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Abstract This paper describes a new method of path-
planning for multiple robots in unknown environments.
The method, called Space D*, is based on two algorithms:
the D*, which is an incremental graph search algorithm, and
the Space Colonization algorithm, previously used to simu-
late crowd behaviors. The path-planning is achieved through
the exchange of information between the robots. So decen-
tralized, each robot performs its path-planning, which pro-
vides an obstacle-free path with the least number of robots
around. The major contribution of the proposed method is
that it generates paths in spacious environments facilitating
the control of robots and thus presenting itself in a viable
way for using in areas populated with multiple robots. The
results obtained validate the approach and show the advan-
tages in comparison with using only the D* method.

Keywords Path-planning - Multi-robot systems - Collision
avoidance - Space Colonization algorithm - D* Lite
algorithm

1 Introduction
Planning collision-free motions for autonomous robots lo-

cated in environments with obstacles is one of the main
problems of robotics [9, 15, 16].
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One widely studied area of path-planning is planning
in environments with multiple independent robots. For this
type of problems, two approaches can be made, centralized
and decoupled. In the centralized approach, planning is done
by considering a single large robot made up of several seg-
ments (every robot’s body), located within a large configura-
tion space (corresponding to the union of the configuration
spaces of the robots) where each segment has a desired fi-
nal configuration (the goal of each robot) [2, 23]. The prob-
lem with this approach is that the composed configuration
space grows exponentially with the increase in robots’ num-
ber, which becomes highly infeasible.

In contrast, the decoupled approach, though incomplete,
reduces the problem to produce a plan for each individual
robot and then adjust them [12, 17]. Furthermore, viable al-
ternatives are distributed decoupled techniques, which take
in account the usability of distributed processing techniques
to implement such approaches. In these techniques, each
robot plans its path based on local knowledge and in inter-
actions with other robots. The main difference between dis-
tributed approaches and only-decoupled techniques is that
the step of adjusting the path must be distributed and done
in real time. Distributed techniques are more robust, be-
cause they better accept the fails and uncertainties in the
individual robots performances; in other words, a single
defective robot does not interrupt the functioning of the
whole.

The level of knowledge about the free configuration
space regarding obstacle and robot presence is another is-
sue associated with the path-planning. A navigation strategy
used when there is no accurate knowledge of the environ-
ment is called “sensor-based path-planning” [6]. In this kind
of technique, the shortest path is planned based on the cur-
rent configuration of the environment, and, as soon as new
obstacles are detected, new paths must be planned.
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One of the most popular algorithms that handle this type
of problems is the D* algorithm (Focused Dynamic A¥*)
[27], which adapts the optimality of A* for dynamical envi-
ronments, mixing incremental searches with heuristics and
achieving significant gains over repeated executions of A*.

Several works have been proposed based on D*. For ex-
ample, D* Lite [14] implements the same strategy of D*,
but in a simplified manner and with an efficiency equal to or
greater than the efficiency of D*. In [8], it was proposed an
extension to the D* and D* Lite, using linear interpolation
to produce smoother paths, bypassing the issue of limited
possibilities of transition between cells. Another extension
of the D* Lite was proposed in [18], where the algorithm
was adapted for systems with limited time. In this case, as
in [29], the planning is done incrementally and further re-
fined in the available time.

Another important issue is the existence of an environ-
ment populated by dynamic elements, e.g., fleets of mobile
robots. The possibility of collision between robots increases
as the number of robots grows. Planning algorithms can take
into account these risks in advance, leading to plans to pre-
vent collisions by searching for areas with lower density of
occupation.

The current work proposes an extension of the D* al-
gorithm for multi-robot environments, aiming to provide a
collaborative path-planning approach for multi-robot world
populated. The algorithm, called Space D*, combines the
D* algorithm with the Space Colonization algorithm, origi-
nally designed to simulate the plant modeling [26] and later
adapted for the simulation of crowd behaviors [1]. The main
feature of the Space Colonization algorithm is the prefer-
ence shift by spaces, to avoid the collision risk given the un-
certainty and scalability of mobile and fixed obstacles. The
present work is an extension of the work previously pub-
lished in conference proceedings [19], where the method
is better explored, and new results using real robots are
showed.

