J Braz Comput Soc (2013) 19:325-339
DOI 10.1007/s13173-013-0104-z

ORIGINAL PAPER

Functional test data generation for Simulink-like models

Rodrigo Fraxino Araujo - Marcio Eduardo Delamaro -

Jose Carlos Maldonado

Received: 6 July 2012 / Accepted: 26 February 2013 / Published online: 20 March 2013

© The Brazilian Computer Society 2013

Abstract Embedded systems are increasingly present in
many electronic devices and is often related to critical appli-
cations. Therefore, the need for a well planned and executed
testing procedure is even higher. We intend to contribute in
this area by presenting an experimental evaluation of the
pairwise combinatorial approach as a technique for test data
generation applied specifically to Simulink-like models. In
particular, we have applied our strategy to the generated
source code of several models. Furthermore, a testing tool
was developed to assist in the test data generation process.
We show that there is no statistical significant advantages of
the proposed approach over random generation of test data,
but when used together they yield better results. The fea-
sibility of the experimental results indicate that efforts can
be employed in order to obtain a testing strategy integrated
within a testing environment.

Keywords Embedded system - Pairwise testing -
Simulink - Scicos

1 Introduction

As a result of technological advances, more and more
mechanical systems are being replaced by electromechanical

R. F. Araujo (<) - M. E. Delamaro - J. C. Maldonado
Instituto de Computacio e Matemdtica Computacional,
Universidade de Sao Paulo, Sao Carlos, Brazil

e-mail: rfaraujo@icmc.usp.br

M. E. Delamaro
e-mail: delamaro@icmc.usp.br

J. C. Maldonado
e-mail: jemaldon@icmc.usp.br

R. F. Araujo
Linux Technology Center,
IBM, Sao Paulo, Brazil

ones. This can be noted in the growing number of embed-
ded systems present in cars, aircrafts, trains and electronic
devices. Many of these systems are critical and cannot toler-
ate failures. Therefore, the testing of embedded systems is a
very important task [23].

The National Institute of Standards and Technology esti-
mates that, in the United States, the cost for insufficiency
in the software testing process in 2000 was around 59 bil-
lion dollars. An example is what frequently happens with
automotive models. Recall is a common practice to correct
faults that have been introduced during the manufacturing of
embedded systems [6].

Due to the complexity of systems and the ever-increasing
needs for shortening time-to-market pressures, the testing
task has become even more challenging. A common problem
is the testing stage being performed at the end of a project
development life cycle. Thus, when faults are found, the cost
to fix them is much higher [34].

Furthermore, although the implementation of automated
testing activity is a common practice, the creation of test
sets is still performed manually in many cases. Embedded
systems, with increasingly sophisticated software, may have
a high number of combinations of inputs and events, which
can result in many different outputs, leading to a possible
failure to cover all outcomes in a manual testing activity.

A possibility to lessen the aforementioned problem is by
using precise models that support a system development life
cycle. Models are concise and understandable abstractions
that capture the decisions of the functions of a system whose
semantics are derived from the concepts and theories of a
specific domain [32].

In this scenario, platforms such as ScicosLab/Scicos [24]
and Matlab/Simulink [44] are widely used to design and sim-
ulate embedded system models. One of their advantages is
the application analysis at different levels of abstraction.

@ Springer

326

J Braz Comput Soc (2013) 19:325-339

Another benefit is the automatic code generation, which
reduces development costs and programming errors.

To ensure the reliability of this kind of system, the industry
has been investing in an approach known as model based
testing [8]. In this approach, it is easier to automate the testing
activity, which includes an automatic generation of test sets.
The testing activity takes place at a more abstract level, even
before the software is coded. This leads to a more efficient
process with significant cost reduction and a final product
with higher quality.

Seeking to address such issue, our main results come
from the experimental studies that were conducted to assess
the adequacy of test data generation using two different
approaches, a pairwise generation [19] and a random one.
The adequacy assessment of the test data was performed by
applying the mutation testing in a small set of programs and
comparing the mutation score achieved by each test data gen-
eration approach.

For the conduct of such experiments, we introduce a tool
called TeTooDS (Testing Tool for Embedded Systems) [3],
which assists in the test data generation by applying the pair-
wise approach in embedded systems models. This approach
ensures that any two possible values, belonging to two differ-
ent parameters, will be present in at least one test data [19].

Kuhn et al. [26] show that the combinatorial design
approach for automatic test data generation is quite effec-
tive in many situations and that the pairwise testing is fit
for most general applications. Thereby, we considered that
efforts could be employed by applying this approach in the
context of embedded systems models. We are also not aware
of other studies that focus on a well planned and documented
experimental evaluation of test data generation methods for
Simulink-like models.

This paper is structured as follows. Section 2 presents
some characteristics of the environments for embedded sys-
tems development and simulation. In Sect. 3, testing tech-
niques for Simulink-like models are described. The pairwise
approach and the testing tool we developed to assist in the
testing of Simulink-like models are detailed in Sect. 4. Sec-
tion 5 presents the experimental results of the test data gen-
eration methods applied to a small set of models. The con-
cluding remarks, possible extensions for the testing tool and
suggestions for further work are presented in Sect. 6.

2 Development and simulation environments

Embedded systems devices are an increasingly higher por-
tion of several technological areas. In the embedded systems
development, it is common to use simulation prior to hard-
ware and software integration. This occurs mainly because
the hardware may not be available for testing, or may even
not exist. The simulation can also avoid dangerous situations,
such as equipment damage or human lack of safety [21,23].

@ Springer

In this context [2], emphasize that a dynamic system con-
sists of a set of possible states, together with a rule that deter-
mines the present state from a past state. According to [25],
dynamic systems relate model-system states to earlier states.
Classical physics, for example, predicts continuous changes
of quantities such as position, velocity, or voltage with con-
tinuous time.

Simulink [44], a software that works with Matlab, and
Scicos [24], a software that works with ScicosLab, are
alternatives for the development and simulation of dynamic
systems. One of their advantages is the application analysis
possibility in several levels of abstraction. Another benefit is
the automatic generation of code, thereby reducing develop-
ment costs and programming errors.

Such systems are mathematically represented by systems
of equations, that are differential equations in the case of
continuous time systems, difference equations in the case of
discrete time systems, and a mix of both in the case of hybrid
systems. The simulation of these type of systems is based on
numerical algorithms, whereby the solution of a system of
equations, i.e., the semantics of a Simulink model, is given by
the sequence of values that represents the temporal functions
[11].

2.1 Simulink

Simulink is software for modeling and simulating embedded
systems or, more precisely, dynamic systems. It provides a
common environment for sharing data, designs and specifi-
cations, making it possible to develop more reliable critical
systems and generating code with security [43].

Large worldwide organizations make use of Simulink.
One of the main areas is the aerospace industry. The Air-
bus A380, the Mars Exploration Rover and the F-35 joint
strike fighter were modeled using Simulink [44]. Embraer,
a Brazilian exponent company in aviation has extensively
used Simulink as shown, for instance, in Cavalcanti and Pap-
ini [10].

These models are based on blocks diagrams. These blocks
include a library of sinks, sources, connectors and linear and
non-linear components. Moreover, it is possible to create
blocks for specific purposes. Models can be hierarchical and
it is possible to analyze the whole system on a high level or
detail each one of the blocks, increasing the model abstrac-
tion level. It facilitates the understanding of the model orga-
nization and on how the components interact with each other
[36,43].

