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Abstract In wireless sensor networks (WSNs), target
tracking algorithms usually depend on geographical infor-
mation provided by localization algorithms. However, errors
introduced by such algorithms affect the performance of
tasks that rely on that information. A major source or errors
in localization algorithms is the distance estimation pro-
cedure, which often is based on received signal strength
indicator measurements. In this work, we use a Kalman
Filter to improve the distance estimation within localiza-
tion algorithms to reduce distance estimation errors, ulti-
mately improving the target tracking accuracy. As a proof-
of-concept, we chose the recursive position estimation and
directed position estimation as the localization algorithms,
while Kalman and Particle filters are used for tracking a
moving target. We provide a deep performance assessment
of these combined algorithms (localization and tracking) for
WSNs are used. Our results show that by filtering multi-
ple distance estimates in the localization algorithms we can

This work extend the previously evaluation made in Souza et al. [29]
by introducing the usage of data fusion to reduce errors in the
localization of sensor nodes. The results presented here show the
benefits and costs of this new approach.
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improve the tracking accuracy, but the associate communi-
cation cost must not be neglected.
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1 Introduction

A wireless sensor network (WSN) [1] is a special type of
ad-hoc network composed of resource-constrained devices,
called sensor nodes. These sensors are able to perceive the
environment, collect, process and disseminate environmen-
tal data. Tracking the location of a moving entity (event)
represents an important class of applications for WSNs. For
instance, animal tracking for long-term assessment of species
to improve our knowledge about the biodiversity and support
preserving and conserving the wildlife [7,21,28].

Target tracking is particularly dependent on location
information, and current localization algorithms [2,24] can-
not perfectly estimate every node location [25,30]. Vari-
ous approaches have been proposed for target tracking in
WSN, considering diverse metrics like accuracy, scalabil-
ity, and density [6,18,31,36,38]. However, there is little
research assessing the impact of localization algorithms have
on the target tracking performance. Current approaches either
assume that every sensor node knows its position perfectly
[20], or simulate localization errors by adding a random noise
variable in the correct node position [12,19].

In this work, we assess the performance of target tracking
algorithms when position information are based on actual
localization algorithms. Then, we demonstrate how an infor-
mation fusion techniques [20] can be used to mitigate errors
of localization algorithms, improving the target tracking
accuracy. To do that, multiple distance estimates are fused
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by a Kalman filter, during the localization process. Such an
evaluation is a step towards the understanding of the rela-
tionship among localization and target tracking algorithms,
and the design of integrated solutions that exploit features
and requirements shared by these tasks.

As a proof-of-concept, we evaluate two localization algo-
rithms on two tracking algorithms. The first localization algo-
rithm is the recursive position estimation (RPE) algorithm
[2]—a pioneer iterative solution—while the second is the
directed position estimation (DPE) algorithm [24]—a solu-
tion that evolved from the original RPE. The tracking algo-
rithms we evaluate are the Kalman filter (KF) [15] and parti-
cle filter (PF) [3]. These filters can be considered as canonical
solutions for the target tracking problem.

The remainder of the work is organized as follows. In
Sect. 2, we present the related work and background knowl-
edge required for localization and target tracking problems.
In Sect. 3, we present a simple information-fusion approach
for reducing localization/tracking errors. Section 4 presents
our experimental methodology and quantitative evaluation.
Finally, in Sect. 5, we present our conclusions and future
work.

2 Background and related work

In this section, we describe the state-of-the-art regarding
localization and tracking algorithms, putting emphasis on
the algorithms evaluated in this work.

2.1 Localization

A localization system in sensor networks basically consists
of determining the physical location of the sensor nodes
[25]. These systems are usually divided into three phases:
distance estimation, position computation and localization
algorithm [5].

In current localization solutions, a limited number of
nodes, called beacon or anchor nodes, are aware of their posi-
tions. Then, distributed algorithms share beacon information,
so that the remainder of the nodes can estimate their position.
The ad hoc positioning system (APS) [22] works as an exten-
sion of both the distance vector routing and GPS positioning
in order to provide a localization system in which a limited
fraction of nodes have self-location capability (e.g., GPS-
equipped nodes). An approach that uses mobile beacon to
provide the node location in sensor networks is proposed by
Sichitiu and Ramadurai [27]. In this algorithm, one or more
beacon nodes move through the sensor field broadcasting
their positions to all nodes within in the beacon range. When
a node receives three or more positions it computes its own
position. Tatham and Kunz [30] show that the position of the
beacon nodes can impact the localization error, furthermore

they propose a set of guidelines to improve the positions of
the nodes using the smallest number of beacon nodes possi-
ble. The recursive position estimation (RPE) [2] iteratively
computes the node location information without the need for
strategic beacon placement. The directed position estimation
(DPE) [24] is a similar algorithm that uses the direction of
the recursion to improve the localization accuracy. Both the
RPE and DPE propagate position errors throughout the net-
work. However, in the DPE this error is reduced by selecting
the best reference neighbors. These two algorithms are eval-
uated in this work, so they are treated in more detail in the
next subsections.

