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Abstract The graph sandwich problem for property � is
defined as follows: Given two graphs G1 = (V ,E1) and
G2 = (V ,E2) such that E1 ⊆ E2, is there a graph G =
(V ,E) such that E1 ⊆ E ⊆ E2 which satisfies property
�? We propose to study sandwich problems for properties
� concerning orientations, such as Eulerian orientation of
a mixed graph and orientation with given in-degrees of a
graph. We present a characterization and a polynomial-time
algorithm for solving the m-orientation sandwich problem.

Keywords Sandwich problems · Orientation of graphs ·
Submodular flows

1 Introduction

Given two graphs G1 = (V ,E1) and G2 = (V ,E2) with the
same vertex set V and E1 ⊆ E2, a graph G = (V ,E) is
called a sandwich graph for the pair G1,G2 if E1 ⊆ E ⊆ E2.
The graph sandwich problem for property � is defined as
follows [12]:
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GRAPH SANDWICH PROBLEM FOR PROPERTY �

Instance: Given undirected graphs G1 = (V ,E1) and G2 =
(V ,E2) with E1 ⊆ E2.
Question: Is there a graph G = (V ,E) such that E1 ⊆ E ⊆
E2 and G satisfies property �?

We call E1 the mandatory edge set, E0 = E2 \E1 the op-
tional edge set and E3 the forbidden edge set, where E3 de-
notes the set of edges of the complementary graph G2 of G2.
Thus any sandwich graph G = (V ,E) for the pair G1,G2

must contain all mandatory edges, no forbidden edges and
may contain a subset of the optional edges. Graph sandwich
problems have attracted much attention lately arising from
many applications and as a natural generalization of recog-
nition problems [1–3, 7, 22, 24]. The recognition problem
for a class of graphs C is equivalent to the graph sandwich
problem in which G1 = G2 = G, where G is the graph we
want to recognize and property � is “to belong to class C ”.

In this paper we propose to study sandwich problems
for properties � concerning orientations, such as Eulerian
orientation of a mixed graph and orientation with given in-
degrees of a graph, or more generally of a mixed graph.

The paper is organized as follows: Sect. 2 contains some
basic definitions, notations and results. Section 3 contains
some known results on degree constrained sandwich prob-
lems. We consider the undirected version and the directed
version, the complexity, the characterization and the re-
lated optimization problems. We also define a simultane-
ous version and discuss its complexity. Section 4 focuses on
Eulerian sandwich problems. We consider first undirected
graphs and then directed graphs. These problems were al-
ready solved in [12], here we point out that the undirected
case reduces to T -joins, while the directed case to circula-
tions. We discuss the complexity of the problems and their
characterizations and we also propose some mixed versions.
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In Sect. 5 we consider sandwich problems regarding an m-
orientation, i.e., given undirected graphs G1 = (V ,E1) and
G2 = (V ,E2) with E1 ⊆ E2 and a non-negative integer vec-
tor m on V , we show that it is polynomial to decide whether
there exists a sandwich graph G = (V ,E) (E1 ⊆ E ⊆ E2)

that has an orientation �G whose in-degree vector is m that
is d−

�G(v) = m(v) for all v ∈ V . This result stands in contrast
to the strongly connected m-orientation sandwich problem
which we show is NP-complete. Section 6 is devoted to a
new kind of sandwich problem where we may contract (and
not delete) optional edges and property � is being bipartite.

2 Definitions

Undirected graphs Let G = (V ,E) be an undirected
graph. For vertex sets X and Y , the cut induced by X is
defined to be the set of edges of G having exactly one end-
vertex in X and is denoted by δG(X). The degree dG(X)

(or dE(X)) of X is the cardinality of the cut induced by
X, that is, dG(X) = |δG(X)|. The number of edges be-
tween X \ Y and Y \ X is denoted by dG(X,Y ). The
number of edges of G having both (resp. at least one) end-
vertices in X is denoted by iG(X) or iE(X) or simply i(X)

(resp. eG(X)). It is well-known that (1) is satisfied for all
X,Y ⊆ V ,

dG(X) + dG(Y ) = dG(X ∩ Y) + dG(X ∪ Y)

+ 2dG(X,Y ). (1)

We say that a vector m on V is the degree vector of G

if dG(v) = m(v) for all v ∈ V . For a vector m on V , we
consider m as a modular function, that is, we use the no-
tation m(X) = ∑

v∈X m(v). Let us recall that dG(X) is the
degree function of G. We define d̂G as the modular func-
tion defined by the degree vector dG(v) of G. Note that
d̂G(X) = dG(X) + 2iG(X)∀X ⊆ V .

We denote by T G the set of vertices of G of odd degree.
For an edge set F of G, the subgraph induced by F , that is,
(V ,F ), is denoted by G(F ). We say that G is Eulerian if
the degree of each vertex is even, that is, if TG = ∅. Note
that we do not suppose the graph to be connected.

Let T be a vertex set in G. An edge set F of G is called
T -join if the set of odd degree vertices in the subgraph in-
duced by F coincide with T , that is if TG(F) = T . Given
a cost vector on the edge set of G, a minimum cost T-join
can be found in polynomial time by Edmonds and Johnson’s
algorithm [5].

