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Abstract Volume visualization has numerous applications
that benefit different knowledge domains, such as biology,
medicine, meteorology, oceanography, geology, among oth-
ers. With the continuous advances of technology, it has been
possible to achieve considerable rendering rates and a high
degree of realism. Visualization tools have currently assisted
users with the visual analysis of complex and large datasets.
Marching cubes is one of the most widely used real-time
volume rendering methods. This paper describes a method-
ology for speeding up the marching cubes algorithm on a
graphics processing unit and discusses a number of ways to
improve its performance by means of auxiliary spatial data
structures. Experiments conducted with use of several vol-
umetric datasets demonstrate the effectiveness of the devel-
oped method.

Keywords Volume rendering - Marching cubes -
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1 Introduction

Volume visualization techniques have allowed users to
explore and analyze complex data in several domains of
knowledge, such as medicine, geology, oceanography, mete-
orology, biology, among others. Visualization tools provide
functionalities for manipulating and rendering volumetric
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datasets, improving the visual comprehension of their struc-
tures or patterns.

The development of efficient algorithms for representing,
manipulating and rendering complex and large datasets is
a challenge of volume visualization. Despite the substan-
tial advances in the field, the use of a central processing
unit (CPU) to perform general purpose graphics processing
tasks has not been enough to provide effective interactivity
or real-time rendering, especially when employed in very
large datasets. The constant technological progress enabled
the emergence of powerful graphics processing units (GPUs),
capable of rendering complex three-dimensional models at a
high degree of realism.

The capability of GPUs have been impelled by their high
level of parallelism and their ability to perform geometric
primitive and floating point operations in a fast and efficient
way. GPUs have been recently used for acceleration of vari-
ous applications, such as fluid dynamics simulation, seismic
analysis, medical image reconstruction, and weather fore-
casting, resulting in an expressive gain over the CPUs. This
has been possible due to the development of the general-
purpose computing on graphics processing units (GPGPU),
making them even more flexible through their high paral-
lelism and adaptable application programming.

As aresult of these technological advances, volume visu-
alization techniques have also evolved considerably over the
last years. Real-time volume rendering accelerated through
GPUs has become an effective tool for volumetric data visu-
alization and analysis.

This work presents a methodology for accelerating on
GPUs a volume visualization technique for isosurface extrac-
tion, called marching cubes. The performance of the method
is improved by means of auxiliary spatial data structures.
Experimental results obtained on several volumetric datasets
demonstrate the effectiveness of the proposed method.
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The contributions of this work are a comparative per-
formance analysis of the marching cubes technique with
different spatial data structures, and a development of an
application capable of manipulating datasets from several
fields of knowledge, which permits its use as a framework to
be integrated in visualization environments, obtaining high
real-time rendering rates as well.

This paper is organized as follows. Section 2 briefly
reviews some relevant concepts of volume visualization and
isosurface extraction, as well as the marching cubes algo-
rithm and some spatial data structures used to improve the
performance of the algorithm. Section 3 presents a methodol-
ogy for speeding up the marching cubes technique on GPU.
Section 4 describes and discusses the experimental results
obtained by applying the proposed method to a number of
volumetric datasets. Section 5 concludes the paper with some
final remarks.

2 Related concepts and work

This section describes an overview of the volumetric visu-
alization, followed by concepts of isosurface extraction,
marching cubes algorithm, and a description of some data
structures used to improve the performance of this algorithm.

2.1 Volumetric visualization

Volumetric visualization [11,19,30] consists of a set of tech-
niques used to study objects and natural phenomena from
various fields of knowledge, such as biology, medicine,
meteorology, oceanography, microscopy, geology, astron-
omy. The basic idea of these techniques is to perform a two-
dimensional projection (usually on a computer screen) from
these volumes.

The volumetric data is usually represented by a set of vol-
ume elements, called voxels, where each one contains a spe-
cific value in aregular grid contained in the three-dimensional
space. A voxel can be defined by a tuple (x, y, z, S), which
represents the value S associated to some property of a vol-
ume data, located at a 3D grid position (x, y, z).