In crowded environments, the difficulty of having a reli-
able measure of the proximity between the robot and obsta-
cles must be addressed. Methods that simply seek the short-
est path tend to get closer to obstacles, requiring precise con-
trol of the trajectory, for example, by reducing the speed of
the robots and therefore increasing the total execution time
(in spite of obtaining a lower total distance traveled). More-
over, some methods that prefer free environments, such as
potential fields, do not guarantee find the paths (fall into lo-
cal minimal), unlike the Space D*, which inherits this char-
acteristic from D*. Our approach is suitable for use in real
environments by focusing on the creation of paths through
environments with more free space.

This article is organized in five sections. Section 2
presents some related works about path-planning of multi-
robot in unknown environments. In Sect. 3, we show tech-
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niques that serve as the basis for the developed method. Sec-
tion 4 presents the path-planning algorithm proposed in this
paper, dubbed Space D*. Section 5 provides the tests per-
formed on the developed system, as well as the validation
of the method. Finally, Sect. 6 presents the conclusions and
suggestions for future work.

2 Related works

Many studies on path-planning of multiple robots are based
on environments that must be completely known [7, 28].
Thus, the application of techniques such as prioritized mo-
tion planning and fixed-path coordination in unknown en-
vironments can be achieved, as long as together with some
approach to treatment of uncertainty.

Moreover, the algorithms for path-planning in unknown
environments, such as [8, 14, 27], are designed to indepen-
dents robots. However, they can be applied to problems with
multiple robots, considering the other robots in the scenario
as dynamic obstacles.

There are some works that exploit the presence of multi-
ple robots with the ability to communicate and develop tech-
niques for collaborative path-planning dealing with uncer-
tainty. Most of the works of collaborative path-planning for
multiple robots located in unknown environments focused
on the problem of exploration of the environment.

In [25], the environment is separated into stripes that are
explored by teams of robots and, within each team, only one
robot moves at a time, reducing odometry errors. In [20],
robots explore the environment randomly and exchange in-
formation about obstacles when they meet. In [32], robots
seek for the nearest unknown areas according to their incre-
mental maps. Although, there is not coordination to prevent
that two robots do the same path (improvement proposed
in [3]). Later, in [4], an algorithm was proposed based on
cost and utility functions to arrive at a particular uncharted
location. A collaborative exploration is the focus of works
like in [10] and [31], among others.

Nevertheless, there are some works focused on the path-
planning itself. In [24], using navigation functions, the
robots remain close to each other in order to exchange infor-
mation, while they move toward their goals. In [5], robots
are guided to a common destination by a specific robot,
while the others are responsible for collecting the informa-
tion from the environment.

In [21], an algorithm is proposed based on Probabilistic
Roadmaps (PRM), where the robots have different priori-
ties (required to prevent collisions), and they are able to ex-
change information about their paths. In [22], social rules
are used to perform local planning in robots using a decen-
tralized way, avoiding the occurrence of collisions. In [13],
robots with common goals exchange information on the map
during crossing, to prevent that areas to be revisited.
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Our work seeks to take in account the preference for nav-
igation in nonpopulated spaces (appropriated for dynamic
unknown environments), ensuring a solution path (if there
is) and a collaborative mapping.

3 Underlying foundations

As mentioned earlier, the Space D* is based on two algo-
rithms that are discussed briefly below: the first is the D*,
widely used for path-planning in unknown environments,
and the Space Colonization algorithm, which was developed
for modeling plant growth [26] and used for the simulation
of crowd behaviors [1].

3.1 D* algorithm

As presented, the D* algorithm [27] (replaced now by D*
Lite [14]) is one of the most used and efficient approaches to
the problem of path-planning in unknown environments. In
fact, after its publication, the D* Lite became used in place
of D* for most works, including the present work.

