J Braz Comput Soc (2012) 18:201-211
DOI 10.1007/s13173-012-0067-5

ORIGINAL PAPER

Analyzing the scalability of coordination requirements

of a distributed software project

Cleidson R.B. de Souza - Jean M.R. Costa -
Marcelo Cataldo

Received: 27 January 2011 / Accepted: 21 February 2012 / Published online: 3 April 2012

© The Brazilian Computer Society 2012

Abstract Collaborative tools have been proposed to sup-
port different domains, including software development. De-
spite important previous work on the design of collabora-
tive tools, none directly addresses the required scalability of
these collaborative tools. As such, the design of these tools is
hindered because it does not take into account real-world re-
quirements for handling and presenting information to sup-
port collaborative activities. In this paper, we use an ap-
proach to compute the coordination requirements of an ac-
tor, and by so doing, we are able to identify the required scal-
ability of the collaborative tools to support these actors. The
coordination requirements are the likely set of actors that a
particular individual might need to coordinate/communicate
with. We computed the coordination requirements of soft-
ware developers involved in a large-scale distributed soft-
ware development project. Software developers’ coordina-
tion requirements were computed in four different time in-
tervals: 1, 7, 15, and 30 days so that we could assess the
scalability of collaborative tools in both short and long term
software development activities. Our results suggest that, in
some cases, the number of coordination requirements of a

This is a revised and extended version of a previous paper that
appeared at SBSC 2010, the Brazilian Symposium on Collaborative
Systems.

C.R.B. de Souza (X)) - J.M.R. Costa

Faculdade de Computagao, Universidade Federal do Par4, Belém,
Brazil

e-mail: cleidson.desouza@acm.org

J.M.R. Costa
e-mail: jeanmrc @gmail.com

M. Cataldo

Institute for Software Research, Carnegie Mellon University,
Pittsburgh, USA

e-mail: mcataldo@cs.cmu.edu

given actor might be very large, and that current collab-
orative software development tools do not provide proper
support for such values. Furthermore, we observed that co-
ordination requirements often involved members of differ-
ent teams and from different locations, which increases the
importance of having collaborative tools properly designed,
given the difficulty of collaborating across organizational
and geographical boundaries.

Keywords Scalability - Coordination requirements -
Empirical study - Distributed software development

1 Introduction

All activities involving groups of actors working together re-
quire that these actors coordinate their activities to guaran-
tee that the contributions made by an actor do not affect the
contributions from other actors. In software development,
this is not different: to ensure a proper integration of soft-
ware components, the work of all developers needs to be
aligned [21]. In order to do that meetings, emails, informal
conversations, and other approaches [1, 30, 39] are essen-
tial. In addition, tool support plays an important role in fa-
cilitating the coordination of software development activi-
ties [1, 16, 21, 24]. For instance, configuration management
systems allow developers to be aware of their colleagues’
activities and align their work accordingly [21]. In particu-
lar, collaborative software development tools help develop-
ers to avoid errors [16, 34, 37], find experts [32], identify
social and technical dependencies [42], among other advan-
tages.

Given the benefits of collaborative software development
tools, it is no surprise that these tools have been built by dif-
ferent researchers [6, 14, 15, 32, 36, 37, 42]. A limitation of

@ Springer

mailto:cleidson.desouza@acm.org
mailto:jeanmrc@gmail.com
mailto:mcataldo@cs.cmu.edu

202

J Braz Comput Soc (2012) 18:201-211

these tools is that they are designed for small teams [38],
therefore, it is not possible to ensure that they can han-
dle large amounts of information. For instance, tools that
use graph visualizations to present information, like Ariadne
[42] and Tesseract [35], might be ineffective in large-scale
projects because graphs can be hard to understand when they
reach a couple dozens nodes and edges due to overlapping
nodes and edges [27].

In order to address this limitation in the design of current
collaborative tools, we conducted an empirical study to find
out the required scalability of such tools. Our investigation
used the approach proposed by Cataldo and colleagues [4]
to automatically compute, based on historical information,
the set of actors a developer needs to be aware of, when
performing a software development task. A developer needs
to be aware of the members of this set of actors because
they are “the likely set of workers that a particular individ-
ual might need to communicate with.” This set of actors
is called the coordination requirements (CRs) of an actor.
By computing the CRs of software developers involved in
a large-scale project, we were able to better assess the scal-
ability that a collaborative tool must provide to effectively
facilitate the coordination of software development tasks.

Therefore, this paper presents the results of an empirical
study conducted using data from nearly 11 months of devel-
opment of a large-scale distributed project, the IBM Ratio-
nal Team Concert™ (RTC) project [17]. We computed the
coordination requirements of the developers involved in this
project to understand how large these coordination require-
ments were, as well as their composition regarding develop-
ers’ team membership and geographical location.

In contrast to our previous work [8, 9] in which the
identification of coordination requirements was performed
in monthly intervals, in this paper we computed the coor-
dination requirements in four different time-frames: 1-day,
7-day, 15-day, and 30-day intervals. Our goal with this anal-
ysis is to more clearly understand the scalability of the coor-
dination requirements in both short- and long-term develop-
ment activities to encompass the different types of tasks per-
formed by software developers. Our results suggest that even
using different time-frames, current collaborative tools are
still not suitable for handling the scalability of software de-
velopers’ coordination requirements in large-scale projects.

The rest of this paper is organized as follows. Section 2
presents the background and motivation for our work. Sec-
tion 3 describes the methodology of the study, describing
the scenario and how the coordination requirements were
computed. The next section presents the study results, with
the information about the computed coordination require-
ments, their descriptions, and analysis. Section 5 presents
the discussion of our results and their implications. Finally,
in Sect. 6, we present our conclusions and ideas for future
work.