2.1.1 Recursive position estimation

The RPE [2] is a positioning system that requires at least
5 % of the nodes to be beacon nodes, randomly distributed in
the sensor field. However, depending on the network density
and on the beacons arrangement, we need a larger number of
beacons to start the recursion.

In this algorithm, every free node needs the minimum of
three references to estimate its position. Estimated positions
are broadcasted to help other nodes estimate their positions
recursively. The number of estimated positions increases iter-
atively as new estimated nodes assist others estimating their
positions.

The RPE algorithm can be divided into four phases (see
Fig. 1). In the first phase, beacon nodes broadcast their posi-
tion so they can be used as reference nodes. In the second
phase, a node estimates its distance to the reference nodes
by using, for example, the received signal strength indicator
(RSSI) [5]. In the third phase, the node computes its position
by using multilateration [5], and becomes a settled node. In
the final phase, the node becomes a reference, and broadcasts
its estimated position to assist its neighbors.

By using settled nodes as reference nodes, location errors
are propagated. The reason is that the distance estimation
process introduce errors in the estimated positions. As a con-
sequence, the most distant nodes of the beacons are likely to
have larger errors than the closer ones. In Fig. 1, the location
error for node 5 is probably greater than the location error
for node 7.

The algorithm attempt to mitigate propagated errors by
ignoring the worst references. The references quality is given
by the residual value defined as

residual(x, y) =
R∑

i=1

(√
(xi − x)2 + (yi − y)2 − di

)2

(1)

where R is the number of references, (x, y) is the estimated
position, (xi , yi ) is the i th reference position and di is its
measured range.
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Fig. 1 Example and phases of the recursive position estimation (RPE)

The RPE is an algorithm that uses multiple hops to deter-
mine the nodes position. Hence, the network topology does
not have to follow a special organization, making it suitable
for outdoor scenarios.

2.1.2 Directed position estimation

The DPE [24] algorithm is similar to the RPE algorithm. The
main idea of the DPE is to start the recursion at a single loca-
tion, and make it follow a known direction. Then, a node can
estimate its position by using only two reference neighbors
and the recursion direction. This controlled recursion leads
to smaller errors, compared to RPE.

To ensure that the recursion starts at a single point, the
algorithm uses a fixed beacon structure. The recursion direc-
tion and the beacon structure are depicted in Fig. 2a. This
structure has, generally, four beacons that know their dis-
tance from the recursion origin and the angle between each

pair of beacons. Then, to start the recursion, these beacons
inform their positions to their neighbors.

When a node receives the position from two reference
neighbors (see Fig. 2b), a pair of possible points results from
the system: one is the correct position and the other is the
incorrect. Because the direction of the recursion is known,
the node can choose between the two possible solutions: the
most distant point from the recursion origin is the correct
choice.

The algorithm is divided into four phases. In the first phase,
beacon nodes start the recursion from a single location. In the
second phase, a node chooses two reference points: the pair
of nodes with the largest distance between them, and closest
to the recursion origin. In the third phase, the node estimates
its position. This position is estimated by intersecting the two
circles and choosing the most distant point from the recursion
origin. In the last phase, the node becomes a reference by
sending its information to its neighbors.

Fig. 2 The directed position
estimation
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(b) Position estimation using two references.
Two possible solution result from the system.
The most distant point from the recursion ori-
gin is the right position.
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The recursion direction can occasionally become wrong.
To a correct estimation it is necessary to avoid two possi-
ble situations: (a) when the unknown node is closer to the
recursion origin than one of the two reference nodes; and (b)
when both reference nodes are aligned with the recursion ori-
gin. These two scenarios can be detected by comparing the
distances from the possible solutions to the recursion origin
with the distances from the reference nodes to the recursion
origin.

The DPE also propagates localization errors, due to dis-
tance estimation errors. However, propagated errors are con-
siderably smaller. Oliveira et al. [24] compare the perfor-
mance of the DPE with the RPE in several aspects. Their
results show that the DPE outperforms RPE in many cases.
The DPE works with sparse network, needs fewer beacons,
and have smaller errors.

2.2 Target tracking

Target tracking algorithms aim at estimating current and
future (next) location of a target. These algorithms are
exposed to different sources of noise, introduced by the mea-
surement process and also errors in nodes’ location that are
used to estimate the target coordinates. Therefore, informa-
tion fusion [20] is commonly used for filtering such noise
sources. Two popular algorithms for this problem are the
Kalman and Particle filters.

