
J Braz Comput Soc (2012) 18:185–199
DOI 10.1007/s13173-012-0073-7

W E B M E D I A 2 0 1 0

TAL—Template Authoring Language

Carlos de Salles Soares Neto ·
Luiz Fernando Gomes Soares ·
Clarisse Sieckenius de Souza

Received: 30 November 2011 / Accepted: 23 March 2012 / Published online: 12 May 2012
© The Brazilian Computer Society 2012

Abstract This paper presents TAL (Template Authoring
Language), an authoring language for hypermedia document
templates. Templates describe document families with struc-
tural or semantic similarities among them. TAL supports the
description of templates independently of the target hyper-
media authoring language. The paper also presents a TAL
processor that generates complete hypermedia documents
taking as input a template specification in TAL and a data
file with the information that makes that document particu-
lar in its family.

Keywords TAL · Nested context language · Template
oriented programming · Hypermedia authoring ·
Hypermedia design patterns · iDTV

This is a revised and extended version of a previous paper that
appeared at WebMedia 2010 (Simpósio Brasileiro de Sistemas
Multimídia e Web).

C.S. Soares Neto (�)
Department of Informatics, Federal University of Maranhão,
Av. dos Portugueses, s/n, Campus do Bacanga, CEP 65080-040,
São Luís, MA, Brazil
e-mail: csalles@deinf.ufma.br

L.F.G. Soares · C.S. de Souza
Department of Informatics, Pontifical Catholic University
of Rio de Janeiro, Rua Marquês de São Vicente, 225, Gávea,
CEP 22453-900, Rio de Janeiro, JR, Brazil

L.F.G. Soares
e-mail: lfgs@inf.puc-rio.br

C.S. de Souza
e-mail: clarisse@inf.puc-rio.br

1 Introduction

Hypermedia documents define presentations of media ob-
jects (text, audio, video, images, etc.) spatially and tem-
porally related. The creation of such documents is usu-
ally achieved by using declarative languages, among which
structure-based XML languages, such as NCL [1], SMIL
[15], SVG [17], etc.

Some structure-based languages include the concept of
hypermedia composition as one of the most important ab-
stractions authors can use. Hypermedia compositions in-
clude media objects and other hypermedia compositions, re-
cursively, in addition to relationships among these elements.
Hypermedia compositions may implicitly define relation-
ships among their child elements, as is the case of “par” and
“seq” SMIL containers with their embedded temporal se-
mantics. But they can also have relationships explicitly de-
fined, as is the case with NCL links. In either case, hyperme-
dia compositions encapsulate semantic relationships among
objects. We should note that even with languages that do not
support composition abstraction, the whole body of the doc-
ument denotes a composition. In other words, the concept
of composition still prevails, although not allowing compo-
sition nesting.

Precisely because compositions encapsulate semantic re-
lationships, hypermedia languages that support them allow
for the creation of extensively reusable documents [14].
However, to the best of our knowledge, all structure-based
hypermedia languages fail to let authors create composi-
tions with unspecified internal content or unspecified rela-
tionships, that is, with incomplete content. As a simple ex-
ample, such languages allow us to create a slideshow with
a fixed number of images being presented together with a
background audio. However, they do not allow us to define
a slideshow “pattern” of presentation (note that we are not

mailto:csalles@deinf.ufma.br
mailto:lfgs@inf.puc-rio.br
mailto:clarisse@inf.puc-rio.br

186 J Braz Comput Soc (2012) 18:185–199

talking about layout but about document content), so that it
can be reused and customized in specific instances. We must
define which images we are going to use, and which back-
ground music we want to be played. This is because this sort
of authoring languages aims at specifying particular hyper-
media documents and not a family of documents.

A family of documents is defined as a set of documents
that share the same specification for their compositional
structure, which we call a template [1].

In this paper we present TAL: Template Authoring Lan-
guage. TAL is a modular declarative language that supports
the specification of templates: incomplete hypermedia com-
positions. TAL defines a family (a set) of compositions, and
it is independent of any authoring language used to spec-
ify hypermedia applications that benefit from TAL compo-
sitions to define a particular member of the template family.
In the paper, we also present a TAL processor, developed to
instantiate final hypermedia documents (application specifi-
cations) from TAL templates.

TAL is an evolution of the XTemplate [11] language. It
is also a kind of XML schema having as its main purpose
to let expert authors specify templates to be used by other
authors (possibly non-experts) in a simple, quick and error-
free document creation process.

There are many good reasons for template-based de-
velopment. First, templates promote coherent application
branding, enabling content producers to define and follow
the same hypermedia-application pattern. Second, as a con-
sequence of having hypermedia presentations following the
same interface patterns, thanks to a common source tem-
plate, they can be more usable for those who view and in-
teract with different documents of the same family. Third,
template-based authoring promotes reuse, allowing authors
to concentrate on filling out only the blanks that make a par-
ticular document unique within the family to which it be-
longs. Finally, templates can also encode domain concepts
across related applications, creating a specific vocabulary
and defining a set of constraints on this vocabulary, to be
followed by all documents of a given family.

In this work, a template is formally described by means
of a vocabulary of allowed child-object types, a set of rela-
tions allowed between those types, rules that constraint the
instantiation of these child-object types and relations, and a
set of fixed composition’s components (media or compos-
ite objects and relationships). In this sense, a template is an
incomplete hypermedia composition that has certain blanks
that must be filled out in accordance with rules that constrain
the content and relationships that authors can insert.

After this brief introduction, the next sections are struc-
tured as follows. Section 2 briefly discusses related work.
Section 3 presents TAL; the language concepts are defined,
the language elements and attributes are presented, and an
example is discussed in detail. Section 4 shows how tem-
plates can be extended given rise to other templates, and how

template definitions can be nested. Finally, Sect. 5 presents
our conclusions and final remarks.

2 Related work

Several hypermedia applications embed common design
patterns. Design patterns have been intensively studied and
proposed in the literature [3], including those targeting hy-
permedia applications [4, 10].

In line with design patterns principles, SMIL Timesheets
[18] allow for adding temporal behavior to hypermedia ap-
plications independent of the language used by the applica-
tion. Indeed, SMIL Timesheets, is a temporal counterpart of
CSS [16], also developed in W3C recommendation groups.
More precisely, SMIL Timesheets aims to allow any lan-
guage to incorporate the XML elements and attributes of the
SMIL temporal control modules. SMIL Timesheets specify
which elements are active at a given time moment and their
temporal scope within a document.