@ Springer

2 Background and meotivation

Costa [7] conducted a literature review of several collabora-
tive tools and uncovered that collaborative software devel-
opment tools present relevant information to their users in
one of three different ways: (i) using graphs integrated into
the development environment, like Ariadne [42] and Light-
House [11]; (ii) using “annotations” that are integrated into
the development environment. In this case, the “typical” ap-
proach is to present decorators in the Eclipse environment
like in Palantir [36] and Jazz [6]; and (iii) as independent
tools, i.e., using visualizations out of the development en-
vironment. A seminal example of this situation is Elvin’s
ticket tape approach [14, 15]. Another example is Tesser-
act [35].

A common problem across these tools is that they were
often designed for small teams (defined in the literature as
groups of 5 to 15 individuals [31]), therefore, it is not possi-
ble to ensure that they can handle large amounts of informa-
tion [38]. For instance, tools that use graph visualizations
can be ineffective in large-scale projects, since graphs can
be hard to understand when they reach a couple hundreds
nodes and edges due to overlapping nodes and edges [27].
Furthermore, scalability is an important aspect to consider
during the design of collaborative tools [8]. Consider, for in-
stance, the following scenario: a developer from Montreal
(Canada) communicates with contributors from Los Ange-
les (US) and Montreal while working in a particular task.
If we take into account only the number of locations (two
in this case), this seems to be a relatively simple task com-
pared with other contexts with five or more distributed lo-
cations on different continents. However, depending on the
number of people that the developer needs to communicate
with to perform a task, this task might become much more
complex. A situation where he needs to communicate with
two people from Montreal and only one from Los Angeles
is much simpler than if one needs to be in contact with 15
people from Montreal and 12 from Los Angeles. In short, it
is important to understand the number of people from other
teams and locations that every developer needs to commu-
nicate/coordinate her work with, since the greater the need
for communication and coordination with developers from
different teams and locations, the more difficult is to align
developers’ activities.

Thus, a question arises: given a software developer, how
many developers from other teams and locations this devel-
oper needs to coordinate her work with during the course of
the project? To answer this question, it is necessary to iden-
tify the likely set of developers that a particular software
developer might need to communicate and coordinate with
for a given development task. Following our previous work
[4, 8], we call this set as the coordination requirements (CRs
for short) of a software developer.

J Braz Comput Soc (2012) 18:201-211

203

In a recent study, de Souza and Redmiles [13] identi-
fied work practices used by software developers to identify
their “awareness network,” i.e., the set of actors that a given
software developer needed to monitor and display their ac-
tions to [39] in order to successfully get their work done.
Cataldo’s approach to compute coordination requirements
is a method for automatically identifying this network. As
such, this method can be used to augment collaborative and
awareness tools [22, 23]. This was an important reason that
led us to select this approach. In addition, previous research
has shown that software development productivity [3, 4] and
software quality [2] improve when the identified coordina-
tion requirements are matched with appropriate coordina-
tion activities. Additional work has shown that the coordina-
tion requirements, as computed by Cataldo and colleagues,
can be used in the construction of recommendation systems
to facilitate the identification of experts in parts of the code
[33] and tools for assessing coordination problems [35].

In addition to identifying the coordination requirements
of all the developers in the RTC project, we analyze these
CRs with respect to their scale (size) and composition (team
membership and location). This is done to inform the de-
sign of collaborative software development tools. This as-
pect, and all other aspects of our methodology to study the
scale of the coordination requirements and their composi-
tion, is presented in the next section.

3 Methodology
3.1 Study scenario

Recently, IBM made available the data from the soft-
ware repositories of the project that developed the IBM®
Rational® Jazz™ (RTC) collaboration platform.1 RTC is
a software development environment that integrates devel-
opment, collaboration and project management features in
the same platform [17]. A developer can, for example, re-
ceive notifications about events, view artifacts that other de-
velopers are changing, identify which developers are cur-
rently working among other functions. More specifically,
IBM made available the data generated during the develop-
ment of the first version of the product. By making this data
available, IBM offered a unique opportunity for researchers
to study collaborative activities of a real software develop-
ment team [17]. In fact, many papers have been published
with analysis of the RTC dataset.

We conducted an empirical study using data from the
RTC project. The data available contained information about

1BM, the IBM logo, ibm.com, and Rational are trademarks or reg-
istered trademarks of International Business Machines Corporation in
the United States, other countries, or both.

aperiod of 11 months (June 2007 to May 2008), correspond-
ing to the development of the pre-releases 0.5 and 0.6. All
RTC artifacts are stored in the same repository and linked
together according to the relationships among the develop-
ment activities. For example, a comment is associated with a
task, called Work Item, which in turn is associated with a set
of source files modified, called Change Sets. The integration
between the different artifacts allows a researcher to study
real collaborative software development activities, since she
does not need to create her own heuristics to associate these
artifacts [44].

A total of 161 developers worked in the project during
the period analyzed and they were grouped in 33 teams dis-
tributed in 21 different locations across US, Canada, and Eu-
rope. Project members belonged to one or more functional
teams, each one having its own manager. These teams re-
ported their activities for the project management commit-
tee, which is composed by a group of people who are re-
sponsible for the overall coordination of the project.

Our analyses focused on the data from release 0.6 which
represented 86.6 % of all development tasks and the work of
the 17 core development teams. Thus, our analysis is based
on the dataset from 77 members of the project who were
involved in 23,359 tasks associated with 37,323 change sets.

