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Abstract A b-coloring of a graph is a coloring of its vertices
such that every color class contains a vertex that has a neigh-
bor in all other classes. The b-chromatic number of a graph
is the largest integer k such that the graph has a b-coloring
with k colors. We show how to compute in polynomial time
the b-chromatic number of a graph of girth at least 9. This
improves the seminal result of Irving and Manlove on trees.
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1 Introduction

Let G be a simple graph. A proper coloring of G is an as-
signment of colors to the vertices of G such that no two ad-
jacent vertices have the same color. The chromatic number
of G is the minimum integer χ(G) such that G has a proper
coloring with χ(G) colors. Suppose that we have a proper
coloring of G and there exists a color h such that every ver-
tex x with color h is not adjacent to at least one other color
(which may depend on x); then we can change the color of
these vertices and thus obtain a proper coloring with fewer
colors. This heuristic can be applied iteratively, but we can-
not expect to reach the chromatic number of G, since the
coloring problem is N P -hard. On the basis of this idea, Irv-
ing and Manlove introduced the notion of b-coloring in [15].
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Intuitively, a b-coloring is a proper coloring that cannot be
improved by the above heuristic, and the b-chromatic num-
ber measures the worst possible such coloring. More for-
mally, consider any vertex coloring of G. A vertex u is said
to be a b-vertex (for this coloring) if u has a neighbor colored
with each color different from its own color. A b-coloring of
G is a proper coloring of G such that each color class con-
tains a b-vertex. A basis of a b-coloring is a set of b-vertices,
one for each color class. The b-chromatic number of G is the
largest integer k such that G has a b-coloring with k colors.
We denote it by χb(G).

Naturally, a proper coloring of G with χ(G) colors is
a b-coloring of G, since it cannot be improved. Hence,
χ(G) ≤ χb(G). For an upper bound, observe that if G has
a b-coloring with k colors, then G has at least k vertices
with degree at least k − 1 (a basis of the b-coloring). Thus,
if m(G) is the largest integer such that G has at least m(G)

vertices with degree at least m(G)− 1, we know that G can-
not have a b-coloring with more than m(G) colors, i.e.,

χb(G) ≤ m(G).

This upper bound was introduced by Irving and Manlove
in [15]. They showed that the difference between χb(G)

and m(G) can be arbitrarily large for general graphs. They
proved that χb(G) is equal to m(G) or m(G) − 1 when G is
a tree, and provided a polynomial time algorithm that com-
putes χb(G) for every tree. In addition, the problem was
proved to be NP-hard in general graphs [15], and remains
so even when restricted to bipartite graphs [22]. These con-
cepts have received much attention recently; for example,
see [1–27].

Many of these works investigate the b-chromatic number
of graphs under assumptions that involve the existence of
large cycles. For example, Irving and Manlove’s algorithm
for trees can actually work on graphs with girth at least 11,
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as noticed by A. Silva in [26]. Also, there are a number of
results about d-regular graphs with girth at least 5 [3, 6,
18, 22, 23]. In this paper we improve Irving and Manlove’s
result for graphs with large girth; more specifically, we prove
the following.

Theorem 1 If G is a graph with girth at least 9, then
χb(G) ≥ m(G) − 1.

Here is an outline of the proof of Theorem 1. A special
set of vertices, called a good set of vertices, is defined and
graphs are distinguished between having a good set and not
having a good set. Next, we state some results by Irving
and Manlove [15] and by Silva [26] that say that a graph
G with girth(G) ≥ 8 that does not have a good set cannot
be b-colored with m(G) colors and has a b-coloring with
m(G) − 1 colors (hence, χb(G) = m(G) − 1); also, Silva
proved that if G with girth at least 8 has a good set, then
one can be found in polynomial time. Finally, and this is the
original part of the paper, it is shown that if G with girth
at least 9 has a good set, then χb(G) = m(G). The proof of
Theorem 1 yields a polynomial time algorithm that finds an
optimal b-coloring of graphs with girth at least 9.

2 Definitions and partial results

In this section, we present some necessary definitions and
the results by Irving and Manlove [15] and A. Silva [26]
that complement our proof. The graph terminology used in
this paper follows [4].

Let G be a simple graph. We denote by V (G) and E(G)

the sets of vertices and edges of G, respectively. If X ⊆
V (G), then NX(u) represents the set N(u) ∩ X. The girth
of G is the size of a shortest induced cycle of G.

Recall that m(G) is the largest integer k such that G has
at least k vertices with degree at least k − 1. We say that
a vertex u ∈ V (G) is dense if d(u) ≥ m(G) − 1; and we
denote the set of dense vertices of G by M(G).