Volumetric visualization algorithms can be classified into
two categories [11]: direct volume rendering (DVR) and
surface-fitting (SF). The first one is characterized by the
direct element mapping onto the screen space, without the
use of geometric primitives as an intermediary representa-
tion, whereas the second consists of stages of feature extrac-
tion and representation of isosurfaces (surfaces that represent
a set of points with the same scalar value), which are later
rendered for visualization. These isosurfaces can be defined
from surface primitives (such as polygons) or by a certain
threshold.
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Examples of DVR techniques include raycasting [25,27],
splatting [42,47], cell-projection [48,49] and shear-warp [22,
26]. Examples of SF techniques are contour connection [20,
34] and marching cubes [14,24,29,39,46].

2.2 Isosurface extraction

An isosurface can be defined as a set of points that have
the same value (called isovalue) in a volume data, that is,
(&, y,2 €W f(x,y,2) = h}, foragrid position (x, y, )
and some isovalue i € N. The isosurface extraction process
involves the generation of meshes (usually triangular) that
approximately represents a certain surface. In the medical
field, for instance, this procedure is commonly used in the
visualization of organs, tissues and anatomic structures.

A very known isosurface extraction technique is the
marching cubes algorithm [9,14,29,33,46], which was orig-
inally developed to improve the study of 3D medical images.
Later, many researches were conducted to optimize this tech-
nique through the use of spatial data structures to improve
the processing of volume data. However, with the advent of
modern graphics cards, techniques that take most advantages
from the graphics hardware have been explored due to the
high degree of parallelism present in these cards.

In relation to isosurface extraction approaches in GPU,
Reck et al. [40] and Buatois et al. [3] proposed methods for
extraction from unstructured tetrahedral meshes. Tatarchuk
et al. [44] showed an implementation of a hybrid method that
employs both marching cubes and marching tetrahedra [4,
15] techniques, using geometry shaders in GPU. Martin et
al. [31] developed a technique to efficiently distribute all the
work load of the isosurface extraction procedure among GPU
resources in a cluster.

Pascucci [38] proposed a pipeline for the isosurface
extraction procedure in which most of the stages is done
in GPU, assigning only to the CPU the tasks of accessing the
volume data and sending a set of vertices (corresponding to
the volume cells) for the GPU. In his proposal, the GPU does
not have access to the volume dataset. Therefore, the CPU is
responsible for transmitting all kind of relevant information
about the vertices.

Ciznicki et al. [6] presented an isosurface extraction
approach for CT and MRI images that combines the march-
ing tetrahedra algorithm with histogram pyramids [10,50]
using multiple GPUs. Using a single GPU, their application
provided a speedup of 107 times comparing to a standard
CPU version. With four GPUs, it achieved a speedup of 3.3
times, in relation to the single GPU version.

Schindler et al. [41] proposed an adaptation of the
marching cubes algorithm called marching correctors, which
extracts isosurface from smoothed particle hydrodynam-
ics (SPH) datasets. The GPU is responsible for comput-
ing the selection of seed cells of the datasets, which is the
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Fig. 1 Illustration of the 15 basic cases of the marching cubes tech-
nique. The green vertices are the ones classified as “inside” the iso-
surfaces, whereas the remaining as “outside” them. Image extracted
from [29]

most expensive part of the proposed algorithm, achieving a
performance gain of two orders of magnitude, comparing to
other approaches that handle SPH datasets.

2.3 Marching cubes

The marching cubes technique uses a divide-and-conquer
approach in which the volume data is processed through their
cells (voxels), that are equivalent to cubes. In each cell, the
intersection between its respective edges and the isosurface is
verified. The values of each vertex cells are then compared to
a given isovalue / and these vertices are classified as “inside”
or “outside” the isosurface. The first case is applied when
the value of the vertex is greater than or equal to & and the
second one when it is less than 4. Once defined the type of
intersection, an approximation of the isosurface contained in
the cell is done by constructing triangles.

As each of the 8 vertex cells has only two possible states,
there is a total of 28 = 256 cases of intersection between
isosurface and cell edge, which are listed in a lookup-table.
However, some pairs of these cases are symmetric or com-
plementary to each other, which restrains the problem to 15
cases, as illustrated in Fig. 1. A demonstration of the march-
ing cubes algorithm using different isovalues is shown in
Fig. 2.

The pseudocode of the marching cubes technique can be
briefly described according to the Algorithm 1. The advan-
tage of this algorithm is that the processing of a cell is inde-
pendent of the other ones, which allows its parallelization.
However, as a disadvantage, it may generate holes in the iso-
surfaces, due to topological ambiguities of the cases.