The basic behavior of the algorithm consists in recalcu-
lating the shortest path to the destination whenever the cost
of some cell varies (an obstacle or free space is found). This
can be seen in Fig. 1, where the robot’s current position is the
node marked with a spot, the destination is the node marked
with an “x”, and the computed path is the hatched nodes.
The nodes in black and white are those with the costs al-
ready observed, representing, respectively, free spaces and
obstacles.

The operation of D* Lite is inspired by the A*, calculat-
ing, for each node s of the graph (indicating a position on
the environment), the distance to reach the goal (s404/), and
whenever the cost c(s, s”) to go from s to a neighbor node s’
changes (for example, if an obstacle is detected), an update
of the distances of nodes affected by this change should be
made.

The algorithm uses two estimates of the distance to the
goal starting from a node s, called g(s) and rhs(s).The es-
timate rhs(s) is potentially more accurate than g(s), once it

Fig. 1 Operation of D*/D* Lite. (a) The robot starts calculating a
shortest path from their position (spot) to the goal (cross). (b) While
moving toward the goal, it senses the environment and detect obstacles.
In the case of blocked paths, a new path need to be calculated. (¢) This
process repeats until the goal is reached

is based on the values of g(s) of the successors nodes of s.
The basic principle of the algorithm is keeping the two val-
ues consistent for all nodes, which means that all estimates
of distances are correct.

When there is any inconsistency between a pair of esti-
mates, derived from the change in the cost of a node, the
algorithm must update the estimates of every node affected
by this change. However, to avoid going through all nodes in
the graph, the D* Lite uses a heuristic to create keys that in-
dicate the priority of analysis of each node. With this heuris-
tic, the algorithm computes only the nodes that seem rele-
vant to find the shortest path.

3.2 Space colonization algorithm

Based on studies of biology that attributed the development
of veins in leaves to a hormone called auxin found in plants,
the Space Colonization algorithm was developed in [26], to
simulate the growth of the venation pattern in relation to the
distribution of auxins in the leaves.

The algorithm is basically composed of three processes.
The first is the growth of the leaf. Alongside, the other two
happen: the development of the venation pattern, which is
directly influenced by the distribution of the sources of aux-
ins in the leaf (representing free spaces), and the generation
of new auxins, which in turn is affected by the development
of veins.

The vein growth begins by associating each node of auxin
to the nearest vein node. Then, the nodes are expanded in the
direction of the associated auxins. As the pattern grows and
approaches the auxins, these are being removed, since the
space that they represent is no longer free. The leaf blade
grows, and new auxins are randomly generated, uniformly
distributed through free space. The cycle begins again with
the auxins—nodes association and continues until the leaf
reaches its maximum size. As can be seen, the algorithm
is characterized as a competition of vein nodes for auxins,
representatives of free spaces, since the more auxins a node
can be associated, the more space it has to expand.

In [1], the Space Colonization algorithm was adapted to
simulate crowd behaviors. The concepts of vein nodes and
auxins were transformed into agents and markers of free
spaces. In such a case, the Space Colonization algorithm was
used to simulate the competition of agents for free space on
environment.

In [1], some modifications on the algorithm were also
proposed. Firstly, the markers have become persistent, not
being “consumed” by the agents, but instead, allocated when
an agent comes up and released when it leaves. Another
change is that only the markers within a certain region
around an agent can influence it (previously, any auxin could
influence any leaf node, provided that it was the closest one).
Moreover, the direction of motion is guided by the intention
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Fig. 2 Space Colonization algorithm for simulation of crowd behav-
iors. White arrows indicate the intention of movement. Based on the
free space that the agent could allocate (hatched areas), a new direc-
tion of movement is calculated (black arrows)

of reaching a specific destination, not only by large availabil-
ity of markers. The last one is that the speed of movement
of the agents varies according the free space (in the original
algorithm, the speed was uniform).