2.2 Scicos
Scicos is also software for modeling and simulating embed-

ded systems [24]. Unlike Simulink, Scicos is free software.
For modeling, it offers a modular way to build complete

J Braz Comput Soc (2013) 19:325-339

327

embedded systems by an editor of block diagrams. It is pos-
sible to build a library of reusable modules (blocks) that can
be used in different systems and projects [9]. A large number
of blocks, that can be used to perform basic operations, are
already present on the platform. It is almost never necessary
to build a block from scratch.

Moreover, as with Simulink, Scicos provides features that
help in the optimization, validation and generation of C code
for a particular model. For example, an application can have
its development cost decreased by traditional optimization
techniques, validated by simulation and its C code generated
for specific hardware.

2.3 Example

Simulink-like models are composed by blocks connected by
lines (signals). These blocks can be elementary, containing
simple operations (as arithmetics, for instance), or subsys-
tems, that contains a composition of elementary blocks. It is
worth emphasizing the Integrator and the UnitDelay blocks,
which introduce the notion of time. When an Integrator is
used, the model is said to be of continuous time, and the
operation associated with the block is a mathematical inte-
gration over time. A model that uses a UnitDelay is said to
be of discrete time. A mix of both produces a hybrid model,
defined as a data flow where the signals are continuous or
discrete time functions.

Figure 1 contains an example of a Simulink-like model
that is divided into three subsystems [11]. A continuous time
subsystem is present in Fig. 1a and represents a braking pedal
as a mass-spring-damper mechanical system. A discrete time
subsystem is present in Fig. 1b and is responsible for detect-
ing when the pressing force is greater than a given threshold
to activate the brake. Fig. 1c presents the main system, a com-
position of both subsystems, containing an input, the force,
and an output, the detection result.

3 Embedded system testing

Embedded system testing is considered a vital task, espe-
cially because many systems are critical. However, some
factors may hamper the testing of such systems. If a specific
hardware is required, for instance, this test can be prevented
by the equipment cost. Another concern is related to the pos-
sibility of the hardware being damaged, since the system may
not present the expected behavior.

Developers typically use simulation prior to the integra-
tion of hardware and software. However, the simulation may
also present some problems, e.g., a generation of potentially
very large data sets, a high consumption of time, error prone
outputs and temporal restrictions [22].

We conducted a systematic review that aimed to iden-
tify methods for the automatic generation of test data from
embedded system models. Among the 29 selected papers,
15 handle specifically Simulink-like models [4]. We could
notice that most of the papers present or make use of com-
mercial testing tools and that there are no studies regarding
the test of Scicos models, probably because Simulink is more
consolidated within industry.

Concerning specifically the testing of Simulink-like mod-
els [22], focus on the use of functional characteristics
to test this type of model. A great deal of the studies
[1,5,12,17,18,37,39,41,44,46,48] involve the application
of structural techniques, which can be motivated by guide-
lines such as DO-178B [38], that requires minimum struc-
tural coverage assurances. The mutation testing can also be
used, as described by [7,47,48]. A more detailed description
of each study is presented as follows.

The functional testing is a technique used to design test
cases in which a program or system is considered as a black
box, and to test it, inputs are provided and the outputs gener-
ated are evaluated to verify their compliance with the spec-
ified goals. In principle, the functional testing can detect
all faults, submitting the program or system to all possible
inputs. However, the input domain may be infinite or very
large, making the test time of an activity unfeasible, and thus
rendering this alternative not practical [33].

Due to the possible large number of inputs and outputs, a
tool that supports the automatic generation of these values can
help the tester’s task. The test values must be created for each
input variable on each time step throughout the simulation.
In addition, to help with the test data generation, a testing
tool can capture, organize and display the generated output
for the tester analysis [22].

Henry et al. [21,22] propose the use of MATT (Matlab
Automated Testing Tool), a tool that focuses on real time
systems testing. It helps with the generation of test data that
exercise a specified system in different conditions. Accord-
ing to the authors, it is necessary to use critical values, sys-
tem dependent, values between the minimum and maximum
bounds, and input values that are outside of the specified
domain. The approach they present helps to generate test
data which take the system to such conditions.

Blackburn and Busser [5] developed T-VEC [42], a com-
mercial tool that integrates the development and testing
based on functional requirements. It uses a requirements
definition model, and tracks all of the requirements to a
embedded system model or code, ensuring that each spec-
ified requirement is tested. It is used by large organizations
such as Lockheed Martin [42]. One of the important fea-
tures of the tool is the automatic generation of test vec-
tors. It has the ability to determine the inputs, the expected
output, and a mapping of each test case to their functional
requirement.

@ Springer

J Braz Comput Soc (2013) 19:325-339

D

Outl

(@) Continuous Time Model

+
. +
» Inl +
1

1
True__w
___.{EZE:::> |

L
- Add Gain __[
0

2z
Unit Delay

Outl

False

(b) Discrete Time Model

Inl

Outl —p

Outl

Pedal

Control

(¢) Hybrid Model

Fig. 1 Simulink-like models

Another possibility is to use the structural technique for
testing a given system, which requires the implementation
of pieces or components of a program. The logical paths are
tested by the selection of test data that exercise a specific con-
dition set and pairs of definition and use of the variables [33].

In general, most of the structural criteria make use of a
representation known as Control Flow Graph (CFG). A pro-
gram can be decomposed into a set of disjointed blocks of
commands. The execution of the first command of a block
results in the execution of all other block commands. All
commands in a block, except possibly the first, have one pre-
decessor and exactly one successor, except possibly the last
command [31,35].

Zhan and Clark [46,48] describe an alternative for the test
data generation using the structural technique. The solution
consists of first performing a random test data generation,
aiming to improve the operation cost. Subsequently, an analy-
sis of the paths which have already been traversed is used for
the generation of the remaining test data. This proposal is
based on the costs to cover each possible path. Probes are
inserted in the second input of each switch block, a block
that can be compared to an if-then-else sentence. Thus, it
is possible to analyze which values are being supplied and
for each condition identified, it is possible to associate a cost
indicating how far the data is to go to satisfy the switch block
condition.

Gadkari et al. [17] present the AutoMOTGen, a tool for
the automatic generation of test data from Simulink models
in order to test automotive controllers. The goal is to use the
Simulink model, high-level requirements and test specifica-
tions to apply model checking techniques for the generation
of test data. Model checking techniques aim to automati-
cally test whether a model meets a given specification. The
tool uses the SAL language to create an intermediate model,
by converting the Simulink model into a formal model of

@ Springer

finite states, translating the specifications and the high level
testing requirements into formal properties by the use of lin-
ear temporal logic (LTL). This model is structured to con-
tain hierarchical information and a mapping of the structural
coverage of the Simulink model in relation to the testing
requirements.

Satpathy et al. [39] propose a technique and testing tool
for Simulink models called Randomized DIRECTED Testing
(REDIRECT). Itis based on four principles: test by using ran-
dom inputs, direct traversion of a block previously reached,
backtracking and random test based on feedback. One of
the highlights of the tool is that REDIRECT uses a heuristic
guided by defined patterns and can reach non-linear blocks,
whose output is not proportional to their input.

Mathworks released Simulink Design Verifier [44], a tool
that generates test values by the use of formal analysis tech-
niques to achieve exhaustive evaluation of a Simulink model.
The technique is based on mathematically rigorous proce-
dures to simplify and search through the possible execution
paths of a model. Its advantages include the detection of
incomplete requirements and the exploration of design faults.
Nevertheless, not all Simulink features are supported by the
tool.