Unlike SMIL Timesheets, which allow for embedding
temporal aspects in documents written in some timeless
specification languages, the TAL language allows for speci-
fying temporal semantics to be applied to compositions out-
side of them, and as first-class entities. The aim is to in-
corporate the defined semantics in hypermedia application
specifications that are defined using languages that allow
temporal behavior specifications.

TAL allows for defining not only common design pat-
terns but also a series of constraints on their uses, as is dis-
cussed extensively in the next sections. TAL can be consid-
ered as a specification language to a set of high level hyper-
media design patterns expressed as a template.

A key basis for TAL development was the composition
templates proposed in previous versions of XTemplate lan-
guage [9]. The XTemplate model is based on the style and
configuration concepts introduced in Architecture Descrip-
tion Languages (ADLs) [2]. In ADLs, a style describes the
conceptual architecture of a system, and a configuration an
instance of the style. There is a clear similarity between the
composition template and the architectural style concept,
and also between the hypermedia composition and architec-
tural configuration concepts. However, the open hyperme-
dia composition concept of XTemplate is at the same time
a style and a configuration. Open hypermedia compositions
define not only a vocabulary of types and restrictions on the
instantiations of these types (similar to styles in ADLs) but
also enable the definition of resources, which are elements
present in all documents based on these compositions (sim-
ilar to the purposes of configurations in ADLs).

The new version of XTemplate (3.0) [11] targets fami-
lies of documents written in NCL 3.0. Unlike TAL, XTem-
plate 3.0 was developed to a specific target hypermedia lan-
guage. On the other hand, TAL can be processed together

J Braz Comput Soc (2012) 18:185–199 187

with a padding document to generate applications in differ-
ent target languages, depending only on the specific proces-
sor used. TAL specifications can thus be used to generate
hypermedia applications in declarative languages such as
SMIL [15], SVG [17], HTML/ECMAScript [20], NCL [1],
etc.

XTemplate focus on easing the authoring performed
by experts. However, all XTemplate users need to have
some technical pre-requisites such as XPath and XSLT [11]
knowledge, even if they only need to instantiate composition
templates. On the contrary, TAL has as one of its goals to re-
duce the need for expert authors. TAL avoids the use of ex-
ternal notations different from those of the target-language
conceptual model, and notations that are beyond the abstrac-
tion level of the target language (like XSLT processing in-
structions of XTemplate 3.0 do).

In a previous work, we have established the characteris-
tics and methods that may govern the template oriented au-
thoring process [13]. In that paper two main roles involved in
the process are described: (i) the role played by the template
author, which is an expert responsible for the identification
and design of templates, and (ii) the role played by the docu-
ment author, which can usually be a non-expert since he/she
only needs to understand how to fill the gaps described in
templates (in what we call, in this paper, the padding docu-
ment).

One challenge raised in the mentioned work [13] is how
to smoothly communicate the template semantics, typically
related to the abstraction level of the template authors, to fi-
nal document authors to allow them to perform their main
task: to instantiate the template in some target language.
In the current work, TAL templates are designed to allow
the final document author to understand templates, without
needing further pre-programming requirements. Ideally, we
tried to reduce the cognitive distance between the two roles.
Although we know that in some cases a meta language for
template semantic description will be necessary, for simple
scenarios, this proves to be possible.

3 Template authoring language

TAL is a XML-based language that follows the modular
approach. In Sect. 3.1 we present a simple use case, de-
fined by the “Button-Text-Image” template, which will be
worked out in the remaining subsections. Section 3.2 intro-
duces TAL language concepts, while Sect. 3.3 describes the
language elements and attributes. Section 3.4 presents the
syntax for defining the language selectors, and Sect. 3.5 the
syntax for defining constraints. Section 3.6 deals with how
relationships among child objects of a composition must be
specified.

3.1 Use case: Button-Text-Image template

Figure 1 shows two authentic examples of hypermedia
applications for digital TV. In them, we can recognize
the “Button-Text-Image” template used in our examples
throughout Sect. 3. In both applications there is a menu
(made up by a set of buttons). When a button is selected, by
using remote control key navigation, a new text frame and
a new image is presented, replacing the display of the pre-
vious text frame and image. Text frames and images are al-
ways exhibited in the same screen position. This interaction
pattern is very common in digital TV applications (as can be
seen by browsing the NCL Club public repository [8] of ap-
plications developed for the Brazilian Terrestrial Digital TV
System) from where the two examples were downloaded.

It is very simple, but laborious, to specify these applica-
tions as complete hypermedia compositions; in these spe-
cific cases, using NCL. Figure 2 presents a structural view
of the composition representing the navigational menu for
the first application, which has only three buttons. As afore-
mentioned, it is not possible, using NCL, to specify a vari-
able number of child objects of a composition. That is why
we had to repeatedly define three buttons, three images and
three text objects, and all the relationships among them, al-
though they have the same behavior. Moreover, that is why
we cannot reuse the same structure for the second applica-
tion that has four selection possibilities instead of three. In
Fig. 2, three similar NCL <link> elements give the naviga-
tional temporal semantics. As for example, the one shown
in the figure has the selection of the button 1 as condition. If
this condition is satisfied, the presentation of all text frames
and images are stopped (ending the presentation of any text
frame and image previously selected) and then the presen-
tation of the first image and the first text frame is started.
The other <link> elements are only partially shown to no
pollute the sketch. Also in the figure, three interfaces asso-
ciated with the composition indicate that it starts presenting
the three buttons. Note how tediously repetitive this spec-
ification task could be, especially for a menu with a large
number of selection options.

3.2 TAL concepts—overview

In TAL, a template is an open-composition (an incomplete
composition), or even, a pattern for a composition, whose
content is given by:

• Vocabulary: defining the allowed types of child object
(the components) of the template, the allowed types of
interfaces for these child objects and for the template it-
self, and the allowed relations to be used in relationships
among child objects.

• Constraints: defining rules on the types defined in the vo-
cabulary.

188 J Braz Comput Soc (2012) 18:185–199

Fig. 1 Examples of
applications that share the same
model, from where we can
derive the “Button-Text-Image”
template

(a) Health application developed by Proderj

(b) CAIXA® Home-Banking application developed by HxD Interactive Television

Fig. 2 Structural view of a
composition representing the
navigational menu

J Braz Comput Soc (2012) 18:185–199 189

Fig. 3 “Button-Text-Image”
template

• Resources: instantiated child objects that shall be inher-
ited by all compositions that use (follow) the template.