Several tracking solutions are based on Kalman filters
(KF). The reason is that Kalman filters have been used in
algorithms for source localization and tracking, especially in
robotics [20]. Li et al. [16] propose a source localization algo-
rithm for a system equipped with asynchronous sensors, and
evaluate the performance of extended Kalman filter (EKF)
[35] and unscented Kalman filter (UKF) [14] for source track-
ing in non-linear systems. Olfati-Saber [23] proposes distrib-
uted Kalman filtering (DKF), in which a centralized KF is
decomposed into micro-KFs, so that the distributed approach
has a performance equivalent to centralized KF.

Particle filters are popular for modeling non-linear sys-
tems subject to non-Gaussian noise. Vercauteren et al. [32]
propose a collaborative Particle Filter for jointly tracking sev-
eral targets and classifying them according to their motion
pattern. Arulampalam et al. [3] assess the use Particle filters
and the EKF for tracking applications. Considering sensor
networks, Rosencrantz et al. [26] developed a Particle Filter
for distributed information fusion applied to decentralized
tracking. Jiang and Ravindran [13] propose a completely dis-
tributed Particle Filter for target tracking in sensor networks,
where the communication cost to maintain the particles on
different nodes and propagate along the target trajectory is
reduced.

Souza et at. [29] assess the performance of target tracking
algorithms when position information is provided by local-

ization algorithms. The authors combine the KF and PF with
RPE and DPE. In this work, we combine the same algo-
rithms, but we use data fusion of multiple distance estimates
during the localization process to improve the target-tracking
accuracy.

There are also other distributed approaches for tar-
get tracking that are based on cluster [6,33,38] and tree
[17,31,37] organizations for in-network data processing.

2.2.1 Kalman filter

The Kalman filter is a popular fusion method used to fuse
low-level redundant data [20]. If a linear model can describe
the system and the error can be modeled as a Gaussian noise,
than the Kalman Filter recursively retrieves statistically opti-
mal estimates.

This method, as depicted in Fig. 3a, causes at each
discrete-time increment a linear operator application in the
current state to generate the new state. The filter considers
measurement noise and, optionally, information about the
controls on the system. Then, another linear operator, also
subject to noise, generates the observed outputs from the
true state.

The Kalman filter estimates the state x of a discrete-time
k controlled process that is ruled by the state-space model

xk+1 = Axk + Buk + wk (2)

with measurements y represented by

yk = Cxk + vk, (3)

in which A is the state transition matrix, B is the input control
matrix that is applied to control vector u, C is the measure-
ment matrix; w represent the process noise and v the mea-
surement noise, where these noise sources are represented
by random zero-mean Gaussian variables with covariance
matrices Q and R respectively.

Based on the measurement y and the knowledge of the
system parameters, the estimate of x, represented by x̂ is
given by

x̂k+1 = (Ax̂k + Buk) + Kk(yk − Cx̂k), (4)

in which K is the Kalman gain determined by

Kk = PkCT (CPkCT + R)
−1

, (5)

while P is the prediction covariance matrix that can be deter-
mined by

Pk+1 = A(I − KkC)PkAT + Q. (6)

The Kalman filter has two phases (see Fig. 3b): time-
update (predict) and measurement-update (correct). The
time-update is responsible for obtaining the a priori estimates
for the next time step and consists of the Eqs. (2) and (3).
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(a) Block diagram of the Kalman Filter.

PREDICT

CORRECT

(b) Kalman Filter phases.

Fig. 3 Kalman filter representation and phases

The measurement-update is responsible for incorporating
a new measurement into the a priori estimate to obtain an
improved a posteriori estimate and consists of the Eqs. (4),
(5), and (6) [20]. These phases form a cycle that is maintained
while the filter is fed by measurements.

Since many problems cannot be represented by lin-
ear models, algorithms have emerged based on the origi-
nal Kalman Filter formulation to allow these problems to
be treated. The major variations of the Kalman filter for
non-linear problems are the extended Kalman filter (EKF)
[10] and the unscented Kalman filter (UKF) [14]. The EKF
is the most popular alternative to non-linear problems. This
method uses a linearized model of the process using Taylor
series, because this is a sub-optimal estimator. The UKF per-
forms estimations on non-linear systems without the need to
linearize them, because it uses the principle that a set of dis-
crete sampling points can be used to parameterize the mean
and covariance. The quality of UKF estimates are close to
standard KF for linear systems.

Finally, the Kalman filter model allows the elaboration
of an algorithm to estimate the optimal state vector values.
Thus, it is possible to generate a sequence of state values in
each time unit, predicting future states using the current state,
and allowing the creation of systems with real-time updates.