Reactis [37,41] is acommercial testing tool that can gener-
ate test sets to exercise a Simulink model. For the generation
of test data, a random generation is performed and the inputs
are selected by Monte Carlo methods. The guided simula-
tion technique is also used, in which values are analyzed and
chosen in order to cover the remaining test requirements of
the model. This test set covers the MC/DC (Modified Condi-
tions/Coverage Decisions) criterion. The tool contains three
main components: Tester, which automatically generates test
sets; Simulator, which allows the visualization of the execu-
tion; and validator, that performs a search for violations in
the requirements specified by the user [12].

J Braz Comput Soc (2013) 19:325-339

329

Beacon Tester [1] is also a commercial tool that automat-
ically creates test vectors in order to ensure the quality and
reusability of a Simulink model. The coverage obtained with
the test vectors include functional criteria, such as bound-
ary value analysis, and structural criteria, such as all-nodes,
all-edges and MC/DC.

One more commercial tool dedicated to the generation of
test data for Simulink models is Safety Test Builder [18]. At
first, the generation of test data is random, and then a heuristic
algorithm is used. The test set generated aims to cover struc-
tural criteria such as MC/DC. Very little documentation can
be found regarding Beacon Tester and Safety Test Builder.

The mutation testing can be an alternative for the testing
of Simulink-like models. In the mutation criterion typical
implementation faults are used to generate testing require-
ments. The program being tested is altered several times,
creating a set of alternative programs (mutants). The tester
is responsible for choosing test data that show difference in
the behavior among the original program and the mutant pro-
grams [31]. The test set quality is measured according to its
ability to detect faults in the mutants [15].

In Zhan and Clark [47,48], a solution for the generation of
test data using the mutation testing is described. It is neces-
sary to perform a random generation of test data for a model.
For the mutants that have not been differentiated from the
original program, the proposal is based on faults propagation
costs inserted by mutation operators to the model outputs. If
a test data is too weak to propagate a fault, that is, if the
measurement that is done shows that this test data is far from
acting on the mutant part of the code and influence the out-
put, it receives a high cost. If a test data is good for spreading
a particular fault to the output, it receives a low cost. One of
the possible weaknesses of this proposal is the low numbers
of mutation operators defined, i.e., add, multiply and assign.

Brillout et al. [7] developed a methodology to assess the
correctness of Simulink models by automating the test data
generation activity. Their objective is to cover the require-
ments imposed by the mutation testing. In order to gen-
erate and optimize the test data, the approach focus is on
model checking techniques. However, the authors do not
present a solution for how to apply the mutation testing, i.e.,
which mutant operators should be used to generate the testing
requirements.

Generally, different techniques are complementary and
should be combined in practice. In the next section, our
approach for applying the pairwise testing in embedded sys-
tem models is described.

4 Combinatorial testing for Simulink-like models

In this section, TeTooDS, a tool that supports the testing of
Simulink-like models, is presented together with the pairwise

testing. The testing tool assists in the extraction of relevant
information for the appropriate generation of test data using
the pairwise approach. Thereby, we can achieve a reduction
in the number of test generated data, improving the com-
putational cost and the effort required to analyze the output
data.

The pairwise technique is detailed in Sect. 4.1 and
TeTooDS is described in Sect. 4.2.

4.1 Pairwise testing

Functional testing considers the system as a black box from
which only inputs and outputs are known. Testing criteria
assist in determining inputs for testing the underlying system
as well as combining them in such a way that they effectively
exercise it.

Critical systems must have a very small probability of
failure. Nevertheless, it is difficult to reduce the risk of unpre-
dictable behavior of an embedded system to zero [30]. There-
fore, the test data generation activity is of great importance,
since the effectiveness of a test criterion depends on the selec-
tion of significant values that satisfy existing test require-
ments. However, the cost for the test data generation can be
high and, thus, guidelines must be followed to reduce the
required effort.

One possible approach is to apply the pairwise testing,
that can generate efficient test sets that contribute to a reduc-
tion in the cost of finding adequate test data. An input set
is introduced and then an evaluation is performed to check
whether the result conforms with the requirements [19].

The combinatorial testing was originally proposed in order
to reduce the number of test data required to verify the inter-
operability among the functions of a system, based on a com-
binatorial method used in mathematical constructions for sta-
tistical experiments [13,20]. Moreover, it presents good code
coverage and ability to detect failures [26]. The number of
tests needed to cover n combinations of input parameters
grows logarithmically according to the number of parame-
ters. It is important to note that the key to minimize the num-
ber of test data is the fact that each one covers different com-
binations (pairs, triples or n-tuples).

The parameters of an example system extracted from Lott
et al. [29] are presented in Table 1a. By them it is possible to
create 24 values combinations. If the pairwise combinatorial
approach is used, only 12 cases would be needed to cover all
parameters pairs, as shown in Table 1b. The test set created
has the characteristic that given any pair of fields (columns),
all possible combinations of values for them are present.

According to Schroeder et al. [40], several studies have
been conducted on coverage achievement by pairwise test-
ing. Coverage in the majority of the studies refers to code cov-
erage, or the measurement of the number of lines, branches,
decisions or paths of code executed by a particular test suite.

@ Springer

330

J Braz Comput Soc (2013) 19:325-339

Table 1 Pairwise test

(a) Simple system relations

Fields
Operat. sys. Stor. sys. Disp. sys.
GNU/Linux IDE Simple
Values ‘Win 2000 RAID AGP 64mb
Win XP SCSI
Firewire
(b) Generated test data
Number Operat. sys. Stor. sys. Disp. sys.
1 ‘Win 2000 Firewire AGP 64mb
2 GNU/Linux Firewire Simple
3 ‘Win 2000 SCSI Simple
4 GNU/Linux IDE AGP 64mb
5 ‘Win 2000 RAID Simple
6 Win XP IDE Simple
7 GNU/Linux RAID AGP 64mb
8 Win XP SCSI AGP 64mb
9 GNU/Linux SCSI AGP 64mb
10 Win 2000 IDE Simple
11 Win XP RAID AGP 64mb
12 Win XP Firewire Simple

High code coverage has been correlated with high fault detec-
tion. In general, the conclusion of these studies is that testing
efficiency, i.e., the amount of time and resources required to
conduct testing, are optimized because the pairwise test set
achieves the same level of coverage as larger combinatorial
testing sets.

However, the results of these case studies are difficult to
generalize. These practices are not described in enough detail
to understand the full significance of these results. Addition-
ally, little is known about the characteristics of software sys-
tems used in the studies [40].

Taking into account that the pairwise strategy mainly tar-
gets functional specifications, we have considered that an
investigation of its suitability to Simulink-like models would
be appropriate. These kind of models are a design imple-
mentation of a functional specification, that is going to be
ultimately converted to low level code.

4.2 Tool for pairwise testing

TeTooDS is a testing tool specifically designed to inter-
pret Simulink-like models, interact with simulation environ-
ments, and is used to assist in the test data generation task.
It has been developed to provide support for the application
of functional criteria, specifically the pairwise approach, in
Simulink-like models. For that, it is possible to:

— parse the models for relevant features to the application
of the functional technique, like the input variables and

@ Springer

their types. Based on these features, the tool provides to
the tester a set of standard values that can be used as input
values for the test, as the inferior and superior limits;

— the tester, aware of the system specification, can change
these values by setting, for instance, typical ranges for
certain variables or values. It is also possible to use the
proposal from Henry et al. [22], allowing the tester to
select values that lead to transitions that supposedly exer-
cise the model, or at least all input variables, completely;

— generate the test data using the pairwise approach, pro-
ducing input test data that can be used in the model sim-
ulation in a computer environment or in the C generated
code; and

— exhibit the outputs acquired from the external simulation
environment.

