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Abstract In some classification tasks, such as those related
to the automatic building and maintenance of text corpora,
it is expensive to obtain labeled instances to train a clas-
sifier. In such circumstances it is common to have mas-
sive corpora where a few instances are labeled (typically
a minority) while others are not. Semi-supervised learning
techniques try to leverage the intrinsic information in unla-
beled instances to improve classification models. However,
these techniques assume that the labeled instances cover all
the classes to learn which might not be the case. More-
over, when in the presence of an imbalanced class distribu-
tion, getting labeled instances from minority classes might
be very costly, requiring extensive labeling, if queries are
randomly selected. Active learning allows asking an or-
acle to label new instances, which are selected by crite-
ria, aiming to reduce the labeling effort. D-Confidence is
an active learning approach that is effective when in pres-
ence of imbalanced training sets. In this paper we evalu-
ate the performance of d-Confidence in comparison to its
baseline criteria over tabular and text datasets. We provide
empirical evidence that d-Confidence reduces label disclo-
sure complexity—which we have defined as the number of
queries required to identify instances from all classes to
learn—when in the presence of imbalanced data.
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1 Introduction

Classification tasks require a number of previously labeled
instances. A major bottleneck is that instance labeling is a
laborious task requiring significant human effort. This effort
is particularly high in the case of text corpora and other un-
structured data.

The effort required to retrieve representative labeled in-
stances to learn a classification model is not only related to
the number of distinct classes [2]. It is also related to class
distribution in the available pool of instances. On a highly
imbalanced class distribution, it is particularly demanding
to identify instances from minority classes. These, however,
may be important in terms of representativeness. Minority
classes may correspond to specific information needs which
are relevant for specific groups of users. In many situations,
such as fraud detection, clinical diagnosis, news [35] and
Web resource categorization [17], we face the problem of
imbalanced class distributions.

The work described in this paper supports a broader goal
related to the identification of representative instances for
each class in the absence of previous descriptions of some
or all the classes, in order to get a classification model that
is able to fully recognize the target concept, including all
the classes to learn no matter how frequent or rare they are.
Furthermore, this must be achieved with a reduced number
of labeled instances in order to reduce the labeling effort.

The aim of our current work is to evaluate the perfor-
mance of our proposal, a new active learning strategy, w.r.t.
its ability in finding representative instances of the classes to
learn regardless of their distribution in the working set.
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There are several learning schemes available for classifi-
cation. The supervised setting allows users to specify arbi-
trary concepts. However, it requires a fully labeled training
set, which is prohibitive when the labeling cost is high and,
besides that, it requires labeled instances from all classes.
Semi-supervised learning [11] allows users to state specific
needs without requiring extensive labeling [17] but still re-
quires that labeled instances fully cover the target concept.
Unsupervised learning does not require any labeling but
users have no chance to tailor clusters to their specific needs.
Therefore there is no guarantee that the induced clusters are
aligned with the classes to learn. In active learning, which
seems more adequate to our goals, the learner is allowed to
ask an oracle (typically a human) to label instances—these
requests are called queries. The most informative queries are
selected by the learning algorithm instead of being randomly
selected as in supervised learning.

In this paper we describe and evaluate the performance
of d-Confidence [19]. D-Confidence is an active learning
approach that tends to explore unseen regions in instance
space, thus selecting instances from unseen classes faster—
with fewer queries—than traditional active learning ap-
proaches. D-Confidence selects queries based on a criterion
that aggregates the posterior classifier confidence and the
distance between queries and known classes. Confidence [4]
and distance, farthest-first [23], are traditional active learn-
ing criteria. D-Confidence is biased towards instances that
do not belong to known classes (low confidence) and that
are located in unseen areas in instance space (high distance
to known classes).

A workshop paper from 2008 [18] presents some prelim-
inary results on the performance of d-Confidence. These re-
sults are based mainly on artificial datasets with the purpose
of realizing the ability of d-Confidence in the early identifi-
cation of rare instances.

These preliminary results were extended in [19]. This
paper describes a systematic approach to the evaluation
of d-Confidence. It is based on artificial data and focused
on comparing the performance of d-Confidence to that of
confidence w.r.t. the coverage of the instance space. Two-
dimensional artificial datasets have been generated to exhibit
a set of properties describing global dataset characteristics:
cluster alignment, label distribution, cluster morphism and
cluster separability. All these properties were defined as bi-
nary. Sixteen artificial datasets have been generated covering
all the combinations of these four binary meta-descriptors
expecting to simulate a wide range of real datasets’ struc-
tures arising in classification tasks. The empirical results
showed that d-Confidence selects queries from remote
regions—where the density of known (labeled) instances
is sparse—more efficiently than confidence. Instance space
is covered more efficiently when using d-Confidence, thus
creating conditions to identify representative cases from un-
known classes earlier. On average, a 100 % coverage of the

instance space is achieved by d-Confidence with a fraction
of the effort required by confidence. Regarding the global
properties of the datasets, d-Confidence performed clearly
better than confidence on “well behaved” datasets (balanced,
collinear, isomorphic and separable). On not so well be-
haved datasets, d-Confidence also performs better than con-
fidence but not as clearly, especially with respect to the clas-
sification error.

D-Confidence, using SVM as the base classifier, was
evaluated over text corpora in two workshop papers. In [20]
we compare the performance of d-Confidence to that of con-
fidence and random sampling, as a ground benchmark. The
results from this paper show that d-Confidence identifies ex-
emplary instances for all classes faster that confidence. This
gain in labeling effort is bigger for minority classes, which
are the ones where the benefits are more relevant for our
purposes. As a consequence the classification model gen-
erated by d-Confidence is able of identifying more distinct
classes faster. In [21] this work is continued by comparing d-
Confidence performance on text corpora to its baseline cri-
teria (confidence and farthest-first) with SVM base classi-
fiers.

The current work extends previous results on d-Confi-
dence providing a comprehensive description and evalua-
tion of this active learning strategy. It adds several contri-
butions, including a formal description of d-Confidence, the
clear definition of its evaluation criteria, a comparative study
of d-Confidence w.r.t. to different base classifiers, a sys-
tematic evaluation of the d-Confidence strategy against its
baseline criteria over tabular and textual data with a main
concern in the identification of rare instances in imbalanced
data.

Our hypothesis is that d-Confidence improves the per-
formance of both its baseline criteria. On the one hand,
it improves the exploitation behavior of confidence, which
is required to prevent excessive accuracy decrease; on the
other hand, it improves the exploratory behavior of farthest-
first, which is required to reduce the minimum number
of queries needed to identify instances from all classes to
learn.

Experimental outcomes led us to conclude that d-Confi-
dence is more effective than confidence and farthest-first
alone in achieving an homogeneous coverage of target
classes.

In the rest of this paper we start by reviewing active learn-
ing, in Sect. 2. Section 3 describes d-Confidence. The eval-
uation process is presented in Sect. 4 and we state our con-
clusions and expectations for future work in Sect. 5.

2 Active learning

Active learning [4, 13, 33, 36] is a particular form of su-
pervised learning where instances to label are selected by
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the learner through some criteria aimed at reducing the
label complexity [22], i.e., the number of label requests
that are necessary and sufficient to learn the target con-
cept.

In active learning, the learner is allowed to ask an ora-
cle (typically a human) to label instances—these requests
are called queries. The most informative queries, given the
goals of the classification task, are selected by the learning
algorithm instead of being randomly selected as is the case
in passive supervised learning.

The term active learning has been originally coined in
the education field in 1991, as a corollary of the broad dis-
cussion about instructional paradigms, which took place in
the 1980s. It refers to the instructional activities involving
students in doing things and thinking about what they are
doing [8].

A few years before, the paradigm had already been
applied to machine learning [4]. In this work the author
sets a formal framework to study several types of query
and their value for machine learning tasks. Although with
some previous work performed by researchers, the term ac-
tive learning seems to have been explicitly used in ma-
chine learning from 1994 on [13]. In this work the au-
thors define active learning as any form of learning where
the learner has some control over the input on which it
trains.

Active learning approaches [13, 33, 36] reduce label
complexity by analyzing unlabeled instances and selecting
the most useful ones once labeled. Queries may be artifi-
cially generated [6]—the query construction paradigm—or
selected from a pool [12] or a stream of data—the query fil-
tering paradigm. Our current work is developed under the
query filtering approach.