• Relationships: relating child-object types and resources.

Child objects of templates can be media objects (any ob-
ject whose content is to be processed for exhibition) or other
nested compositions. An interface can define part of the con-
tent of a media object, or can define a child object property,
like its positioning on the screen, etc. Child composite ob-
jects and the template itself may also have interfaces that ex-
ternalize interfaces of their internal child objects. Note that
in defining the vocabulary we are also defining the hierar-
chy imputed to the child objects, given by the composition
nesting.

It should be stressed that the number of child objects of
a template may be left undefined, improving the template
expressiveness. The vocabulary allows for defining types.
A type for child objects can entail several instantiations.

Constraints are used to verify the correctness of the com-
ponent instantiation process of a template. They specify
rules on the component types and interface types of tem-
plates. They can also define algebraic expressions that cor-
relate the cardinality of different types of components and
interfaces.

Resources are the unchangeable part of a template. An
example of its use is found when an author wants to include
a required company logo to all application derived from the
template.

Relationships give semantics to a composition. They re-
late child object interfaces. Since child objects of a com-
position (and their interfaces) can be left undefined by a
template, relationships can also be established among child-
object types, and among child objects types and resources.
Therefore, relationships referring to child-object types need
also to specify how to iterate on the interfaces of the in-
stances of these child objects. As an example, it is possible
to create relationships from each instantiated child object of
a given type to all other instances of another type.

Interfaces of child objects of a composition may be
mapped to interfaces of the composition in order to exter-
nalize these internal interfaces to be used in relationships

defined outside the composition. Similarly to relationships,
since interfaces of a composition can be left undefined by
a template, mappings can be established between interface
types of child objects and interface types of the composition.
Therefore, mappings must also to specify how to iterate on
interface instances.

Turning back to the “Button-Text-Image” template, it
could be now represented as shown in Fig. 3. In the figure,
three component types are defined: “button”, “text” and “im-
age”. A cardinality constraint could require at least one in-
stance of each type, and that the number of instances of each
type is the same. Another constraint could require that the
number of interface instances for the template is the same of
the number of “button” component type instances. Mapping
between each of the template interface instances and each
“button” component type instances must be established, in
order that applications that follow the template start present-
ing the menu (the set of buttons). In TAL, when any compo-
sition is started without specifying an interface, all its inter-
nal interfaces mapped to interfaces of the composition start.

Still in Fig. 3, there is a relationship among the “but-
ton”, “text” and “image” types. It specifies for each “button”
type instance that its selection must result in stopping all in-
stances of the “text” and “image” types, and afterwards in
starting the presentation of the “text” and “image” instances
correlated with the “button” instance.

Once the template is defined, an application author, for
example an NCL author, may create a padding document
quickly and easily; for example, the document of Listing 1
targeting the application of Fig. 2. Note that it is not nec-
essary to define any NCL interface mappings (mappings to
NCL <port> elements) or relationships (NCL <link> ele-
ments), since they are already defined in the template, and,
as such, they will appear in the resultant (final) NCL doc-
ument after the template processing. Note that the template
is referred in the padding document by using the template
attribute of the <context> element that inherits the template
specification, as it is discussed in the next section.

As aforementioned, TAL must be processed together
with a padding document to generate applications in differ-

190 J Braz Comput Soc (2012) 18:185–199

Listing 1 NCL padding-
document based on the
“Button-Text-Image” template

<context id="myMenu" template="templates.xml\#ButtonTextImage">
<port id="pButton1" ... class="pButton"/>
<port id="pButton2" ... class="pButton"/>
<port id="pButton3" ... class="pButton"/>
<media id="button1" ... class="button"/>
<media id="text1" ... class="text"/>
<media id="img1" ... class="image"/>
<media id="button2" ... class="button"/>
<media id="text2" ... class="text"/>
<media id="img2" ... class="image"/>
<media id="button3" ... class="button"/>
<media id="text3" ... class="text"/>
<media id="img3" ... class="image"/>

</context>

ent target languages, depending only on the specific TAL
Processor used. A specific TAL Processor could use the tem-
plate of Fig. 3 and the padding document of Listing 1 to
generate the final NCL application; another specific TAL
Processor could use the same template and padding docu-
ment to generate the final application in SMIL. Moreover, a
padding document could be easily defined for the template
of Fig. 3 in SMIL, for example, or in HTML. Other partic-
ular TAL Processors could then generate final documents in
NCL, SMIL, HTML, etc. based on this SMIL, or HTML,
padding document and the template defined in TAL.

3.3 TAL specification

TAL language is composed of eight modules. Two are used
in the definition of padding documents1 and the others for
template definitions.

The Classification module and the TemplateBase module
are used by the padding document to extend its specifica-
tion language to support templates. The Classification mod-
ule defines the template attribute and the class attribute (the
last one discussed in Sect. 3.4). The template attribute ex-
tends a composition specification in the padding document.
It refers to the template to be used together with the open
composition specification to generate the target-language fi-
nal document. The TemplateBase module defines the <tem-
plateBase> element used by the padding language to define
a template base. Templates used in the padding document
can be imported to the <templateBase> using <importTal>
child elements.

Table 1 summarizes the hierarchical structure of the el-
ements and attributes defined in the other TAL modules.
These elements and attributes are used in template defini-
tions. Attributes that are required are underlined. Also in the
table, the following symbols are used: (?) optional (zero or
one occurrence); (|) or; (*) zero or more occurrences; (+)

1A template must be processed together with a padding document
given rise to a new document in some specification language, called
target language. Usually a specific processor is required for each target
language.

one or more occurrences. In some elements the textual con-
tent (Cdata) is a relation, or a relationship, or a mapping
specification, or even an error message, as explained in what
follows.

The Structure module defines the root element, called
<tal>. This element has the id attribute. As any id attribute
of TAL, it may receive any string value that begins with a
letter or an underscore and that only contains letters, digits,
“.” and “_”. The id attribute univocally identifies an element
in a TAL document.

The Importing module allows for importing templates de-
fined in other TAL documents. The <importBase> element
is used for this purpose. Its documentURI attribute must
have the URI of the imported TAL document as value. The
alias attribute specifies a name to be used when referring
to the imported template. Imported templates can be used
in compositions of the importing template or else to be ex-
tended generating new templates, as discussed in Sect. 4.