Algorithm 1 runs in time O (n), where n is the total num-
ber of processed cells. On the other hand, many of these
cells are empty, incurring an unnecessary waste of time. To
minimize this waste, some spatial data structures are used
to only process the active cells, that is, the ones that are

.
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Fig. 2 Volume rendering of a male head dataset using marching cubes
with different isovalues: a 30, b 50, ¢ 75, d 100

intercepted by an isosurface, reducing the complexity of the
algorithm.

Algorithm 1 Marching Cubes(V, h)

Input: Volume data V' and an isovalue h.

Output: List of vertices to be rendered, together with their respective normals.

1: for each voxel (cube) v of V do

2: Calculate an index to the cube, comparing the 8 density values of the cube vertices
with the isovalue h.
Using the calculated index, verify the edge list from a lookup-table.
Using the scalar values in each vertex of the edge, find the surface-edge intersections
by linear interpolation.

5: Calculate a unitary normal in each cube vertex by the method of central differ-
ences [16]. Interpolate the normal to each triangle vertex.

6: Return the triangle vertices and the vertex normals.

7: end for

In the context of the acceleration of marching cubes algo-
rithm on the GPU, Johansson and Carr [18] conducted a com-
parative analysis of its execution using data structures, such
as k-d trees [2] and interval trees [5], reporting the rendering
rate speedups obtained in relation to the CPU. Their approach
is based on a caching cell topology technique, which stores
the 15 cases of marching cubes in GPU (once it can cache
geometry in a very efficient way) and improves the perfor-
mance of the case classification stage by means of an opti-
mization of the pre-computation step on the CPU, making use
of the span-space properties. The method achieves a maxi-
mum speedup (between the GPU acceleration with an inter-
val tree and its CPU counterpart) of 4.3 times. However, the
authors do not make experiments with larger datasets due to
hardware limitations.

Goetz et al. [13] optimized the marching cubes algorithm
using a vertex shader, achieving an interactive isosurface
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reconstruction, but their approach does not use any accel-
erating data structures to improve the overall performance
of the algorithm, obtaining a maximum speedup of approxi-
mately 2.0 times.

Newman and Yi [32] developed an in-depth research about
the possibilities of developing the marching cubes tech-
nique, describing their respective properties, extensions and
attempts to solve its limitations. However, the paper only
shows the differences between these possibilities in terms
of algorithm complexity as well as visualization results, and
does not make an analysis with volume datasets.

Smistad et al. [43] presented an implementation of the
marching cubes algorithm written in OpenCL [37] that runs
entirely in the GPU. Like [6], it uses the idea of histogram
pyramids to generate the output stream of vertices to be ren-
dered and runs as fast as CUDA and shader implementations,
providing a very efficient storage scheme as well. However,
the drawback of their implementation lies on the interoper-
ability between OpenCL and OpenGL.

Concerning recent applications that make use of the
marching cubes algorithm in GPU, Dembogurski et al. [7]
used a marching cubes histogram pyramid implementation
for a procedural terrain generation; Donlon et al. [8] acceler-
ated the visualization and quantification of MRI datasets to
help in the treatment of patients that suffer from rheumatoid
and psoriatic arthritis; Kim et al. [21] presented a method
for computing the surfaces of a protein molecule in inter-
active time; Lang et al. [23] developed an environment for
fast and automated analysis of large SBFSEM (serial block-
face scanning electron microscopy) datasets to extract neuron
morphologies.

2.4 Accelerating data structures

There are several classes of data structures that are very useful
to avoid the processing of empty cells. One of them consists
of interval-based representations, which uses cell intervals to
group cells [32]. The advantage of this type of representation
is in its flexibility, being applied not only on regular grids,
but also on non-regular grids, once it works from an interval
space, instead of using the mesh space itself.

The main methods of this class are based on a represen-
tation called span-space [28], where each cell of the volume
data is mapped to a two-dimensional point, whose coordi-
nates x and y correspond, respectively, to the minimum and
maximum values among the eight vertices that constitute a
cell. From a given isovalue /4, the points of the span-space
that represent the active cells are the ones where x < h and
y > h.