The general idea in active learning is to estimate the value
of labeling one unlabeled instance. Query-By-Committee
[38], for example, uses a set of classifiers to identify the
instance with the highest disagreement. Schohn et al. [37]
worked on active learning for Support Vector Machines
(SVM) selecting queries—instances to be labeled—by their
proximity to the dividing hyperplane. Their results are, in
some cases, better than if all available data are used to train.
Cohn et al. [14] describe an optimal solution for pool-based
active learning that selects the instance that, once labeled
and added to the training set, produces the minimum ex-
pected error. This approach, however, requires high compu-
tational effort. Previous active learning approaches (provid-
ing non-optimal solutions) aim at reducing uncertainty by
selecting queries as the unlabeled instances on which the
classifier is less confident [29].

Batch mode active learning—selecting a batch of queries
instead of a single one before retraining—is useful when
computational time for training is critical. Brinker [9] pro-
poses a selection strategy, tailored for SVM, that combines

closeness to the dividing hyperplane—ensuring a reduction
in the version space [32] close to one half—with diver-
sity among selected instances—ensuring that newly added
instances provide additional reduction of version space.
Hoi et al. [24] suggest a batch mode active learning rely-
ing on the Fisher information matrix to ensure small re-
dundancy among selected instances. Li et al. [30] com-
pute diversity within selected instances from their condi-
tional error. Hoi et al. [25] use batch mode active learn-
ing to increase the number of labeled instances and its
diversity to improve SVM performance in each itera-
tion.

Dasgupta [15] defines theoretical bounds showing that
active learning has exponentially smaller label complexity
than supervised learning under some particular and restric-
tive constraints. Kääriäinen extended this work by relax-
ing some of those constraints [28]. An important conclu-
sion of this work is that the gains of active learning are
much more evident in the initial phase of the learning pro-
cess, after which these gains degrade and the speed of learn-
ing drops to that of passive learning. Agnostic Active learn-
ing [5], A2, achieves an exponential improvement over the
usual label complexity of supervised learning in the pres-
ence of arbitrary forms of noise. This model is studied
by Hanneke [22] setting general bounds on label complex-
ity.

All these approaches assume that we have an initial la-
beled set covering all the classes of interest. However, this
assumption does not necessarily hold. In fact, collecting
and annotating cases is a critical—being one of the first
stages it might limit the performance of the following—
and demanding stage—requires domain specialists to re-
trieve and label exemplary instances for all target classes—
in classification tasks [30]. The effort in finding these ex-
emplary instances depends not only to the number of tar-
get classes [2] but also to their distribution in the working
set. On a highly imbalanced class distribution, it is particu-
larly demanding to identify examples from minority classes.
These, however, may be important in terms of representa-
tiveness. This is the case of a document collection on the
Web.

Clustering has also been explored to provide an initial
structure to data or to suggest valuable queries. Tat et al. [34]
incorporate clustering into active learning by learning a clas-
sification model from the set of the cluster representatives,
and then propagates the classification decision to the other
instances via a local noise model. The proposed model al-
lows to select the most representative instances as well as
to avoid repeatedly labeling instances in the same cluster.
Adami et al. [2] merge clustering and oracle labeling to
bootstrap a predefined hierarchy of classes. Although the
original clusters provide some structure to the input, this
approach still demands for a high validation effort, espe-
cially when these clusters are not aligned with class labels.
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Huang et al. [27] explore the Wikipedia as a background
knowledge base to create a concept-based representation of
a text document enabling the automatic grouping of doc-
uments with similar themes. The semantic relatedness be-
tween Wikipedia concepts is used to find constraints for su-
pervised clustering using active learning.

Dasgupta et al. [16] propose a cluster-based method
that consistently improves label complexity over supervised
learning. Their method detects and exploits clusters that are
loosely aligned with class labels. The method has been ap-
plied to the detection of rare categories. It obtained signifi-
cant gains in the number of queries that are required to dis-
cover at least one instance from each class. This latter work
is in line with our own efforts for devising a method capable
to swiftly identify instances from unknown classes. Prelim-
inary results have been published by us also in 2008 in a
workshop paper [18]. Hu et al. [26] propose an active learn-
ing schema, based on graph-theoretic clustering algorithms,
to suppress the lack of ability from common active learning
approaches in selecting new instances that belong to new
classes that have not yet appeared in the working set, and
the lack of adaptability to changes in the semantic interpre-
tation of sample classes.

An important issue in active learning is the establishment
of a compromise between exploration—finding representa-
tive instances in the dataset that are useful to label, focusing
on completeness—and exploitation—sharpening the classi-
fication boundaries, focusing on accuracy.

As described, common active learning methods select
the queries which are closest to the decision boundary of
the current classifier. They focus on improving the decision
functions for previously labeled classes, i.e., they focus on
exploitation. The work presented in this paper diverts classi-

fier attention to other regions increasing the chances of find-
ing new labels. D-Confidence adds an exploration bias to
active learning.

3 D-Confidence active learning

Given a target concept with an arbitrary number of classes
together with a sample of unlabeled examples from the tar-
get space (the working set), our purpose is to identify repre-
sentative instances covering all classes while posing as few
queries as possible, where a query consists of requesting a
label to a specific instance. The working set is assumed to
be representative of the class space—the representativeness
assumption [31].

Active learners commonly search for queries in the
neighborhood of the decision boundary (Fig. 1a), where
class uncertainty is higher. The (perceived) uncertainty re-
gion is defined [13] as the area that is not determined by
available information, i.e., the set of instances in the work-
ing set such that there are two hypotheses that are consistent
with all training instances yet disagree on the classification
of these instances. However, the perceived uncertainty re-
gion might be poorly mapping the real target concept, given
current evidence.

Limiting instance selection to the perceived uncertainty
region seems adequate when we have at least one labeled
instance from each class in which case the perceived un-
certainty region is probably consistent with the target con-
cept. This class representativeness is assumed by the major-
ity of active learning approaches. In such a scenario, select-
ing queries from the uncertainty region is very effective in
reducing version space.

Fig. 1 Uncertainty region (shaded). n represents labeled instances from class n and x represents unlabeled instances. We assume that the concept
to learn has three distinct classes, one of which has not yet been identified
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Fig. 2 For equally confident instances prefer those that are far from
previously explored regions in instance space

But what if the real uncertainty region is not correctly
or fully perceived by the current hypothesis? Under such
an assumption, favoring exploitation rather than exploration
withholds the chances to achieve an early complete coverage
of the target concept.

3.1 The intuition

Our main concern is related to the initial phase of the learn-
ing process—data collection and annotation—when we are
still looking for exemplary instances to characterize the con-
cept to learn. Under these circumstances and while we do
not have labeled instances covering all classes, the uncer-
tainty region perceived by the active learner (Fig. 1a) is re-
duced to a portion of the real uncertainty region (Fig. 1b).
Being limited to this partial view of the concept, the learner
is more likely to waste queries. The amount of the uncer-
tainty region that the learner misses is related to the number
of classes in the concept to learn that have not yet been iden-
tified.

Our intuition (Fig. 2) is that query selection should be
based not only on classifier confidence but also on distance
to previously labeled instances. In the presence of two in-
stances with equally low confidence—say, Xa and Xb in
Fig. 2—we prefer to select the one that is farther apart
from what we already know, i.e., from previously labeled
instances—referring to Fig. 2 we would prefer to query Xa

than Xb . This bias improves the exploratory behavior of the
active learning approach.

3.2 D-Confidence

The most common active learning approaches rely on classi-
fier confidence to select queries [4] and assume that the pre-
labeled set covers all the labels to learn. The performance of

these approaches is focused on accuracy, favoring exploita-
tion over exploration. Our scenario is somehow different:
we do not assume that we have pre-labeled instances from
all classes and, besides accuracy, we are mainly concerned
with the fast identification of representative instances from
all classes.

To achieve our goals we propose a new selection crite-
rion, d-Confidence, which deals well with under-represented
classes. Instead of relying exclusively on classifier con-
fidence we propose to select queries based on the ratio
between classifier confidence and the distance to known
classes. D-Confidence, weighs the confidence of the clas-
sifier with the inverse of the distance between the instance
at hand and previously known classes.