TeTooDS works by creating testing projects. When one is
created, the tool parses relevant information from a Simulink-
like model. Such information must be stored in an XML file,
that can be generated from a Simulink or Scicos parser, or
even manually. The information retrieved include input ports,
input datatypes, blocks, connections and output ports. Then,
the tester is responsible for selecting how the test data are
going to be generated.

To help on the definition of appropriate values, the testing
tool provides a data type editor. It is possible to create new
data types, based on the limits of already existing ones. It
can be useful to select more than one range of values for a
data type or to select different ranges of values for inputs that
originally have the same data type. It is also possible to select
how many values will be selected in an interval and how this
generation will be performed (ascending order, descending
order or randomly).

For instance, an input X is defined in the model as a double
data type and represents a temperature in the range of —300
to 300. An input Y is also defined as a double data type, but
represents a velocity in the range of 0—120. The testing tool
permits the creation of a temperatureDouble data type with
a range of —300 to 300 and a velocityDouble data type in
the range of 0-120. It is possible to assign these new data
types to X and Y. When the test data are generated, these new
ranges are used.

The tester also needs to specify how many values are going
to be selected for each range and how this selection is going
to be performed. For example, the tester can specify that
6 values are going to be selected for the temperatureDouble
range, in an ascending way. That means that the values —300,
—180, —60, 60, 180 and 300 are going to be used in the test
data generation. If the random option is chosen, then it is not
possible to predict which values of that range are going to be
selected.

The test data can be generated from the pairwise approach
or randomly. If the first option is chosen, it means that any

J Braz Comput Soc (2013) 19:325-339

331

two different input parameters values are present in at least
one test data. Otherwise, there are no guarantees of what
combinations exist and it is necessary to specify how many
test data should be generated. Additional test data can be
added manually, as well as existing test data can be removed.

Several strategies can be used to implement the pairwise
generation technique [19]. In particular, the IPO strategy (In
Parameter Order) is used by TeTooDS for the test data gener-
ation [28]. This strategy is used because its implementation
is simple, the algorithm can be extended to support more
parameter combinations and its number of generated combi-
nations is similar to other strategies [19,27].

The IPO algorithm first tries to cover the first two model
parameters pairs. Then it extends the test data in order to
cover the remaining parameters, one at a time. Two basic
algorithms are used, one for the horizontal growth, which
extends the existing test data to cover a new parameter, and
other for the vertical growth, which creates new instances of
test data to ensure that the coverage of this new parameter
pairs is complete.

After the generation of test data, they can be applied in
a simulation or in an executable application via the testing
tool. Corresponding relationships between the inputs (test
data) and generated outputs will be presented to the tester for
further analysis. It is worth mentioning that the testing tool
merely interacts with the execution environment to gather the
output data.

5 Experimental studies

There are two paradigms that are usually used as the basis
for the development of an empirical study. The qualitative
paradigm aims at the study of objects in their natural environ-
ment. The researcher seeks phenomena interpretation based
on explanations. The quantitative one focuses on quantify-
ing a relation or the comparison of two or more groups. The
objective is to identify cause and effect relations and is nor-
mally related to data collection by case studies [45]. The
two paradigms should be considered complementary and not
competitive.

For the scope of this paper, the qualitative assessment
was aimed through the analysis of the test data generated
by TeTooDS in relation to mutation criterion. The quantita-
tive evaluation was also an object of study as we used several
models in our experiment.

In this experiment we aimed to measure the test data gener-
ated using the pairwise approach against arandom generation
set of test data. This comparison could be achieved by apply-
ing the mutation testing as a mean to obtain the respective
scores when applying each test data set to a model.

To help with the task of measuring the coverages obtained,
testing tools are of major importance. However, as there are

no tools available to work directly on embedded system mod-
els, our alternative was to use the C code generated from the
models.

Thereby, the test sets generated by TeTooDS were evalu-
ated for each one of the programs by using Proteum [14] to
support the mutation testing. In Proteum, all of its 73 muta-
tion operators were used. However, the code generated by
Scicos has too many unused variables and other pieces of
unexecuted code, resulting in a large number of equivalent
mutants to be analyzed (up to 500,000 mutants). It was neces-
sary to use a reduction strategy to the generation of mutants
for these models. In that case, 10 % of the mutants were
selected per mutation operator.

5.1 Planning

Five Simulink-like models were gathered for this experiment.
The Tiny, Quadratic and Duplex models were extracted from
Zhan and Clark [48]. The Flow Control model was selected
from Blackburn and Busser [5] and the Generic Voter model
was provided by Embraer [16].

Although some of the models may seem to perform a
small number of operations, we argue that the main nature
of Simulink-like models is the implementation of data flow
systems in different levels of abstraction.

For each of the models we generated and compared, ran-
dom test sets combined randomly against random test sets
that had their values combined by the pairwise strategy. The
purpose of our comparison is to evaluate the effectiveness of
each generation strategy measured by the capacity of distin-
guishing mutants of the programs generated from the models.
Figure 2 describes this process.

Simulink model

TeTooDS |z

Code generation

Mutation score RR

Test set RR
—

O O |

I:\ DD i Mutation score RP

LT o e
| wemOH]

Fig. 2 Test set evaluation

@ Springer

332

J Braz Comput Soc (2013) 19:325-339

Ranges of values within and out of the input domain of
each model were used, and different quantities of values for
each interval were specified. Our approach is dependent on
the tester for the choice of appropriate intervals of values.

We have generated, according to the design of Fig. 2, 30
test sets for each generation strategy. This is considered the
minimum number of repetitions required for the achievement
of statistical significance. Each test set is composed of sev-
eral groups of test data, where a group comprehends a test
data for each input of a model. When a test set is applied to
a model, its groups of test data are provided consecutively in
continuous time steps to the execution environment. After-
wards, the means of the mutation scores are obtained and
compared. We have used the Student ¢ test to evaluate the
significance of the results, that are described for each model
in the following sections.

Furthermore, we have generated test sets of two different
sizes, which are characterized as the following:

— RP;: Random generation with pairwise combination.
The number of generated elements depends on the model
inputs;

— RR;j: Purely random generation. The number of gener-
ated elements is the same as R Pj set;

— RP,: Random generation with pairwise combination.
The number of generated elements depends on the model
inputs, but more elements were selected in each interval
when compared to R Py;

— RRj: Purely random generation. The number of gener-
ated elements is the same as R P, set.

For each input we have experimented selecting numbers
in an incremental way, starting with the lower and upper
bound of the valid domain and with two values outside of it.
The number of elements selected in R P, was the one that
meant that no further improvement could be achieved in the
mutation score just by selecting more elements from the input
datatype interval.

To avoid possible interference of the code generation
process with the results, we used three different programs
versions generated from the models, on which the mutation
testing was applied to assess the generated test sets. This code
was generated in three different ways: (1) manually; (2) from
a Simulink model, using Mathworks Real Time Workshop
(RTW) and; (3) from a Scicos model, using its own code
generator. Section 5.3 details the generation procedure for
each model.

By conducting this experiment, we plan to compare the
means of the mutations scores obtained by the RR| and R P;
sets and by the RR, and R P, sets. Considering u, as the
mean obtained by the random sets and 14, the mean obtained
by the random sets with pairwise combination, we have the
following hypothesis to verify:

@ Springer

— Null hypothesis Hy: i, = i p;
— Alternate hypothesis Hi: i, # pp;

After taking into consideration the obtained results, which
were not statistically significant, we have decided that we
should further investigate the comparison of adequacy among
the means of the pairwise and the random combination indi-
vidually against a union between the pairwise and the random
combination. For that matter two additional test sets are used
in the experiments:

— RP; + RR;: Union between R P; and RR; test sets.
— RP> + RR;: Union between R P, and R R, test sets.