Let W be a subset of M(G), and let u be any vertex in
V (G) \ W . If u is such that every vertex v ∈ W is either
adjacent to u or has a common neighbor w ∈ W with u such
that d(w) = m(G)−1, then it is said that W encircles vertex
u (or that u is encircled by W ). A subset W of M(G) of size
m(G) is a good set if (our definition is slightly different from
the one given by Irving and Manlove):

(a) W does not encircle any vertex, and
(b) Every vertex x ∈ V (G) \ W with d(x) ≥ m(G) is adja-

cent to a vertex w ∈ W .

Theorem 2 [15] Let G be any graph and W be a subset
of M(G) with m(G) vertices. If W encircles some vertex
v ∈ V (G) \ W , then W is not a basis of a b-coloring with
m(G) colors.

Theorem 3 [26] If G is a graph with girth at least 8, then
G does not have a good set if and only if |M(G)| = m(G)

and M(G) encircles a vertex in V (G) \ M(G). Moreover,
a good set of G (if any exists) can be found in polynomial
time.

A part of the proof of Theorem 1 consists of the following
theorem:

Theorem 4 [26] Let G be a graph with girth at least 8. If
G has no good set, then χb(G) = m(G) − 1.

Now, all we need to prove is that if G does have a good
set, then G can be b-colored with m(G) colors, which is
done in the next section.

3 Coloring graphs with a good set

In this section we prove the second part of the main theorem,
namely:

Theorem 5 Let G be a graph with girth at least 9. If G has
a good set, then χb(G) = m(G).

Let W = {v1, . . . , vm(G)} be a good set of G. Our aim is to
construct a b-coloring of G with m(G) colors such that, for
each i ∈ {1, . . . ,m(G)}, vertex vi is a b-vertex of color i. We
start by assigning color i to vi , for each i ∈ {1, . . . ,m(G)}.
Next, we extend this partial coloring to the rest of the graph
in several steps. Before explaining each step, we need to in-
troduce some other terminology and notation.

A link is any path of length two or three whose extremi-
ties are in W and whose internal vertices are not in W . Any
interior vertex of a link is called a link vertex. Let L be the
set of all link vertices.

We first color G[W ∪ L] in a way not to repeat too many
colors in N(w), for all w ∈ W , and at the end we extend the
obtained partial coloring to a b-coloring of G with m(G)

colors. Let G′ = G[W ∪ L], L1 be the set of vertices of L

that have at least one neighbor in L and L2 be the set of
vertices in L that have at least two neighbors in W . The
steps below are followed in order in such a way that we only
move on to the next step when all the possible vertices are
iterated.

1. For each x ∈ L1, let x′ ∈ NL(x). Since x′ ∈ L, there must
exist vi ∈ NW(x′); color x with i;

2. For each vi ∈ W , let N∗
i = N(vi) ∩ L2 = {x1, . . . , xq}.

Also, let vij ∈ NW(xj ) \ {vi}. If q > 1, then use colors
i1, . . . , iq to color the uncolored vertices in N∗

i in a way
that xj is not colored with ij (it suffices to make a de-
rangement of those colors on the vertices);
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3. Let x ∈ L2 still uncolored be such that there exists vi ∈
NW(x) that has some neighbor y ∈ L1. Let c be the color
of y; color x with c and recolor y with j , for any vj ∈
NW(x) \ {vi};

4. Finally, if x ∈ L2 is still uncolored, we know that
NL(vi) = {x}, for all vi ∈ NW(x). Since NL(x) = ∅,
we can color x with i, for any vi that is not adjacent to
x and has no common neighbor with x in W of degree
m(G) − 1, which exists as x is not encircled by W .

Suppose that the algorithm above produces a partial col-
oring that colors every vertex in L in such a way that, at the
end, each vi ∈ W has at least as many uncolored neighbors
as missing colors in its neighborhood. Since L is colored,
we know that the uncolored neighbors of W form a stable
set. Thus, we can independently color N(vi) in such a way
that vi sees every other color, for all vi ∈ W . By the defi-
nition of a good set, we know that if d(v) ≥ m(G), then v

is already colored; hence, the partial coloring can be greed-
ily transformed into a b-coloring with m(G) colors. Now,
to prove that the algorithm works, we show that after these
steps the obtained partial coloring ψ satisfies:

P1 ψ is proper; and
P2 the number of uncolored neighbors of vi is at least the

number of missing colors in N(vi), for each vi ∈ W .