2.2.2 Particle filter

Particle Filters are recursive implementations of sequential
Monte Carlo (SMC) methods [3]. Although the Kalman filter
is a classical solution, Particle Filters represent an alternative
for applications with non-Gaussian noise, especially when
computational power is rather cheap and sampling rate is
slow.

Unlike of the linear/Gaussian problems, the calcula-
tions of the posterior distribution of non-linear/non-Gaussian
problems are extremely complex. To overcome this difficulty,
the Particle Filter adopts an approach called sampling impor-
tance. The goal is to estimate the posterior probability den-
sity, representing it as a set of particles.

This method attempts to build the posterior probability
density function (PDF) based on a large number of random
samples, called particles. These particles are propagated over
time, sequentially combining sampling and resampling steps.
At each time step, the resampling is used to discard some par-
ticles, increasing the relevance of regions with high posterior
probability. Each particle has an associated weight that indi-
cates the particle quality. Then, the estimate is the result of
the weighted sum of all particles.

The resampling step is the solution adopted to avoid
the degeneration problem, where the particles have negli-
gible weights after several iterations. The particles of greater
weight are selected and serve as the basis for the creation of
the new particles set. Furthermore, the minor particles dis-
appear and do not originate descendants.

As the Kalman filter, the Particle filter algorithm has two
phases: prediction and correction. In the prediction phase,
each particle is modified according to the existing model,
including the addition of random noise in order to simulate
the effect of noise. Then, in the correction phase, the weight
of each particle is reevaluated based on the latest sensory
information available, so that particles with small weights
are eliminated (resampling process).

3 Proposed approach

In the evaluation presented later in this work, we show that
errors introduced by the localization algorithms are not suc-
cessfully filtered by the tracking algorithm (Kalman and
Particle filters), because the node position errors are not per-
ceived as noise by the filters.

An alternative to reduce the tracking error is reducing
localization errors. By reducing the localization error, we
make tracking algorithms closer to their ideal operating con-
ditions. Thus, we use a Kalman Filter to improve distance
estimation errors and, consequently, localization and track-
ing accuracy.

In this approach, during the localization process, several
distance estimates are performed, that is, each reference node
reports its position k times to its neighbors. Nodes receiving
these packages create an Kalman Filter instance for each
reference. Then, all distance estimates are refined by the cor-
responding Kalman filters. Thus, the filter obtains a more
accurate distance estimate, improving the localization result
(Fig. 4). Then, this improved estimate is used by the target
tracking algorithm.
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In this task, the Kalman filter goal is to obtain a constant
(distance) estimate. The linear system of the filter is very
simple and can be configured as
{

xk+1 = dk+1 = dk + wk

yk = dk + vk
(7)

in which x and d represent the state, distance in this case,
of the discrete-time k; y is a measurement value; w and v

represent the process and measurement noise, respectively.
Filtering the distance estimates during localization is a

simple process that ensures good results. The distance esti-
mates errors are the largest contributors to overall error of
the localization system, and only a small fraction of this
error is generated by position computation and localization
algorithm [4,24]. Some algorithms try to isolate the dis-
tance estimate errors by selecting the best references based
on a residual value [2], however this technique is not very
efficient, because all references can cause distance estimate
errors. Since the node position is calculated and used by any
application, such as target tracking, it is difficult to determine
the error size and direction, so the best option is to work on
the error source.

4 Evaluation

In this section, we evaluate the performance of the KF and PF
using the information position provided by the RPE and DPE
localization algorithms. We apply the proposed approach in
the localization process, where several distance estimates are
used to verify its performance.

4.1 Methodology

The evaluation methodology is divided into five phases, as
shown in Fig. 5. First, there is a newly deployed sensor

network with some beacon nodes, where most of the nodes
do not know their position (unknown nodes), so this network
must be prepared to track the target. In the second phase, a
localization algorithm is applied (RPE or DPE), and during
this step, several distance estimates can be used to reduce the
localization errors and improve the tracking accuracy, follow-
ing the proposed approach (see Sect. 3). In the third phase,
nodes know their position, so when three or more nodes detect
the target, they compute its position with multilateration. In
the fourth phase, the nodes send the target position to the sink
node. In the final phase, the sink node predicts the next target
position and reduces the measurement noise, performing the
tracking algorithm (Kalman filter or Particle filter). While
there are measurements, the target tracking continues (back
to phase three).

The experiments were performed by simulation (imple-
mented in Java), where the sensor field is composed of
n sensor nodes, with a communication range of rc, that
are distributed in a two-dimensional squared sensor field
Q = [0, s]×[0, s]. As a proof-of-concept, we consider sym-
metric communication links, i.e., for any two nodes u and v,
u reaches v if and only if v reaches u. Thus, we represent
the network by the Euclidean graph G = (V, E) with the
following properties:

– V = {v1, v2, . . . , vn} is the set of sensor nodes;
– 〈i, j〉 ∈ E iff vi reaches v j , i.e. the distance between vi

and v j is less than rc.

