM SIGCOMM conference on
internet measurement. USENIX Association, Berkeley, CA, USA,
pp 35–48

22. Halinger G, Hartleb F (2011) Content delivery and caching from a
network providers perspective. Comput Netw 55(18):3991–4006

23. Hefeeda M, Hsu C, Mokhtarian K (2011) Design and evaluation of
a proxy cache for peer to peer traffic. IEEE Trans Comput (99)1

24. Hefeeda M, Saleh O (2008) Traffic modeling and proportional
partial caching for peer-to-peer systems. IEEE/ACM Trans Netw
16(6):1447–1460

25. Iliofotou M, Siganos G, Yang X, Rodriguez P (2010) Compar-
ing bittorrent clients in the wild: the case of download speed. In:
Proceedings of the 9th international conference on peer-to-peer
systems, IPTPS’10. USENIX association, Berkeley, p 11

26. Karagiannis T, Rodriguez P, Papagiannaki K (2005) Should inter-
net service providers fear peer-assisted content distribution? In:
Proceedings of the 5th ACM SIGCOMM conference on internet
measurement. USENIX Association, Berkeley, p 6

123



J Braz Comput Soc (2013) 19:475–491 491

27. Kendall MG (1990) Rank correlation methods, vol. 3. Griffin
28. Lehrieder F, Dan G, Hobfeld T, Oechsner S, Singeorzan V (2010)

The impact of caching on bittorrent-like peer-to-peer systems. In:
Proceedings of the IEEE international conference on peer-to-peer
computing

29. Liao WC, Papadopoulos F, Psounis K (2007) Performance analysis
of bittorrent-like systems with heterogeneous users. Perform Eval
64(9–12):876–891

30. Lin M, Lui J, Chiu DM (2010) An isp-friendly file distribution pro-
tocol: analysis, design, and implementation. IEEE Trans Parallel
Distrib Syst 21(9):1317–1329

31. Liu B, Cui Y, Lu Y, Xue Y (2009) Locality-awareness in bittorrent-
like p2p applications. IEEE Trans Multimed 11(3):361–371

32. Mahanti A, Eager D, Williamson C (2000) Temporal locality and
its impact on web proxy cache performance. Perform Eval 42(2–
3):187–203

33. Mahjur A, Jahangir A, Gholamipour A (2005) On the performance
of trace locality of reference. Perform Eval 60(1–4):51–72

34. Maier G, Feldmann A, Paxson V, Allman M (2009) On dominant
characteristics of residential broadband internet traffic. In: IMC
’09: Proceedings of the 9th ACM SIGCOMM conference on Inter-
net measurement conference, pp 90–102

35. Markatos EP (1996) Main memory caching of web documents.
Comput Netw 28(7–11):893–905

36. Neglia G, Reina G, Zhang H, Towsley D, Venkataramani A, Dana-
her J (2007) Availability in bittorrent systems. In: INFOCOM 2007.
26th IEEE international conference on computer communications.
IEEE, pp 2216–2224

37. OverCache P2P: http://www.oversi.com. Online December 2011
38. PeerApp UltraBand: http://www.peerapp.com. Online December

2011
39. Podlipnig S, Böszörmenyi L (2003) A survey of web cache replace-

ment strategies. ACM Comput Surv 4:374–398
40. Pouwelse JA, Garbacki P, Epema DHJ, Sips HJ (2005) The bit-

torrent p2p file-sharing system: measurements and analysis. In:
IPTPS’05: 4th international workshop on peer-to-peer systems

41. Psounis K, Zhu A, Prabhakar B, Motwani R (2004) Modeling cor-
relations in web traces and implications for designing replacement
policies. Comput Netw 45(4):379–398

42. Rabinovich M, Spatschek O (2002) Web caching and replication.
Addison-Wesley Longman Publishing Co., Inc., Boston

43. Ruan B, Xiong W, Chen H, Ye D (2009) Improving locality of bit-
torrent with isp cooperation. In: Proceedings of the 2009 interna-
tional conference on electronic computer technology. IEEE Com-
puter Society, Washington, pp 443–447