Proof of Theorem 5 First, we make some observations con-
cerning the coloring procedure. Note that L1 ∩L2 is not nec-
essarily empty, but all vertices in this subset are colored in
Step 1. However, a vertex x ∈ L1 ∩ L2 may play a role in
Step 2 in the following way: if x ∈ N(vi) and there exists
x′ ∈ NL2(vi) \ L1, then x′ may be colored with color j for
some vj ∈ NW(x) \ {vi}, while the color of x remains un-
changed. Also, note that, in Step 3, since NL2(vi) = {x}, we
have y ∈ L1 \ L2. Hence, NW(y) = {vi} and, consequently,
the color of y cannot be changed again. Thus (*) the color
of y is changed at most once, for every y ∈ L1. Finally, if x

receives color i in Step 1, 2 or 3, then one of the following
holds (fact (iii) holds because of (*)):

(i) x receives color i in Step 1 and there exists a path
〈x, x′, vi〉, for some x′ ∈ L1; or

(ii) x receives color i in Step 2 and there exists a path
〈x, vj , x

′, vi〉, for some vj ∈ W and x′ ∈ L2; or
(iii) x receives color i in Step 3 and there exists a path

〈x, vj , y, y′, vi〉, for some vj ∈ W , y ∈ L1 \ L2 and
y′ ∈ L1; or

(iv) x is recolored with color i in Step 3 and there exists a
path 〈x, vj , x

′, vi〉, for some vj ∈ W and x′ ∈ L2 \ L1.

We first prove that P1 holds after Step 3. Suppose that
there exists an edge wz such that ψ(w) = ψ(z) = i. Since
G has no cycle of length at most 7, the paths defined in (i)–
(iv) are shortest paths. Therefore, vertex vi has no neighbor

colored i and hence, w,z ∈ L. Also, as wz ∈ E(G), we have
w,z ∈ L1 and they are colored in Step 1 and maybe recol-
ored in Step 3. By (i) and (iv), there exist a w,vi -path Pw

and a z, vi -path Pz, both of length at most 3. Note that either
Pw + Pz + wz contains a cycle of length at most 7 or one
of these paths consists of the edge wz followed by the other
path. Because G has girth at least 9, the latter case occurs.
We get as contradiction as this implies that at least one path
is defined by (i) and, thus, vertex vi has a neighbor colored i.

Now, we prove that P2 also holds after Step 3. We actu-
ally prove that, after Step 3, no color is repeated in N(vi),
for each vi ∈ W . Suppose there exist a vertex vj ∈ W and
w,z ∈ N(vj ) such that ψ(w) = ψ(z) = i. First, consider
the case vi ∈ {w,z}. Since the paths defined by (i)–(iv)
are shortest paths, we see that (i) occurs for the vertex in
{w,z} \ {vi}. We get a contradiction as this implies G has a
cycle of length 4. Therefore we may assume vi /∈ {w,z}.

Now, by (i)–(iv), there exist a w,vi -path Pw and a z, vi -
path Pz. Let �w and �z be the length of Pw and Pz, re-
spectively. Clearly �w, �z ≤ 4. Note that either Pw + Pz +
〈w,vj , z〉 contains a cycle of length at most �w + �z + 2
or either Pw or Pz consists of the path 〈w,vj , z〉 followed
by the other path. Since both w and z are at distance at
least 2 from vi and �w, �z ≤ 4, the latter can only oc-
cur if one of the paths is defined by (i), say Pw , and the
other is defined by (iii), say Pz. We get a contradiction as
Pz = 〈z, vj ,w,y, vi〉 implies w is recolored in Step 3 and
therefore, Pw must be defined by (iv). Now, suppose that the
former occurs, i.e., Pw + Pz + 〈w,vj , z〉 contains a cycle of
length at most �w +�z +2. Because G has girth at least 9, we
have �w + �z ≥ 7. This implies that at least one of Pw and
Pz, say Pz, is defined by (iii), and the other is not defined
by (i). Therefore z is colored in Step 3 and NL2(vj ) = {z}.
Furthermore, w ∈ L1 \ L2 and NW(w) = {vj }. Therefore,
since (i) does not occur for w, we find that Pw must be de-
fined by (iv). Thus the only choice for Pw is 〈w,vj , z, vi〉, a
contradiction as P1 holds.

Finally, consider x to be colored during Step 4 with color
i. By the choice of i we know that vi /∈ N(x). Thus, since
NL(x) = ∅, Property P1 holds. Now, suppose that some
vj ∈ N(x) is such that color i already appears in N(vj ).
Since NL(vj ) = {x} we must have vi ∈ N(vj ) and, by the
choice of i, d(vj ) > m(G) − 1. Property P2 thus follows as
i is the only repeated color in the neighborhood of vj . �

4 Conclusion

We showed that if G is a graph with girth at least 9, then
χb(G) ≥ m(G) − 1, improving the result by Irving and
Manlove [15]. We also give an algorithm that finds the b-
chromatic number of G in polynomial time.