The Template module defines the <template> element
and its attributes. More than one template may be specified
in a TAL document. A <template> must have the id attribute.
The extends attribute can be used if the template extends
another template, referenced by this attribute value. In this
case, the template inherits the vocabulary, constraints, re-
sources, and relationships defined in the extended template.

The Vocabulary module defines entity types of a tem-
plate, through the <component>, <interface> and <relation>
elements.

Types for child objects of a template are defined by the
<component> element. Interface types, both for the template
itself and for its child objects, are defined by the <interface>
element. A relation type is defined by the <relation> ele-
ment. These elements have the required id attribute, and the
selects attribute, which establishes to which target padding
language elements the corresponding types must be applied.
The syntax of allowed values for the selects attribute is de-
scribed in Sect. 3.4.

The <component> element can also have property-names
as attributes. Each property-name and respective value
should be converted by the TAL processor to a property/-
value of the instance of the <component> type. In other

J Braz Comput Soc (2012) 18:185–199 191

Table 1 XML elements and attributes of TAL Language

Element Attribute Element’s content

tal id (template | importBase)+
importBase documentURI, alias

template id, extends (component | interface | relation | assert | report | warning | link)*

component id, selects, (property-name)* (component | interface)*

interface id, selects, componente, interface Cdata = mapping specification (forEach)?

relation id, selects Cdata = relation specification

assert test Cdata = message

report test Cdata = message

warning test Cdata = message

link id Cdata = link specification (forEach)*

forEach instanceOf, iterator, step Cdata = link specification (forEach)*

words, each <component> instance inherits the properties
defined in the property-name attributes of the <component>
type, whose interpretations are responsibility of the TAL
processor. If the padding document declares a property that
has already been defined by the template, the value declared
by the padding document has precedence.

When an <interface> element defines an interface type
for a composition, in particular for the template, it can also
define a mapping to an interface of a child object of the com-
position, externalizing this mapped interface. As mappings
can be established among types, <forEach> child elements
can be used to iterate on these type instances.

The content of the <relation> element specifies a sen-
tence that defines causal or constraint relation. Relations are
used to specify relationships (discussed in Sect. 3.6).

The Constraint module establishes constraint rules by us-
ing <assert>, <report> and <warning> elements. Rules are
specified similarly to Schematron [6]. In all three elements
the test attribute specifies the logical test to be evaluated, fol-
lowing the syntax described in Sect. 3.5. The error or warn-
ing message is defined in the content of these elements. The
<assert> element requires the test evaluation returns “true”,
otherwise its error message should be presented. The <re-
port> element is similar but requires that the test be evalu-
ated as false to not exhibit its error message. The <warning>
element requires that the test be evaluated as false to ex-
hibit its warning message. When an error message occurs,
the template evaluation is aborted and no final document is
generated by the template processor. On the other hand, a
warning message does not stop the template processing to
generate the final document in some target language.

The Relationship module allows for specifying relation-
ships. Relationships are defined by using <link> elements.
As relationships can be established among types, <forEach>
child elements can be used to iterate on these type instances.
More details about relationships are presented in Sect. 3.6.

Resources (any target-language element) can be directly
inserted in the template using the target-language names-
pace when defining them. The template processor interprets
each element outside the template namespace as an element
to be included in the final (target language) document. List-
ing 2 exemplifies the use of resources including a logo to be
exhibited during the template presentation. Listing 2 gives
the complete specification of the template of Fig. 3 (the
“Button-Text-Image” template), including the logo previ-
ously mentioned. In this section, only the general template
structure is explained, leaving the description of some spe-
cific attribute values to the next sections.

In Listing 2, line 1 is the standard XML header. Lines 2
to 45 define the template base that, in this case, has only one
template: the “Button-Text-Image” template (lines 3 to 44).
This template can be applied to padding document compo-
sitions whose template attribute has “ButtonTextImage” as
value.

Lines 4 and 10 define two resources to be included in the
target-language document after the template processing.

Lines 5 to 9 define an interface type for the template. This
type selects every <port> element in the padding document
whose class attribute has “pButton” as value. Concerning
indexation, the first element found in the padding document
that agrees with the “port[class = pButton]” selector is re-
lated to the pButton [1] identifier; the second to the pBut-
ton [2] and so on. This procedure is particularly useful to
understand the mapping specifications, defined in lines 6 to
8, between each “pButton” interface to each corresponding
“button” component. Note in line 6 how iteration is defined
on each pButton[i] interface instance. In line 7 the interface
of a child object is specified, by using component attribute
and omitting the interface attribute. When the interface pa-
rameter is omitted, it is assumed that the child object inter-
face corresponds to the one representing the whole content
of the object.

192 J Braz Comput Soc (2012) 18:185–199

Listing 2 The “Button-
Text-Image” template
specification

1: <?xml version="1.0" encoding="UTF-8"?>
2: <tal:tal id="templateExample">
3: <tal:template id="ButtonTextImage">
4: <port id="pLogo" component="logo"/>
5: <tal:interface id="pButton" selects="port[class=pButton]">
6: <tal:forEach instanceOf="pButton" iterator="i">
7: component="button[i]"
8: </tal:forEach>
9: </tal:interface>
10: <media id="logo" src="../media/telemidia.png" ... />
11: <tal:component id="button" selects="media[class=button]"/>
12: <tal:component id="text" selects="media[class=text]"/>
13: <tal:component id="image" selects="media[class=image]"/>
14: <tal:link id="buttonSelection">
15: <tal:forEach instanceOf="button" iterator="i">
16: onSelection button[i] then
17: <tal:forEach instanceOf="text" iterator="j">
18: stop text[j], stop image[j],
19: </tal:forEach>
20: start text[i], start image[i] end
21: </tal:forEach>
22: </tal:link>
23: <tal:assert test="\#logo<2">
24: It must be only one LOGO element.
25: </tal:assert>
26: <tal:assert test="\#button==\#pButton">
27: The cardinality of BUTTON and the template’s interface must be the same.
28: </tal:assert>
29: <tal:assert test="\#button>0">
30: It must be at least one BUTTON element.
31: </tal:assert>
32: <tal:assert test="\#text>0">
33: It must be at least one TEXT element.
34: </tal:assert>
35: <tal:assert test="\#image>0">
36: It must be at least one IMAGE element.
37: </tal:assert>
38: <tal:assert test="\#button==\#text">
39: The cardinality of BUTTON and TEXT must be the same.
40: </tal:assert>
41: <tal:assert test="\#button==\#image">
42: The cardinality of BUTTON and IMAGE must be the same.
43: </tal:assert>
44: </tal:template>
45: </tal:tal>

Lines 11 to 13 define component types for child ob-
jects of the template. The component type “button” selects
every <media> element in the padding document whose
class attribute has “button” as value. They represent the
set of menu buttons to be exhibited. Once more, the first
element found in the padding document that agrees with
the “media[class = button]” selector is related to the but-
ton [1] identifier; the second to the button [2] and so on.
This procedure is particularly useful to understand relation-
ship and mapping specifications. Likewise, the component
types “text” (for the corresponding text frames) and “im-
age” (for the corresponding images) select every <media>
element in the padding document whose class attribute has
“text” and “image” as value, respectively.