3.2 Computing coordination requirements

Coordination requirements for each software developer
from the RTC project were computed using the approach
proposed by Cataldo and colleagues [3] and are outlined in
the following paragraphs.

Step 1: Data collection

All the relevant data of the RTC project was stored in a sin-
gle database. Therefore, we implemented several queries to
extract the following data:

e Modification Requests (MRs): represent the development
tasks performed in a project. A task may consist of fixing
a defect, implementing a new product feature or improv-
ing existing functionality;

e Commits: represent the sets of source code files modified
by a developer as part of working on a MR;

e Contributors’ teams: represent the formal teams that each
developer belongs to in the project. Most of the RTC
members are part of more than one formal team. These
formal teams can represent traditional development pro-
cess steps such as requirements, development, or main-
tenance. However, in other cases, formal teams represent
responsibilities of a particular component of the software
system such as, Web UI, memory management or map
layout; and

@ Springer

204

J Braz Comput Soc (2012) 18:201-211

e Geographical locations of contributors: the cities where
each project contributor worked. This information was
extracted from Human Resources records since the RTC
repository does not contain this type of information. We
used this information to determine the locations involved
in a particular project.

Step 2: Identification of Outliers

In the RTC project, we found modification requests (MRs)
with very long resolution times. Those MRs tended to be en-
hancements with very low priority levels. In order to avoid
bias in our results by this peculiar type of tasks, we decided
to consider only the subset of MRs that had a maximum res-
olution time of the mean resolution time plus one standard
deviation. A similar analysis was used for the commits: we
only considered those MRs associated to commits that mod-
ified a maximum number of files that is less than the mean
number of modified files plus 1 standard deviation. The ra-
tionale behind eliminating these particular commits is re-
lated to the fact that those commits represent special situa-
tions such as a software license being changed or a major
refactoring that was not representative of a typical develop-
ment activity [28].

Step 3: Group Commits in different time intervals

The first step in the process of identifying the coordination
requirements of a given developer is to group the commits
into representative units of time. In our own previous work
[8], we used 1-month time intervals.? In fact, as we dis-
cussed in [8], the period used for the analysis is a choice
of the researcher, not a requirement from the approach:
different authors use different time-frames. In this work,
we wanted to explore different time-frames and understand
how they could impact the coordination requirements, and
the associated scalability of collaborative tools supporting
large-scale projects. Therefore, we analyzed short (1 day),
medium (7 and 15 days), and long-term (30 days) time in-
tervals in order to encompass the different types of software
development tasks performed by developers. In other words,
while the analysis of 30-day and 15-day intervals provides
an overall assessment of the coordination needs of software
developers, the analyses of 7-days and 1-day intervals pro-
vide a richer description of the daily work of software devel-
opers. In particular, Gersick [18, 19] suggests that important
transitions occur halfway during tasks, and since 30-day pe-
riods included all the work associated with more than 90 %
of all modification requests across all five projects in [8], we
decided to compute 15-day intervals as well. We computed

2Cataldo et al. [4]. Used 1-week intervals solely for their analysis of
the how the coordination requirements changed in a weekly basis.

@ Springer

the average number of developers for each time interval and
observed that the development activities occur continuously
with an average of 28.66 developers per day (standard devia-
tion of 17.47), 54.9 developers per week (s.d.: 12), 62.69 per
15-day intervals (s.d.: 8.47), and 67.6 developers per month
(s.d.: 5.8).

Step 4: Calculating the Coordination Requirements

In this step, since we have all the data necessary, we can ef-
fectively compute the coordination requirements. Cataldo’s
technique involves constructing two matrices. The Task As-
signments matrix is a Person by File matrix that indicates
which source code files each developer changed as part of
a development task. The Task Dependencies matrix cap-
tures the logical dependencies that exist between the vari-
ous source code files that constitute a software system. Then
the coordination requirements are computed as a matrix with
the following expression: Task Assignments X Task Depen-
dencies X transpose (Task Assignments). The resulting co-
ordination requirements matrix is a People X People ma-
trix where each cell outside the diagonal indicates the need
for coordination of the person i with the person j. As dis-
cussed in the previous step, in our analyses, the matrices
above mentioned contained data aggregated at four different
time intervals.

Step 5: Computing the various measures of interest

Using the coordination requirements matrices described
above, we computed a number of measures to understand
the needed scalability of collaborative tools. Initially, we
computed the descriptive statistics for the entire 11-month
development period according to each time intervals, i.e.,
we computed the average number of coordination require-
ments, the maximum and minimum CRs and other typical
descriptive statistics for 1, 7, 15, and 30-day intervals. These
results are presented in Sect. 4.1. The second set of metrics
was computed for each time interval instead of the entire de-
velopment period. In other words, we computed the average
number of software developers that each developer needs
to be aware of, considering the developers’ teams and lo-
cations for each 1, 7, 15, and 30-day intervals. In this case,
we divided the metrics into 2 different aspects: first, for de-
velopers who are on the same team vs. different teams, and
second, for developers who are on the same location vs. dif-
ferent locations. Results from these analyses are presented
in Sects. 4.2 and 4.3.

4 Results

4.1 Initial Results

Table 1 below presents the first set of descriptive statis-
tics considering the average number of coordination require-

J Braz Comput Soc (2012) 18:201-211

205

ments per software developer. For the sake of completeness,
we are reporting averages, skewness and other values, but
we are interested in maximum and minimum values because
of their impact in the scalability of collaborative tools.