A general scheme of the span-space is shown in Fig. 3.
The blue area corresponds to the active cells of a volume data
and the yellow areas to the cells that are not rendered, due
to the fact that x > h (yellow area located right of the blue
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Fig. 3 Representation of the span-space proposed by Livnat et al. [28]

area) or y < h (yellow area located below the blue area). No
cell can be mapped to the red area, once x is never greater
than y.

This section describes some spatial data structures and
how they can be used to improve the performance of the
marching cubes algorithm.

2.4.1 k-d tree

The k-d tree [2] is a special case of the binary search tree,
used to organize points located in a k-dimensional space.
Each non-leaf node represents a splitting hyperplane that
divides the space into two parts in a specific direction, which
is defined according to the depth of this node in the tree.
The left subtree contains all the points located at the left of
the hyperplane and the right subtree contains the ones to the
right. The leaf nodes store one point each.

In the marching cubes algorithm, the volume data is
mapped onto a span-space before constructing the tree, once
the queries in the k-d tree are faster when working with points
in a 2D plane rather than in a 3D space. Furthermore, every
node stores a point in the span-space, instead of storing the
points only in the leaves. The construction takes O (nlogn)
time, where n is the total number of cells in the volume data,
and demands a storage space of O (n).

When searching in the tree, given an isovalue #, it will
traverse only the nodes that correspond to the active cells of
the volume data. Thus, the query takes O(4/n + p) time,
where p is the number of active cells.

2.4.2 Interval tree

The interval tree [5] is an ordered tree used to store intervals
of values in 1D. Similarly to the k-d tree, it is an extension
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of the binary search tree, and allows an efficient search of all
intervals that overlap with a given interval or point.

The root of the tree stores a value that corresponds to
the median of the endpoints of all intervals and a list of
intervals that contain this value. The left subtree stores the
intervals that are completely below the median and the right
subtree stores the ones completely above the median. Then,
the process is repeated recursively for each subtree. It takes
a construction time of O(nlogn) and, like the k-d tree, a
storage space of O (n).

The span-space is suitable for constructing an interval tree.
In this case, the intervals correspond to the volume cells, and
the endpoints are the minimum and maximum values of the
cell, which stands for its coordinates in the span-space.

Searching in an interval tree takes O(logn + p) time,
where p is the number of active cells, which makes it more
efficient than the k-d tree. On the other hand, it demands
higher memory space.

2.4.3 Quadtree and octree

A quadtree [12] is a tree data structure where every non-
leaf node has exactly four children. It is used to partition a
region in a 2D space into four equal regions (or quadrants).
These regions are then partitioned into other four subregions,
and so on, until the subregion is empty, which characterizes
a leaf node. The 3D analogous structure of a quadtree is
called octree, which partitions a 3D space region into eight
subregions (or octants).

Once the span-space is a 2D space, it can be represented by
aquadtree. Let/ be the number of bits used to store the volume
data values, which means that there are 2! possible values
(ranging between 0 and 2/ — 1) for a vertex cell. Thus, the
span-space is a 2/ x 2/ region, and the points correspond to the
mapped cells. Every node in the tree stores the information
of a point in the span-space.

However, more than one cell can be mapped to a same
point in the span-space. To overcome this problem, each node
in the quadtree also stores a pointer to a list of the volume
data cells that were mapped to this point. Then, the queries
can be made as usual, traversing the nodes corresponding to
the active cells.

In the octree case, the tree is built directly from the volume
data. However, in case of non-regular grids (i.e., when vol-
ume dimension is not a power of two), the subregions have
different sizes, once we are partitioning cell regions.

3 Methodology

The significant evolution of the programmability of the
graphics hardware has allowed the isosurface extraction pro-
cedure to be accelerated by the GPU, taking advantage of

its parallel architecture. However, the bus used to establish
a communication between the CPU and the GPU is a bot-
tleneck for this acceleration, which means that transferring
all the tasks to the GPU may not be the best solution. Thus,
in order to maximize the performance of this procedure, an
adequate planning of the graphics pipeline is needed, picking
up the tasks that can be run on the CPU and the ones that can
be transferred to the GPU, as well as a proper use of all the
memory hierarchy. Some proposals of graphics pipeline for
isosurface extraction were made by Buatois et al. [3], Johans-
son [17], Martin et al. [31], Pascucci [38], Reck et al. [40],
and Tatarchuk et al. [44].