Lines 14 to 22 define relationships established among
child objects of the template, when any of the buttons is
selected. Section 3.6 presents relationship specifications in
more details. Note, however, that the order to apply the ac-
tions defined by a relationship is the order of their definition

in the <link> specification; in this case first “stop” and then
“start”.

Cardinality constraints are defined in lines 23 to 43. The
first constraint requires at most one “logo” instantiation. The
second one requires that the number of “button” components
is equal to the number of “pButton” interfaces. The third to
fifth constraints require at least one “button”, one “text”, and
one “image” component, respectively. The sixth and seventh
constraints require that the numbers of “button”, “text”, and
“image” instances are the same.

3.4 Selectors of TAL

Templates and types defined in TAL may use selectors sim-
ilar to CSS selectors [16]. Selectors are used to identify
which elements of the padding document must be processed
in agreement with the type or template they are associated
with. Table 2 summarizes the different selectors that may be
used.

J Braz Comput Soc (2012) 18:185–199 193

Table 2 TAL Language selectors

Pattern Meanning

* Selects any element

E Selects any element whose name is E

EF Selects any F element descendant of an E element

E > F Selects any F element child of an E element

E: i-child Selects an E element when it is the ith child

E + F Selects any F element that is immediately preceded by an E element

E[foo] Selects any E element that has the “foo” attribute

E[foo = val] Selects any E element whose “foo” attribute has “val” as a value

E[foo ∼= val] Selects any E element whose “foo” attribute is a list of values, and one of them is equal to “val”

E.val The same as E[class ∼= val]

E#myId Selects any E element whose identifier is equal to “myId”

Figure 4 EBNF of the
constraint language to be
embedded in TAL

constraint = exp cmp exp;
exp = term { operand exp };
term = "(" exp ")" |

integer |
"#" id |
"#" "{" selector "}";

cmp = "==" | " ==" | "<" | ">" | "<=" | ">=";
integer = [0-9]+;
id = "*" | [a-zA-z_][a-zA-Z0-9_]*;
selector = TAL selector ;
operand = "+" | "-" | "*" | "/" | "̂";

Turning back to our example in Listing 1, the “myMenu”
composition refers the template having its template attribute
equal to “templates.xml#ButtonTextImage”. The “button1”,
“button2” and “button3” <media> elements, all of them with
the class attribute equal to “button”, are associated to the
“button” component type (see Listing 2) by means of the se-
lector “media[class = Button]”. The same happens with the
other component types and interface types of the template.

3.5 Constraint language

As previously exemplified, template authors can establish
constraints on the use of entity types they define in padding
documents.

Constraint rules are defined based on constraint program-
ming paradigm [19], in which authors specify properties (the
constraints) to be obeyed by a solution, instead of a sequence
of algorithmic steps that gives the solution.

The same purpose was pursued in previous TAL version,
called XTemplate [9], using XPath [11] and XSLT [11] tech-
nologies. However, that proves to be of hard use, especially
for non-expert programmers, which led us to this new propo-
sition.

Figure 4 gives the EBNF [12] syntax of the new con-
straint language embedded in TAL. The terms in brackets
and bold are the terminals of the grammar. The braces ({ })

denote an optional section. The | symbol defines an optional
list for a grammatical rule.

In Fig. 4, note that TAL selectors can be used in defining
constraints, which makes the language more versatile. Usu-
ally, constraints are defined as logical sentences that result
from comparing two expressions (possibly nested between
parentheses), which can contain integer constants, cardinal-
ity of component and interface types, or the result of a se-
lector clause.

3.6 Specifying relationships in TAL

Figure 5 presents the EBNF syntax for defining relationships
in TAL. As usual, the terms in brackets and bold are the ter-
minals of the grammar. The braces ({ }) denote an optional
section. The | symbol defines an optional list for a grammat-
ical rule.

Relationships in TAL are defined by <link> elements that
follow the same semantics of causal links of NCL [1], in
which conditions must be satisfied to cause the execution
of a set of actions. As in NCL, relationships are based on
events. The current version of TAL supports the following
event types:

– presentation event, which is defined by the presentation
of a subset of the information units of a media object.
Presentation events can also be defined on compositions,

194 J Braz Comput Soc (2012) 18:185–199

Figure 5 Language syntax for
defining relationships in TAL

link = condlist "then" actlist "end";
condlist = "(" condlist ")" withparams

{lop condlist}?
| condition {lop condlist}?;

condition = condname perspective withparams
| assessment withparams;

assessmt = assessexpr rop assesexpr;
assesxpr = perspective {"+" string}?

| string {"+" perspective}?;
condname = "onAbort" | "onBegin" | "onEnd"

|"onBeginAttribution" | "onEndAttribution"
|"onPause" | "onResume" |"onSelection";

actlist = "(" actlist ")" withparams
{aop actlist}?

| action {aop actlist}?;
action = actnoset perspective withparams

| "set" perspective "=" string withparams
| "set" perspective "=" perspective

withparams;
actnoset = "abort" | "pause" | "resume"

| "start" | "stop";
perspective = idref {"." idref}?;
withparams ={"with"{parameter,}*parameter{","}?}?;
parameter = idref "=" string;
string = """character sequence"�"

| "‘"character sequence"’";
aop = "||" | {";"}?;
lop = "and" | "or";
rop = "<" | ">" | "<=" | ">=" | "==" | "=";
idref = XML IDRef

Figure 6 Event state machine

representing the presentation of the information units of
any object inside it;

– selection event, which is defined by the selection of a sub-
set of the information units of a media object being pre-
sented;

– attribution event, which is defined by the attribution of a
value to a property of an object.