Let f be a non-negative integer vector on V . An edge set
F of G is called an f -factor of G if f is the degree vector of
G(F), that is, dF (v) = f (v) for all v ∈ V . If f (v) = 1 for all
v ∈ V , then we say that F is a 1-factor or a perfect matching.
An f -factor—if it exists—can be found in polynomial time,

see [20]. The graph G is called 3-regular if each vertex is
of degree 3. Note that for a 3-regular graph, the existence
of two edge-disjoint perfect matchings is equivalent to the
existence of three edge-disjoint perfect matchings which is
equivalent to the 3-edge-colorability of the graph.

Directed graphs Let D = (V ,A) be a directed graph. For a
vertex set X, the set of arcs of D entering (resp. leaving) X

is denoted by �D(X) (resp. δD(X)). The in-degree d−
D(X)

(resp. out-degree d+
D(X)) of X is the number of arcs of D

entering (resp. leaving) X, that is d−
D(X) = |�D(X)| (resp.

d+
D(X) = |δD(X)|). The set of arcs of G having both end-

vertices in X is denoted by A(X). The following equality
will be used frequently without reference:

d−
D(X) − d+

D(X) =
∑

v∈X

(
d−
D(v) − d+

D(v)
)
. (2)

We say that a vector m on V is the in-degree vector of D

if d−
D(v) = m(v) for all v ∈ V . Let us recall that d−

D(X) is
the in-degree function of D. Let f be a non-negative integer
vector on V . An arc set F of D is called a directed f -factor
of D if f is the in-degree vector of D(F), that is, d−

F (v) =
f (v) for all v ∈ V .

We say that D is Eulerian if the in-degree of v is equal
to the out-degree of v for all v ∈ V , that is, d−

D(v) = d+
D(v)

for all v ∈ V . Note that we do not suppose the graph to be
connected.

Let f and g be two vectors on the arcs of D such that
f (e) ≤ g(e) for all e ∈ A. A vector x on the arcs of D is a
circulation if (3) and (4) are satisfied.

x
(
δD(v)

) = x
(
�D(v)

) ∀v ∈ V, (3)

f (e) ≤ x(e) ≤ g(e) ∀e ∈ A. (4)

Note that if f (e) = g(e) = 1 for all e ∈ A, then D is Eulerian
if and only if f is a circulation. We will use the following
characterization when a circulation exists.

Theorem 1 (Hoffmann [15]) Let D = (V ,A) be a directed
graph and f and g two vectors on A such that f (e) ≤
g(e)∀e ∈ A. There exists a circulation in D if and only if

f
(
�D(X)

) ≤ g
(
δD(X)

) ∀X ⊆ V. (5)

We say that H = (V ,E ∪ A) is a mixed graph if E is an
edge set and A is an arc set on V . For an undirected graph
G = (V ,E), if we replace each edge uv by the arc uv or vu,
then we get the directed graph �G = (V , �E). We say that �G
is an orientation of G.

Mixed graphs having Eulerian orientations are character-
ized as follows.
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Theorem 2 (Ford, Fulkerson [8]) A mixed graph H =
(V ,E ∪ A) has an Eulerian orientation if and only if

d−
A (v) + d+

A (v) + dE(v) is even ∀v ∈ V, (6)

d−
A (X) − d+

A (X) ≤ dE(X) ∀X ⊆ V. (7)

The following theorem characterizes graphs having an
orientation with a given in-degree vector.

Theorem 3 (Hakimi [13]) Given an undirected graph G =
(V ,E) and a non-negative integer vector m on V , there ex-
ists an orientation �G of G whose in-degree vector is m if
and only if

m(X) ≥ i(X) ∀X ⊆ V, (8)

m(V ) = |E|. (9)

Functions Let b be a set function on the subsets of V . We
say that b is submodular if for all X,Y ⊆ V ,

b(X) + b(Y ) ≥ b(X ∩ Y) + b(X ∪ Y). (10)

The function b is called supermodular if −b is submodular.
A function is modular if it is supermodular and submodular.
We will use frequently in this paper the following facts.

Claim 1 The degree function dG(Z) of an undirected graph
G and the in-degree function d−

D(Z) of a directed graph D

are submodular and the function i(Z) is supermodular.

Theorem 4 [17, 21] The minimum value of a submodular
function can be found in polynomial time.

Theorem 5 (Frank [9]) Let b and p be a submodular and
a supermodular set function on V such that p(X) ≤ b(X)

for all X ⊆ V . Then there exists a modular function m on V

such that p(X) ≤ m(X) ≤ b(X) for all X ⊆ V . If b and p

are integer valued then m can also be chosen integer valued.

A pair (p, b) of set functions on 2V is a strong pair if p

(resp. b) is supermodular (submodular) and they are compli-
ant, that is, for every pairwise disjoint triple X,Y,Z,

b(X ∪ Z) − p(Y ∪ Z) ≥ b(X) − p(Y ).