To detect the target, we use the binary detection model
[11,34]. In this model, for a given event e (target presence),
every sensor v, whose distance d between it and the target
is smaller than a detection radius rd , assuredly detects the
event. Then, the probability of a sensor node to detect an
event is defined as

P(v, e) =
{

1, if d ≤ rd

0, otherwise
. (8)

The default network configuration is composed of n =
150 sensors nodes randomly distributed on a Q = [0, 70] ×
[0, 70] m2 sensor field. The communication and detection
ranges are rc = rd = 15m for every node. This configu-
ration defines a network density of 0.03 nodes/m2, which is
sufficient for the majority of nodes to have their locations esti-
mated by both RPE and DPE algorithms. Oliveira et al. [24]
use this same configuration in their experiments to evaluate
the localization systems. Therefore, we adopted this configu-
rations to estimate the nodes position and tracking the target.

Node locations are estimated by RPE or DPE. In the
RPE algorithm, 5 % of the nodes are beacons, while DPE
always uses four beacons. To simulate the inaccuracies of
the distance estimations, usually obtained by RSSI, time of
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Fig. 5 Methodology phases:
(1) a newly deployed sensor
network with beacon and
unknown nodes; (2) a
localization algorithm is applied,
moreover several distance
estimates are used to improve
the tracking accuracy; (3) three
or more nodes detect the target
and compute its position; (4) the
target position is sent to the sink
node; (5) the sink node performs
the tracking algorithm for
predict the future target position
and reduce the measurement
noise, then back to phase three
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arrival (TOA) and time difference of arrival (TDoA) [8,9],
each range sample is disturbed by a zero-mean Gaussian vari-
able with standard deviation equals to 5 % of the distance.
This assumption is reasonable and leads to non-Gaussian
errors in the localization algorithms [25]. During the local-
ization algorithm, we vary the number of distance estimates
used by the Kalman Filter as 1, 10, 20, 50, 100, and 200
measurements for each reference.

The target tracking is performed with Kalman or Parti-
cle filters. The Kalman filter has its linear system equations
represented by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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[
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]
×

⎡

⎢⎢⎢⎢⎣

pxk

pyk

vxk

vyk

⎤

⎥⎥⎥⎥⎦
+ zk

(9)

in which x represents the state of a discrete-time k, composed
by the position (px , py) and velocity (vx , vy); y is a measure-
ment value; w and v represent the process and measurement
noise, respectively.

The Particle filter uses 1,000 particles. This value was set
based on a previous empirical tests that showed that more
than 1,000 particles do not improve tracking significantly.
The Particle filter used in the experiments is represented by
Algorithm 1.

For illustration purposes, the Particle Filter algorithm pre-
sented considers only one dimension, in which x is the posi-
tion, v is the velocity and w is the weight of each N particles
in a discrete-time k; y is the input measurement value. First,
the algorithm randomly distributes the particles (line 2). The
particle propagation and the calculus of their importance con-
sider the distance from each particle to the measurement posi-
tion (lines 4–10). The normalization process (line 12) pre-
pares the particles weights for the resampling process (lines
14–21). Finally, the prediction of the position is calculated
(line 23).

For the sake of simplicity, we consider an uniform move-
ment, so that the movement is modeled by a linear system,
suitable for both Kalman and Particle filters. The target tra-
jectory is composed of 1,000 points to consider a significa-
tive sample. The distance between the points of the trajec-
tory is 0.1 m (uniform motion) to keep the target within the
area monitored. The interval between each measurement is
T = 1s. The maneuvers of the target are determined by an
angle randomly generated within −25◦ and 25◦ every 25
steps.
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input : The measured yk
output: The prediction xk+1
// Initialize the particles1

for i = 1 : N do xi
0 ← random();2

// Sample particles from importance density and compute3
weights
totalW eight ← 0;4
for i = 1 : N do5

xi
k ← xi

k−1 + vi
k−1 + gaussian();6

vi
k ← vi

k−1 + gaussian() ∗ 0.05;7

wi
k ← 1/distance(yk , xi

k);8

totalW eight ← totalW eight + wi
k;9

end10
// Normalize weights11

for i = 1 : N do wi
k ← wi

k/totalW eight;12
// Resampling13

slice0
k ← w0

k ;14

for i = 2 : N do slicei
k ← slicei−1

k + wi
k15

for i = 1 : N do16
c ← random();17
j ← 0;18

while j < N − 1andslice j
k < c do j ← j + 1;19

resamplingi
k ← particle j

k ;20

end21
// Result22

for i = 1 : N do xk+1 ← xk+1 + xi
k ∗ wi

k;23
returnxk+1;24

Algorithm 1: Particle Filter.