The descriptive statistics were computed considering the
coordination requirements of all developers for the entire
11-month development period. For instance, the mean num-
ber of CRs for 30 days was computed as follows. First, for
each 30-day interval, we calculated the CRs for each devel-
oper. As a result, we had the coordination requirements of
77 developers in 11 different 30-day intervals, i.e.,a 77 x 11
matrix of CRs. Second, we computed the descriptive statis-
tics based on the data available in this matrix. By doing that,
we were able to find the maximum number of coordination
requirements that existed for any given developer in all 30-
day intervals. A similar procedure was used to compute the
descriptive statistics in the other time intervals.

Note also that this approach is different from what we
describe in [8] and [9], where we reported the maximum av-
erage value (i.e., the maximum value found among the 11
averages calculated for each 30-day interval). In this paper,
we are reporting the actual maximum coordination require-
ments.

Looking at the values in Table 1 it is possible to observe
that in the four different time intervals considered in our
analysis there were developers who had zero coordination
requirements (the minimal values). In other words, some of

Table 1 Descriptive statistics considering the average number of CRs

the developers in the RTC project had no need to coordi-
nate their work with other developers during these periods.
On the other hand, the maximum values for each interval
were 25 (1-day), 52 (7-day), 56 (15-day), and 63 (30-day).
The collaborative tools reported in the literature [7] would
have problems handling these values because they were not
designed to be scalable. For instance, Ariadne [42] repre-
sents developers as nodes in a graph. In this case, the graph
would contain about between 25 and 63 different nodes,
which would make it hard to understand. As we discussed
in Sect. 2, some of these tools use graph-based representa-
tions that would become problematic with such large values.

Furthermore, the difference between the minimum and
maximum values suggests that in the RTC project there were
situations where some developer needed to coordinate their
activities with few other developers, while in other situations
other developers needed to coordinate their work with sev-
eral other developers. In other words, a coordination tool
should be able to support both contexts: one where the coor-
dination requirements are small and other where the coordi-
nation requirements are very large.

4.2 Analysis of the coordination requirements according
to team membership

Table 2 summarizes the descriptive statistics of the coordi-
nation requirements considering the different time intervals
analyzed. Again, our focus is on the maximum and mini-
mum values reported in the Table. The smallest value in this

1 day 7 days 15 days 30days cage is 16 for different teams in the 1-day intervals. This
means that in one day during the RTC project, a software
Mean 0.60 8.64 19.16 30.77 y curing - broy ,
. developer needed to potentially coordinate his work with 16
Median 0 0 10 40 . .
other software developers working on teams different from
Std. dev. 2.29 12.92 19.81 23.06 . . .
his own. In contrast, another developer in the RTC project
Max. value 25 52 56 63 . . .
. needed to coordinate his work with 57 software developers
Min. value 0 0 0 0
from different teams. Finally, the minimal values are zero,
Skewness 4.91 1.32 0.38 —-0.29 . . .
] again suggesting that some developers are in a more favor-
Kurtosis 26.97 0.51 —1.49 —1.53

able situation regarding their effort to coordinate their work.

Table 2 Descriptive statistics considering the average number of CRs per developer in the context of team membership

1 day 7 days 15 days 30 days

Same Different Same Different Same Different Same Different

team teams team teams team teams team teams
Mean 1.84 0.37 10.96 3.25 20.32 6.77 28.79 10.67
Median 0 0 6 1 21 4 34 7
Std. dev. 3.43 1.25 11.61 5.77 15.80 9.19 17.17 11.91
Max. value 21 16 44 38 52 49 57 57
Min. value 0 0 0 0 0 0 0 0
Skewness 2.39 6.12 0.84 3.05 0.12 2.23 —0.38 1.88
Kurtosis 5.62 48.74 —0.43 10.53 —1.45 4.78 —1.25 2.89

@ Springer

206

J Braz Comput Soc (2012) 18:201-211

Average coordination requirements regarding team
membership in 1-day intervals

5%
s O 3
& g |l
EUZ\ —
T L —— —_—
‘6'3 ,‘\-m/'"’—.m-"'u. = =
g ol
c g N e h e e e mmm ... P
S
0
I O OO0 M™~NOU WM T ONHm AN O OO 0NN O Wn
N MO NODAMINNO dNT OO0 O N
™ = AN NN ANAN MMM
time in days
— — 1-daysameteam - = = =-1-day different teams

Fig.1 Average number of coordination requirements per developer in
the same (different) team(s) considering the 1-day time interval

Average coordination requirements regarding team
membership in 7-day intervals

12

—
10 /.___\v_/

-

coordination
requirements

o N B~ OO
-’

1 4 71013161922 252831343740434649

time in weeks

— — 7-daysameteam - - = =-7-day different teams

Fig. 2 Average number of coordination requirements per developer in
the same (different) team(s) considering the 7-day time interval

Figures 1, 2, 3 and 4 represent graphically the evolu-
tion of the coordination requirements plotting two values:
the average number of coordination requirements (i) for the
same theam and (ii) for different teams. In these figures, the
X-axis represents the time period of analysis, while the Y-
axis is used to represent the average number of coordina-
tion requirements per developer, i.e., the average number
of other developers that every developer should be com-
municating/coordinating his work with. The results indi-
cate that for each time interval, the average number of co-
ordination requirements for the same team is higher than
the average number of coordination requirements for dif-
ferent teams. That is expected, since in general, organiza-
tional theory principles [40, 41] suggest that activities tend
to be assigned to developers in the same team so that people
have more interactions with these developers. This is impor-
tant because the coordination between actors from differ-
ent teams is generally more difficult than between members
of the same team, including in software development teams
[12, 30].