Note that a pair (α,β) of modular functions is a strong pair
if and only if α ≤ β . If (p, b) is a strong pair then the poly-
hedron

Q(p,b) = {
x ∈ R

V : p(X) ≤ x(X) ≤ b(X),

for every X ⊆ V
}

is called a generalized polymatroid (or a g-polymatroid).
When α ≤ β are modular, we also call the g-polymatroid
Q(α,β) a box.

Theorem 6 (Frank, Tardos [11]) The intersection of an in-
tegral g-polymatroid Q(p,b) and an integral box Q(α,β)

is an integral g-polymatroid. It is nonempty if and only if
α ≤ b and p ≤ β .

Matroids A set system M = (V , F ) is called a matroid if
F satisfies the following three conditions:

(I1) ∅ ∈ F ,
(I2) if F ∈ F and F ′ ⊆ F , then F ′ ∈ F ,
(I3) if F,F ′ ∈ F and |F | > |F ′|, then there exists f ∈ F \

F ′ such that F ′ ∪ f ∈ F .

A subset X of V is called independent in M if X ∈ F ,
otherwise it is called dependent. The maximal independent
sets of V are the basis of M . Let B be the set of basis of M .
Then B satisfies the following two conditions:

(B1) B �= ∅,
(B2) if B,B ′ ∈ B and b ∈ B \ B ′, then there exists b′ ∈ B ′ \

B such that (B − b) ∪ b′ ∈ B.

Conversely, if a set system (V , B) satisfies (B1) and
(B2), then M = (V , F ) is a matroid, where F = {F ⊆ V :
∃B ∈ B,F ⊆ B}.

For S ⊂ V , the matroid M \S obtained from M by delet-
ing S is defined as M \S = (V \S, F |V \S), where X ⊆ V \S

belongs to F |V \S if and only if X ∈ F . For S ∈ F , the ma-
troid M/S obtained from M by contracting S is defined as
M/S = (V \ S, FS), where X ⊆ V \ S belongs to FS if and
only if X ∪ S ∈ F . Let {V1, . . . , Vl} be a partition of V and
a1, . . . , al a set of non-negative integers. Then M = (V , F )

is a matroid, where F = {F ⊆ V : |F ∩ Vi | ≤ ai}, we call it
partition matroid. The dual matroid M∗ of M is defined as
follows: the basis of M∗ are the complements of the basis
of M .

Let M = (V , F ) be a matroid and c a cost vector on
V = {v1, . . . , vn}. We can find a minimum cost basis Fn of
M in polynomial time by the greedy algorithm: take a non-
decreasing order of the elements of V : c(v1) ≤ · · · ≤ c(vn).
Let F0 be empty and for i = 1, . . . , n, let Fi = Fi−1 + vi if
Fi−1 + vi ∈ F , otherwise let Fi = Fi−1.

If M1 and M2 are two matroids on the same ground set
V , then we can find a common basis of M1 and M2 in poly-
nomial time (if there exists one) by the matroid intersection
algorithm of Edmonds [4].

Theorem 7 (Edmonds, Rota [18]) For an integer-valued,
non-decreasing, submodular function b defined on a ground
set S, the set {F ⊆ S; |F ′| ≤ b(F ′) for all ∅ �= F ′ ⊆ F }
forms the set of independent sets of a matroid Mb whose
rank function rb is given by

rb(Z) = min
{
b(X) + |Z − X|,X ⊆ Z

}
.
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Given an undirected graph G = (V ,E) and a non-
negative integer vector m on V , let m̄G = m̄ be the set func-
tion defined on E by m̄(F ) = m(V (F)) where V (F) is the
set of vertices covered by F . One can easily check that m̄

is integer valued, non-decreasing and submodular. Thus, by
Theorem 7, m̄ defines a matroid Mm̄. The following claim
is straightforward.

Claim 2 The set {F ⊆ E : m(X) ≥ iF (X),∀X ⊆ V } is the
set of independent sets of the matroid Mm̄.

3 Degree constrained sandwich problems

Before studying sandwich problems on orientations of given
in-degrees, let us start as a warming up by considering sand-
wich problems for undirected and directed graphs of given
degrees. These problems reduce to the undirected and di-
rected f -factor problems. We mention that the directed case
is much easier than the undirected case because the addition
of an arc in a directed graph contributes only to the in-degree
of the head and not of the tail, while the addition of an edge
in an undirected graph contributes to the degree of both end-
vertices. This section contains no new results, we added it
for the sake of completeness.

3.1 Undirected graphs

UNDIRECTED DEGREE CONSTRAINED SANDWICH PROB-
LEM

Instance: Given undirected graphs G1 = (V ,E1) and G2 =
(V ,E2) with E1 ⊆ E2 and a non-negative integer vector f

on V .
Question: Does there exist a sandwich graph G = (V ,E)

(E1 ⊆ E ⊆ E2) such that dG(v) = f (v) for all v ∈ V ?

Complexity: It is in P because the answer is YES if and
only if there exists an (f (v)−dG1(v))-factor in the optional
graph G0 = (V ,E0).

Characterization: The general f -factor theorem due to
Tutte [25] can be applied to get a characterization.

Optimization: The minimum cost f -factor problem in
undirected graphs can be solved in polynomial time, see
Schrijver [20].