The methodology proposed in this work is restricted to
the marching cubes technique, rather than generalizing to
the isosurface extraction process. Figure 4 shows a general
scheme, composed of six stages. At the Stage 1, the CPU
reads a volume dataset of dimensions Ny x Ny x N, which
is then allocated both in the main memory (RAM, used by the
CPU) and in the video memory (VRAM, used by the GPU).
Except for the octree, an extra memory space is allocated for
the span-space related to the volume data.

Later, one of the spatial data structures described in
Sect. 2.4 is constructed from the volume data and stored only
in the main memory (stage 2). Then, the volume data is freed
from the main memory, but it remains allocated in the video
memory.

Algorithm 2 details the two aforementioned stages of the
scheme. Once the preprocessing stage is done, the march-
ing cubes algorithm is started (stage 3). From an isovalue £
specified by the user, the CPU performs a search in the data
structure, traversing only the nodes that correspond to the
active volume cells, and creating a list of these cells, which
is then transferred to the GPU via communication bus.

Algorithm 2 PreProcessVolumeData(V, d)

Input: Volume dataset V of dimensions N, X N, x N, and an integer d associated to an

auxiliary data structure (-1 for no structure)

1: Allocate both in RAM and VRAM a space of size Nz X Ny X N X number of bytes that
represent each 3-D position (z,y, z) of V

2: if d # -1 then

3 if d # “OCTREE” then

4 Create the span-space S related to V'

5 Free V from RAM

6: From S, build and allocate in RAM the data structure related to d
7 Free S from RAM

8 else

9 From V/, build and allocate an octree in RAM
10: Free V from RAM

11: end if
12: end if

With the list of active cells and the isovalue /, the march-
ing cubes algorithm then proceeds on the GPU. Each cell is
classified into one of the 15 cases of marching cubes (shown
in Fig. 1) by comparing & to the eight cell vertices. From this
comparison, a cell index is created and then used to define the
number of vertices needed to render the isosurface contained
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Fig. 4 Our method for acceleration of the marching cubes algorithm.
Stages 1 and 2 are responsible for the preprocessing stage; stages 3 to
5 correspond to the execution of marching cubes and stage 6 makes

in the cell. After this procedure is done for all active cells,
the total number of vertices to be output can be determined,
which will define the exact size of video memory needed to
allocate two vertex buffers: one for storing these vertices and
other for their respective normals (stage 4).

After that, the list of active cells is traversed by the GPU
once more to generate the triangles that comprise the iso-
surfaces (stage 5). For each active cell of the list, the GPU
calculates the isosurface intersections with the 12 edges of
the cell by interpolating the vertices and the normals calcu-
lated by the GPU from the volume data. Once the cell index
and the intersections are found, the GPU obtains the list of
vertices and normals related to the isosurface, writing them
in the respective vertex buffers. Finally, the volume data is
rendered from these buffers (stage 6).

All the procedures executed by the GPU are parallelized,
once the results obtained from a cell are independent of the
others. However, the speedup achieved with the acceleration
of the marching cubes relies on the way this parallelization
occurs. When a task is assigned to the GPU, it creates a
specific amount of blocks.! All of these blocks contain a
specific number of threads (which is the same for all blocks),
responsible for running a part of this task.

The amount of blocks to be created depends on the number
of active cells and the number of threads per block, also
known as block size. The block size is chosen in such a
way that it is neither too low, assigning much work for all
threads and not maximizing the task performance at all, nor
too high, causing an overhead of starting and terminating
threads.

The parallel processing of the list of active cells is made
from a specific program, called GPU kernel. In our work, the
GPU kernel was implemented using the CUDA architecture.

1" Concept from CUDA programming model [35].
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Marching Cubes Algorithm
(CPU + GPU)

Display
(GPU only)

the display of vertices on the screen. Green boxes stand for the actions
executed on CPU, whereas the orange boxes the ones on GPU

In addition to the algorithms that are responsible for the exe-
cution of the marching cubes technique, some of the GPU
inherent resources were employed in order to improve the
rendering rate of the volume data. Among these resources
are the use of texture memory, which is faster for handling
read-only data, to store the lookup-tables employed by the
marching cubes algorithm and the volume data itself, and the
use of shared memory, which permits the data sharing among
threads contained in a same block, besides being faster than
the standard video memory. In the GPU marching cubes algo-
rithm, the shared memory is used to compute, for each active
cell, the intersections between an isosurface contained in the
cell and the cell edges.