Figures 14 also indicate that while the curves that rep-
resent different teams have a small variation between their

@ Springer

Average coordination requirements regarding team
membership in 15-day intervals

: A

coordination requirements

20 [\ I

5 1T AN \J \I | x

10 T S
5 ’A\l’h\"“\liﬁ‘v"-\\'-\ \ "l -
0 o

12345678 91011121314151617181920212223

time in 15-day intervals
== =15-day Same Team =<==<=15-day Diff Teams

Fig. 3 Average number of coordination requirements per developer in
the same (different) team(s) considering the 15-day time interval

Average coordination requirements regarding team
membership in 30-day intervals

30 - —_— —

20 —
15

10 caemmmnm=-= e mem

coordination
requirements

1 2 3 4 5 6 7 8 9 10 11 12

time in months

— — 30-day sameteam - - - -30-day different teams

Fig.4 Average number of coordination requirements per developer in
the same (different) team(s) considering the 30-day time interval

maximum and minimum values, the same team situation
has a larger variation. This suggests that, on average, of the
overall set of coordination requirements from any given de-
veloper, the number of developers who belong to different
teams remains more or less constant, while the number of
developers from the same team changes more often.

4.3 Analysis of the coordination requirements according to
geographical locations

This section presents our analysis of the coordination re-
quirements involving developers’ geographical locations.
As discussed in Sect. 3.1, the Rational Team Concert project
involves software developers spread in 21 different locations
across US, Canada, and Europe.

We start by reporting the descriptive statistics for the en-
tire development period, and according to the different time
intervals. This is presented on Table 3. Since we are inter-
ested in understanding the scalability of collaborative tools,

J Braz Comput Soc (2012) 18:201-211

207

Table 3 Descriptive statistics considering the average number of CRs per developer by location

1 day 7 days 15 days 30 days

Same Different Same Different Same Different Same Different

location locations location locations location locations location locations
Mean 0.65 1.56 2.87 11.34 4.89 22.21 6.53 32.93
Median 0 0 2 7 5 25 7 37
Std. dev. 1.23 3.16 2.71 11.89 341 15.87 3.51 15.93
Max. value 9 22 13 49 13 52 14 61
Min. value 0 0 0 0 0 0 0 0
Skewness 2.62 2.45 0.66 0.68 0 —0.16 —-0.32 —0.87
Kurtosis 8.33 6.07 —0.62 —-0.67 —1.26 —1.39 —0.68 —0.26

we again focus on the maximum coordination requirements
values obtained. In this case, they range from 9 (same loca-
tion, 1-day interval) to 61 (different locations, 30-day inter-
val). While 9 is a value that can potentially be supported by
collaborative tools, 61 cannot (based on our literature review
described in [7]), which again suggests the need to design
collaborative tools for scalability.

In contrast to the overall picture presented in Table 3
above, Figs. 5, 6, 7 and 8 detail the average coordination
requirements in each interval of analysis plotting the values
according to the same location or different locations situa-
tion.

Similarly to the teams context, in situations involving
many geographical locations the standard recommendation
is to arrange the developers in such a way that people from
different locations do not have to interact as much as devel-
opers in the same location [20, 25]. This is recommended
because coordination across distance is more difficult due
to the lack of informal communication that is necessary for
effective coordination [26, 29].

Nevertheless, Figs. 5, 6, and 8 show a different scenario:
the average number of coordination requirements between
different locations is generally higher than in the same loca-
tion. In other words, in general, a software developer of the
RTC project needs to be aware of activities from a higher
number of developers who are physically located in other
sites compared to collocated developers. In fact, observing
Figs. 5-8 is possible to observe that the “same location” line
keeps relatively constant as the project unfolds, while the
average number of coordination requirements from different
locations not only presents a higher variation, but increases
over time.> A possible explanation is that, as the project pro-
gresses toward the end of the milestone, developers need to
integrate their software components, which require them to
engage in more direct communication with their colleagues.

3The exception in this case is Fig. 7 for the 15-day interval because of
its decrease toward zero around the 14th or 15th 15-day interval.

Average coordination requirements regarding developers'
locations in 1-day intervals

8

g 3.5

@ 3

'é_ 2.5

2 2|

s 157

] 1

g

2 0.5

T 0

o oWV INTMN—-OOOMNS WO F
o NMOMULAE MM =N OO ON
b e A EEH NN NN M

time in days
= =Same location ====0ther locations

Fig. 5 Average number of CRs per developer in 1-day intervals ac-
cording to developers’ locations

Average coordination requirements regarding
developers' locations in 7-day intervals

14
12 -

coordination
requirements

oON O
|

1 4 71013161922252831343740434649
time in weeks
= = Same location = = = =Other locations

Fig. 6 Average number of CRs per developer in 7-day intervals ac-
cording to developers’ locations

5 Discussion

In this paper, we examine the scale and temporal evolution
of coordination requirements in the Rational Team Concert
(RTC) project, a large project that involves 161 developers,
33 development teams, and 21 locations across US, Canada,
and Europe. More specifically, our analyses focused on the

@ Springer

208

J Braz Comput Soc (2012) 18:201-211

Average coordination requirements regarding developers'
locations in 15-day intervals

40
~ A
gg SN AN
’ 7N
: e
~ A/ \
15 ,"\"l] v \‘ ,"
10 '!