D-Confidence is expected to favor a faster coverage of
instance space, exhibiting a tendency to explore unknown
regions. As a consequence, it provides better exploratory be-
havior than confidence alone. This drift towards unexplored
regions and unknown classes is achieved by selecting the
instance with the lowest d-Confidence as the next query.
Lowest d-Confidence combines low confidence—probably
indicating instances from unknown classes—with high dis-
tance to known classes—pointing to unseen regions in in-
stance space. This effect produces significant differences in
the behavior of the learning process. Common active learn-
ers focus on the uncertainty region, asking queries that are
expected to narrow it down. The issue is that the portion of
the uncertainty region that is perceived at a given moment
is determined by the labels known at that moment. Focusing
our search for queries exclusively in this region, while we
are still looking for exemplary instances on some labels that
are not yet known, is not effective. Unknown classes hardly
come by unless they are represented in the current uncer-
tainty region.

Algorithm 1 presents d-Confidence, an active learning
proposal specially tailored to achieve a fast class representa-
tive coverage.

W is the working set, a representative sample of instances
from the problem space. Li is a subset of W . Members of Li

are the instances in W whose labels are known at iteration i.
Ci is the set of the class labels that have representative in-
stances in Li . U , a subset of W , is the set of unlabeled in-
stances present in the working set. At iteration i, Ui is the
(set) difference between W and Li ; hi represents the clas-
sifier learned at iteration i; qi is the query selected at itera-
tion i; conf i (uj , ck) is the posterior confidence on class ck

given instance uj , at iteration i.
The core of our proposal is the computation of d-

Confidence values for unlabeled instances; this is accom-
plished at the outer for cycle in Algorithm 1 as explained
next. At step (11) we select the next query as the instance
with the minimum d-Confidence. This query is then added
to the labeled set (12) and the whole process iterates until
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Algorithm 1 D-Confidence algorithm
(1) given W , L1

(2) compute distance among instances in W

(3) i = 1
while not stopping criteria do

(4) Ui = W − Li

(5) Ci = distinct class labels in Li

(6) learn hi from Li

(7) apply hi to Ui generating conf i (uj , ck)

for (uj ∈ Ui) do
for (ck ∈ Ci) do

(8) disti (uj , ck) = ClassDist(uj , ck)

(9) dconf i (uj , ck) = conf i (uj ,ck)

disti (uj ,ck)

end for
(10) dConf i (uj ) = maxck

(dconf i (uj , ck))

end for
(11) qi = argmin

uj

(dConf i (uj ))

(12) Li+1 = Li ∪ 〈qi, label(qi)〉
(13) i + +

end while

a given stopping criteria is met. At the current implementa-
tion, the learning process stops when the unlabeled pool is
exhausted.

3.2.1 Computing d-Confidence

D-Confidence is obtained as the ratio between confidence
and distance among unlabeled instances and known clas-
ses (1). We may view d-Confidence as the confidence per
unit distance.

dConf (u) = max
k

(
conf (uj , ck)

dist(uj , ck)

)
(1)

For a given unlabeled instance, uj , the classifier gener-
ates the posterior confidence w.r.t. known classes (7). The
distance between unlabeled instance uj and all labeled in-
stances in class ck , dist( ), is computed by ClassDist( ) at
step (8). ClassDist( ) is an indicator of the distance between
one instance and one group of instances (those belonging
to a given class). The Euclidean metric was previously used
in step (2) to compute the distance between all pairs of in-
stances in W . This distance indicator, dist( ), is the median
of the distances between instance uj and all instances in
class ck . We expect the median to soften the effect of out-
liers. At step (9) we compute dconf i (uj , ck)—the marginal
d-Confidence for each known class, ck , given the instance
uj —by dividing class confidence for a given instance by the
aggregated distance to that class.

The maximum d-Confidence on individual classes for a
given instance uj is finally computed, at step (10), as the
d-Confidence of the instance, dConf i (uj ).

3.2.2 Baseline criteria

D-Confidence aggregates two baseline criteria, confidence
and distance (based on farthest-first). Confidence, generated
at each iteration by the current version of the base classi-
fier in use, is the posterior probability of class ck given uj .
The aggregated distance to known classes, disti (uj , ck), is
computed by ClassDist(uj , ck) based on the individual dis-
tances between each pair of instances (2). Individual pair
distances might be computed by any distance function—at
the current implementation we are using the Euclidean dis-
tance. ClassDist(uj , ck) may also be any aggregation func-
tion computed on the individual pair distances between one
unlabeled instance uj ∈ Ui and every labeled instance from
class cK ∈ Ci known at iteration i—at the current imple-
mentation we are using the median.

ClassDisti (uj , ck) = median
(
dist

(
uj ,C

k
i

))
(2)

Ck
i is the set of labeled instances known at iteration i that

belong to class ck , i.e., Ck
i = {〈x, y〉 ∈ Li : y = ck}.

3.3 Effect of d-Confidence on SVM

The output of SVM classifiers is the signed distance to
the decision boundary measured in terms of half margin
width—a case located on the decision boundary output 0
while an instance which is collinear with support vectors
for class +1 generates an output 1 and an instance which is
collinear with support vectors for class −1 generates an out-
put −1. An instance with a distance to the decision bound-
ary that is n times the distance between the boundary and
a support vector output n. This distance, d , is transformed
into p ∈ [0,1]—representing the posterior confidence of the
learner on class +1.

If, as is commonly the case, this transformation is based
on logistic regression (3), the SVM classifier will be very
confident on instances that lie far from the decision bound-
ary (Fig. 3a), reducing the chances to select queries far from
the current uncertainty region.

p = f (d) = 1

1 + e−d
(3)

To prevent this behavior and to direct the learner to low
confidence instances but also to unexplored regions in in-
stance space, the d-Confidence value of a point is high in
the neighborhood of known instances decreasing with the
distance to those (Fig. 3b).

4 Evaluating d-Confidence performance

The ultimate goal of our evaluation of d-Confidence is to
assess its ability to identify instances from unseen classes
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Fig. 3 Effect of d-Confidence for class +1 with an SVM classifier. We assume we have labeled instances near the point (0,0) of the input space
(x1, x2). The decision boundary is the diagonal line from (−10,10) to (10,−10)

while querying for fewer labels without degrading accu-
racy when compared to its baseline criteria—confidence and
farthest-first. We have designed our evaluation plan with
several objectives in mind:

– first of all, we want to (a) compare the performance of
d-Confidence against its baseline criteria;

– then we want to (b) assess the impact of the base classifier
on the performance of d-Confidence;

– finally, we want to (c) determine whether the perfor-
mance of d-Confidence depends on the dimensionality
of the input feature space. In particular, we want to de-
termine whether d-Confidence is appropriate for high-
dimensional unstructured datasets, mainly text.

The evaluation was performed over several base classifiers,
several datasets and several query selection criteria, includ-
ing d-Confidence and its baseline criteria.

These objectives will be assessed from several perfor-
mance indicators:

– error and known classes (see Definition 1), evaluated at
each iteration throughout the learning cycle and

– first-hit (see Definition 2) and label disclosure complexity
(see Definition 3), evaluated once for every combination
of dataset, base classifier and query selection criterion.

4.1 Performance indicators

Our evaluation will be based on the performance indicators
referred above: error, known classes, first-hit and label dis-
closure complexity.

To make these performance indicators clear, lets assume
a generic classification task. C is the set of class labels to
learn. Ci ⊆ C is the set of class labels contained in a training
set Li .

Active learning is an iterative process requiring some
prior initialization. C1 is the set of labels that are represented

in L1, the initialization training set. At each iteration, new
labeled instances, called queries, are added to the training
set.

Error, is a common assessment criterion for classification
tasks. We have computed the progress of the generalization
error—the error in the test set—over all iterations as new
labeled instances are added to the training set.

Known classes is the number of classes that have rep-
resentative labeled instances in the training set at a given
iteration.

Definition 1 Known classes, kci is the cardinality of Ci ,
i.e., the number of classes given for learning.

First-hit is defined for each class. It is the number of
queries required to identify the first instance of the class for
a given dataset, base classifier and query selection criterion.

Definition 2 For each ck ∈ C, ck /∈ C1, first-hit, fhk , is the
number of queries required to identify the first instance of
class ck . The initialization queries, the instances in L1, are
not accounted for.