The pseudocodes of the following algorithms were adapted
from [36]. Before the execution of these algorithms, the
respective number of blocks (as well as their sizes) used
to help on the parallelization of their procedures are deter-
mined.

Algorithm 3 represents the first step of the execution of
marching cubes in GPU (stage 4 of Fig. 4). The goal of this
algorithm is to calculate the exact amount of video memory
that will be used to store the vertices and the normals related
to the volume data. Once this amount is obtained, the GPU
allocates the appropriate space in the vertex buffers, which
will then store the vertices to be output and their respective
normals.

Once this procedure is done, the Algorithm 4 is started.
It is important to point out the repetition of the calculation
of the cell indexes (line four of the Algorithms 3 and 4),
which in GPU is faster than storing the results provided by
Algorithm 3 in an array and retrieving them in the subse-
quent algorithm. Later, the vertex and normal buffers (called
P and N, respectively) are filled and the volume data is
visualized, thus finishing the steps of the marching cubes
technique.
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Algorithm 3 GetNumVertices(V, N, h)

Input: List V of active voxels, list N of the number of vertices that compose the isosurfaces

of each voxel of V' and isovalue h

1: for each voxel v of V in parallel do

2: Determine the positions of the 8 vertices of v.

3: For each position, fetch the volume data texture memory to retrieve the respective
scalar values of the vertices.

4: Calculate the index of v, comparing its scalar values to the isovalue h.

5: Determine the number of vertices of the isosurface contained in v from the calculated
index (fetching the 15-case lookup-table texture memory) and add this value in N.

6: end for

Algorithm 4 Generatelsosurfaces(P, N, V, h)

Input: Buffers P and N of positions and normals of the vertices to be rendered, list V' of

active voxels and isovalue h

1: for each voxel v of V' in parallel do

2: Determine the positions of the 8 vertices of v.

3: For each position, fetch the texture memory of the volume data to retrieve the re-
spective scalar values of the vertices.

4: Calculate the index of v, comparing its scalar values to the isovalue h.

5: Calculate, by interpolation, the intersections in each edge of v using shared memory
and store in an array I.

6: Determine the number of vertices of the isosurface contained in v from the calculated
index (fetching the texture of the 15-case lookup-table).

7 for each triangle ¢t of v do

8: Find the edges of v intercepted by the vertices of ¢ fetching the intersections

table texture memory.

9: Calculate the normal of ¢ (which will be the same for the 3 vertices of t).
10: From I, add the positions of the vertices of ¢ in P.

11: Add the normals of ¢ in N.

12: end for

13: end for

4 Experimental results

The tests were executed on an AMD Phenom II X6 1090T
3.2 GHz processor with 8 GB of RAM, and an NVIDIA
GeForce GTS 450 with 1 GB of VRAM (together with its
most recent drivers), using a C-like programming language,
OpenGL 4.2 and CUDA 4.1 APIs.

The experiments were made using 8-bit datasets from [1]
and [45], where each scalar value ranges from 0 to 255. Table

Table 1 List of volume datasets with their respective sizes in voxels,
isovalues, number of triangles and memory space allocated during exe-
cution of marching cubes algorithm (in megabytes)

Volume name Dimensions Isovalue  # Triangles Space (MB)
Fuel 64 x 64 x 64 10 11,534 0.51
Hydrogen atom 128 x 128 x 128 20 47,864 3.09
Angiography 256 x 320 x 128 80 84,974 11.94
Engine 256 x 256 x 128 155 207,592 12.75
Lobster 301 x 324 x 56 45 317,024 12.46
Head 128 x 256 x 256 50 544,588 20.46
Bonsai 256 x 256 x 256 45 858,118 35.64
Knee 379 x 229 x 205 60 1,027,838 40.49
Sheep heart 352 x 352 x 256 80 1,397,064 61.87
Aneurism 512 x 512 x 512 45 835,068 147.11

1 shows a list of volume datasets used in the tests, together
with their respective dimensions (in voxels), isovalues (input
to the marching cubes algorithm), number of triangles ren-
dered in the screen (which depends on the isovalue), and
memory space allocated during the execution of the march-
ing cubes algorithm, which corresponds to the size of the
volume datasets (1 byte per voxel) plus the amount of the
vertex and normal buffers (4 bytes per vertex and normal,
which leads to a total of 24 bytes per triangle, once there
are two buffers). The isovalues for “Fuel”, “Hydrogen atom”
and “Engine” datasets were the same as those used by [18],
so that a more accurate comparison can be made. The results
of the rendering of each dataset, made from the application
described in this work, are shown in Fig. 5.