44. Saroiu S, Gummadi KP, Dunn RJ, Gribble SD, Levy HM (2002)
An analysis of internet content delivery systems. In: OSDI ’02:
proceedings of the 5th symposium on operating systems design
and implementation. ACM, New York, pp 315–327

45. Saroiu S, Gummadi KP, Dunn RJ, Gribble SD, Levy HM (2002) An
analysis of internet content delivery systems. Operating systems
review of the ACM special interest group on operating systems
(ACM-SIGOPS) 36(SI):315–327

46. Sherman A, Nieh J, Stein C (2009) Fairtorrent: bringing fairness
to peer-to-peer systems. In: Proceedings of the 5th international
conference on emerging networking experiments and technologies,
CoNEXT ’09. ACM, New York, pp 133–144

47. Tian C, Liu X, Jiang H, Liu W, Wang Y (2008) Improving bit-
torrent traffic performance by exploiting geographic locality. In:
Proceedings of the global communications conference GLOBE-
COM, IEEE, pp 2489–2493

48. Wang J, Wang C, Yang J, An C (2011) A study on key strategies
in p2p file sharing systems and isps p2p traffic management. Peer-
to-Peer Networking and Applications, pp 1–10

49. Wessels D (2001) Web caching. O’Reilly & Associates, Inc.,
Sebastopol

50. Wierzbicki A, Leibowitz N, Ripeanu M, Wozniak R (2004) Cache
replacement policies for p2p file sharing protocols. Eur Trans
Telecommun 15(6):559–569

51. Wierzbicki A, Leibowitz N, Ripeanu M, Wozniak R (2004)
Cache replacement policies revisited: the case of p2p traffic. In:
CCGRID ’04: proceedings of the 2004 IEEE international sympo-
sium on cluster computing and the grid. IEEE Computer Society,
Washington, pp 182–189

52. Williams A, Arlitt M, Williamson C, Barker K (2005) Web work-
load characterization: ten years later. In: Tang X, Xu J, Chanson
ST (eds) Web content delivery, chap. 1, pp 3–21. Springer, New
York

53. Wojciechowski M, Capotă M, Pouwelse J, Iosup A (2010) Btworld:
towards observing the global bittorrent file-sharing network. In:
Proceedings of the 19th ACM international symposium on high
performance distributed computing, HPDC ’10. ACM, New York,
pp 581–588

54. Wojciechowski M, Pouwelse J (2011) It’s not that simple: an empir-
ical study on the influence of locality on download speed in bittor-
rent. Tech. Rep. PDS-2011-008, Delft University of Technology

55. Xie H, Yang YR, Krishnamurthy A, Liu YG, Silberschatz A (2008)
P4p: provider portal for applications. SIGCOMM Comput Com-
mun Rev 38:351–362

56. Zhang B, Iosup A, Pouwelse J, Epema D (2010) The peer-to-peer
trace archive: design and comparative trace analysis. In: Proceed-
ings of the ACM CoNEXT student workshop, CoNEXT ’10 student
workshop, pp 21:1–21:2. ACM, New York

57. Zhang C, Dhungel P, Wu D, Ross K (2011) Unraveling the bittorrent
ecosystem. IEEE Trans Parallel distrib Syst (99)1

123

http://www.oversi.com
http://www.peerapp.com

	BitTorrent traffic from a caching perspective
	Abstract 
	1 Introduction
	2 Related work
	2.1 Web caching
	2.2 Caching BitTorrent and other peer-to-peer traffic
	2.3 Locality-aware mechanisms

	3 Modeling caching and locality-aware mechanisms
	3.1 BitTorrent overview
	3.2 Estimating intra- and inter-ISP traffic
	3.3 A model for BitTorrent caching
	3.4 A model for a BitTorrent proxy-tracker
	3.5 Trace-driven simulation dynamics

	4 Experimental setup
	4.1 Datasets
	4.2 Evaluation scenarios

	5 BitTorrent cache effectiveness
	5.1 Effect of number of cache clients on BitTorrent traffic cacheability
	5.2 Impact of object replacement policy and cache size
	5.3 Comparison with the proxy-tracker

	6 BitTorrent traffic invariants
	6.1 Object temporal locality
	6.2 Object popularity
	6.3 File size distribution
	6.4 Limitations

	7 Concluding remarks
	References