Despite that the pairwise approach had presented better
results in most of our experiments, we could not achieve an
statistical significance to support this sentence. Therefore,
we have investigated the union of both approaches, that have
yielded better results. Details of the path we have followed
are discussed in Sect. 5.4.6.

We stress that our experiment is actually based on
Simulink models because the technique being evaluated is
applied on such models. On the other hand, our evaluation of
the quality of the test sets is performed at code level, since
(i) there is no good set of mutant operators for Simulink-like
models; (ii) no tool to seed faults or perform mutation testing
at model level is available; and (iii) it is a reasonable assump-
tion to consider the mutants at code level as representative of
possible faults at model level, since the models are ultimately
converted into code.

It is important to mention that possible time constraints
are not relevant to our experiment. Since we are only using
the input information from the models, we do not address the
features of a Simulink-like model when generating test data
using our approach.

5.2 Threats to validity

An important concern regarding the obtained results is its
validity level. It is possible to classify the validity threats of
an experiment in basically four types: conclusion, internal,
construct or external [45].

The internal validity is of high priority, mainly because
an important object of study is the relationship between the
causes and the outcomes. A possible threat may be the gen-
eration procedure of the test data: a single tester (one of the
authors) aware of the models behavior defined the parame-
ters for the generation of the test set. If it can influence on
the results, on the other hand, it represents the procedure of
the functional testing.

We tried to eliminate the threat to the construct validity
by including a comparison of the pairwise generation with

J Braz Comput Soc (2013) 19:325-339

333

randomly generated test data, in addition to the mutation
scores obtained.

In our experiment, we make use of a set of mutant oper-
ators for low level code instead of an specific set for a
Simulink-like model, as explained in Sect. 5.1. Despite the
reasonable assumption that we could follow this approach
since this type of system is converted into low level code, we
considered it appropriate to mention it as a threat to validity.

A statistical significance was achieved by generating each
test set 30 times, including: (i) a pairwise generation with
random values, (ii) a random generation with random val-
ues and (iii) both generations together (values are selected
by the pairwise approach and by the random approach). Fur-
thermore, different number of values were selected in each of
the specified intervals randomly and with a constant variation
among them.

Regarding the external validity, the results are difficult to
generalize, as many depend on the tester and the used models.
A selection of inappropriate values or models with specific
features (such as the need for a specific value as one of the
inputs) may provide less satisfactory results.

5.3 Experimental setup

This subsection presents the general descriptions of each
model that have been used during our experimental evalu-
ation and their domain inputs test generation parameters.

5.3.1 Tiny

This system was introduced by Zhan and Clark [46] and
models a problem constructed by the authors. It has three
inputs (X, Y and Z) of double datatype and each input has a
domain from —100 to 100. When the expression ((Y — Z)
(Z—-X) >=1,000)&&(Z % Z >= 8,950) is true, the output
is (X 4 Y). Otherwise, the output is (Z * Z). This model is
presented in Fig. 3.

The test sets generated for this model have the following
parameters:

— R Pq: For each of the three inputs of the Tiny model two
random values were selected in the range of [—100, 100]
(valid inputs), and two were selected in the range
of [—1,000, —100[U]100, 1,000] (invalid inputs). Thus,
selecting a total of four values per input, 16 test data were
generated by the pairwise approach;

— R P;: The difference from the R P; is that, for each input
range, five values were selected instead of two. Thus,
selecting a total of 10 values per input, 108 test data were
generated by the pairwise approach;

— RR;: Values were generated randomly and no strategy
for combining the values was adopted. The number of
test data created is the same as set R P;;

— RR;: Random generation as the previous one but the
number of test data was taken from the cardinality of
RP;

5.3.2 Flow control

This model [42] represents an electronic regulator that has
three subsystems: a flow regulator, a temperature sensor
and a logic controller. The system has three input ports:
temperature, temperature low bound and temperature high
bound. When the temperature is below the low bound,
a valve is closed, i.e., receives a zero value. When the
temperature is above the high bound, a valve is opened,
receiving a value of 100. When the temperature is between
these limits, the valve position is calculated by the expres-
sion (5.0/3.0) *x (temperature — low_bound). The tem-
perature input domain is in the range of [—100, 300].
The other inputs should be the constants 120 and 180,
respectively.

The test sets generated for this model have the following
parameters:

Fig. 3 Tiny model D ID
. 7 .
In1 Sum
> t
In2 Sum1 l_" »
X >= —rbAND ,_’:_..’(:)
> g Outt
Product Relational Logical | Switoht
Operator1 Operator | threshold =0.5
€D, k{;‘ 1000
In3
" Sum2 Constant1
sd B N
— >
Froduez 8950 Relational
Constant Opaerator2

@ Springer

334

J Braz Comput Soc (2013) 19:325-339

— RP;: For the temperature input of the Flow Control
model two random values were selected in the range of
[—100, 300] (valid inputs), and two were selected in the
range of [—1,000, —100[U]300, 1,000] (invalid inputs).
For the temperature low and high bound inputs, we used
the values 120 and 180 (valid inputs) and two values out-
side the domain, i.e., [—1,000, 120[U]120, 180[U]180,
1,000] (invalid inputs). Therefore, 13 test data were gen-
erated by the pairwise approach;

— RP,: The difference from the RP; is that, for each
input range, three values were selected instead of two.
Therefore, 23 test data were generated by the pairwise
approach;

— RR;: Values were generated randomly and no strategy
for combining the values was adopted. The number of
test data created is the same as set R P;;

— RR;: Random generation as the previous one but the
number of test data was taken from the cardinality of
RP;

5.3.3 Quadratic

This model [46] has three inputs (X, Y and Z) that have an
input domain from —100 to 100 and is presented in Fig. 4.
One of the model characteristics is the presence of switch
blocks. This block redirects the first or the third input, based
on the second input value and can be compared to an if-then-
else sentence. The developer must specify how the evaluation
of the second input is going to happen. In this model, it is
verified if it is greater or equal than a specified threshold.

The test sets generated for this model have the following
parameters:

— RPp: For each of the three inputs of the Quadratic
model two random values were selected in the range of

[—100, 100] (valid inputs), and two were selected in the

Fig. 4 Quadratic model

range of [—1,000, —100[U]100, 1,000] (invalid inputs).
Thus, selecting a total of four values per input, 16 test
data were generated by the pairwise approach;

— R P;: The difference from the R P; is that, for each input
range, five values were selected instead of two. Thus,
selecting a total of 10 values per input, 38 test data were
generated by the pairwise approach;

— RR;j: Values were generated randomly and no strategy
for combining the values was adopted. The number of
test data created is the same as set R P;

— RR;: Random generation as the previous one but the
number of test data was taken from the cardinality of
RP;.

5.3.4 Duplex

This model is a subsystem of a mechanical controller pro-
vided by an industrial company [46]. The purpose is to
check for faults in an injector flow within a duplex burner.
It has eight inputs with a range that goes from —1,000 to
1,000.