In Figs. 6–12, each point is plotted as an average of 100
random topologies to ensure a lower variance in the results.
The error bars represent the confidence interval of 99 %.

4.2 Simulation results

4.2.1 Target tracking behavior

To illustrate the behavior of the tracking algorithms, we show
some snapshots in this section. In these snapshots, the RPE
algorithm could not find the location of two nodes (from 150
nodes), and the average error of the node locations is 3.49 m.
Adopting the same instance, the DPE algorithm managed to
estimate the location of every node, and the average location
error is 2.56 m.

These two scenarios are compared with the ideal setting,
in which the localization system is perfect. For all cases, the
performance of Kalman and Particle filters are presented. The
results are summarized in Table 1.

The Fig. 6a–c shows a target moving through the sensor
field (red line). Orange points represent measurements and
blue points are the results of Kalman Filter tracking algo-
rithm. Figure 6d–f shows the error calculated from real target
and Kalman Filter estimation for each measured point. Figure
6g–l represents the same case using the Particle Filter track-
ing algorithm instead. These figures illustrates the influence

of the localization errors caused by each algorithm. In gen-
eral, the greater the localization error, the greater the tracking
error, independent of the tracking algorithm. The influence
of localization errors is clearly visible in the region around
point (20, 15) in Fig. 6c, in which localization errors lead to
a wrong track estimation.

Tracking with Kalman Filter has better results when
node’s location information are ideal, or when they are esti-
mated by the DPE. However, when the node locations are
estimated by the RPE, the Particle Filter presents the best
results. The reason is that the Particle Filter is less affected
by measurement errors, this fact becomes clear in the follow-
ing sections.

As a general conclusion, Fig. 6 shows that both filters
successfully reduce the errors resulting from the estimation of
the target location, but errors resulting from the localization
algorithms are not significantly filtered.

4.2.2 Costs and benefits of multiple distance estimates.

More distance estimates during the localization process can
reduce the localization and tracking errors. However, it is
necessary to send additional packets, i.e., more resources will
be consumed to get this benefit. Therefore, in this section we
evaluate the costs and benefits of using several distance esti-
mates. This analysis is important, since it helps define how
much you should spend for a given performance in the target
tracking.

Both the RPE and DPE have the communication com-
plexity of O(n), where n is the number of nodes. The Fig. 7a
shows the number of packets sent when the number of dis-
tance estimates increases. Using k distance estimates causes
each beacon and settled node to broadcast its position k times,
increasing the communication complexity to O(kn). This
figure also shows that the RPE sends fewer packets than the
DPE. This occurs because of the network density used in
the experiment that lead RPE, in some topologies, to esti-
mate fewer node positions than DPE, so these nodes do not
broadcast their location information, reducing the number of
packets sent.

The Fig. 7b shows the improvement in accuracy of track-
ing when the number of distance estimates increase. Using
10 distance estimates already provides a significant improve-
ment when compared to results obtained with only 1 esti-
mation. In the target tracking using the RPE, the Particle
Filter has better results, because this algorithm reduces a
small fraction of non-Gaussian noise introduced by local-
ization algorithm. In target tracking with DPE, the Kalman
Filter becomes more accurate with more than 10 distance
estimates, because the localization error is pretty low, so that
the Kalman Filter starts to operate under ideal conditions.

It is not feasible to use a very high number of distance
estimates, because the benefit achieved becomes lower in
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(a) Ideal-KF (b) RPE-KF. (c) DPE-KF.

(d) Ideal-KF error. (e) RPE-KF error. (f) DPE-KF error.

(g) Ideal-PF. (h) RPE-PF. (i) DPE-PF.

(j) Ideal-PF error. (k) RPE-PF error. (l) DPE-PF error

Fig. 6 Performance of Kalman and Particle filters using the RPE and DPE localization algorithms

comparison with the required cost. Using 10 distance esti-
mates is enough to achieve improvements of 50 % with a
reasonable cost. Until 50 distance estimates can significantly
reduce the tracking error, but most estimates (100 and 200)
lead to a little improvement of results with high cost.

4.2.3 Impact of distance estimation inaccuracy

Distances estimated by sensor nodes are not perfect. Depend-
ing on the monitored environment, the associated errors can

be greater, which affects the tracking performance. In gen-
eral, these errors can be modeled by a zero-mean Gaussian
variable, in which the standard deviation is a percentage of
the actual distance [4].