\
W

1234567 891011121314151617181920212223

coordination requirements

time in 15-day intervals
= =15-day Same Location ====15-day Diff Locations

Fig.7 Average number of CRs per developer in 15-day time intervals
according to developers’ locations

Average coordination requirements regarding
developers' locations in 30-day intervals

40 T

30 PR

20

coordination
requirements

10 -

5 6 7 8 9 10 11 12

time in months
= = Same location = = = =Qther locations

Fig. 8 Average number of CRs per developer in 30-day intervals ac-
cording to developers’ locations

data from pre-release 0.6, which represented 86.6 % of all
development tasks and on the work of the 17 core develop-
ment teams and 77 developers.

We analyzed this project considering four different time
intervals: 1 day, 7 days, 15 days, and 30 days. We consid-
ered these time frames because they were used in past work
[4, 8] and also because we wanted to cover different types
of activities performed by software developers, and conse-
quently with different durations. In addition, Gersick’s work
[18, 19] suggests that important changes in group dynamics
take place around the half of the time allocated to the project,
therefore, we also considered 15-day intervals, since most
modification requests lasted about a month [8].

By carefully inspecting the maximum values reported in
Tables 1, 2, and 3, it is clear that even in different timeframes
current collaborative tools will face problems in large-scale
projects because they need to handle information from up
to 63 different software developers that belong to differ-
ent teams or that are in different locations. If we consider
that the total number of developers in this project was 77,
this basically meant that some developers needed to inter-

@ Springer

act with almost all (63/77 ~ 82 %) other developers in the
project. In fact, most collaborative tools are designed solely
for a small group of developers [38], a situation very dif-
ferent from what we identified in the RTC project. For in-
stance, tools like Palantir [36] and RaisAware [10] present
information from developers as decorators in the Eclipse
IDE, which means they would have to present information
from up to 60 different software developers into a single
Eclipse IDE.

As for the team membership aspect, we found relatively
low values for the median and mean CRs in the different
time frames (see Table 2). This is expected since organiza-
tional theory suggests that team members should engage in
more direct communication with people in their same team
[40, 41]. However, by looking at maximum values from Ta-
ble 2, it is possible to notice large values for the different
team situations, namely 16 (1-day), 38 (7-day), 49 (15-day),
and 57 (30-day). Coordinating across organizational bound-
aries is generally more difficult than within the same team
because of the lack of context, shared goals and opportuni-
ties for informal interaction that help to build interpersonal
relationships [12, 30]. This difficulty combined with large
coordination requirements means that is even more impor-
tant to properly design collaborative tools, because they have
the potential to simplify this situation and facilitate the co-
ordination of work.

Previous work [26, 29] suggests that coordination across
geographical boundaries is more difficult when compared
to coordination in the same site. This occurs because when
actors are in the same location they can use physical cues
from their environment to figure out when to interrupt their
colleagues without disrupting the flow of work, they have
more opportunities for informal interactions, and these in-
formal interactions are very important in the coordination of
daily work. Despite that, our results regarding the locations
of software developers are unexpected: the maximum val-
ues for the different location condition is higher than for the
same location in the four different time-frames. Again, this
illustrates the potential of collaborative tools to facilitate this
process.

In general, current collaborative tools are typically de-
signed for small teams and are not able to handle large
amounts of information [38]. In addition, they fail to provide
a global understanding of interactions among teams, what
makes them ill-suited to software development projects that
involves multisites [38], a more and more common scenario
nowadays like the RTC. For example, Palantir is a tool that
was originally developed using decorators to present devel-
opers’ information to its users. This approach is useful to
grasp the user’s attention, but it does not present relevant
information such as: Is the developer located in the same lo-
cation than me? Is he a member of my development team?
We have shown in our previous work that these questions

J Braz Comput Soc (2012) 18:201-211

209

are relevant [8]. Other examples of tools whose visualiza-
tions were not designed to be scalable are the ones that use
(social)-graphs like Ariadne [42] and Tesseract [35].

Our results also suggest that collaborative tools need to
represent information about the team membership and loca-
tion of the other collaborators. Or, at least, to be integrated
with other tools that have this information available so that it
is easy to gather out this information from the collaborative
tool. Location is particularly important because if people are
in different time-zones, this means that their type of interac-
tion, synchronous or asynchronous, has to be different. In
the RTC project, as our results suggest, developers need to
coordinate their work fairly often with developers from other
locations.

In short, our results suggest that coordination and aware-
ness tools should be designed for scalability. Furthermore,
collaborative tools should be able to dynamically adjust the
visualization according to the number of coordination re-
quirements, teams and locations involved. If the coordina-
tion requirements of the developers are low, then represen-
tations like graphs or a tickertape [14, 15] would be ade-
quate. However, if the coordination requirements are high,
a different type of visualization would be necessary, for in-
stance with dashboards [43] including information about the
relationships between teams and locations.

Finally, it is also worth noticing how the coordination re-
quirements vary among the software developers from the
RTC project: while some developers are potentially over-
whelmed coordinating their work with several other devel-
opers, others are in a more favorable situation. This finding
was consistent in all different evaluated timeframes and also
across teams and locations. The implications of this result
are particularly relevant for the design of collaborative tools
because most of them only support one type of visualiza-
tion, i.e., they do not take into account the variability of the
coordination requirements among the different social actors.
Furthermore, this large difference between the coordination
requirements of developers raises interesting research ques-
tions, including but not limited to:

e Who are the developers with the highest (or lowest) coor-
dination requirements?

e Why there is such a difference in their coordination
needs?

e Are higher coordination needs correlated with particular
roles, productivity, expertise, or any other factor?

e And, finally, in the context of collaborative tool design,
given this different in coordination requirements, should
these different “types” of developers use the same collab-
orative tools, or should they use different tools?