Label disclosure complexity (LDC) aims to evaluate the
ability of the learning process to reveal all the classes be-
longing to the concept to learn. LDC is inspired on label
complexity [22], defined under the active learning setting as
the number of queries that are sufficient and necessary to
learn the target concept. LDC is the minimum number of
queries being required to identify at least one instance from
every class to learn. LDC equals the maximum first-hit com-
puted over all the classes for a given combination of dataset,
base classifier and query selection criterion.

Definition 3 Label disclosure complexity (LDC) is the min-
imum number of queries that are required to identify at
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Table 1 Class distribution in
tabular datasets Dataset #Instances #Features 1 2 3 4 5 6 7 8 9 10 11

Iris 150 4 50 50 50

Cleveland 298 13 161 53 36 35 13

Vowels 330 10 30 30 30 30 30 30 30 30 30 30 30

Satlog 500 36 125 118 96 67 48 46

Poker 500 10 270 170 34 12 4 3 3 2 1 1

least one instance from every ck ∈ C. LDC is equal to
maxk(fhk).

4.2 Experimental setting

The evaluation plan includes two phases, A and B.
Phase A covers objectives (a) and (b) set above (Sect. 4).

The experiments in this phase were performed over tabular
data. We have used five datasets from the UCI repository [1]:

– Iris (one class is separable while the other two are not),
– Cleveland heart disease (imbalanced class distribution),
– a random sample from Vowels (higher number of distinct

classes than the others),
– a sample from Satlog (higher number of attributes than

the others) and
– a sample from Poker (highly imbalanced class distribu-

tion).

These datasets were selected for their properties, mainly
due to their distinct class distributions (Table 1).

The purpose of phase A is to assess d-Confidence on reg-
ular data avoiding to add extra disturbing factors that might
come by when using unstructured data. As base classifiers,
we have used a neural network (NNET), a decision tree
(RPART) and Support Vector Machine classifiers with lin-
ear kernels (SVM).

Phase B covers objective (c) set above (Sect. 4). For
phase B we have selected two high-dimensional unstruc-
tured datasets. Two samples from traditional text corpora
were used:

– a stratified sample from the 20 Newsgroups corpus (NG),
containing 500 documents described by 10333 terms, and

– a stratified sample from the R52 set of the Reuters-21578
collection (R52), containing 1000 documents described
by 6019 terms.

The NG dataset has documents from 20 distinct classes
while the R52 dataset has documents from 52 distinct
classes.

These datasets have been selected for their distinct class
distributions. The class distribution in NG is fairly balanced
(Fig. 4a) with a maximum frequency of 35 and a minimum
frequency of 20 while the R52 dataset presents an highly
imbalanced class distribution (Fig. 4b). The most frequent

Fig. 4 Class distribution in text corpora

class in R52 has a frequency of 435 while the least frequent
has only two instances in the dataset. This dataset has 42
classes, out of 52, with a frequency below 10 from which 31
are below 5.

In phase B we have used SVM classifiers in all exper-
iments. SVM are commonly referred as being among the
most accurate classifiers for high-dimensional input spaces,
in general, and text, in particular [10].

The query selection criteria under evaluation are
d-Confidence and its baseline criteria: standard confidence
and farthest-first. The performance of these criteria on all
datasets was estimated with 10-fold cross-validation. Folds
are stratified random samples comprising a partition of the
working set. Our aim is to compute the number of queries
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that are required to identify at least one instance from all
classes—from which we can compute known classes, first-
hit and LDC—and to compute generalization error.

The labels in the training set are initially hidden from the
classifier being revealed as the learning process iterates. For
each iteration, the active learning algorithm asks for the la-
bel of a single instance. For the initialization of each fold we
give two pre-labeled instances—from two distinct classes—
to the classifier. These are randomly selected from the train-
ing set. Initialization instances for a given fold with labels
already selected are disregarded. Given the fold, the same
initial instances are used for all experiments.

The Poker dataset has a highly imbalanced dataset caus-
ing some exceptions. The two classes with frequency 1 from
the Poker dataset are never selected as initial classes. Two
out of the 10 folds used for cross-validation do not include
all the 10 classes in the Poker dataset. For this reason, the
maximum number of classes found when using this dataset
is below the total number of classes in the dataset, since it is
estimated as a mean over all folds.

In all the experiments, in both phases, we have compared
our d-Confidence proposal against its baseline selection
criteria: the common confidence active learning setting—
where query selection is solely based on low posterior con-
fidence of the current classifier—and farthest-first—where
query selection is based only on distance from training in-
stances which is independent from the base classifier. Com-
paring these criteria against each other provides evidence
on the performance gains, or losses, of d-Confidence when
compared to its baselines: confidence, and distance (farthest-
first).

We have performed significance t-tests for the differences
of the means observed when using farthest-first, confidence
and d-Confidence. Statistically different means (significance
level of 5 %) are presented in bold face.

In some cases we are using samples extracted from the
whole dataset with fewer instances than those available.
There is no loss of generality arising from this fact since
the learning process converges, in respect to the indicators
being measured, before those samples are exhausted.

4.3 Empirical results from phase A

In the first experimental phase we want to assess the ability
of d-Confidence to reduce LDC over its baseline criteria.
In parallel we evaluate accuracy as well. This assessment
was performed over a set of base classifiers to evaluate their
effect on the performance of d-Confidence.

In every experiment the training set starts with two pre-
labeled instances. At each iteration a new instance is queried
for its label and added to the training set.

We have recorded the number of distinct labels identi-
fied and the error on the test set for each iteration, for every

combination of dataset, base classifier and query selection
criteria. From these, we have then computed the mean num-
ber of known classes and mean generalization error in each
iteration over all cross-validation folds.

The evolution of the error rate and the number of known
classes for each dataset, when using SVM as a base classi-
fier, is shown in Figs. 5a–5e with curves for each selection
criteria under evaluation.1 For convenience of representa-
tion, the mean number of known classes has been normal-
ized to the total number of classes in the dataset thus being
transformed into the percentage of known classes instead of
the absolute number of known classes. This way the number
of known classes and generalization error are both bounded
in the same range (between 0 and 1) and we can conve-
niently represent them on the same chart. Means at each
iteration are micro-averages—all the instances are equally
weighted—over all cross-validation folds for a given com-
bination of dataset, classifier and selection criterion.

The evolution of these indicators—generalization error
and mean number of known classes—throughout all the
learning cycle can be summed up to provide evidence on
overall performance. Means in Table 2 are micro-averages
over all iterations for a given combination of dataset, classi-
fier and query selection criteria, providing a perspective of
the average performance of the query strategy throughout
the learning cycle.

Besides the overall error and number of known classes
we have also observed first-hit (Table 3). When computing
first-hit for a given class we have omitted the experiments
where the labeled set for the first iteration contains that class,
following Definition 2.

From first-hit we compute LDC for each scenario (Ta-
ble 4). LDC is the maximum first-hit for a given scenario. It
provides the number of queries that are required by the ac-
tive learning strategy to identify at least one instance from
each class to learn, i.e., to achieve full coverage of the target
concept.

4.4 Analysis of results from phase A

In phase A we evaluate the performance of d-Confidence
over tabular data w.r.t. representativeness, accuracy and first-
hit. The influence of the base classifier on the learning strat-
egy is also evaluated.

If we focus on SVM, which will be our base classifier for
text corpora, we can observe in Table 2 that d-Confidence
performs better than confidence and farthest-first, both at la-
beling effort and accuracy, over tabular datasets. The only

1We will use the following notation to refer to results in tables and
charts: ff stands for farthest-first, c stands for confidence and dc stands
for d-Confidence. Generalization error will be referred by e, kc will
refer to the mean number of known classes and ldc refers to LDC.
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Fig. 5 Known classes and generalization error in tabular data (when using SVM as the base classifier)

exception occurs at the Poker dataset where the mean error
over all the learning process is lower when using confidence.