Thus, to evaluate different situations, we vary the standard
deviation from 0 to 15 % of the distance (for RPE and DPE
estimation processes). A standard deviation of 0 % corre-
sponds to a perfect distance estimate. Deviations between 0
and 8 % can represent the estimates obtained by techniques
that use time of arrival of the signal as TOA and TDoA, which
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(a) Packets Sent. (b) Improved tracking.

Fig. 7 Costs and benefits of multiple distance estimates

have errors smaller than 1 m. While larger deviations repre-
sent errors obtained by more imprecise methods, like RSSI.

Figure 8a–d presents the error performance by varying the
distance estimation inaccuracy and the number of estimates,
showing 3D graphs with the combination of RPE and DPE
with KF and PF. Figure 8e, f shows the cases of 1 and 50
distances estimates, respectively.

When the distance estimation inaccuracy is low (between
5 and 10 % of the distance), the accuracy improvement of
the target tracking using DPE is negligible, regardless of the
number of distance estimates used. When this imprecision is
high (between 15 and 30 %), with 50 distances estimates
or more, note that the average error converges to 1 m
(Fig. 8b, d). However, with RPE, the improvement is notice-
able even when the distance estimates inaccuracy is low
(Fig. 8a, c).

It is also interesting to note in Fig. 8e, f that the Particle
filter outperforms the Kalman Filter, especially when RPE is
chosen as the localization algorithm. The reason is that the
non-linearity and non-Gaussian nature of the Particle Filter
results in reducing a small fraction of the non-Gaussian noise
introduced by the localization algorithm.

4.2.4 Impact of the network density

The impact of the density of the network is evaluated by
increasing the number of nodes in the same sensor field, so
that the network density varies from 0.03 to 0.07 nodes/m2.
The smallest density used in this experiment allows both the
RPE and DPE algorithms to estimate the location of the most
of the sensor nodes.

In this case, Fig. 9 shows that, for the DPE algorithm,
the target tracking error remains constant independent of the
network density. The reason is that the same beacon structure
is used regardless the network density. However, for the RPE

algorithm, the number of beacons increase with the network
density, because we ensure that 5 % of the nodes are beacons.
As a result of the increasing number of beacons, the tracking
error reduces accordingly.

Multiple distance estimates are important for improving
the target tracking accuracy when the RPE is used, especially
in sparse networks, as show in Fig. 9a and c. With the DPE
instead, the network density does not interfere in the target
tracking error. Therefore, for 50 distance estimates or more
the average error converges to 0.7m (Fig. 9b, d).

Figures 9(e and f) show that with a single distance esti-
mate during the location process, the Particle Filter is slightly
better with both RPE and DPE. The reason is that it filters a
small fraction of the non-Gaussian localization errors. When
we use 50 distance estimates, the performance of the Kalman
Filter becomes equivalent to the Particle Filter in the case of
RPE and better in the case of DPE, since the Kalman Filter
operates under ideal conditions with low localization errors.

4.2.5 The impact of the network scale

In this section, we evaluate how the network scale affects the
combinations of localization and tracking algorithms.

In this context, we vary the number nodes from 100 to 350,
while keeping a constant density of 0.03 nodes/m2. There-
fore, the monitored area is resized according to the number
of sensor nodes. As the percentage of beacons used by RPE
is 5 %, the number of beacons also increases according to
the number of nodes in this case. The DPE keeps using only
a single structure of four beacons.

Figure 10 shows that increasing the network scale, the
tracking errors with DPE increase accordingly. The reason
is that a higher number of nodes generates a higher prop-
agation of position error, since the same number of bea-
cons is maintainedregardless the number of nodes. However,
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(a) RPE-KF.
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(b) DPE-KF.
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(c) RPE-PF.
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(d) DPE-PF.

(e) 1 estimate. (f) 50 estimates.

Fig. 8 Impact of distance estimation inaccuracy

with the RPE, the tracking errors remains almost constant,
because the number of beacons increase with the network
scale (cf. [24]).

When there are many nodes in network (between 250 and
350), using multiple distance estimates in DPE improves sig-
nificantly the target tracking accuracy, however they have lit-
tle influence when there are few nodes (Fig. 10b, d). With
RPE instead, the usage of multiple distance estimates is
important for any number of nodes (Fig. 10a, c).

4.2.6 The impact of the number of beacons

The number beacons used by the DPE and RPE lead to
different localization errors. Therefore, affecting the track-
ing solutions. For the DPE, Oliveira et al. [24] show that
increasing the number of beacon nodes of the structure
does not improve significantly the result of the localiza-
tion. Therefore, this evaluation considers only the RPE
algorithm.
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(a) RPE-KF.
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(b) DPE-KF.
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(c) RPE-PF.
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(d) DPE-PF.

(e) 1 estimate. (f) 50 estimates.