We plan to explore these questions in our future work.

6 Conclusions and future work

In this paper, we examine the scale of coordination re-
quirements in the Rational Team Concert (RTC) project,
a large-scale distributed software development with devel-
opers spread around the globe in sites in the US, Canada,
and Europe. We computed the coordination requirements [4]
of all the developers for different time-frames: 1-day, 7-day,
15-day, and 30-day. By doing that, we argue that we are able
to cover different types of tasks performed by software de-
velopers during their activities. This is, in fact, the main dif-
ference of the work reported in this paper and our previous
ones [8, 9].

As the Rational Team Concert is a large project, we ex-
pected high values for the coordination requirements of the
developers, and indeed in many cases this was true, but in
other situations the values found were low. This suggests an
imbalance in the coordination effort performed by the devel-
opers in the project [8].

Another result of our study is that while the coordination
requirements between developers of the same team tend to
be higher than the coordination requirements between peo-
ple of different teams (as expected), the coordination re-
quirements between people of different locations are gen-
erally higher than the ones involving people of the same lo-
cation. That is a surprising result, since past work suggests
that the coordination of software development activities is
more difficult when the developers are geographically dis-
tributed [20, 25]. We plan to explore this aspect further in
our future work.

In general, our main contribution in this paper is to draw
attention of collaborative tool designers to the need to design
for scalability, i.e., to design collaborative tools that are able
to properly present large amounts of information from dif-
ferent social actors. In addition, filtering mechanisms might
be necessary to allow an actor to easily view this informa-
tion and make informed decisions about, when and to which
extent, he needs to coordinate his work with his colleagues.

Acknowledgements The first and second authors were supported by
the Brazilian Government under grant CNPq 473220/2008-3 and by
the Fundacdo de Amparo a Pesquisa do Estado do Para through “Edital
Universal N°003/2008.” The third author is grateful for the financial
support provided by Accenture, Robert Bosch, and IBM that made this
research possible.

References

1. Bowers J (1994) The work to make the network work: studying
CSCW in action. In: Conference on computer-supported coopera-
tive work, Chapel Hill, NC, USA. ACM, New York

2. Cataldo M, Herbsleb J (2010) Coordination breakdowns and their
impact on development productivity and software failures. Pitts-
burgh, Institute for Software Research, Carnegie-Mellon Univer-
sity. ISR-10-104

@ Springer

210

J Braz Comput Soc (2012) 18:201-211

3.

10.

11.

12.

13.

15.

17.

19.

20.

21.

22.

Cataldo M, Herbsleb JD et al (2008) Socio-technical congruence:
a framework for assessing the impact of technical and work de-
pendencies on software development productivity. In: Proceedings
of the second ACM-IEEE international symposium on empirical
software engineering and measurement, Kaiserslautern, Germany.
ACM, New York

Cataldo M, Wagstrom PA et al (2006) Identification of coordina-
tion requirements: implications for the design of collaboration and
awareness tools. In: 20th conference on computer supported coop-
erative work, Banff, Alberta, Canada. ACM, New York

Cheng L-T, Hupfer S et al (2003) Jazzing up eclipse with collab-
orative tools. In: OOPSLA workshop on eclipse technology ex-
change, Anaheim, CA, USA

Cheng L-T, Hupfer S et al (2003) Jazz: a collaborative applica-
tion development environment. In: ACM SIGPLAN conference on
object oriented programming systems languages and applications,
Anaheim, CA, USA. ACM, New York

Costa JMdR (2011) Escalabilidade e Evolugdo das Redes de
Awareness em um Grande Projeto de Desenvolvimento Dis-
tribuido de Software. MSc, Universidade Federal do Para

Costa JMdR, Cataldo M et al (2011) The scale and evolution of
coordination needs in large-scale distributed projects: implications
for the future generation of collaborative tools. In: ACM confer-
ence on human factors in computing systems, Vancouver, Canada,
pp 3151-3160

Costa JMdR, De Souza CRB (2010) Analyzing the scalability of
awareness networks in a distributed software development project.
In: Brazilian symposium on collaborative systems

Costa JMdR, Feitosa RM et al (2009) RaisAware: uma ferra-
menta de auxiilio 4 engenharia de software colaborativa baseada
em anadlises de dependéncias. Scientia 9(2):7-36

da Silva IA, Chen P et al (2006) Lighthouse: coordination
through emerging design. In: OOPSLA eclipse technology ex-
change workshop, pp 11-15

de Souza CRB, Redmiles D (2009) On the roles of APIs in the
coordination of collaborative software development. Comput Sup-
port Coop Work 18(5-6):445-475

de Souza CRB, Redmiles D (2011) The awareness network, to
whom should I display my actions? And, whose actions should I
monitor? (forthcoming). IEEE Trans Softw Eng 1-18

Fitzpatrick G, Kaplan S et al (2002) Supporting public availability
and accessibility with Elvin: experiences and reflections. Journal
of Computer Supported Cooperative Work 11(3—4):299-316
Fitzpatrick G, Mansfield T et al (1999) Augmenting the worka-
day world with Elvin. In: 6th European conference on computer
supported cooperative work, Copenhagen, Denmark. Kluwer Aca-
demic, Norwell

Fitzpatrick G, Marshall P et al (2006) CVS integration with no-
tification and chat: lightweight software team collaboration. In:
Proceedings of the 2006 20th anniversary conference on computer
supported cooperative work, Banff, Alberta, Canada. ACM, New
York