Figure 6 shows two plots that illustrate the average time (in
milliseconds) of 50 executions of the marching cubes imple-
mentation on the GPU for different block size values, using
each of the volume datasets and their respective isovalues
listed in Table 1. The plot (a) stands for the executions of a
brute force implementation of the marching cubes algorithm
that runs without the aid of accelerating data structures and
sequentially traverses all voxels of a volume dataset (includ-
ing the empty ones), and (b) the executions using an interval
tree to store the voxels from the datasets. From both plots, it
can be noticed that for block sizes of 64 and higher, the run-
ning time of the marching cubes increases very slightly, and
it does not rely on whether a data structure is used or not for
acceleration. In other words, for any data structure used in
the marching cubes algorithm, the behavior of the curves in
the plot will be the same. As mentioned in Sect. 3, although
a higher number of threads means higher parallelization, the
time spent to create the threads also gets higher, hence sta-
bilizing the performance. Thus, all the tests were run with a
block size value of 64.

Table 2 shows the average frame rate of the execution of
marching cubes algorithm in CPU and GPU, for all data struc-
tures described in Sect. 2.4, and comparing to their respective
CPU versions of the algorithm. These results do not consider
the time spent on the pre-processing stages (volume data
reading and data structure construction), regarding only the
events that occur between the search in the data structure and
the volume display on the screen (Stages 3—6 of Fig. 4).

As it is possible to observe, the interval tree provided the
best results (highlighted in bold in Table 2), not only among
all the data structures used in the tests, but also in the accel-
eration factor compared to the CPU marching cubes, achiev-
ing a maximum speedup of 18.2 times for the “Aneurism”
dataset. This result was expected because the interval tree
has asymptotically a better query time than the other struc-
tures. Furthermore, the obtained speedups are superior than
those of Johansson and Carr’s approach [18], which achieves
a maximum speedup of 4.3 times (for the “Hydrogen Atom”
dataset and the interval tree) using pre-calculated normals,
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(e)

Fig. 5 Rendering results of each dataset generated by the application, with the isovalues listed in Table 1. a Fuel, b hydrogen atom, ¢ angiography,

d engine, e lobster, f head, g bonsai, h knee, i sheep heart, j aneurism

Fig. 6 Average times of
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Table 2 Average frame rate (in
frames per second) of the Volume name Brute force k-d tree Interval tree Quadtree Octree
execution of marching cubes
algorithm in CPU and GPU, CPU
with different data structures, Fuel 83.3 105.6 114.4 108.0 98.3
comparing against the brute Hydrogen atom 17.5 23.4 25.6 24.0 19.2
force version Angiography 7.5 12.9 14.1 13.6 10.7
Engine 4.6 52 5.7 55 4.8
Lobster 32 3.7 4.1 39 3.6
Head 1.8 2.0 2.3 2.1 1.9
Bonsai 1.2 1.3 1.6 1.4 1.3
Knee 1.1 1.2 14 1.3 1.1
Sheep heart 0.8 0.9 1.0 0.9 0.8
Aneurism 0.6 0.9 13 1.2 0.7
GPU
Fuel 195.4 (2.3) 220.7 (2.1) 246.4 (2.2) 229.9 (2.1) 205.7 (2.1)
Hydrogen Atom 77.0 (4.4) 142.8 (6.1) 165.0 (6.4) 149.5 (6.2) 96.5 (5.0)
Angiography 24.7 (3.3) 109.6 (8.5) 133.7 9.5) 89.2 (6.6) 58.7(5.5)
Engine 26.6 (5.8) 61.0 (11.7) 81.1 (14.2) 56.8 (10.3) 38.4 (8.0)
Lobster 30.1 (9.4) 42.8 (11.6) 58.5 (14.3) 29.8 (7.6) 27.4 (7.6)
. Head 17.9 (9.9) 22.7(11.4) 35.8 (15.6) 28.9 (13.8) 20.9 (11.0)
Values between parenthesis )
correspond to the acceleration Bonsai 10.7 (8.9) 13.2(10.2) 25.9 (16.2) 18.7 (13.4) 11.5(8.8)
factor related to their respective Knee 8.2(7.4) 9.7 (8.1) 22.4 (16.0) 10.7 (8.2) 9.1(8.2)
data structure versions of Sheep Heart 6.3 (7.9) 74(8.2) 16.3 (16.3) 8.9 (9.9) 6.6 (8.3)
marching cubes in CPU for each .
volume dataset Aneurism 2.1(3.5) 10.2 (11.3) 23.7 (18.2) 11.9 9.9) 9.5(13.5)