The dominance of d-Confidence throughout all the learn-
ing process is also observable from Fig. 5. This dominance
is clear, both in terms of error and known classes, at Iris,
Vowels and Satlog (Figs. 5a, 5c and 5d). Iris and Vowels
have uniform class distributions while Satlog has a fairly
balanced class distribution with a coefficient of variation
equal to 42 %—the coefficient of variation is the ratio of
the standard deviation to the mean. The same performance

is also evident at the Cleveland dataset (Fig. 5b). Here, how-
ever, while the gain of d-Confidence over confidence is clear
it is not as salient over farthest-first. The Cleveland dataset
has one majority class with a frequency over 50 % and one
under-represented class with frequency below 5 %. The co-
efficient of variation is equal to 98 %. At the highly im-
balanced Poker dataset (Table 1) d-Confidence takes clear
advantage over confidence w.r.t. known classes over all the
learning process (Fig. 5e). We can also observe that d-
Confidence is outperformed by farthest-first w.r.t. known
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Table 2 Micro-averaged
number of known classes and
error. Means have been
computed over all iterations
from all cross-validation folds
for every combination of
dataset, classifier and query
selection criteria

Dataset Classifier ff.kc c.kc dc.kc ff.e c.e dc.e

Iris SVM 2.8 3.0 3.0 0.257 0.134 0.082

Iris NNET 2.8 2.7 3.0 0.14 0.164 0.05

Iris RPART 2.8 3.0 3.0 0.342 0.187 0.184

Cleveland SVM 4.9 4.8 4.9 0.451 0.473 0.45

Cleveland NNET 4.9 4.9 4.9 0.464 0.465 0.447

Cleveland RPART 4.9 4.9 4.9 0.479 0.496 0.485

Poker SVM 8.7 7.2 8.8 0.484 0.466 0.484

Poker NNET 8.7 7.8 8.8 0.526 0.49 0.49

Poker RPART 8.7 7.5 8.6 0.524 0.495 0.517

Satlog SVM 5.6 5.8 60 0.349 0.186 0.162

Satlog NNET 5.6 5.9 5.9 0.729 0.726 0.739

Satlog RPART 5.6 5.9 6.0 0.430 0.261 0.28

Vowels SVM 9.8 10.4 10.5 0.546 0.341 0.322

Vowels NNET 9.8 10.7 10.6 0.661 0.601 0.623

Vowels RPART 9.8 10.7 10.5 0.645 0.617 0.632

classes at the initial quarter of the learning process—up to it-
eration 106—but overcomes it from there on. At this dataset,
however, the error of d-Confidence is clearly dominated by
that of confidence at the initial stage of the learning process.

The differences in mean error gains are statistically
significant at the Iris, Satlog and Vowels datasets in fa-
vor of d-Confidence. At the other datasets—Cleveland and
Poker—the difference is not statistically significant. The
most relevant evidence is probably the fact that error does
not degrade; in fact, it generally improves when using d-
Confidence, when compared to confidence and farthest-first,
with SVM base classifiers.

If we move now to the other classifiers—NNET (neural
network) and RPART (decision tree)—over tabular data, we
can observe a similar dominance. D-Confidence achieves
higher or equal means of known classes on all combina-
tions except when using NNET and RPART over the Vowels
dataset and RPART over Poker (Table 2). When it comes to
the mean error rate, d-Confidence does not perform has well
has when relying on a SVM base classifier. D-Confidence
presents a lower mean error at the Iris dataset, when using
neural networks or decision trees, and also at Cleveland and
Poker when using NNET. At the other combinations, the er-
ror observed when using d-Confidence as a query selection
strategy is outperformed by the other strategies, although
with no statistical significance.

D-Confidence also outperforms confidence first-hit per-
formance, in general. The same does not hold when com-
paring d-Confidence and farthest-first w.r.t. first-hit where
we do not perceive clear evidence on the best performer.

If we sum the number of classes over all datasets, we can
find a total of 35 classes over the five tabular datasets (three
from Iris, five from Cleveland, 10 from Poker, six from Sat-

log and 11 from Vowels). These datasets have been submit-
ted to three distinct classifiers (SVM, NNET and RPART).
In total, for all the experiments, we have evaluated 105
classes.

We can observe that confidence first-hits classes before
d-Confidence only on 33 out of these 105 classes (Table 3).
From these 33 cases, eight happen when using SVM as a
base classifier, 12 when using NNET and 13 when using
RPART. It is worthwhile noting that 17 out of these 33
cases occur at the Vowels dataset. The Vowels dataset has
a uniform class distribution (30 instances per class). The
added value of d-Confidence is more evident at imbalanced
datasets.

The Poker dataset—where two out of ten classes oc-
cur only on a single case corresponding to a relative fre-
quency of 0.2 % and six classes have a frequency below
1 %—allows evaluating the early identification of under-
represented classes. The average first-hit computed from
Table 3 over under-represented classes—classes 5 to 10—
shows that confidence is not appropriate to find rare in-
stances (Table 5).

D-Confidence outperforms both its baseline criteria w.r.t.
the early identification of instances from under-represented
classes when using SVM and NNET as base classifiers.
Farthest-first however, takes the lead when using decision
trees (RPART).

LDC provides further evidence supporting the improved
performance of d-Confidence over its baseline criteria. In
fact, d-Confidence has the lowest LDC on all combinations
of dataset and classifier that have been evaluated on tabular
data except on the Vowels dataset when using RPART as a
base classifier (Table 4). The average gain on d-Confidence
LDC for all pairs dataset/classifier, when compared to confi-
dence, on tabular data is of 542 %, meaning that confidence
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Table 3 Mean number of queries required to first hit unknown classes

Dataset Classifier A.L. 1 2 3 4 5 6 7 8 9 10 11

Iris SVM ff 1.0 65.3 1.0

Iris SVM c 1.0 6.7 2.7

Iris SVM dc 1.0 2.7 1.0

Iris NNET ff 1.0 65.3 1.0

Iris NNET c 37.5 1.0 83.0

Iris NNET dc 1.0 1.3 1.0

Iris RPART ff 1.0 65.3 1.0

Iris RPART c 1.0 2.0 3.3

Iris RPART dc 1.0 1.7 1.0

Cleveland SVM ff 3.2 12.5 13.5 2.3 24.2

Cleveland SVM c 2.5 7.0 8.3 19.0 39.8

Cleveland SVM dc 2.7 14.5 8.3 4.8 8.0

Cleveland NNET ff 3.2 12.5 13.5 2.3 24.2

Cleveland NNET c 2.2 2.8 5.3 3.5 16.2

Cleveland NNET dc 1.7 9.8 4.7 3.5 10.5

Cleveland RPART ff 3.2 12.5 13.5 2.3 24.2

Cleveland RPART c 3.0 1.0 17.7 4.3 16.2

Cleveland RPART dc 2.2 13.2 3.5 4 5.3

Poker SVM ff 4.5 2.0 2.9 17.2 27.6 85.1 39.1 63.5 200.4 63.7

Poker SVM c 1.0 3.0 19.5 42.8 112.5 112.2 146.9 222.9 250.9 248.8

Poker SVM dc 3.0 2.0 4.6 9.0 45.0 96.6 98.2 68.1 90.0 58.8

Poker NNET ff 4.5 2.0 2.9 17.2 27.6 85.1 39.1 63.5 200.4 63.7

Poker NNET c 2.5 1.0 12.5 41.2 74.7 145.3 177.5 67.0 70.6 311.6

Poker NNET dc 2.0 2.0 7.0 26.1 49.2 38.7 74.0 63.6 114.2 95.1

Poker RPART ff 4.5 2.0 2.9 17.2 27.6 85.1 39.1 63.5 200.4 63.7

Poker RPART c 1.0 3.0 29.0 48.0 34.1 116.8 124.5 211.6 326.5 155.9

Poker RPART dc 2.5 2.0 5.6 11.3 24.9 89.0 83.8 73.0 168.4 92.0

Satlog SVM ff 68.0 107.0 20.9 1.6 1.1 95.8

Satlog SVM c 11.5 5.2 34.1 31.6 28.1 23.1

Satlog SVM dc 8.8 9.6 4.4 3.0 1.1 9.5

Satlog NNET ff 68.0 107.0 20.9 1.6 1.1 95.8

Satlog NNET c 4.8 6.6 7.9 2.5 24.4 6.2

Satlog NNET dc 3.5 8.4 5.0 2.5 1.2 15.9

Satlog RPART ff 68.0 107.0 20.9 1.6 1.1 95.8

Satlog RPART c 5.8 1.0 2.3 10.9 16.0 7.8

Satlog RPART dc 7.8 7.4 4.1 2.4 1.1 11.4

Vowels SVM ff 1.1 13.0 22.6 52.2 60.5 71.4 66.4 8.2 62.1 3.9 88.6

Vowels SVM c 2.5 10.0 14.0 31.0 12.3 27.3 29.0 15.0 31.3 18.3 24.0

Vowels SVM dc 2.0 12.0 19.0 16.0 24.3 26.3 23.3 2.3 25.7 3.0 22.7

Vowels NNET ff 1.1 13.0 22.6 52.2 60.5 71.4 66.4 8.2 62.1 3.9 88.6

Vowels NNET c 27.3 13.0 4.5 7.1 13.8 7.5 9.5 14.8 5.6 11.8 5.9

Vowels NNET dc 3.6 8.4 15.9 7.8 21.6 15.5 9.5 7.5 11.9 4.8 24.3

Vowels RPART ff 1.1 13.0 22.6 52.2 60.5 71.4 66.4 8.2 62.1 3.9 88.6

Vowels RPART c 2.0 31.6 17.8 4.9 2.8 12.8 10.0 3.8 12.9 11.8 4.0

Vowels RPART dc 1.3 8.0 39.0 17.1 13.2 30.9 10.5 3.2 26.6 6.2 39.9
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Table 4 LDC for tabular datasets