Frost R (2007) Jazz and the eclipse way of collaboration. IEEE
Softw 24:114-117

. Gersick CJG (1988) Time and transition in work teams: towards a

new model of group development. Acad Manage J 31(1):9-41
Gersick CJG (1989) Making time: predictable transitions in task
groups. Acad Manage J 32(2):274-309

Grinter R, Herbsleb J et al (1999) The geography of coordination:
dealing with distance in R&D work. In: ACM conference on sup-
porting group work (GROUP *99), Phoenix, AZ. ACM, New York
Grinter RE (2003) Recomposition: coordinating a web of software
dependencies. Journal of Computer Supported Cooperative Work
12(3):297-327

Gutwin C, Greenberg S (1996) Workspace awareness for group-
ware. In: Conference companion on human factors in computing

@ Springer

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

systems: common ground, Vancouver, British Columbia, Canada
ACM, New York, pp. 208-209

Gutwin C, Greenberg S (2002) A Descriptive framework of
workspace awareness for real-time groupware. Journal of Com-
puter Supported Cooperative Work 11(3—4):411-466

Herbsleb JD, Atkins DL et al (2002) Introducing instant messag-
ing and chat in the workplace. In ACM conference on human fac-
tors and computing systems (CHI’2002), Minneapolis, Minnesota
USA. ACM, New York

Herbsleb JD, Grinter RE (1999). Architectures, coordination, and
distance: Conway’s law and beyond. IEEE Softw 63-70
Herbsleb JD, Mockus A et al (2001) An empirical study of global
software development: distance and speed. In: International con-
ference on software engineering, Toronto, Canada, IEEE, New
York

Herman I, Melancon G et al (2000) Graph visualization and nav-
igation in information visualization: a survey. IEEE Trans Vis
Comput Graph 6(1):24-43

Hindle A, German DM et al (2008) What do large commits tell
us?: a taxonomical study of large commits. In: Proceedings of the
2008 international working conference on mining software repos-
itories, Leipzig, Germany. ACM, New York, pp 99-108

Kraut R, Egido C et al (1990) Patterns of contact and communica-
tion in scientific research collaborations. In: Galegher, J., Egido,
C., Kraut, R., Intellectual teamwork: social and technological
foundations of cooperative work. Erlbaum, Hillsdale, pp 149-172
Kraut RE, Streeter LA (1995) Coordination in software develop-
ment. Commun ACM 38(3):69-81

Levine JM, Moreland RL (1990) Progress in small group research.
Annu Rev Psychol 41(1):585-634

McDonald DW, Ackerman MS (2000) Expertise recommender:
a flexible recommendation system and architecture. In: Confer-
ence on computer supported cooperative WORK (CSCW ’00),
Philadelphia, PA

Minto S, Murphy G (2007) Recommending emergent teams. In:
Proceedings of the fourth international workshop on mining soft-
ware repositories. [IEEE Comput Soc, Los Alamitos, p 5

Sarma A, Bortis G et al (2007) Towards supporting awareness
of indirect conflicts across software configuration management
workspaces. In: Proceedings of the twenty-second IEEE/ACM in-
ternational conference on automated software engineering, At-
lanta, Georgia, USA. ACM, New York

Sarma A, Maccherone L et al (2009) Tesseract: interactive visual
exploration of socio-technical relationships in software develop-
ment. In: Proceedings of the 31st international conference on soft-
ware engineering, IEEE Comput Soc, Los Alamitos, pp 23-33
Sarma A, Noroozi Z et al (2003) Palantir: raising awareness
among configuration management workspaces. In: Twenty-fifth
international conference on software engineering, Portland, Ore-
gon

Sarma A, Redmiles D et al (2008) Empirical evidence of the
benefits of workspace awareness in software configuration man-
agement. In: Proceedings of the 16th ACM SIGSOFT interna-
tional symposium on foundations of software engineering, At-
lanta, Georgia. ACM, New York, pp 113-123

Sarma A, van der Hoek A (2006) Towards awareness in the large.
In: International conference on global software engineering, Flo-
rianopolis, Brazil. IEEE Press, New York

Schmidt K (2002) The problem with ‘awareness’—introductory
remarks on ‘awareness in CSCW’. Journal of Computer Supported
Cooperative Work 11(3-4):285-298

Scott WR (2003) Organizations: rational, natural, and open sys-
tems. Prentice Hall, Upper Saddle River

Thompson JD (1967) Organizations in action: social sciences of
administrative theory. Transaction Publishers, New Brunswick

J Braz Comput Soc (2012) 18:201-211 211

42. Trainer E, Quirk S et al (2005) Bridging the gap between techni- ware engineering, vol 1, Cape Town, South Africa. ACM, New
cal and social dependencies with Ariadne. In: Eclipse technology York, pp 365-374
exchange, San Diego, CA 44. Wolf T, Nguyen T et al (2008) Does distance still matter? Softw
43. Treude C, Storey M-A (2010) Awareness 2.0: staying aware of Process Improv Pract 13(6):493-510

projects, developers and tasks using dashboards and feeds. In: Pro-
ceedings of the 32nd ACM/IEEE international conference on soft-

@ Springer

	Analyzing the scalability of coordination requirements of a distributed software project
	Abstract
	Introduction
	Background and motivation
	Methodology
	Study scenario
	Computing coordination requirements

	Results
	Initial Results
	Analysis of the coordination requirements according to team membership
	Analysis of the coordination requirements according to geographical locations

	Discussion
	Conclusions and future work
	Acknowledgements
	References