while the method proposed in this paper calculates them on-
the-fly.

Another important fact to be pointed out is the perfor-
mance of quadtree, which obtained a better frame rate than
the k-d tree and the octree, standing only behind the interval
tree. It achieved a maximum speedup of 13.8 times for the
“Head” dataset. For the other datasets, excluding the “Fuel”,
the speedup was between 6.2 and 10.3.

Concerning the building time of the data structures,
quadtree had a much higher performance than the other ones,
as shown in Fig. 7. For all datasets used in the tests, the build-
ing time of the quadtree was very much smaller than the other
data structures, not having a significant gain of time as the
volume datasets get larger, which is very efficient for real
applications that process great amounts of volume data. For
the rest of the data structures, the building time increases
considerably among the datasets.

Octree provided the second best building times. Even
though its building algorithm is similar to the one of quadtree,
the fact that it is applied in the 3D space brings on a higher
waste of time, once the total number of subdivisions is higher.
In third place, comes the k-d tree, which has a worse build-
ing time than the octree because of the successive executions
of the algorithm that finds the median of the points located
in the span-space. Finally, interval tree achieved the worst

building times among the tested data structures. It happened
due to the time spent in sorting the cell lists, which has a
higher time complexity than finding a median.

The bottleneck of this approach resides on the fact that
the searches in the data structures are done on the CPU. It
is feasible to implement all of the data structure algorithms
on the GPU, as well as storing the data structure itself in the
video memory, but since most of the tree search algorithms
are recursive and CUDA does not support recursions, if non-
recursive versions of these algorithms were implemented on
the GPU, there would have a large waste of time and space to
create stacks and loops used to simulate the eventual recursive
calls.

5 Conclusions and future work

Volume visualization techniques allow users to explore and
analyze tridimensional data, which benefit several knowl-
edge domains, such as biology, medicine, meteorology,
oceanography, geology. A challenging task of volume visu-
alization is the development of efficient algorithms for rep-
resenting, manipulating and rendering complex and large
datasets.
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Fig. 7 Average building times 100
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This paper described a comparative analysis among four
different spatial data structures for speeding up the marching
cubes algorithm through graphics processing units, together
with an approach using CUDA framework. Time complexity
of the algorithm depends on the volume data cells that contain
an isosurface, instead of the total number of cells, avoiding
the processing of empty cells.

Experimental results obtained from several volumetric
datasets demonstrate that it was possible to accelerate the
marching cubes algorithm by a factor of approximately 18
times when compared to the CPU approach.

Among the four data structures described in this paper,
interval tree provided the best rendering rates, but the time
spent in building the structure was relatively high. On the
other hand, quadtree achieved very satisfactory building
times, even for large volume datasets, besides slightly lower
rendering rates compared to those of the acceleration with
an interval tree. However, since the building of a data struc-
ture is done only once, while the search is performed when-
ever the volume needs to be rendered, it is more worth-
while to use the interval tree rather than the quadtree in this
case.

Directions for future work include the implementation
of the data structures mentioned in this paper on the GPU,
together with their respective building and searching oper-
ations so that they can be done in parallel, and an exten-
sion of the proposed method to open frameworks, such as
OpenCL [37], once that CUDA framework is restricted to
NVIDIA [35] graphic cards. Furthermore, a case study with
more powerful graphic cards (such as those from NVIDIA
Kepler architecture) is desired as well.
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