Figure 2 shows an example of the algorithm execution.
The agents are numbered by black circles with white arrows
indicating the directions of their goals. Larger areas are the
regions of markers that each agent was able to allocate. As
can be observed, the restrictions in the allocated areas di-
rectly influence the movement vector of each agent, repre-
sented by the black arrow. Each agent seeks to move toward
its goal, but avoiding the proximity to other agents or ob-
stacles. The Space Colonization algorithm by itself does not
solve neither the problem of path-planning in environments
with obstacles nor the local minimum issues, but its feature
of search for free spaces has motivated merging it with the
D* Lite.

4 Space D*

The algorithm developed in this work for path-planning of
multiple robots in unknown environments, named Space D*,
relates the D* algorithm with the Space Colonization al-
gorithm. The configuration space is represented by a grid
formed by markers allocated by the nearest owner robots
during the path-planning. Markers have costs which de-
scribe the levels of difficulty that the robots have to reach
their goals through this intersection. The owners of all mark-
ers and the cost associated to them change over time. The
operation of the method is, briefly, the following (for each
robot):

— The environment is represented by a grid of markers that
indicates the costs for a robot to cross it and to reach a
goal (obstacles have the highest costs). First, the map is
empty (zero cost), and as new obstacles are detected, the
map is updated;

— The D* Lite algorithm is applied by each robot on the re-
spective set of markers, updating the costs of these mark-
ers (distances to their goals);
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— The robot navigation is done using a modification upon
the Space Colonization algorithm. The robot allocates all
near markers, within its reach, that indicate free-spaces.
With the distances to the goals of these markers, calcu-
lated by the D* Algorithm, it calculates their directions of
movement, which will always be defined within the allo-
cated zone;

— When the robots meet each other, the information about
their maps are exchanged, allowing them to update the
costs of markers. In addition, the algorithm tries to avoid
collisions between them, since each robot only allocates
the markers that are closer to it than to other robots;

A major contribution of the proposed method is the inclu-
sion in D* of the preference for navigating in less populated
environments, which improves the handling of unknown and
dynamic environments. In its original definition, D* gener-
ates paths that tend to be very close to obstacles in order to
reduce the total distance traveled, but this ends up requiring
a very precise control over the movement of robots.

Another advantage of the proposed method is the ex-
change of information between the robots, the focus of re-
lated works, such as [13]. Since each robot obtained the map
of the environment where it traveled (to perform the calcula-
tion of the distance to the goal), information about the pres-
ence of obstacles can be exchanged when robots cross each
other. This raises the possibility of avoiding paths that are
blocked and that only eventually the robot would notice.

4.1 Operation of space D*

The Algorithm 1 shows the operation of Space D*.

Algorithm 1: Space-D*

begin
while Did not reached the goal do
Maps the environment.

if Detect other robots then
| Exchange information.

end if

Update markers cost.

Run D* Lite.

Allocates the nearest markers.

Calculates the direction of movement.
end while

end

The two initial stages of the process, related to the per-
ceptual system of the robots, are the mapping of the envi-
ronment and the detection of other robots. In the environ-
ment mapping, each robot senses the presence of obstacles
in order to define the costs of the markers associated with
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each position. As for the detection of robots, it was defined
that each robot has a unique identifier, so that when a robot
moves close enough to another, it can realize that the obsta-
cle is actually a robot and also which robot.

The third stage is the exchange of information, which fol-
lows the detection of robots. When two or more robots meet,
both stop for a moment and exchange information corre-
sponding to their descriptions of the map. It is worth noting
that in the current implementation, all obstacles are static
(except for the robots themselves), so the upgrade of the
markers’ costs from the exchange of information consists
of verifying if, in the received map, there are new obstacles
that in the current map have not been discovered yet.

The fourth stage is the update of the markers’ costs, re-
sulting from the steps of environment mapping and informa-
tion exchange. Later, the distances to the goal starting from
each marker of interest of the robot (the g(s) estimative from
the D* algorithm) are computed. The processing performed
in this step is, in fact, calculating the shortest path according
to the D* Lite.