Dataset Classifier ff.ldc c.ldc dc.ldc Best

Iris SVM 65.3 6.7 2.7 dc

Iris NNET 65.3 83.0 1.3 dc

Iris RPART 65.3 3.3 1.7 dc

Cleveland SVM 24.2 39.8 14.5 dc

Cleveland NNET 24.2 16.2 10.5 dc

Cleveland RPART 24.2 17.7 13.2 dc

Poker SVM 200.4 250.9 98.2 dc

Poker NNET 200.4 311.6 114.2 dc

Poker RPART 200.4 326.5 168.4 dc

Satlog SVM 107.0 34.1 9.6 dc

Satlog NNET 107.0 24.4 15.9 dc

Satlog RPART 107.0 16.0 11.4 dc

Vowels SVM 88.6 31.3 26.3 dc

Vowels NNET 88.6 27.3 24.3 dc

Vowels RPART 88.6 31.6 39.9 c

Table 5 Average first-hit over under-represented classes at the Poker
dataset

Classifier ff c dc

SVM 80 182 76

NNET 80 141 72

RPART 80 162 89

requires over six times more queries than d-Confidence to
identify all class labels. This figure, however, is highly bi-
ased by the outlier observed on Iris/NNET. Nevertheless, if
we remove this outlier from our data we still have a gain
of 101 % in LDC, meaning that, on average, confidence re-
quires twice as many queries as d-Confidence to achieve a
full coverage of the classes to learn on all tabular datasets.

4.4.1 Performance under different levels of class imbalance

With the purpose of reinforcing the previous evidence sup-
porting the ability of d-Confidence when in presence of im-
balanced data, we have evaluated the active learning strate-
gies being studied under different levels of class imbalance.
We have based this evaluation on the two datasets exhibit-
ing a uniform distribution—Iris and Vowels—and on SVM
base classifiers. The original training datasets were manipu-
lated to ensure imbalanced class distributions. We have ran-
domly sampled from each training fold a set of instances
from given classes to be removed from the training dataset,
thus achieving biased distributions with minority classes.
Then we have repeated the learning process as before to
these training data and collected the results described below.

From each dataset we have extracted four samples ac-
cording to the process briefly described above. At Iris the

Table 6 LDC under different imbalance levels. SVM as base classi-
fier. Imbalance is the ratio of the frequency of the minority classes to
the other classes

Dataset Imbalance ff.ldc c.ldc dc.ldc Best

Iris 19 % 84 61 3 dc

Iris 11 % 87 61 3 dc

Iris 6 % 87 61 4 dc

Iris 2 % 88 88 5 dc

Vowels 21 % 99 26 23 dc

Vowels 10 % 84 39 35 dc

Vowels 7 % 98 69 55 dc

Vowels 3 % 102 58 74 c

number of instances from one of the classes—which will be-
come the minority class—was reduced in those samples to 1,
3, 5 and 9, corresponding to a percentage of 2 %, 6 %, 11 %
and 19 % relative to the frequency of each of the two re-
maining classes which kept their uniform distribution from
the original training dataset.

At Vowels, a dataset with 11 classes, the number of in-
stances from four of them—which will become the minority
classes—was reduced in those samples to 1, 2, 3 and 6, cor-
responding to a percentage of 3 %, 7 %, 10 % and 21 %
relative to the frequency of each of the remaining classes
which kept their uniform distribution from the original train-
ing dataset.

The LDC computed from these experiments (Table 6)
confirms the ability of d-Confidence to retrieve rare in-
stances in comparison to its baseline criteria.

On average, d-Confidence presents a lower LDC than its
baseline criteria on all settings except at Vowels with 3 %
imbalance. We may observe the same scenario, with a signif-
icant dominance by d-Confidence, when analyzing the em-
pirical results on the number of known classes and on er-
ror (Table 7). D-Confidence outperforms its baseline criteria
with statistical significance at all settings except at the Vow-
els dataset with 21 % imbalance.

4.4.2 Common queries selection

Comparing the instances that are selected by each active
learning strategy adds relevant information to our discus-
sion. Are all strategies selecting the same instances at the
same time throughout the learning cycle? We have inves-
tigated this question by measuring the percentage of com-
mon selected queries as the learning process iterates at Iris
(Fig. 6a) and Vowels (Fig. 6b). Each curve in charts repre-
sents the average, computed over all cross-validation folds
at each iteration, of the percentage of common instances ob-
served in the labeled sets used to train the classifier under
the referred strategies—d-Confidence (dc), confidence (c) or
farthest-first (ff).
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Table 7 Micro-averaged
number of known classes and
error. Means have been
computed over all iterations
from all cross-validation folds
for every combination of
dataset, imbalance level and
query selection criteria. Bold
faced values are statistically
significant at 5 %

Dataset Imbalance ff.kc c.kc dc.kc ff.e c.e dc.e

Iris 2 % 2.56 2.48 2.96 0.72 0.79 0.67

Iris 6 % 2.60 2.58 2.98 0.63 0.59 0.40

Iris 11 % 2.61 2.59 2.98 0.58 0.49 0.26

Iris 19 % 2.64 2.62 2.98 0.52 0.41 0.15

Vowels 3 % 8.11 8.87 8.98 0.94 0.92 0.92

Vowels 7 % 8.40 9.36 9.55 0.92 0.92 0.91

Vowels 10 % 8.65 9.77 10.12 0.91 0.89 0.89

Vowels 21 % 8.83 10.27 10.28 0.81 0.77 0.76

Fig. 6 Evolution of the percentage of common selected queries throughout the learning cycle. Each line represents the percentage of common
instances for a given pair of strategies (dc-c, dc-ff, c-ff)

It is clear from Fig. 6a that d-Confidence and confidence
query many common instances during the initial stage of the
learning process at the Iris dataset. In fact, after the first 29
queries the labeled sets of both these strategies have nearly
60 % intersection. This level of overlapping then stabilizes
to start increasing later as a consequence of the exhaustion
of the unlabeled set which necessarily increases the inter-
ception between the labeled sets of all strategies.

The opposite behavior is observed when comparing
farthest-first with either confidence or d-Confidence. De-
spite the fact that d-Confidence and farthest-first share many
common instances at the very first iterations (60 %), this
overlap drops fast getting close to 20 % after 11 queries.

At the Vowels dataset, the overlap between the labeled
sets being built by all active learning strategies increases
at a constant rate throughout the majority of the learning
process. Only at the very beginning, during the initial 35
iterations, there is some difference in this behavior with
d-Confidence and farthest-first querying more common in-
stances than the rest. As observed also at the Iris dataset,
confidence and farthest-first are the strategies sharing less
queries.

4.5 Empirical results from phase B

The evolution of the error rate and the number of known
classes over text corpora is shown in Figs. 7a and 7b with
curves for each selection strategy under evaluation.

Similarly to what we have done for phase A, the evolution
of error and mean number of known classes throughout all
the learning cycle has been also summed up to summarize
overall performance on text corpora (Table 8).

Besides the overall number of queries required to retrieve
labels from all classes and generalization error, we have also
observed first-hit (Tables 9 and 10). When computing first-
hit for a given class we have excluded the experiments where
the labeled set for the first iteration contains instances from
that class.