Fig. 9 Impact of the network density

In this experiment, the number of beacons is increased
from 5 to 35 % of the total number nodes. A greater number
of beacons means that the localization algorithm has more
references for estimating the location of remaining nodes,
which leads to smaller errors. Hence, the tracking error is
also inversely proportional to the number of beacons. This
behavior is depicted in Fig. 11.

When the amount of beacon nodes is significantly large,
the localization error becomes so small that the Kalman Fil-
ter tends to have better results than the Particle Filter, it is up

20 % better with 1 estimate and up 10 % to 50 estimates (Fig.
11c, d). The reason is that the non-Gaussian errors resulting
from localization systems are reduced in such a way that the
Kalman Filter starts to operate under ideal conditions, which
means it converges to the optimal solution for target tracking.
When there are few beacons (10 %), multiple distance esti-
mates improves significantly the target tracking accuracy.
However, when more than 10 % of the nodes are beacons
note that the average error converges to 0.6 m, both for target
tracking with Kalman and Particle filters (Fig. 11a, b).
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(a) RPE-KF. (b) DPE-KF.

(c) RPE-PF. (d) DPE-PF.

(e) 1 estimate. (f) 50 estimates.

Fig. 10 Tracking scale

4.2.7 The impact of the beacon structure

As stated earlier, increasing numbers beacons by structure in
the DPE does not improve the localization results. However,
the DPE may benefit from multiple beacon structures [24].
Thus, to evaluate the performance of the target tracking algo-
rithms with multiple beacon structures, we vary the number
of such structures from 1 to 5. This experiment represents
a situation for the DPE algorithm that is analogous to the
previous experiment for the RPE algorithm.

By performing a single distance estimate in the localiza-
tion process (Fig. 12(c)) and using a three-beacon structure,
the tracking results with Kalman and Particle filters are very
close. However, when more structures are used, the Kalman
Filter tracking is favored. The opposite occurs when we use
less than three-beacon structures. With 50 distance estimates,
the Kalman Filter outperforms the Particle Filter with any
number of beacon structures, because the non-Gaussian noise
introduced by the location is very low (Fig. 12(d)). Besides,
when we use of 50 distance estimates, the average tracking
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Fig. 11 Impact of the number of beacons

error converges to 0.6 m regardless of the number of beacon
structures available (Fig. 12a, b).

5 Conclusions and future work

In this work, we demonstrated how information fusion can
reduce errors during the localization process, while assessing
the impact of actual localization algorithms on target tracking
algorithms. For these evaluations, we chose the RPE and
DPE algorithms to compute node positions, since RPE is a
pioneer solution and DPE is more accurate and cheaper than
the RPE. The target tracking techniques we have chosen were
the Kalman and Particle filters. These filters are very popular
and can be considered as canonical solutions for the target
tracking problem.

As a general conclusion, by using up to 50 distance esti-
mates ensures better results in the target tracking with a
moderate cost. Above this value, the errors converges, so
the reduction of errors is small compared to the associated
cost. Furthermore, the reduction in localization error using

information fusion enhances the performance of Kalman Fil-
ter over the Particle Filter, especially when the DPE is used.

Kalman and Particle filters successfully filter the errors
associated with the target location estimation. However, the
errors introduced by the localization algorithms are not suc-
cessfully filtered by the tracking algorithm. The reason is that
the Kalman Filter is not designed to filter non-Gaussian noise.
On the other hand, the Particle Filter is designed to filter
non-Gaussian noise. Consequently, the Particle Filter tends
to outperform the Kalman as the localization errors increase.
However, even the Particle Filter cannot significantly filter
the non-Gaussian localization errors. Results show that for
tracking applications with severe accuracy constraints, the
localization algorithms need to improve their estimations to
guarantee the performance of target tracking algorithms.

This work leads to some particularly interesting direc-
tions. The first is to properly characterize the localization
errors, so that we can understand the expected magnitude,
direction, and orientation of the error resulting from local-
ization algorithms. Such knowledge allows us to design new
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Fig. 12 Impact of the beacon structure

Table 1 Target tracking errors

Localization algorithm Tracking error (m)

KF PF

RPE 2.39 2.32

DPE 1.87 1.94

Ideal 0.43 0.61

tracking algorithms that use such information to compensate
and reduce the impact of localization errors, depending of
the localization algorithm used.

Another future direction includes reducing the location
algorithms inaccuracy by using all the location information
reported to nodes. These algorithms usually provide a min-
imum number of references (three for the RPE and two for
the DPE) required for calculating the node position, ignoring
the additional information received after the calculation. This
approach can lead to accuracy improvement, and it does not

require extra communication. Finally, the cross-layer design
of localization and tracking algorithms, not explored yet, may
lead to improved solutions for both problems.
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