In the sixth stage, all markers contained in the environ-
ment are associated to their nearest robot, provided that they
are within the reach of the robot. The difference from the
simulation of crowd behaviors [1] is that, in the proposed
method, this step is decentralized, as it is up to each robot to
allocate all the markers located within its reach, considering
only those that are closer to themselves than to other robots.

A restriction lies on the size of the radius of the allocated
region. To avoid collisions between robots, it is necessary
that the reach of robot perception sensor always be greater
than the radius of the area of allocated markers. Ideally, the
sensor reach has to be at least twice the radius of allocation,
as this ensures that, in the exact moment when two robots
meet, both allocate only the markers closest to them.

In the final step, to calculate its direction of motion, each
robot uses the distances to the goal of the markers from their
area of interest. The calculation of the movement vector 77
is a weighted vector sum of the vectors connecting the robot
(7 position) to each associated marker (s position):

N
=Y fil3i=T7), (1)

k=1

where N is the number of markers in the set S(r). But unlike
[1], where the size of each vector was related to the direction
of the goal, now the modules of the vectors are based on the
distance between the marker and goal, so as the smaller the
distance, the greater must be the module of a vector. The
definition of the function f that determines the magnitude
of the vector of a marker s associated with the robot r is

f(s)= prgsaé)(g(p)) —8(s). 2)
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Fig. 3 Example of operation using Space D*. (a) The current map of
the robot, showing the obstacles in black and the shortest path from
the current position (circle) to the goal position (cross), obtained by
the execution of the D* algorithm. (b) The markers’ allocation area of
the robot and the direction of movement (black arrow), obtained after
the execution of Space Colonization Algorithm. (¢) New obstacles are
discovered in the environment, implicating update in the path to the
goal. (d) The new direction of movement, based on the new allocation
area and shortest path

That is, the size of each vector is the subtraction from the
largest distance g(p) of a marker belonging to the set S(r)
of the robot by the value of g of each marker.

In Fig. 3, an example of the execution of the Space D*
can be seen. The position of the robot is the node indicated
with a spot, the goal is the node indicated with an “x”, and
the obstacles are the black nodes. In (a), the demarcated
area represents the allocated region of the robot, with the
distances to the goal of each marker (in dotted lines is the
shortest path calculated by D* Lite). In (b), the vectors are
generated in the direction of the markers with the module
calculated by f(s), and later, with them the movement vec-
tor (larger vector) is obtained. In (c), after moving in the
direction indicated previously, the robot perceives new ob-
stacles and recalculates the distances to the goal. In (d), a
new movement vector is generated.

5 Tests and validation

This section presents a series of experiments in order to val-
idate the proposed method. In contrast with [19], the ex-
periments used in this paper include the use of real robots
and make it possible to verify the robustness of the method
in noisy environments. Therefore, the algorithm Space D*
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was validated in simulated environments for multi-robots
on the software Player/Stage [11], as well as using real
robots controlled using Player software. A detailed de-
scription of experimental results is showed in next sec-
tions.

5.1 Simulated tests

The validation using simulated robots was performed by
comparing the solutions obtained in the execution of the
Space D* with the results of the execution of D* Lite. The
simulations use omnidirectional robots with 50 cm of radius
in one 100 m x 100 m environment.

Spacious paths 1t was observed that, like the D* Lite, the
Space D* generates trajectories that always reach the goal
without the occurrence of collisions with obstacles, but in
addition, as was predicted, it tries to maintain the robot far
from any obstacle, either dynamic (other robots) or static
(walls).

For the method used for comparison, the direction of
movement of robots is that indicated by the shortest path
computed by D*. As can be inferred, if there are no er-
rors and inaccuracies in the control of robots, this tech-
nique works perfectly. Yet, collisions often occur when
paths are generated too close to obstacles, unless the dis-
placement speeds of the robots are reduced in these loca-
tions.