The learning process for the R52 dataset was halted after
600 iterations, before exploring the full unlabeled pool—the
working set had 1000 instances, 900 of which were used for
training in each fold. All the class labels to learn were iden-
tified after 600 iterations for all the selection criteria, except
for farthest-first. The mean number of known classes after
600 iterations equals 52 for confidence and d-Confidence,
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Fig. 7 Known classes and generalization error

Table 8 Micro-averaged number of known classes and error. Means have been computed over all iterations from all cross-validation folds for
every combination of dataset, classifier and query selection criteria

Dataset Classifier ff.kc c.kc dc.kc ff.e c.e dc.e

NG SVM 19.2 18.6 19.1 0.631 0.629 0.612

R52 SVM 34.4 35.5 39.7 0.531 0.383 0.447

meaning these criteria have achieved full coverage of the
class labels to learn in all the cross-validation folds. For
farthest-first this mean is 50.3 which means that farthest first
cannot identify all class labels in all cross-validation folds
after 600 iterations. Farthest-first missed in several folds, six
classes with frequency of two, two classes with frequencies
of three and one class with a frequency of four. In such cases
we have assigned a first-hit value of 601 for the unidenti-
fied classes. For instance, in a given fold where farthest-first
misses two classes their first-hit values are assumed to be
601 and 602—the very first queries after halting the learning
process at 600 iterations. First-hit means were computed on
this assumption. Under such circumstances this is the most
favorable assumption for farthest-first.

We have computed LDC—the number of queries that are
required to identify at least one instance from each class to
learn—from first-hit, according to Definition 3 for each sce-
nario (Table 11).

4.6 Analysis of results from phase B

Figure 7a shows that there is no clear dominance, neither
from d-Confidence nor from farthest-first, when finding un-
known classes in the NG dataset. However, both these crite-
ria outperform confidence at this dataset. The difference be-
tween mean first-hit of d-Confidence and farthest-first in Ta-

ble 9—20.45 for farthest-first and 21.57 for d-Confidence—
is not statistically significant, at a 5 % significance level.

D-Confidence accuracy dominates that of farthest-first
(Fig. 7b). The mean accuracy of d-Confidence over all it-
erations is 2 % better that the one of farthest-first. This re-
sult is significant at 5 % significance. The NG dataset has a
fairly balanced class distribution. On the R52 dataset, which
has an highly imbalanced class distribution, we can observe
very distinctive performance (Fig. 7b).

In R52, farthest-first starts by identifying unknown
classes a little faster than d-Confidence (Fig. 7a). How-
ever, after the initial learning stage, d-Confidence outper-
forms and dominates farthest-first. When identifying un-
known classes, farthest-first leads, up to the 45th query, on
average, taking a maximum advantage of two classes after
37 queries. After 45 queries, with 13.2 classes identified on
average, d-Confidence clearly dominates farthest-first.

It is interesting to notice that farthest-first beats d-
Confidence on the majority classes (Tables 10) but, when
all majority classes are found and only minority classes are
left unexposed, d-Confidence reveals its ability to find rare
instances. The mean frequency of the classes that are first
found in R52 by d-Confidence is 3.2, while it is 12.5 for
confidence and 33.8 for farthest-first.

If we take a step back to analyze d-Confidence first-
hit against farthest-first on the highly imbalanced Poker
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Table 9 First-hit for the NG dataset

Class Freq ff-fh c-fh dc-fh

1 29 29.8 36.9 35.7

2 22 45.4 46.6 45.7

3 21 87.9 63.7 85.4

4 34 7.5 29.4 7.4

5 35 22.2 23.6 25.2

6 24 17.6 41.2 17.1

7 21 11.4 59.6 12.6

8 24 12.6 32.9 13.1

9 25 12.5 45.4 11.4

10 22 45.5 41.1 48.9

11 22 3.8 47.2 3.9

12 24 3.7 31.8 4.8

13 28 30.0 31.3 34.0

14 28 6.1 25.8 5.4

15 22 5.4 27.4 6.2

16 28 2.4 14.9 2.6

17 23 25.3 23.8 31.0

18 26 8.6 38.3 8.6

19 22 22.7 23.6 24.7

20 20 8.6 29.7 7.7

Mean 20.45 35.71 21.57

dataset we may find some unexpected outcome. In this case,
farthest-first generally outperforms d-Confidence in finding
rare instances, contrary to what happens in text corpora. This
is probably a sign that distance might be a better discrim-
inator in low-dimensional input spaces than it is in high-
dimensional input spaces.

Distance functions might lose their usefulness in high-
dimensional spaces where the distance to the nearest and far-
thest neighbors come very similar—the curse-of-dimension-
ality [7]. This effect is most noticeable when using Lk-norm
distances with a high value of k (k ≥ 3). Euclidean dis-
tance, a L2-norm metric, is not much affected [3]. To as-
sess this effect on our datasets we have computed the rela-
tive contrast—measuring the relative distance of the nearest
and farthest neighbors of a given query—for all instances
in each dataset (4). In Table 122 we can observe that the
discrimination between the nearest and farthest neighbors is
not too sensitive to the data dimensionality. Despite the fact
that the minimum relative contrast exhibits a negative cor-
relation of 64 % to the data dimensionality, the maximum
relative contrast is not correlated and there is no evidence

2Notation: min.rc and min.rc stand for the minimum and maximum
relative contrast observed in each dataset; global.rc is a global contrast
measure for each dataset computed by (4) but using the maximum and
minimum distances between all the instances in the dataset.

Table 10 First-hit (ff-fh, c-fh and dc-fh) for the R52 dataset

Class Freq ff-fh c-fh dc-fh

1 239 1.0 24.0 1.0
2 5 78.5 115.6 64.7
3 3 230.3 118.6 178.7
4 2 98.7 167.4 107.8
5 6 239.0 173.7 110.6
6 11 7.5 80.0 10.0
7 4 15.9 123.6 19.1
8 3 130.0 173.3 102.9
9 7 240.2 128.8 136.0

10 2 153.2 118.0 99.5
11 40 14.6 12.4 20.0
12 2 209.9 158.5 166.4
13 435 2.5 25.2 4.0
14 2 219.0 152.2 150.4
15 3 192.8 214.1 123.9
16 7 113.7 91.9 107.8
17 9 33.1 92.7 46.3
18 5 24.9 96.7 16.8
19 2 93.1 140.0 104.7
20 3 411.8 206.7 184.9
21 2 273.2 143.6 154.5
22 2 588.6 188.9 202.8
23 30 76.0 28.9 63.4
24 4 341.9 171.7 171.1
25 4 253.9 196.2 224.0
26 2 459.6 313.1 256.4
27 5 282.8 130.0 150.7
28 2 294.7 216.3 144.5
29 2 422.5 175.5 198.7
30 3 68.5 213.3 85.2
31 2 111.7 206.0 126.7
32 2 248.3 233.7 167.0
33 30 53.0 39.7 49.7
34 15 67.6 44.6 99.0
35 4 187.8 271.6 219.6
36 2 58.2 153.2 84.1
37 3 45.7 137.6 44.8
38 3 66.6 159.3 52.1
39 2 101.2 226.0 106.9
40 2 90.4 144.3 75.5
41 5 67.6 68.7 62.9
42 3 206.6 159.1 144.8
43 4 43.4 153.4 36.7
44 14 72.7 103.8 76.6
45 3 86.5 179.7 123.9
46 12 3.2 68.6 6.6
47 2 45.9 148.5 51.1
48 3 101.9 160.8 76.1
49 35 39.4 36.4 72.9
50 3 219.0 175.6 108.7
51 3 482.2 146.1 183.5
52 2 302.7 258.8 196.5

Mean 159.10 143.58 107.16
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that high-dimensional data are affecting the distance met-
ric in use. The lack of correlation between the global con-
trast measure and data dimensionality supports this conclu-
sion.

DMax − Dmin

Dmin
(4)

At the R52 dataset the difference of mean error is sig-
nificant in favor of confidence. D-Confidence reduces the
labeling effort that is required to identify instances in R52,
exhibiting better representativeness capabilities in this cor-
pus. However, the error rate gets worse. Apparently, d-
Confidence gets to know more classes from the target con-
cept earlier although less sharply. In the R52 dataset we are
exchanging accuracy for representativeness.