Each event defines a state machine (see Fig. 6). More-
over, every event has an associated attribute, named occur-
rences, which counts how many times the event transits from
occurring to sleeping state during a document presentation.
Events of presentation and attribution types also have an at-
tribute named repetitions, which counts how many times the
event shall be automatically restarted (transited from sleep-
ing to occurring states). This attribute may contain the “in-
definite” value, leading to an endless loop of the event oc-
currences until some external interruption.

Link conditions can be simple or compound. Simple con-
ditions are associated to event state transitions defined in

Table 3 Reserved condition values associated to event state machines

Role Value Transition Value Event Type

OnBegin Starts Presentation

OnEnd Stops Presentation

OnAbort Aborts Presentation

OnPause Pauses Presentation

OnResume Resumes Presentation

OnSelection Stops Selection

OnBeginSelection Starts Selection

OnEndSelection Stops Selection

OnBeginAttribution Starts Attribution

OnEndAttribution Stops Attribution

OnAbortAttribution Aborts Attribution

OnPauseAttribution Pauses Attribution

OnResumeAttribution Resumes Attribution

Table 3. Compound conditions are logical expression (us-
ing “and” or “or” operators) between simple and compound
conditions.

Link actions can also be simple or compound. Simple ac-
tions are shown in Table 4. Compound actions are made up
by simple and compound actions associated by parallel (“||”)
or sequential (“;”) operators.

Some examples can help understanding how relation-
ships are defined. If one would like to define a relationship
between two media objects “A” and “B”, in which the end
of “A” starts the exhibition of “B”, we would have “onEnd

J Braz Comput Soc (2012) 18:185–199 195

Table 4 Reserved action role values associated to event state ma-
chines

Role value Action type Event type

Start Start Presentation/attribution

Stop Stop Presentation/attribution

Abort Sbort Presentation/attribution

Pause Pause Presentation/attribution

Resume Resume Presentation/attribution

Set Start Attribution

A then start B end”. In another example, if an author would
like to mute the audio of an audiovisual object “V” when it
is resized (property bounds), we would have “onEndAttri-
bution V.bounds then set V.soundLevel = ‘0’ end”.

Taking back to the “Button-Text-Image” template of
Listing 2, lines 14 to 22 specify a relationship among
types of components. Since the relationship starts with the
<forEach> element, it is translated into several NCL links,
when processed targeting the NCL language. These link
conditions are given in line 16, in which the selection of any
component of “button” type triggers the actions stopping all
images and text presentations (line 17 to 19) and starting, in
sequence, the presentation of the text and the image corre-
sponding to the selected button (line 20).

4 Extending and nesting templates

This section describes two further features of TAL. In
Sect. 4.1 we illustrate the extension mechanism for tem-
plates, using a slide show as example. In Sect. 4.2 we show
how templates can define component types that follow other
template definitions. This template nesting feature is ex-
emplified by replacing the “image” component type of the
Button-Text-Image template of Sect. 3, by a component type
that follows the “slideshow” template of Sect. 4.1.

4.1 Slide show

Figure 7 shows an open-composition describing a slide
show, a classical example of document family. During
the slide show, a background audio is played. The open-
composition can be defined by a template with two compo-
nent types. One is the audio type, which is constrained to
have only one instance. The other is the photo type, which
is constrained to have at least one instance, but without limit
of instances. Two resources establish the audio component
and the first instance of the photo component as starting
points of the composition. Two relationships are defined in
the template. The first one establishes that the end of the

audio instance must stop the presentation of all photo in-
stances, thus ending the slide show. The second one deter-
mines that when the presentation of any photo ends the next
photo presentation must start.

Next we use this simple example to illustrate how tem-
plates can be extended to generate new templates. So, let us
first define a basic TAL template for slide shows specified
using NCL language. This template is similar to the one of
Fig. 7, but without the background audio. In this basic TAL
template whose identifier is “slideSequence”, as shown in
line 3 of Listing 3, the presentation begins starting the first
photo component instance, as defined by the NCL <port>
resource of line 4. Line 5 defines the photo component type
that selects each padding (document) <media> element with
class attribute equal to “photo”. Every instance of the photo
component inherits the defined explicityDur attribute that
must be translated by the TAL processor to an attribute of the
targeting language that determines 6 seconds for each photo
instance exhibition. Lines 12 to 14 establish that there must
be at least one photo instance. The basic template has only
one relationship (“changingPhotos”) defined in lines 7 to 11.
The relationship determines that the end of each photo in-
stance presentation must start the following, with the end of
the last instance starting the first one. This circular behavior
is created by the line 9 (“i%#photo+1”). The % symbol de-
notes the binary operator that calculates the remainder of the
division of first operand (i) by the second operand (#photo).
This is necessary in order to index the first instance after the
last one.

The template of Listing 3 can now be extended by the
template “slideshow” (line 4 in Listing 4) to define the de-
sired template of Fig. 7. Line 3 of Listing 4 shows how this
new template imports the previous one to be extended. The
importing template will inherit the vocabulary, relationships,
resources and constraints of the imported one.

In the “slideshow” template, a new audio component
type is defined (line 6) with only one instance (constraint
in line 14 to 16). A <media> element of the padding docu-
ment shall refer to this component through its class attribute
having “audio” as value. Another NCL <port> resource is
also added (line 5) to start the audio component instance
when the template starts its presentation. The relationship
of lines 7 to 13 establishes that the end of the presentation
of the audio instance must stop the presentation of all photo
component instances.

Let us now extend the “slideshow” template giving rise to
the “controlledSlideshow” template of Listing 5. NCL doc-
uments following this template allows for moving forward
and backward in the slide sequence using the navigational
“RIGHT” and “LEFT” keys, respectively, without waiting
for the 6 seconds duration of each slide.