The test sets generated for this model have the following
parameters:

— RP;: For each of the eight inputs of the Duplex
model two random values were selected in the range
of [—1,000, 1,000] (valid inputs) and no values were
selected outside of the domain input because no further
improvement could be achieved. Thus, 11 test data were
generated by the pairwise approach;

— R P;: The difference from the R P; is that, for each input
range, three values were selected instead of two. Thus,
23 test data were generated by the pairwise approach;

— RR;: Values were generated randomly and no strategy
for combining the values was adopted. The number of
test data created is the same as set R Py;

)

int — > y
+]
S <R E O
310000 Sum — outt
Product Switch
Constant <threshold = 0.5>
= Ly
In2 _\
+—> P 2
350000 it | X [.
g - Qutz
Sum1 Switch1
Constant1 Product athreshold = 15

In3 —
| « =3 e
50000 ——P—
L - Out3
Product? Switch2
Constant2 <threshold = 1>

@ Springer

J Braz Comput Soc (2013) 19:325-339 335
Table 2 Tiny Code Total mutants Equivalent Test data Generation Mutation pvalue; p valuey
mutants score (%)
Manual 1,146 121 16 R P, 90.7 0.001 0.040
RR, 80.5 0
108 RP; 95.3 0.263 0.009
RR; 95.1 0.021
32 RPy +RR; 93.1
216 RP, +RRy 955
Simulink 1,666 656 16 RP; 91.7 0.034 0.043
RR; 84.1 0
108 RP; 96.3 0.701 0.047
RR; 96.3 0.006
32 RP; +RR; 95.0
216 RP,+RR, 96.6
Scicos 7,248 (10 %) 5,461 16 RP; 95.8 0.025 0.005
RR; 95.8 0
108 RP; 95.9 0.813 0.003
RR; 95.8 0.003
32 RP; +RR; 959
216 RP, +RRy 959

— RR;: Random generation as the previous one but the
number of test data was taken from the cardinality of
RP;.

5.3.5 Generic voter

This system was supplied by Embraer, a Brazilian aero-
nautics company. The main system has seven inputs and
three subsystems: Miscompare Detection, Fault Isolation and
Average Computation, with a total of 57 blocks. Three of the
inputs operate as sensors that measure the same signal, three
are of boolean data type and may cause the signal to become
invalid, and the last one is a threshold input. The signal may
become invalid if the difference between any two inputs is
greater than the threshold, or if one of the boolean inputs is
false. The domain of the first three inputs is from —10 to 30
and the threshold input domain is 2.

The test sets generated for this model have the following
parameters:

— RP;: For each of the first three inputs of the Generic
Voter model two random values were selected in the range
of [—10, 30] (valid inputs), and two were selected in
the range of [—1,000, —10[U]30, 1,000] (invalid inputs).
Also, boolean values for the next three, and the value
2 (valid input) for the threshold along with two val-
ues in the range from [—1,000, 2[U]2, 1,000] (invalid
inputs). Thus, 16 test data were generated by the pair-
wise approach;

— R P,: The difference from the R P is that, for each input
range, five values were selected instead of two. Thus, 108
test data were generated by the pairwise approach;

— RR;: Values were generated randomly and no strategy
for combining the values was adopted. The number of
test data created is the same as set R P;;

— RR;y: Random generation as the previous one but the
number of test data was taken from the cardinality of
RP;.

5.4 Experimental results

In this section we present the experimental results obtained
with the models described in Section expsetup. The code
generated by Simulink and Scicos, like the ones of most of
the automation tools, is not optimal. It increased the number
of mutants that were generated in comparison with the man-
ual generation of code, that only contains the essence of an
embedded system model.

As follows we show detailed information about the results
of each model individually. In Sect. 5.4.6, a general discus-
sion of the obtained results is presented.

5.4.1 Tiny

The results from the application of the mutation testing are
presented in Table 2. It is possible to realize that the col-
umn “Mutation Score” contains the mean of the mutation
scores obtained by each test set RP;, RR1, RP> and RR;,
respectively. The next two lines contains the mutation score
of R P; together with RR| and of R P, together with RR>.
The column “p value;” indicates the significance level for the
rejection of Hp and the column “p value,” is the significance
obtained by the Student ¢ test of R Py +R R against R Py and
RR; individually, and of R P> +RR; against R P, and RR;.

@ Springer

336

J Braz Comput Soc (2013) 19:325-339

Table 3 Flow control

Code Total mutants Equivalent Test data Generation = Mutation p value; p value;
mutants score (%)
Manual 1,478 124 13 RP 90.7 0.001 0
RR; 84.3 0
23 RP 92.6 0.004 0
RR> 90.5 0
26 RP; +RR; 929
46 RP, +RR; 942
Simulink 2,719 782 13 RP; 93.5 0.032 0
RR| 91.3 0
23 RP, 94.8 0.451 0
RR> 94.2 0
26 RP; +RR; 96.2
46 RP, +RR, 977
Scicos 10,053 (10 %) 7,137 13 RP 94.6 0 0.045
RR| 93.3 0
23 RP» 95.7 0.001 0
RR> 95.0 0
26 RPy +RRy 949
46 RP, +RRy, 96.2
Table 4 Quadratic - - -
Code Total mutants ~ Equivalent Testdata Generation = Mutation p value; p valuey
mutants score (%)
Manual 1,193 35 16 RP 84.4 0.991 0.020
RR; 84.3 0.023
38 RP, 90.4 0.360 0.005
RR> 89.4 0.004
32 RP; +RR; 88.5
76 RP> +RR, 90.7
Simulink 2,120 421 16 RP; 83.5 0.301 0.027
RRy 81.8 0.001
38 RP, 854 0.663 0
RR> 85.4 0.012
32 RP; +RR; 858
76 RP) +RR, 859
Scicos 25,214 (10 %) 15,882 16 RP; 83.8 0.053 0.003
RR; 82.8 0
38 RP, 84.6 0.620 0.042
RR; 84.3 0.014
32 RP; +RR; 84.5
76 RP) +RR, 854

For example, at the top of the table we have the program
manually generated for the model, and a set of test cases of
size 16 for the sets R P; and RR;. Considering the mean of
30 RP; sets, a mutation score of 90.7 % was obtained. For
R R/, the mean obtained was 80.5 %.

5.4.2 Flow control

The results from the mutation testing are presented in Table 3.
For the remaining mutants to be killed it was necessary to
provide the 120 value to the high bound and 180 to the low
bound, and to gather close values among the inputs.

@ Springer

5.4.3 Quadratic

The results from the mutation testing are presented in Table 4.
To achieve a 100 % of mutation score it was necessary to
satisfy the false condition of the switch block containing
a threshold of 0.5, that required specific decimal values as
inputs.

5.4.4 Duplex
The results from the mutation testing are presented in Table 5.

In this model, inputs values close to each other were neces-
sary to obtain a 100 % of the mutation score.

J Braz Comput Soc (2013) 19:325-339 337
Table S Duplex
Code Total mutants Equivalent Test data Generation = Mutation pvalue; p value
mutants score (%)
Manual 4,416 11 RPy 79.8 0.953 0
RR 79.9 0
23 RP> 89.1 0.536 0
RR> 90.0 0
22 RP, +RR; 914
46 RP, +RR; 94.8
Simulink 5,944 2,873 11 RP 85.0 0.688 0
RR; 84.5 0
23 RP 88.3 0.529 0
RR> 88.6 0
22 RP; +RR; 89.8
46 RP, +RR, 90.7
Scicos 17,718 (10 %) 12,969 11 RP; 87.4 0.490 0
RR; 87.1 0
23 RP» 89.4 0.938 0
RR> 89.4 0
22 RP; +RR; 89.6
46 R P2 +R R2 92.2
Table 6 Generic Voter
Code Total mutants ~ Equivalent Testdata Generation Mutation p value; p valuey
mutants score (%)
Manual 12,566 16 RP 65.0 0.039 0
RR; 68.7 0
108 RP, 84.7 0 0
RR> 87.2 0
32 RP;y +RRy 775
216 RP, +RR>, 89.7
Simulink 13,267 2,619 16 RP 73.6 0.152 0.001
RR; 68.1 0
108 RP, 85.2 0.976 0.003
RR> 85.1 0.009
32 RP; +RR; 813
216 RP, +RR> 90.2
Scicos 46,718 (10 %) 32,936 16 RP; 70.7 0.470 0
RRy 70.0 0
108 RP, 84.4 0.944 0
RR> 84.4 0
32 RP; +RR; 73.5
216 RR, +RP, 88.0

5.4.5 Generic voter

The results from the mutation testing are presented in Table 6.
To complete the mutation score a specific value (3) was
needed for the threshold, along with closer values among
the other three inputs.