SIMULTANEOUS UNDIRECTED DEGREE CONSTRAINED

SANDWICH PROBLEM

Instance: Given two edge-disjoint graphs G1 = (V ,E1) and
G2 = (V ,E2) in G3 = (V ,E3) and two non-negative inte-
ger vectors f1 and f2 on V .
Question: Do there exist simultaneously sandwich graphs
Ĝ1 = (V , Ê1) (E1 ⊆ Ê1 ⊆ E3) and Ĝ2 = (V , Ê2) (E2 ⊆

Ê2 ⊆ E3) such that Ê1 ∩ Ê2 = ∅ and d
Ĝ1

(v) = f1(v) and
d
Ĝ2

(v) = f2(v) for all v ∈ V ?

Complexity: It is NP-complete because it contains as a
special case whether there exist two edge-disjoint perfect
matchings so 3-edge-colorability of 3-regular graphs. In-
deed, let G = (V ,E) be an arbitrary 3-regular graph. Let G1

and G2 be the edgeless graph on V , G3 = G and f1(v) =
f2(v) = 1 for all v ∈ V . Then the sandwich graphs Ĝ1 and
Ĝ2 exist if and only if Ê1 and Ê2 are edge-disjoint perfect
matchings of G or equivalently, if there exists a 3-edge-
coloring of G. Since the problem of 3-edge-colorability of
3-regular graphs is NP-complete [16], so is our problem.

3.2 Directed graphs

DIRECTED DEGREE CONSTRAINED SANDWICH PROB-
LEM

Instance: Given directed graphs D1 = (V ,A1) and D2 =
(V ,A2) with A1 ⊆ A2 and a non-negative integer vector f

on V .
Question: Does there exist a sandwich graph D = (V ,A)

(A1 ⊆ A ⊆ A2) such that d−
D(v) = f (v) for all v ∈ V ?

Complexity + Characterization: It is in P because the an-
swer is YES if and only if there exists a directed (f (v) −
d−
D1

(v))-factor in the optional directed graph D0 = (V ,A0),
hence we have the following.

Theorem 8 The DIRECTED DEGREE CONSTRAINED

SANDWICH PROBLEM has a YES answer if and only if
d−
D2

(v) ≥ f (v) ≥ d−
D1

(v) for all v ∈ V .

Optimization: The feasible arc sets form the basis of a par-
tition matroid, so the greedy algorithm provides a minimum
cost solution.

SIMULTANEOUS DIRECTED DEGREE CONSTRAINED

SANDWICH PROBLEM 1
Instance: Given two arc-disjoint directed graphs D1 =
(V ,A1) and D2 = (V ,A2) in D3 = (V ,A3) and two non-
negative integer vectors f1 and f2 on V .
Question: Do there exist simultaneously sandwich graphs
D̂1 = (V , Â1) (A1 ⊆ Â1 ⊆ A3) and D̂2 = (V , Â2) (A2 ⊆
Â2 ⊆ A3) such that Â1 ∩ Â2 = ∅ and d−

D̂1
(v) = f1(v) and

d−
D̂2

(v) = f2(v) for all v ∈ V ?

Complexity: It is in P because the answer is YES if and
only if d−

D3
(v) ≥ f1(v)+f2(v), f1(v) ≥ d−

D1
(v) and f2(v) ≥

d−
D2

(v) for all v ∈ V .

SIMULTANEOUS DIRECTED DEGREE CONSTRAINED

SANDWICH PROBLEM 2
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Instance: Given directed graphs D1 = (V ,A1) and D2 =
(V ,A2) with A1 ⊆ A2 and two non-negative integer vectors
f and g on V .
Question: Does there exist a sandwich graph D = (V ,A)

(A1 ⊆ A ⊆ A2) such that d−
D(v) = f (v) and d+

D(v) = g(v)

for all v ∈ V .

Complexity: The feasible arc sets for the in-degree con-
straint form the basis of a partition matroid and the feasible
arc sets for the out-degree constraint form the basis of a par-
tition matroid. The answer is YES if and only if there exists
a common basis in these two matroids. Thus it is in P by the
matroid intersection algorithm of Edmonds [4].

4 Eulerian sandwich problems

In this section we consider first two problems that were al-
ready solved in [12]: Eulerian sandwich problems for undi-
rected and directed graphs. We point out that the undirected
case reduces to T -joins, while the directed case to circula-
tions. We show that in both cases the simultaneous versions
are NP-complete.

Then we propose to study the problem in mixed graphs.
We show two cases that can be solved. The first case will be
solved by the Discrete Separation Theorem 5 of Frank [9],
while the second case reduces to the DIRECTED EULERIAN

SANDWICH PROBLEM. The general case, however, remains
open.

4.1 Undirected graphs

UNDIRECTED EULERIAN SANDWICH PROBLEM

Instance: Given undirected graphs G1 = (V ,E1) and G2 =
(V ,E2) with E1 ⊆ E2.
Question: Does there exist a sandwich graph G = (V ,E)

(E1 ⊆ E ⊆ E2) that is Eulerian?

Complexity: It is in P because the answer is YES if and only
if there exists a TG1 -join in the optional graph G0.