In Listing 5, the “slideshow” template is imported with
the “doc” alias (line 3). The new template is defined in line 4

196 J Braz Comput Soc (2012) 18:185–199

Figure 7 slideshow template

Listing 3 slideSequence.xml
document file: basic slide show

1: <?xml version="1.0" encoding="UTF-8"?>
2: <tal:tal id="templateDocument1">
3: <tal:template id="slideSequence">
4: <port id="pPhoto1" component="photo [1]"/>
5: <tal:component id="photo"

selects="media[class=photo]" explicityDur="6s"/>
6: <!-- circular slideshow -->
7: <tal:link id="changingPhotos">
8: <tal:forEach instanceOf="photo" iterator="i">
9: onEnd photo[i] then start photo[i\%\#photo+1] end
10: </tal:forEach>
11: </tal:link>
12: <tal:assert test="\#photo>0">
13: There must be at least one PHOTO component.
14: </tal:assert>
15: </tal:template>
16: </tal:tal>

Listing 4 slideshow.xml
document file: slideshow with
background audio

1: <?xml version="1.0" encoding="UTF-8"?>
2: <tal:tal id="templateDocument2">
3: <tal:importBase documentURI="slideSequence.xml"

alias="doc"/>
4: <tal:template id="slideshow"

extends="doc\#slideshow">
5: <port id="pAudio" component="audio\cite{1}"/>
6: <tal:component id="audio" selects="media[class=audio]"/>
7: <tal:link id="stopPresentation">
8: onEnd audio[1] then
9: <tal:forEach instanceOf="photo" iterator="i">
10: stop photo[i],
11: </tal:forEach>
12: end
13: </tal:link>
14: <tal:assert test="\#audio==1">
15: There must just one AUDIO component.
16: </tal:assert>
17: </tal:template>
18: </tal:templateBase

as an extension to the previous template. Three new relation-
ships are added. The first defines the navigation to the next
photo exhibition by using the “RIGHT” key (lines 6 to 11).
The last two define the circular navigation to the previous
photo exhibition by using the “LEFT” key (lines 13 to 22).
Note that the “abort” command is used instead of “stop”,
since “abort” does not generate notification (onEnd) to trig-
ger the link “changingPhotos” inherited from the template
of Listing 3.

4.2 Button-Text-Slideshow Template

The template we present in this section is similar to the
Button-Text-Image template of Sect. 3. However, instead of
presenting an image when a button is selected, a slideshow is
exhibited. This new template example also targets the NCL
language. It illustrates how TAL allows authors to define
a template that contains a composition (a component type)
that is defined in agreement with another referenced tem-
plate.

J Braz Comput Soc (2012) 18:185–199 197

Listing 5
controlledSlideshow.xml
document file: including key
navigation in a slide show

1: <?xml version="1.0" encoding="UTF-8"?>
2: <tal:tal id="templateDocument3">
3: <tal:importBase documentURI="slideshow.xml" alias="doc"/>
4: <tal:template id="controlledSlideshow"

extends="doc\#slideshow">
5: <!-- RIGHT button -->
6: <tal:link id="nextPhoto">
7: <tal:forEach instanceOf="photo" iterator="i">
8: onSelection photo[i] with {key="RIGHT"} then
9: abort photo[i], start photo[i\%\#photo+1] end
10: </tal:forEach>
11: </tal:link>
12: <!-- LEFT button -->
13: <tal:link id="previousPhoto">
14: <tal:forEach instanceOf="photo" iterator="i">
15: onSelection photo[i] with {key="LEFT"} then
16: abort photo[i], start photo[i-1] end
17: </tal:forEach>
18: </tal:link>
19: <tal:link id="circularPreviousPhoto">
20: onSelection photo [1] with {key="LEFT"} then
21: abort photo [1], start photo[\#photo] end
22: </tal:link>
23: </tal:template>
24: </tal:tal>

Listing 6
buttontextslideshow.xml
document file: template
“Button-Text-Slideshow”

1: <?xml version="1.0" encoding="ISO-8859-1"?>
2: <tal:tal id="butttontextslideshowTemplateBase">
3: <!-- importing slideshow template base -->
4: <tal:importBase documentURI="temporalSlideshow.xml"

alias="base"/>
5: <tal:template id="ButtonTextSlideshow">
6: <tal:interface id="pButton" selects="port[class=pButton]">
7: <tal:forEach instanceOf="pButton" iterator="i">
8: component="button[i]"
9: </tal:forEach>
10: </tal:interface>
11: <tal:component id="button" selects="media[class=button]"/>
12: <tal:component id="text" selects="media[class=text]"/>
13: <tal:component id="slideshow"

selects="context[class=slideshow]"
template="base\#slideshow"/>

14: <tal:link id="buttonSelection">
15: <tal:forEach instanceOf="button" iterator="i">
16: onSelection button[i] then
17: <tal:forEach instanceOf="text" iterator="j">
18: stop text[j], abort slideshow[j],
19: </tal:forEach>
20: start text[i], start slideshow[i] end
21: </tal:forEach>
22: </tal:link>
23: <tal:assert test="\#logo<2">
24: It must be only one LOGO element.
25: </tal:assert>
26: <tal:assert test="\#button==\#pButton">
27: The cardinality of BUTTON and the template’s interface

must be the same.
28: </tal:assert>
29: <tal:assert test="\#button>0">
30: It must be at least one BUTTON element.
31: </tal:assert>
32: <tal:assert test="\#text>0">
33: It must be at least one TEXT element.
34: </tal:assert>
35: <tal:assert test="\#slideshow>0">
36: It must be at least one SLIDESHOW element.
37: </tal:assert>
38: <tal:assert test="\#button==\#text">
39: The cardinality of BUTTON and TEXT must be the same.
40: </tal:assert>
41: <tal:assert test="\#button==\#slideshow">
42: The cardinality of BUTTON and SLIDESHOW must be the same.
43: </tal:assert>
44: </tal:template>
45: </tal:tal>

198 J Braz Comput Soc (2012) 18:185–199

Listing 6 presents this new template in TAL. The sin-
gle difference with regards to the template of Sect. 3 is re-
lated with the previous “slideshow” template, which is im-
ported in line 4. In this new template, instead of having the
definition of the “image” component type, we define the
“slideshow” component (line 13). This component repre-
sents an imported template referred in the template attribute.
From line 14 on of Listing 6, the template definition is iden-
tical to lines 14 to 45 of Listing 2, except from replacing
“image” by “slideshow” in all occurrences.

Finishing this section, we should stress that template
nesting enhances TAL expressiveness and makes easier the
modeling of several scenarios.

5 Conclusions

Templates specified using TAL can be instantiated gener-
ating new final documents. As aforementioned, these docu-
ments are actually the output of a TAL processor. In order to
do so, a TAL processor takes a template specification along
with a padding document as its input data. This kind of ap-
proach enables “expert” authors to create TAL templates to
be used by less skilled multimedia document creators (see
Listing 2). All the latter have to do is to define how features
that are specific to the particular document they are about
to produce must be filled in. In other words, less skilled au-
thors simply produce a padding document for a particular
TAL template (see Listing 1 for a padding document target-
ing the NCL language). We should emphasize that this strat-
egy promotes reuse of all the semantic structure associated
to a template.