5.4.6 General considerations

Five case studies were used in order to verify the adequacy of
test data generated by TeTooDS. Our focus is on the assess-
ment of our generation strategies, nevertheless, without the

support of TeTooDS as a testing tool, our experiments might
had been unfeasible.

We had applied the mutation testing as a mean to evalu-
ate our test data generation approaches. Since Simulink-like
models are ultimately converted into low level code, we have
considered the available mutant operators for the C language
as adequate to our experimentation when using the code gen-
erated from our Simulink-like models.

The effect of a first possible approach is formalized into
hypothesis as follows. Null Hypothesis, Hy: this hypothesis
states that there is no real advantage in combining the inputs
values using the pairwise approach. Alternative Hypoth-

@ Springer

338

J Braz Comput Soc (2013) 19:325-339

esis, H;: according to this hypothesis, the pairwise testing
improves the ability of detecting faults in a model.

For each of the five models, six means were compared. In
19 of them, the mean of the generated sets using the pairwise
combination was superior to the purely random generation.
Despite this advantage, in only 10 of 30 comparisons we have
obtained a statistical significance level higher than 95 %,
resulting in an impossibility to refute the null hypothesis.
Therefore, we can state that there is no evidence, in a statisti-
cal point of view, to indicate that the use of the pairwise tech-
nique is superior to the random generation for the considered
models comparing R P; against RR; and R P, against RR>.

Given this result, we decided to investigate whether even
not reporting significant differences in the obtained mutation
scores, the sets would be complementary or not. Thereby, we
compared the sets to verify if the mutants that they are able to
distinguish are the same or not. If different, we could use the
pairwise generation along with the random one combined,
in order to obtain a test set with greater effectiveness. This
would be meaningless if the killed mutants are the same.

Thus, in each Table 2, 3, 4, 5, 6, we display the mutation
scores obtained by joining together the test cases R P; and
RR;. If the scores represented by RP; and RR; are greater
than the values obtained by the sets RR; and R P; individ-
ually, this would indicate that the sets of mutants that they
distinguish are, mostly, disjoint.

Clearly the mutation score obtained by the combined test
sets is always greater than the score obtained by individual
sets. Still, it is necessary to assess how significant this differ-
ence is, as when only increasing the number of test data (in
R P, or RR>) we could not achieve any improvements in the
mutation scores. Therefore, we show in the the last column of
the mentioned tables the level of significance when compar-
ing the means of the individual sets and the combined ones.

For instance, the first line of the last column shows the p
value considering the sets R P; against R P; +RR;. In this
case, all obtained values show a significance level greater
than 95 %, making it possible for us to conclude that the use
of randomly generated sets together with the ones generated
by the pairwise approach may be the best alternative for the
generation of test data according to our experiments.

One of our future goals is to define a set of techniques that
can be used in an integrated way in embedded systems, based
on the known concept that testing techniques are comple-
mentary and, therefore, should be used together. In this way,
functional, structural and fault-based testing techniques may
be used in an incremental strategy in which a test set created
by one technique can be used as input to the next. In the case
of test data generation, as in Zhan and Clark [48] for instance,
an initial test set is required in order to apply the optimization
algorithms. Our intention is to use an initial test set created
using a more elaborated approach like the one suggested in
this paper, i.e., combining random and pairwise techniques.

@ Springer

6 Conclusions and further work

In the development of embedded systems such as those
embedded in many electronic devices, quality requirements
are extremely valuable. Seeking to join these requirements
with the need to reduce costs and delays in development,
the industry identified in the model based development on a
viable alternative.

TeTooDS provides a way to parse Simulink-like models
and also helps on the selection of ranges of values for each
input. It is possible to generate test data using a random or
a pairwise approach, and a relation of the inputs with the
outputs obtained can be displayed if a simulator is present.

Despite showing that we could not achieve a statistical
significance to determine that the pairwise approach is supe-
rior to a random combination of values, we could show that
using both approaches together it was possible to achieve
better results and a statistical significance of at least 95 % in
the conducted experiments.

As future work we plan to extend our strategy and to
employ efforts in allowing the generation of values to cover
decisions and conditions of a model. A strategy for the use
of structural criteria in embedded system models needs to be
defined, as well as instrumentation techniques. Furthermore,
the incorporation of a fault-based criterion is desired. For this
purpose, it is necessary to define or adapt mutation operators
for this kind of model. One of the possibilities is to introduce
errors by changing the operations performed by blocks.

A n-way combination of parameters and also a combi-
nation between different time steps may be useful in some
cases and should be investigated in more detail. The testing
tool underlying IPO strategy allows that the algorithm may
be extended to such situations.

Finally, although there are several studies in this area, we
believe that much can still be developed to contribute to the
advancement of the state of the art and the state of the practice
in the context of model based testing for embedded systems.
This view is based mainly on the contact with engineers that
work in the area and feel the lack of techniques and an inte-
grated testing environment for these kinds of systems.

References

1. ADI (2012) Beacon tester. Available at http://www.adi.com/
products_be_bss.htm

2. Alligood KT, Sauer TD, Yorke JA (2000) Chaos an introduction to
dynamical systems. Springer, New York-Berlin

3. Araujo RF, Delamaro ME (2008) TeTooDS-Testing tool for
dynamic systems. In: Tools session—Brazilian software engineering
symposium, Brazil. SBC

4. Araujo RF, Durelli VS, Delamaro ME, Maldonado JC (2009)
Test data generation from embedded system models: a system-
atic review. In: Brazilian Workshop on Systematic and Automated
Software Testing, Brazil. SBC

http://www.adi.com/products_be_bss.htm
http://www.adi.com/products_be_bss.htm

J Braz Comput Soc (2013) 19:325-339

339

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Blackburn M, Busser R (1996) T-VEC: a tool for developing critical
systems. In: Compass’96: Eleventh Annual Conference on Com-
puter Assurance. National Institute of Standards and Technology,
Gaithersburg

Blackburn M, Busser R, Nauman A (2004) Why model-based test
automation is different and what you should know to get started. In:
International Conference of Practical Software Quality and Testing,
Software Productivity Consortioum, Washington, DC

Brillout A, He N, Mazzucchi M, Kroening D, Purandare M, Riim-
mer P, Weissenbacher G (2010) Mutation-based test case gen-
eration for simulink models. In: Proceedings of the 8th interna-
tional conference on Formal methods for components and objects,
FMCO’09, pp 208-227. Springer, Berlin

Broy M, Jonsson B, Katoen J, Leucker M, Pretschner A (eds) (2005)
Model-based testing of reactive systems, advanced lectures, vol
3472 of lecture notes in computer science. Springer, Berlin
Campbell SL, Chancelier J-P, Nikoukhah R (2006) Modeling and
simulation in Scilab. Springer, Scicos