Characterization: The answer is YES if and only if each
connected component of G0 contains an even number of ver-
tices of TG1 .

Optimization: The minimum cost T -join problem can be
solved in polynomial time [5].

SIMULTANEOUS UNDIRECTED EULERIAN SANDWICH

PROBLEM

Instance: Given two edge-disjoint graphs G1 = (V ,E1) and
G2 = (V ,E2) in G3 = (V ,E3).
Question: Do there exist simultaneously Eulerian sandwich
graphs Ĝ1 = (V , Ê1) (E1 ⊆ Ê1 ⊆ E3) and Ĝ2 = (V , Ê2)

(E2 ⊆ Ê2 ⊆ E3) such that Ê1 ∩ Ê2 = ∅?

Complexity: It is NP-complete because it contains as a
special case whether there exist two edge-disjoint perfect
matchings so 3-colorability of 3-regular graphs. Indeed, let
G = (V ,E) be an arbitrary 3-regular graph. Let G3 be ob-
tained from G by adding 2 edge-disjoint perfect matchings
M1 and M2 to G, let G1 = (V ,M1) and G2 = (V ,M2).
Then the Eulerian sandwich graphs Ĝ1 and Ĝ2 exist if and
only if Ê1 \M1 and Ê2 \M2 are edge-disjoint perfect match-
ings of G or equivalently, if there exists a 3-edge-coloring
of G. Since the problem of 3-edge-colorability of 3-regular
graphs is NP-complete [16], so is our problem.

4.2 Directed graphs

DIRECTED EULERIAN SANDWICH PROBLEM

Instance: Given directed graphs D1 = (V ,A1) and D2 =
(V ,A2) with A1 ⊆ A2.
Question: Does there exist a sandwich graph D = (V ,A)

(A1 ⊆ A ⊆ A2) that is Eulerian?

Complexity: It is in P because it can be reformulated as a
circulation problem: let f (e) = 1, g(e) = 1 if e ∈ A1 and
f (e) = 0, g(e) = 1 if e ∈ A0. This way the arcs of A1 are
forced and the arcs of A0 can be chosen if necessary.

Characterization: The answer is YES if and only if
d−
D1

(X) ≤ d+
D2

(X) for all X ⊆ V by Theorem 1.
Optimization: The minimum cost circulation problem can
be solved in polynomial time, see Tardos [23].

SIMULTANEOUS DIRECTED EULERIAN SANDWICH

PROBLEM

Instance: Given two arc-disjoint directed graphs D1 =
(V ,A1) and D2 = (V ,A2) in D3 = (V ,A3).
Question: Do there exist simultaneously Eulerian sandwich
graphs D̂1 = (V , Â1) (A1 ⊆ Â1 ⊆ A3) and D̂2 = (V , Â2)

(A2 ⊆ Â2 ⊆ A3) such that Â1 ∩ Â2 = ∅?

Complexity: It is NP-complete, it contains as a special case
(D1 = (V , t1s1), D2 = (V , t2s2) and D3 = D) the follow-
ing directed 2-commodity integral flow problem that is NP-
complete [6]: Given a directed graph D and two pairs of
vertices, s1, t1 and s2, t2, decide whether there exist a path
from s1 to t1 and a path from s2 to t2 that are arc-disjoint.

4.3 Mixed graphs

MIXED EULERIAN SANDWICH PROBLEM

Instance: Given mixed graphs H1 = (V ,E1 ∪A1) and H2 =
(V ,E2 ∪ A2) with E1 ⊆ E2,A1 ⊆ A2.
Question: Does there exist a sandwich mixed graph H =
(V ,E ∪ A) (E1 ⊆ E ⊆ E2,A1 ⊆ A ⊆ A2) that has an Eule-
rian orientation?
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Complexity: We provide two special cases that can be
treated, while the general problem remains open.

SPECIAL CASE 1: E1 = E2 = E and d+
A2

(X) − d−
A1

(X) +
d̂E(X) is even for all X ⊆ V .

Characterization + Complexity: We show that the prob-
lem is in P and we provide a characterization.

Theorem 9 The MIXED EULERIAN SANDWICH PROBLEM

with E1 = E2 = E and d+
A2

(X) − d−
A1

(X) + d̂E(X) is even
for all X ⊆ V has a YES answer if and only if

d−
A1

(X) − d+
A2

(X) ≤ dE(X)∀X ⊆ V. (11)

In particular, this problem is in P.