Figure 4 shows a comparison between the trajectories
generated by the execution of the Space D* and D* on the
environment showed in Fig. 5. It displays the paths traveled
by three robots dispersed randomly. It is possible to see that
the trajectories obtained with the Space D* deviate more
from obstacles than those obtained by D*, which decreases
the need for speed reductions.

Average performance: execution time, distance, and veloc-
ity In Table 1, we compare the average execution times,
average total distances, and average speeds of robots be-
tween the simulations using the Space D* and the simula-
tions using only the D*. In all test cases, the environment
was 100 x 100 meters (with a discretization of 100 x 100
markers), and the maximum speed of robots was 5 m/s.
Three test sets were evaluated (10, 15, and 20 robots), each
with five random configurations of initial and final positions
for each robot.

It must be repeated that in terms of the execution time
of an algorithm, the Space D* makes a larger processing
and thus is slower than the D* Lite. In fact, using the D*
Lite, each simulation cycle was approximately half the cy-
cle time of the Space D*. However, by avoiding the ap-
proaching with obstacles, the Space D* allows a smaller
refresh rate. In the result obtained with the Space D*, the
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Fig. 4 Comparison between the trajectories was generated by the ex-
ecution of the Space D* and D* for three robots. The black segments
are obstacles, and the gray are the trajectories generated by the algo-
rithms. We can observe on the top images that the paths generated by
the D* almost touch the obstacles, which makes difficult the control of
the robots. In contrast, the Space D* generates loose paths that keep
the robot far from obstacles
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Fig. 5 Map used to compare the D* Lite and the Space D*

average time simulation was always lower (about 30 %), be-
cause although the D* obtains smaller trajectories (as can
be seen by the average distance), its average speed is con-
siderably lower, once the speeds of the robots are reduced
in the proximity of obstacles. This indicates that the use
of Space D* is more advisable, since yet the D* needs to
treat the uncertainty over the configuration space and the
control of robots (for instance, reducing the speed of the
robots).

Exchanging information, high scalability, and complex en-
vironments Further, we examined if the existence of infor-
mation exchange between robots contributes significantly to
the performance of the Space D*. We tested with two differ-
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Table 1 Comparison between Space D* and D*

Table 2 Comparison between methods with and without exchange of
information, on the map of Fig. 5 (map 1) and on the map of Fig. 6

No. of Robots  Time (s) Distance (m) Speed (m/s) (map 2)
Mean StDev Mean StDev Mean StDev Map 1
Using the Space D* No. of Robots  Time (s) Distance (m) Speed (m/s)
10 256 7.6 8974 3816 371 082 Mean — StDev Mean  StDev Mean — StDev
15 29.7 122 88.91 36.66 3.03 0.7 Method with exchange of information
20 33.2 16.8 86.29 35.07 2.69 0.61 10 25.6 76 8974 38.16 3.1 0.82
10 33.2 10.3 83.21 2961 257 0.64 20 332 16.8 86.29 35.07 2.69 0.61
15 424 16.0 85.68 31.07 2.13 0.58 Method without exchange of information
20 50.9 21.8 8691 3348 1.74 0.39 10 238 6.5 8023 3856 3.91 0.88
15 29.6 11.8 90.86 39.9 3.12 0.69
20 354 17.9 92.15 41.08 2.74 0.63
Map 2
No. of Robots  Time (s) Distance (m) Speed (m/s)
Mean StDev Mean StDev Mean StDev

Fig. 6 Second map used in tests

ent maps, as shown in Fig. 5 (the map used for the previous
tests) and Fig. 6 with three test sets (10, 15, and 20 robots),
each one with five random configurations of initial and fi-
nal positions for each robot. The results are shown in Ta-
ble 2. For the first map, the exchange of information did not
contributed to an improvement in execution time. Instead,
it was proved worse than the method without exchange of
information for a sample with 10 robots. Nevertheless, in
tests with 20 robots, the method with the exchange of infor-
mation was a little better. However, for the second map, the
method with the exchange of information proved to be far
more efficient than the method where there is no exchange
of information.