The paradigm used to create applications promoted by
TAL seems to appropriately answer to the requirements im-
posed by emerging interactive digital TV applications. It
allows for authors to establish and follow a particular for-
mat (or pattern) of presentation, which may be associated to
branding, among other things.

A side effect of using TAL, which may come as a handy
feature, is that it allows authors to specify explicitly the se-
mantics of a given composition type. That is, as we define a
template as an open hypermedia composition, new compo-
sitions are created as specializations of high-level specifica-
tion. Seen from this perspective, a template can be taken as
the description of semantic constrains that apply to all rela-
tionships pertaining to a given composition type, regardless
of the actual compositions that are eventually instantiated by
end authors.

The TAL processor for NCL was developed in Lua lan-
guage and it is freely distributed in http://www.telemidia.
puc-rio.br/tal.

We are currently working on providing use of templates
in authoring tools such as NCL Composer [5, 7]. Since this

particular tool provides support for plug-ins that may define
different authoring views for a document specification (tex-
tual, layout, structural, outline, and temporal views, among
others), we are working on adding views to help authors cre-
ating new documents using TAL templates. This should pro-
mote the use of Composer, helping novice authors to create
new documents based on pre-existing templates.

As future work we are planning to do empirical tests with
(potential) TAL users, in an attempt to understand what is
the actual contribution of TAL to the overall usability of
NCL-based authoring resources, especially in comparison
with other existing template-specification languages (in the
same domain). One of the factors that are of particular inter-
est and relevance for this research is to assess the scalability
of TAL in actual contexts of use.

As another future work we are planning to use ontolo-
gies in describing TAL templates. This would bring about
better reasoners to check the consistency of templates, sub-
templates and instances. Moreover, users could use conven-
tional ontology readers and editors in using TAL.

Acknowledgements This research has been partially supported by
CNPq and FAPERJ.

References

1. ABNT NBR 15606-2:2007. (September, 2007) Televisão digital
terrestre—Codificação de dados e especificações de transmissão
para radiodifusão digital—Parte 2: Ginga-NCL para receptores
fixos e móveis—Linguagem de aplicação XML para codificação
de aplicações (Portuguese)

2. Clements PC (1996) A survey of architecture description lan-
guages. In: International workshop on software specifications and
design. Proceedings of the 8th international workshop on software
specification and design. ISBN:0-8186-7361-3

3. Gamma E et al (1994) Design patterns: elements of reusable
object-oriented Software. ISBN 978-0201633610. Addison-
Wesley, Reading

4. Germán DM, Cowan DD (2000) Towards a unified catalog of hy-
permedia design patterns. In: 33rd Hawaii international confer-
ence on system sciences

5. Guimarães RL, Costa RMR, Soares LFG (2007) Composer: Am-
biente de Autoria de Aplicações Declarativas para TV Digital In-
terativa. In: XII Simpósio Brasileiro de Sistemas Multimídia e
Web—WebMedia (Portuguese)

6. ISO/IEC Standard. ISO/IEC 19757-3:2006 Information technol-
ogy—Document Schema Definition Language (DSDL)—Part 3:
Rule-based validation—Schematron

7. Lima BS, Soares LFG, Moreno MF (2011) Considering non-
functional aspects in the design of hypermedia authoring tools.
In: ACM symposium on applied computing, SAC

8. NCL Club. http://www.clube.ncl.org.br
9. Muchaluat-Saade DC, Rodrigues RF, Soares LFG (2002) XCon-

nector: extending XLink to provide multimedia synchronization.
In: II ACM symposium on document engineering

10. Rossi G, Schwabe D, Garrido A (1997) Design reuse in hyperme-
dia applications development. In: Proceedings of the eighth ACM
conference on hypertext, hypertext design, pp 57–66

http://www.telemidia.puc-rio.br/tal
http://www.telemidia.puc-rio.br/tal
http://www.clube.ncl.org.br

J Braz Comput Soc (2012) 18:185–199 199

11. Santos JAF, Muchaluat-Saade DC (2011) XTemplate 3.0: spatio-
temporal semantics and structure. In: Multimedia tools and appli-
cations. doi:10.1007/s11042-011-0732-2

12. Scowen RS (1993) Extended BNF—a generic base standard. In:
Software engineering standards symposium

13. Soares Neto CS, Soares LFG (2008) Autoria Orientada a Arquéti-
pos. In: XXXIV Conferencia Latinoamericana de Informática,
CLEI 2008, Santa Fe, Argentina (Portuguese)

14. Soares Neto CS, Soares LFG, Souza CS (2010) The Nested Con-
text Language reuse features. J Braz Comput Soc 16, 229–245

15. W3C (2008) Synchronized multimedia integration language
(SMIL 3.0) W3C recommendation. Available in http://www.
w3.org/TR/2008/REC-SMIL3-200812

16. W3C (2009) Cascading style sheets level 2 revision 1 (CSS 2.1)
specification. Available in http://www.w3.org/TR/CSS2/

17. W3C (2009) Scalabe vector graphics. W3C recommendation.
Available in http://www.w3.org/TR/SVG11/

18. W3C SMIL timesheets 1.0. W3C working draft. Available in
http://www.w3.org/TR/timesheets/

19. Wallace M (1996) Practical applications of constraint program-
ming. In: Constraints, vol 1, pp 139–168

20. W3C. XHTML 1.0 The extensible hyperText markup lan-
guage. A reformulation of HTML 4 in XML 1.0. Available in
http://www.w3.org/TR/html/

http://dx.doi.org/10.1007/s11042-011-0732-2
http://www.w3.org/TR/2008/REC-SMIL3-200812
http://www.w3.org/TR/2008/REC-SMIL3-200812
http://www.w3.org/TR/CSS2/
http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/timesheets/
http://www.w3.org/TR/html/

	TAL-Template Authoring Language
	Abstract
	Introduction
	Related work
	Template authoring language
	Use case: Button-Text-Image template
	TAL concepts-overview
	TAL specification
	Selectors of TAL
	Constraint language
	Specifying relationships in TAL

	Extending and nesting templates
	Slide show
	Button-Text-Slideshow Template

	Conclusions
	Acknowledgements
	References