Proof By the result of Sect. 4.2, the answer is YES if and
only if there exists an orientation �E of E such that, ∀X ⊆ V ,
d−
A1∪ �E(X) ≤ d+

A2∪ �E(X) or equivalently

d−
�E (X) − d+

�E (X) ≤ d+
A2

(X) − d−
A1

(X). (12)

Let m be the in-degree vector of �E. Then d−
�E (X)−d+

�E (X) =
∑

v∈X(d−
�E (v) − d+

�E (v)) = ∑
v∈X(2d−

�E (v) − dE(v)) =
2m(X) − d̂E(X), and (12) becomes

2m(X) ≤ d+
A2

(X) − d−
A1

(X) + d̂E(X). (13)

Let b(X) = 1
2 (d+

A2
(X) − d−

A1
(X) + d̂E(X)). Then b, be-

ing the sum of a modular function and a submodular func-
tion (b(X) = 1

2

∑
v∈X(d+

A1
(v)−d−

A1
(v)+dE(v))+d+

A0
(X)),

is a submodular function and, by the assumption, it is in-
teger valued. By Theorem 3, an orientation �E satisfying
(12) exists if and only if there exists a vector m such that
iE(X) ≤ m(X) ≤ b(X), that is, by Claim 1 and Theorem 5,
if and only if iE(X) ≤ b(X). This is equivalent to (11) and
can be decided in polynomial time by Theorem 4, namely
the submodular function b′(X) = b(X) − iE(X) must have
minimum value 0. �

SPECIAL CASE 2: E1 = ∅.

Characterization + Complexity: It is in P because it can
be reformulated as the following problem: We create two
copies of each edge in E2 and orient them in opposite di-

rections. Denote this arc set by
−→
E2

2 . It is not difficult to
see that the graph (V ,E2 ∪ A2) has a subgraph contain-
ing (V ,A1) with an Eulerian orientation if and only if the

graph (V ,
−→
E2

2 ∪ A2) has a directed Eulerian subgraph con-
taining (V ,A1). Indeed, in such a graph, if every edge of E2

is used at most once, we are done. If some edge of E2 is used
twice, as two arcs in opposite directions, we can just remove

these two arcs, the obtained graph remaining Eulerian and
containing (V ,A1). Now applying the result for DIRECTED

EULERIAN SANDWICH PROBLEM we have

Theorem 10 The MIXED EULERIAN SANDWICH PROB-
LEM with E1 = ∅ has a YES answer if and only if

d−
A1

(X) − d+
A2

(X) ≤ dE2(X)∀X ⊆ V. (14)

In particular, this problem is in P.

Proof Let D1 = (V ,A1) and D2 = (V ,A2 ∪−→
E2

2). By the ar-
guments above, the MIXED EULERIAN SANDWICH PROB-
LEM with E1 = ∅ has a solution if and only if there is an
Eulerian sandwich graph for D1 and D2 or equivalently,
d−
D1

(X) ≤ d+
D2

(X) for all X ⊆ V . By d+
D2

(X) = d+
A2

(X) +
dE2(X), we have d−

A1
(X)−d+

A2
(X) ≤ dE2(X) for all X ⊆ V .

Note that dE2(X)+ d+
A2

(X)− d−
A1

(X) is a submodular func-
tion, and hence by Theorem 4, (14) can be verified in poly-
nomial time. �

5 m-orientation sandwich problems

In this section we consider the sandwich problem where the
property � is to have an orientation of given in-degrees.

5.1 m-Orientation

m-ORIENTATION SANDWICH PROBLEM

Instance: Given undirected graphs G1 = (V ,E1) and G2 =
(V ,E2) with E1 ⊆ E2 and a non-negative integer vector m

on V .
Question: Does there exist a sandwich graph G = (V ,E)

(E1 ⊆ E ⊆ E2) that has an orientation �G whose in-degree
vector is m that is d−

�G(v) = m(v) for all v ∈ V ?

Characterization: We prove the following theorem.

Theorem 11 The following assertions are equivalent.

(a) The m-ORIENTATION SANDWICH PROBLEM has a
YES answer.

(b) E1 is independent in Mm̄ and Mm̄ has an independent
set of size m(V ).

(c) rm̄(E1) = |E1| and rm̄(E2) ≥ m(V ).
(d) iE1(X) ≤ m(X) ≤ eE2(X) for all X ⊆ V .

Proof
(a) Implies (d). Let X ⊆ V . Since each edge of G1 in

X contributes 1 to m(X), we have iE1(X) ≤ m(X). On the
other hand, the edges of G2 that have no end-vertex in X

cannot contribute 1 to m(X), so we have m(X) ≤ eE2(X).
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(d) Implies (c). Let F be a subset of E1 and X = V (F).
The condition iE1(X) ≤ m(X) implies |F | ≤ m(V (F)) =
m̄(F ), that is, |E1| ≤ m̄(F ) + |E1 \ F |. By Theorem 7,
rm̄(E1) ≥ |E1|, or equivalently rm̄(E1) = |E1|. Let now F

be a subset of E2 and X = V \V (F). The condition m(X) ≤
eE2(X) implies that m(V ) ≤ m(V (F)) + eE2(V − V (F)) ≤
m̄(F ) + |E2 \ F |. By Theorem 7, rm̄(E2) ≥ m(V ).

(c) Implies (b). By definition.

(b) Implies (a). By (b), E1 is independent in Mm̄ and
there exists an independent in Mm̄ of size m(V ). Therefore,
by (I3), there exists an independent set E of size m(V ) that
contains E1. By Theorem 3 and Claim 2, E is a solution of
the m-ORIENTATION SANDWICH PROBLEM. �

We say that a subset F of E0 is feasible if (V ,F ∪E1) has
an m-orientation. The next corollary of Theorem 11 charac-
terizes the feasible sets.