It can be inferred that when obstacles are sparse and
easily circumvented, the exchange of information does not
make much difference. However, in an environment sim-
ilar to a maze, the choice of the path to be taken by
robot is a critical decision. The more information about
the environment the robot has, the greater the certainty in
making this decision and the smaller the distance to the
goal.

Method with exchange of information

10 37.9 183 12626 63.71 3.43 0.74
15 39.4 19.0 113.05 5212 2.89 0.66
20 40.3 19.7 99.74 4448 241 0.42

Method without exchange of information

10 42.2 22.1 14265 71.09 3.1 0.83
15 47.9 249 14533 7539  3.07 0.7
20 51.8 27.2  146.14 7895 2.82 0.61

5.2 Real robots

The robots used in the experiments are three iRobot Create
equipped with Hokuyo Laser Scanner URG-04LX-UGO1,
with 0.36° of angular resolution, 180° of angular range, and
0.5 m of maximum range distance. The laser scanner is dis-
tanced 0.12 m from the center of the robot. Due to the differ-
ential wheels configuration of the robots, for each velocity
vector sent to them, we first rotated to agree robot’s orienta-
tion with the velocity vector and, after, translate with vector
modulus.

Moreover, each robot has global localization using a
system based on ARToolkiPlus [30] markers imaged by
one low-cost USB Webcam with 640 x 480 pixels reso-
lution. This system enables us to know the robots pose
in each time. Despite this global knowledge, the path-
planning algorithm was executed in a distributed way. The
allocation markers radius is defined in the algorithm as
0.5 m.

The results were obtained using real robots in two differ-
ent situations. The first situation uses two robots in one sim-
ple maze, composed by three walls. Figure 7 shows the real
environment with robots, the real path, the initial position,
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(a)

Fig. 7 Real experiment with two robots, with the real path, the initial position (circle), the goal (cross), and obstacles. (a) Image in the initial
situation; (b) conflict situation where the paths of both robots intersect; (c) final position

Robot001
; )
2 # 3
e :
: ; s
(a)

' Robot001 x Robot001

(c)

Fig. 8 Map of Robot 1 (black in Fig. 7) in: (a) initial situation; (b) conflict situation, where the paths of both robots intersect; (¢) final position

and the goal, as well as the obstacles. Figure 7a illustrates
the initial configuration in the experiment, and Fig. 7c shows
the final configuration of the experiment. Figure 7b shows
a conflict situation, where the path determined by the algo-
rithm generated the possibility of collision. Due to the Space
Colonization algorithm, both robots recalculate the paths in
order to deviate and achieve the goal. The map acquired by
each robot is showed in Figs. 8 and 9, respectively. Each of
these maps represents approximately the same time instant
showed in Fig. 7, i.e., the initial position, conflict situation,
and final position. The shaded area in yellow represents the
allocation of space made by the Space Colonization Algo-
rithm at that moment. The Robot 1 is illustrated using black
color in Fig. 7, i.e., the robot that started in left position and
finished in right position. It spent approximately 44 s in its
path. Robot 2 is illustrated in blue color and spent approx-
imately 56 s in its path. The difference in the elapsed time
by each robot is due the distance between the start and goal
positions and, mainly, the conflict situation where one robot
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has captured markers that allowed it to achieve faster the
goal.

The second experiment was performed using three robots
without obstacle. In this case, only the robots represent ob-
stacles. Figure 10 shows the real environment with three
robots, the real path, the initial position, and the goal. Fig-
ure 10c shows the final configuration of the experiment. Fig-
ure 10b shows a conflict situation, where the path deter-
mined by the algorithm generated the possibility of colli-
sion. Due to the Space Colonization algorithm, both robots
recalculate the path in order to deviate and achieve the goal,
as in previous experiment. Robot 1 is illustrated using black
color in Fig. 10, i.e., the robot that starts in the top right. It
spent approximately 1 minute in its path. Robot 2 is illus-
trated in green color, i.e., the robot that starts in the bottom
left, which spent approximately 56 s in its path. The last
robot showed in blue color, i.e., the robot that starts in the
bottom right, which spent approximately 43 s in its path.
Both the videos, with two and three robots, are available in
the research group website.
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(a)