Cavalcanti S, Papini M (2004) Preliminary model matching of the
embraer 170 jet. J Aircraft 41(4):703-710

Chapoutot A, Martel M (2009) Abstract simulation: a static
analysis of simulink models. In: ICESS *09: proceedings of the
2009 international conference on embedded software and systems,
pp 83-92. IEEE Computer Society, Washington, DC

Cleaveland R, Smolka SA, Sims ST (2008) An instrumentation-
based approach to controller model validation. pp 84-97

Cohen DM, Dalal SR, Fredman ML, Patton GC (1997) The AETG
system: an approach to testing based on combinatiorial design.
IEEE Trans Softw Eng 23(7):437-444

Delamaro ME, Maldonado JC (1996) Proteum-—a tool for the assess-
ment of test adequacy for ¢ programs. In: Proceedings of the confer-
ence on performability in computing systems (PCS 96), pp 79-95
DeMillo RA, Lipton RJ, Sayward FG (1978) Hints on test data
selection help for the practicing programmer. IEEE Comput
11(4):34-41

Embraer (2012) Empresa brasileira de aeronautica s.a. Available
at http://www.embraer.com

Gadkari AA, Yeolekar A, Suresh J, Ramesh S, Mohalik S, Shashid-
har KC (2008) Automotgen: automatic model oriented test gener-
ator for embedded control systems. In: CAV *08: proceedings of
the 20th international conference on computer aided verification,
pp 204-208. Springer, Berlin

Geensys (2012) Safety test builder. Available at http://www.
geensys.com/?Outils/Safety TestBuilder

Grindal M, Offutt J, Andler SF (2005) Combination testing
strategies—a survey. Softw Test Verif Reliab 15(3):167-199

Hall M (1986) Combinatorial theory. Wiley-Interscience Series in
Discrete Mathematics. Wiley, Hoboken

Henry JE (2000) Test case selection for simulations in the mainte-
nance of real-time systems. J Softw Maint 12(4):229-248

Henry JE, Stiff JC, Shirar AJ (2003) Assessing and improving
testing of real-time software using simulation. In: ANSS ’03: pro-
ceedings of the 36th annual symposium on Simulation, pp 266-274.
IEEE Computer Society, Washington, DC

Hsiung P-A, Chen Y-R, Lin Y-H (2007) Model checking safety-
critical systems using safecharts. IEEE Trans Comput 56(5):692—
705

INRIA Rocquencourt (2012) Scicos. Available at http://www.
scicos.org

Korn GA (2007) Advanced dynamic-system simulation:
model-replication techniques and Monte Carlo simulation.
Wiley-Interscience, New York

Kuhn D, Wallace D, Gallo AMJ (2004) Software fault interac-
tions and implications for software testing. IEEE Trans Softw Eng
30(6):418-421

217.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44,

45.

46.

47.

48.

Lei Y, Kacker R, Kuhn DR, Okun V, Lawrence J (2007) Ipog:
a general strategy for t-way software testing. In: ECBS ’07:
Proceedings of the 14th Annual IEEE International Conference
and Workshops on the Engineering of Computer-Based Systems,
pp 549-556. IEEE Computer Society, Washington, DC

Lei Y, Tai K (1998) In-parameter-order: a test generation strategy
for pair-wise testing. In: Third IEEE high assurance systems engi-
neering symposium, pp 254-261. IEEE Computer Society Press
Lott C, Jain A, Dalal S (2005) Modeling requirements for com-
binatorial software testing. In: A-MOST ’05: proceedings of the
first international workshop on Advances in model-based testing,
pp 1-7. ACM Press, New York, NY

Marwedel P (2006) Embedded system design. Springer, Secaucus,
NJ

Mathur A (2008) Foundations of software testing. Pearson Educa-
tion

Meenakshi B, Bhatnagar A, Roy S (2006) Tool for translating
Simulink models into input language of a model checker. In:
ICFEM, pp 606-620

Myers GJ, Sandler C, Badgett T, Thomas TM (2004) The art of
software testing, 2nd edn. Wiley, New York, NY

Perry W (2006) Effective methods for software testing, 3rd edn.
Wiley, New York, NY

Pressman RS (2006) Software engineering. McGraw Hill, New
York

Proakis JG, Salehi M, Bauch G (2004) Contemporary communi-
cation systems using MATLAB and Simulink, 2nd edn. Thomson-
Brooks/Cole, Belmont, CA

Reactive Systems (2012) Reactis. Available at http://www.
reactive-systems.com

RTCA (1993) Software consideratons in airborne systems and
equipment certification. Technical Report DO-178b/ED-12B,
RTCA Aviation Standards, Inc

Satpathy M, Yeolekar A, Ramesh S (2008) Randomized directed
testing (redirect) for simulink/stateflow models. In: EMSOFT ’08:
Proceedings of the 8th ACM international conference on Embed-
ded software, pp 217-226. ACM, New York, NY

Schroeder P, Bolaki P, Gopu V (2004) Comparing the fault detec-
tion effectiveness of n-way and random test suites. In: International
Symposium on Empirical Software Engineering, 2004. Proceed-
ings. 2004 ISESE *04. pp 49-59

Sims S, DuVarney DC (2007) Experience report: the reactis vali-
dation tool. SIGPLAN Not 42(9):137-140

T-VEC (2012) T-vec. Available at http://www.t-vec.com

The MathWorks Inc (1999) Simulink: dynamic system simulation
for MATLAB. Prentice-Hall, Englewood Cliffs, NJ

The Mathworks Inc (2012) Matlab and simulink for technical com-
puting. Available at http://www.mathworks.com

Wohlin C, Runeson P, Hosrt M, Ohlsson MC, Regnell B, Wess-
Ién A (2000) Experimentation in software engineering. Kluwer,
Dordrecht

Zhan Y, Clark J (2004) Search based automatic test-data gen-
eration at an architectural level. In: Genetic and Evolutionary
Computation—-GECCO-2004, Part II, vol 3103 of Lecture Notes
in Computer Science, pp 1413-1424. Springer, Seattle

Zhan Y, Clark J (2005) Search-based mutation testing for simulink
models. In: GECCO 2005: proceedings of the 2005 conference on
Genetic and evolutionary computation, vol 1, pp 1061-1068. ACM
Press, Washington, DC

Zhan Y, Clark JA (2008) A search-based framework for automatic
testing of matlab/simulink models. J Syst Softw 81(2):262-285

@ Springer

http://www.embraer.com
http://www.geensys.com/?Outils/SafetyTestBuilder
http://www.geensys.com/?Outils/SafetyTestBuilder
http://www.scicos.org
http://www.scicos.org
http://www.reactive-systems.com
http://www.reactive-systems.com
http://www.t-vec.com
http://www.mathworks.com

	Functional test data generation for Simulink-like models
	Abstract
	1 Introduction
	2 Development and simulation environments
	2.1 Simulink
	2.2 Scicos
	2.3 Example

	3 Embedded system testing
	4 Combinatorial testing for Simulink-like models
	4.1 Pairwise testing
	4.2 Tool for pairwise testing

	5 Experimental studies
	5.1 Planning
	5.2 Threats to validity
	5.3 Experimental setup
	5.3.1 Tiny
	5.3.2 Flow control
	5.3.3 Quadratic
	5.3.4 Duplex
	5.3.5 Generic voter

	5.4 Experimental results
	5.4.1 Tiny
	5.4.2 Flow control
	5.4.3 Quadratic
	5.4.4 Duplex
	5.4.5 Generic voter
	5.4.6 General considerations

	6 Conclusions and further work
	References