Corollary 1 If the m-ORIENTATION SANDWICH PROB-
LEM has a YES answer, then a subset F of E0 is feasible
if and only if F is a base of the matroid Mm̄/E1.

Complexity: The condition (d) of Theorem 11 can be veri-
fied in polynomial time by Theorem 4, so the
m-ORIENTATION SANDWICH PROBLEM is in P.

Optimization: The minimum cost version of the problem
can be solved in polynomial time. First, we find an optimal
feasible subset F by greedy algorithm. Then we can orient
the edges of F ∪ E1 using a known algorithm. (See [10] for
example.)

Corollary 1 and the matroid intersection algorithm of Ed-
monds [4] imply that the two following simultaneous ver-
sions of the m-ORIENTATION SANDWICH PROBLEM are
also in P.

SIMULTANEOUS m-ORIENTATION SANDWICH PROBLEM 1
Instance: Given two edge-disjoint undirected subgraphs
G1 = (V ,E1) and G2 = (V ,E2) of an undirected graph
G3 = (V ,E3) and two non-negative integer vectors m1 and
m2 on V .
Question: Do there exist simultaneously edge-disjoint sand-
wich graphs Ĝ1 = (V , Ê1) (E1 ⊆ Ê1 ⊆ E3) and Ĝ2 =
(V , Ê2) (E2 ⊆ Ê2 ⊆ E3) such that Ĝi has an orientation
whose in-degree vector is mi for i ∈ {1,2}?

Note that the two input matroids for the matroid intersec-
tion algorithm must be taken as (M

G1
m̄1

/E1)\E2 and the dual

matroid of (M
G2
m̄2

/E2) \ E1.

SIMULTANEOUS m-ORIENTATION SANDWICH PROBLEM 2
Instance: Given two undirected subgraphs G1 = (V ,E1)

and G2 = (V ,E2) of an undirected graph G3 = (V ,E3) and
two non-negative integer vectors m1 and m2 on V .
Question: Does there exist an edge set F in E3 \ (E1 ∪ E2)

such that the graph Gi = (V ,Ei ∪ F) admits an orientation
whose in-degree vector is mi for i ∈ {1,2}?

5.2 Strongly connected m-orientation

STRONGLY CONNECTED m-ORIENTATION SANDWICH

PROBLEM

Instance: Given undirected graphs G1 = (V ,E1) and G2 =
(V ,E2) with E1 ⊆ E2 and a non-negative integer vector m

on V .
Question: Does there exist a sandwich graph G = (V ,E)

(E1 ⊆ E ⊆ E2) that has a strongly connected orientation �G
whose in-degree function is m?

Complexity: It is NP-complete because the special case
E1 = ∅,m(v) = 1∀v ∈ V is equivalent to decide if G2 has a
Hamiltonian cycle.

5.3 (m1,m2)-orientation

(m1,m2)-ORIENTATION SANDWICH PROBLEM

Instance: Given undirected graphs G1 = (V ,E1) and G2 =
(V ,E2) with E1 ⊆ E2 and non-negative integer vectors m1

and m2 on V .
Question: Does there exist a sandwich graph G = (V ,E)

(E1 ⊆ E ⊆ E2) that has an orientation �G whose in-degree
vector is m1 and whose out-degree vector is m2?

Complexity: The problem is NP-complete since it contains
as a special case (E1 = ∅) the NP-complete problem of [19].

5.4 Mixed m-orientation

MIXED m-ORIENTATION SANDWICH PROBLEM

Instance: Given mixed graphs G1 = (V ,E1 ∪A1) and G2 =
(V ,E2 ∪ A2) with E1 ⊆ E2, A1 ⊆ A2 and an non-negative
integer vector m on V .
Question: Does there exist a sandwich mixed graph G =
(V ,E ∪ A) with E1 ⊆ E ⊆ E2 and A1 ⊆ A ⊆ A2 that has
an orientation

−→
G = (V ,

−→
E ∪ A) whose in-degree vector is

m?

Characterization: Suppose that E1 ⊆ E ⊆ E2 has been
chosen and oriented, then the problem is reduced to the DI-
RECTED DEGREE CONSTRAINED SANDWICH PROBLEM

with m1(v) = m(v) − d−−→
E

(v) which, by Theorem 8, has a

solution if and only if d−
A2

(v) ≥ m(v) − d−−→
E

(v) ≥ d−
A1

(v)

for all v ∈ V . Hence the MIXED m-ORIENTATION SAND-
WICH PROBLEM has a solution if and only if there ex-
ists E1 ⊆ E ⊆ E2 which admits an orientation

−→
E with
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m(v) − d−
A1

(v) ≥ d−−→
E

(v) ≥ m(v) − d−
A2

(v) for all v ∈ V .

Let m2 : V → Z satisfy m(v) − d−
A2

(v) ≤ m2(v) ≤ m(v) −
d−
A1

(v). By Theorem 11, there exists E1 ⊆ E ⊆ E2 which

admits an orientation
−→
E with d−−→

E
(v) = m2(v) if and only

if iE1(X) ≤ m2(X) ≤ eE2(X) for all X ⊆ V . Therefore we
have

Claim 3 The MIXED m-ORIENTATION SANDWICH PROB-
LEM has a YES answer if and only if there exists an integer-
valued function m2 : V → Z such that, ∀v ∈ V and ∀X ⊆ V ,

m(v) − d−
A2

(v) ≤ m2(v) ≤ m(v) − d−
A1

(v),

iE1(X) ≤ m2(X) ≤ eE2(X).