()

Fig. 9 Map of Robot 2 (blue in Fig. 7) in: (a) initial situation; (b) conflict situation, where the paths of both robots intersect; (c) final position

Fig. 10 Real experiment with three robots, with the real path, the initial position (circle), and the goal (cross). (a) Image in the initial situation;
(b) conflict situation where the paths of all robots intersect; (c¢) final position

The information exchange was not tested in real robots
due to the limited size of the tested area. This exchange gives
more information to the robots, making easier to solve the
path-planning in this case. Thus, in all real tests, we have
disabled the information exchange function.

Notice that the same restrictions that exist in D* are still
present at Space D*. A major constraint is the level of gran-
ularity associated with space discretization. The Space D* is
based on a graph-search algorithm, which is costly for large
environments.

Another important restriction of the method is that, in its
current implementation, it considers the robots as infinitesi-
mal, that is, their bodies are considered points. For proper
functioning of the algorithm, it must be ensured that all
robots never leave their regions of allocated markers and,
as these regions reduce, their movements also decrease. For
real robots, the algorithm ensures that the centroid of the
robot will never leave the bounded region; however, this can
cause problems when the allocated area of a robot is very
small.

6 Conclusion

The algorithm Space D* focuses on generating paths over
spacious environments, keeping the robot far from dynamic
and unknown obstacles (wall, obstacles, and other robots).
Thus, the method is applicable in realistic situations where
using only the D* does not seem a viable alternative. When
compared with other methods of path-planning, like Poten-
tial Fields, this algorithm has the advantage of not suffering
of local minimums, characteristics inherited from D*.

The framework proposed for mapping representation and
exchange of information between robots presents gains in
the run-time in environments where obstacles form excerpts
of dead ends. Real results showed the robustness of the
method, where without a good controller and sensory, it is
possible to achieve path-planning. Particularly, in Table 2,
we can verify that the exchange of information provided
better results in complex environments. Once the robot has
more information about the environment in which it must
move, the chances to decide correctly the path to its goal
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are greater. It is possible to verify that the greater number of
robots in complex environments with exchange of informa-
tion allow smaller distances. Furthermore, the reduction of
the mean velocity of the robots in this context is insignificant
compared to the gain obtained in the mean distance travelled
by the robots.

The complexity of the algorithm proposed is governed
by the execution of D*, that is, O (klog(k)), where k is the
number of markers in the environment. The complexity of
the algorithm of exchange of information increases linearly
with the number of robots n, leading an O (n) complexity.
Besides that, only a few robots are communicating at each
time, because two robots only exchange information when
they get close of each other. Therefore, the orders of com-
plexity presented and the restriction of the robots commu-
nicating with each other at only short distances allow the
scalability of the system.

Since the proposed method is decentralized, it is possible
that the algorithm fails in specific situations. For example,
if two robots meet in a narrow hallway that requires one
or the other to reverse its direction. Using the Space Col-
onization and D* algorithms, it would be possible that one
of the robots determines a reverse direction for a significant
distance in order to resolve the conflict. Our method would
present the solution described if the diameter of the robots
were exactly the width of the corridor, which would be a
situation not likely to happen. If there is a small space be-
tween the wall of the corridor and the robot, the proposed
method will indicate this availability for the other one. Con-
sequently, the robots probably would be stagnant because
there was not enough space to move. Therefore, we suggest,
as a future work, to solve problems related to the bottleneck
effect.

For another future work, there is an idea of associating
confidence levels with markers and extending the algorithm
to work with dynamic obstacles. Another future direction is
including in the calculation of markers’ costs and concentra-
tion of robots in areas of environment, using exchange of in-
formation. It makes possible to find places with higher con-
centrations of robots and consequently avoid them. More-
over, we intend to make more results in a large environment
with more robots in order to consolidate our approach.
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