A similar analysis on the LDC for text corpora (Table 11)
is not as clear on d-Confidence improvement. D-Confidence
outperforms confidence on the R52 corpus, with a lower
LDC by 22 % but confidence outperforms d-Confidence on
NG, with a lower LDC by 34 %. Nevertheless it is relevant

Table 11 LDC for text corpora

Dataset Classifier ff.ldc c.ldc dc.ldc Best

NG SVM 87.9 63.7 85.4 c

R52 SVM 588.6 313.1 256.4 dc

Table 12 Relative contrast using Euclidean distance

Dataset Dim. Instances min.rc max.rc global.rc

Iris 4 150 4.477 63.985 69.852

Vowels 10 330 2.424 51.371 65.253

Poker 10 500 2.117 7.426 9.630

Cleveland 13 298 1.085 59.944 68.921

Satlog 36 500 1.682 23.760 26.258

R52 6019 1000 0.315 52.292 67.812

NG 10333 500 0.428 23.034 32.197

that d-Confidence, once again, performs better on imbal-
anced data.

Figures 8 provide additional evidence on the ability of
d-Confidence to find rare instances. These charts, where
classes are sorted by increasing frequency, show that d-
Confidence ensures a significant reduction in the mean num-
ber of queries that are required to first hit classes in R52.
This reduction is more important in minority classes, i.e.,
in the first classes appearing in the horizontal axis. These
charts represent the difference in d-Confidence first-hit com-
pared to their baseline criteria. Negative differences mean
that d-Confidence performed better, i.e., found representa-
tive instances of the class with fewer queries than its base-
line criteria.

The dashed trend lines represented in both charts (Fig. 8),
with a positive slope clearly show that the gain in d-
Confidence first-hit, when compared to its both baseline cri-
teria, decreases when the class frequency increases.

Another perspective of these results may clarify our
point of view. In Fig. 9a we give, for each different
value of class frequency in the working set, the number
of classes that were first found by each criteria—lowest
first-hit among all criteria. Figure 9b represents the ac-
cumulated number of first found classes. As detailed be-
low, both these charts show evidence on the improved abil-
ity of d-Confidence to find exemplary instances of under-
represented classes.

When comparing d-Confidence against farthest-first we
can observe that from the 17 classes in R52 that have a
frequency of 2, d-Confidence finds 11 before farthest-first.
From the 12 classes with a frequency of 3, d-Confidence
finds 10 before farthest-first. From the 13 classes with fre-
quency between 4 and 9, d-Confidence finds 10 with fewer
queries than farthest-first. From the remaining 10 classes,
with a frequency between 11 and 435, d-Confidence finds
only two before farthest-first.

A similar comparison against confidence shows similar
results. From the 17 classes in R52 that have a frequency

Fig. 8 Average gain of d-Confidence over its baseline criteria to first hit classes on R52. Classes are sorted by increasing frequency
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Fig. 9 Number of classes of a given frequency first found by each criteria on R52

of 2, d-Confidence finds 13 before confidence. From the 12
classes with a frequency of 3, d-Confidence finds 10 before
confidence. From the 13 classes with frequency between 4
and 9, d-Confidence finds 10 with fewer queries than con-
fidence. From the remaining 10 classes, with a frequency
between 11 and 435, d-Confidence finds five before confi-
dence.

4.7 Prevailing outcomes

The experimental results from both phases provide evidence
on the performance of d-Confidence towards our objectives
(Sect. 4).

Base classifier The performance of d-Confidence seems to
be slightly affected by the base classifier, mainly w.r.t. error.
When referring to known classes, d-Confidence generally
improves over its base classifiers. D-Confidence is suited for
SVM classifiers where it generally improves over its base-
line criteria. When using other base classifiers the perfor-
mance is affected but improvements are still observable.

Confidence vs. d-Confidence If we focus on SVM, we can
observe that d-Confidence performs better than confidence,
both at labeling effort and accuracy, over tabular datasets
as well as over text corpora. D-Confidence dominates con-
fidence w.r.t. known classes throughout all the learning pro-
cess. D-Confidence also outperforms confidence first-hit
performance, in general. This dominance is also evident
w.r.t. error except on highly imbalanced datasets where con-
fidence takes the lead.

Farthest-first vs. d-Confidence D-Confidence clearly dom-
inates farthest-first w.r.t. error when using SVM classi-
fiers. The relative performance of these two criteria when
it comes to known classes depends on the class distribu-
tion at the working set. On balanced datasets, d-Confidence

clearly outperforms farthest-first. On imbalanced datasets d-
Confidence still outperforms farthest-first on average; how-
ever farthest-first generally beats d-Confidence in finding
majority classes.

Data dimensionality The dimensionality of the input fea-
ture space does not compromise d-Confidence that ex-
hibits performance improvements over its baseline crite-
ria at tabular low-dimensionality data as well as at high-
dimensional text corpora. However, some experimental re-
sults show that, unexpectedly, farthest-first outperforms d-
Confidence when finding rare instances in imbalanced low-
dimensional data (Poker dataset) while the same is not ob-
served in high-dimensional data (R52 corpus). This has
probably to do with the better discriminative abilities of dis-
tance at low-dimensional input spaces when compared to
high-dimensional input spaces. This might require a param-
eter to tune the relative weight of confidence and distance in
d-Confidence.

Balanced vs. imbalanced class distributions In general, d-
Confidence outperforms its baseline criteria in finding ex-
emplary instances from all the target classes. The gain is
particularly relevant when finding under-represented classes
in presence of highly imbalanced data. This gain however is
achieved at the cost of accuracy. When in presence of imbal-
anced data, the exploratory bias of d-Confidence promotes
exchanging accuracy for representativeness.

5 Conclusions and future work

The evaluation procedure that we have performed provided
statistical evidence on the performance of d-Confidence
when compared to its baseline criteria—confidence and
farthest-first. D-Confidence reduces the labeling effort and
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identifies exemplary cases for all classes faster than confi-
dence and farthest-first alone. This gain is higher for mi-
nority classes, which are the ones where the benefits of d-
Confidence become more relevant.

The base classifier used in the learning process has some
influence on accuracy but apparently not on the labeling ef-
fort. D-Confidence consistently presents lower label disclo-
sure complexity irrespectively of the base classifier. When
it comes to error, the models generated by SVM classifiers
seem to take better advantage of d-Confidence than neural
networks or decision trees.

D-Confidence performs better in imbalanced datasets
where it provides significant gains that greatly reduce the
labeling effort. However, d-Confidence consistently outper-
forms confidence and farthest-first in terms of label com-
plexity.

In general, d-Confidence improves the performance of its
baseline criteria both from the exploration point of view—
finding unknown classes faster—and from the exploita-
tion point of view—improving, although marginally, the
accuracy—when applied to tabular, low-dimensional data.

When applied to text corpora, farthest-first was outper-
formed by d-Confidence on the imbalanced corpus and pre-
sented similar performance on the balanced corpus, in terms
of finding unknown classes, but with lower accuracy.

In general, d-Confidence achieved better performance on
the imbalanced corpus than on the balanced one. The main
drawback of d-Confidence when applied on the imbalanced
text corpus is that the reduction in the labeling effort that is
achieved in identifying unknown classes is obtained at the
cost of increasing error. This increase in error is probably
due to the fact that we are diverting the classifier from fo-
cusing on the decision function of the majority classes to
focus on finding new, minority, classes. As a consequence
the classification model generated by d-Confidence is able
of identifying more distinct classes faster but gets less sharp
in each one of them. This is particularly harmful for accu-
racy since a fuzzier decision boundary for majority classes
might cause many erroneous guesses with a negative impact
on error.

We are now exploring semi-supervised learning to lever-
age the intrinsic value of unlabeled instances so we can
benefit from the reduction in labeling effort provided by d-
Confidence and improve accuracy.

Comparing the instances that are being selected by each
active learning strategy—for instance, by computing the per-
centage and class distribution of common selected instances
as the learning process evolves—might help understanding
operating patterns from each strategy. Although this line of
work is in progress, the preliminary results reveal the dis-
tinction between confidence and farthest-first strategies.

Calculating distances between documents may be de-
manding and cause other limitations to d-Confidence. This

effort can be reduced by first pre-selecting a subset of docu-
ments using a less demanding process and only then choos-
ing the document to label. This is another line of future
work.

Another fundamental aspect of active learning that we are
focused on is the definition of a stopping criteria so we can
decide when to stop querying.
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