Claim 4 The pair (iE1 , eE2) is a strong pair.

Proof Let X,Y,Z be three pairwise disjoint subset of V . We
show that eE2(X ∪ Z) − iE1(Y ∪ Z) ≥ eE2(X) − iE1(Y ). In
fact, we have iE1(Y ∪ Z) − iE1(Y ) = iE1(Z) + dE1(Y,Z) ≤
iE2(Z) + dE2(Y,Z), and eE2(X ∪ Z) − eE2(X) = iE2(Z) +
dE2(Z) − dE2(X,Z). As X,Y,Z are pairwise disjoint,
dE2(Y,Z) + dE2(X,Z) ≤ dE2(Z). The claim follows by
Claim 1. �

By Claim 3, 4 and Theorem 6 applied for α(v) = m(v)−
d−
A2

(v),β(v) = m(v) − d−
A1

(v),p = iE1 , b = eE2 , we have

Theorem 12 The MIXED m-ORIENTATION SANDWICH

PROBLEM has a YES answer if and only if

iE1(X) + d̂−
A1

(X) ≤ m(X) ≤ eE2(X) + d̂−
A2

(X) (15)

for every subset X of V .

Note that Theorem 12 implies Theorems 8 and 11.

Complexity: The condition (15) can be verified in poly-
nomial time by Theorem 4. If it is satisfied, then a vector
m2 satisfying the conditions in Claim 3 can be found us-
ing a greedy algorithm for g-polymatroids. Then we find
and orient an edge set E (E1 ⊆ E ⊆ E2) with in-degree m2

(m-ORIENTATION SANDWICH PROBLEM). Last, we choose
an arc set A (A1 ⊆ A ⊆ A2) such that d−

A (v) = m1(v) =
m(v) − m2(v), for all v ∈ V (DIRECTED DEGREE CON-
STRAINED SANDWICH PROBLEM).

6 Contracting sandwich problems

In this section, we propose to consider a new type of sand-
wich problem. Instead of deleting edges from the optional
graph, we are interested in contracting edges. We solve the
problem for the property � being a bipartite graph.

CONTRACTING SANDWICH PROBLEM

Instance: Given an undirected graph G = (V ,E) and
E0 ⊆ E.
Question: Does there exist F ⊆ E0 such that contracting F

results in a bipartite graph?

Complexity: Since a graph is bipartite if and only if all its
cycles have an even length, the problem is equivalent to find-
ing F ⊆ E0 such that, for all cycles C, |C ∩F | ≡ |C| mod 2.

Fix a spanning forest T of G. For e ∈ E \ T , denote
C(T , e) the unique cycle contained in T ∪ e. By [18, The-
orem 9.1.2], if C is a cycle of G then C = �e∈CC(T , e),
where � denotes the symmetric difference of sets. There-
fore, |C ∩ F | ≡ ∑

e∈C |C(T , e) ∩ F | mod 2. Let CT de-
note the collection of cycles C(T , e) of G. The problem
is reduced to finding F ⊆ E0 such that, for all C ∈ CT ,
|C ∩ F | ≡ |C| mod 2, or equivalently, finding an F ′(=
E \ F) ⊇ E1 = E \ E0 such that |F ′ ∩ C| ≡ 0 mod 2, for
all C ∈ CT .

Consider now the matrix M defined as the following. The
rows of M correspond to C ∈ CT and the columns corre-
spond to the edges of G; the entry MCe is 1 if e ∈ C and is 0
otherwise. For X ⊆ E, let χX denote the characteristic vec-
tor of X. For a vector x ∈ {0,1}E , let x|X denote the projec-
tion of x on X. Let 1 be the all-one vector in {0,1}E . A sub-
set F ′ ⊆ E satisfies |F ′ ∩ C| ≡ 0 mod 2, for all C ∈ CT , if
and only if χF ′ ∈ KerM in F2. Such an F ′ is the solution
of the CONTRACTING SANDWICH PROBLEM if and only if
χF ′|E1 = 1|E1 .

Let B be a basis of the kernel of M in F2. (This can be
computed in polynomial time using the Gauss elimination.)
Consider the projections B ′ of B on E1. Then the CON-
TRACTING SANDWICH PROBLEM has a solution if and only
if 1|E1 is in the subspace of {0,1}E1 spanned by B ′, that
is, rankB ′ = rankB ′ ∪ 1|E1 . This can be decided in polyno-
mial time using the Gauss elimination. We conclude that the
CONTRACTING SANDWICH PROBLEM is in P.

We finish with a related problem. For a fixed integer k,
solving the CONTRACTING SANDWICH PROBLEM when
E0 = E with extra requirement |F | ≤ k is known to be
tractable in polynomial time [14]. However, the authors
mention that finding a solution of minimum cardinality is
NP-complete.
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