In [25], Maffray and Silva conjecture that any graph G

with no K2,3 as subgraph has b-chromatic number at least
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m(G) − 1. Observe that these graphs contain all graphs
with girth at least 9; thus, we have given a partial answer
to their conjecture. Actually, if their conjecture holds, then
χb ≥ m(G)−1 holds for every G with girth at least 5. How-
ever, a different approach is needed as our proof strongly
relies on the fact that girth(G) ≥ 9. Moreover, Theorem 5
does not hold for an infinite family of cacti with girth 5, as
can be seen in [7]. This means that the situation where G has
no good set is not the only situation where a graph G with
girth at least 5 cannot be b-colored with m(G) colors.

Acknowledgements This work has been partially supported by Fun-
cap (Fundação Cearense de Apoio ao Desenvolvimento Científico
e Tecnológico) and CNPq (Conselho Nacional de Desenvolvimento
Científico e Tecnológico).

References

1. Balakrishnan R, Francis Raj S (2009) Bounds for the b-chromatic
number of vertex-deleted subgraphs and the extremal graphs (ex-
tended abstract). Electron Notes Discrete Math 34:353–358

2. Barth D, Cohen J, Faik T (2007) On the b-continuity property of
graphs. Discrete Appl Math 155:1761–1768

3. Blidia M, Maffray F, Zemir Z (2009) On b-colorings in regular
graphs. Discrete Appl Math 157(8):1787–1793

4. Bondy A, Murty USR (2008) Graph theory. Springer, Berlin
5. Bonomo F, Duran G, Maffray F, Marenco J, Valencia-Pabon

M (2009) On the b-coloring of cographs and P4-sparse graphs.
Graphs Comb 25(2):153–167

6. Cabello S, Jakovac M (2011) On the b-chromatic number of regu-
lar graphs. Discrete Appl Math 159(3):1303–1310

7. Campos V, Linhares Sales C, Maffray F, Silva A (2009)
b-chromatic number of cacti. Electron Notes Discrete Math
35:281–286

8. Chaouche F, Berrachedi A (2007) Some bounds for the b-
chromatic number of a generalized Hamming graphs. Far East J
Appl Math 26:375–391

9. Corteel S, Valencia-Pabon M, Vera J-C (2005) On approximating
the b-chromatic number. Discrete Appl Math 146:106–110

10. Effantin B (2005) The b-chromatic number of power graphs of
complete caterpillars. J Discrete Math Sci Cryptogr 8:483–502

11. Effantin B, Kheddouci H (2003) The b-chromatic number of some
power graphs. Discrete Math Theor Comput Sci 6:45–54

12. Effantin B, Kheddouci H (2005) Exact values for the b-chromatic
number of a power complete k-ary tree. J Discrete Math Sci Cryp-
togr 8:117–129

13. Hajiabolhassan H (2010) On the b-chromatic number of Kneser
graphs. Discrete Appl Math 158:232–234

14. Hoang CT, Kouider M (2005) On the b-dominating coloring of
graphs. Discrete Appl Math 152:176–186

15. Irving RW, Manlove DF (1999) The b-chromatic number of a
graph. Discrete Appl Math 91:127–141

16. Javadi R, Omoomi B (2009) On b-coloring of the Kneser graphs.
Discrete Math 309:4399–4408

17. Jakovac M, Klavzar S (2010) The b-chromatic number of cubic
graphs. Graphs Comb 26:107–118

18. Kouider M (2004) b-chromatic number of a graph, subgraphs and
degrees. Technical report 1392, Université Paris Sud

19. Kouider M, Maheo M (2002) Some bounds for the b-chromatic
number of a graph. Discrete Math 256:267–277

20. Kouider M, Maheo M (2007) The b-chromatic number of the
Cartesian product of two graphs. Studia Sci Math Hung 44:49–55

21. Kouider M, Zaker M (2006) Bounds for the b-chromatic number
of some families of graphs. Discrete Math 306:617–623. Acho q

a nica mudana q tu ainda n

22. Kratochvíl J, Tuza Zs, Voigt M (2002) On the b-chromatic number
of graphs. Lect Notes Comput Sci 2573:310–320

23. Kouider M, Sahili AE (2006) About b-colouring of regular graphs.
Technical report 1432, Université Paris Sud

24. Shaebani S On the b-chromatic number of regular graphs without
4-cycles. arXiv:1103.1521v1

25. Maffray F, Silva A (2012, to appear) b-colouring outerplanar
graphs with large girth. Discrete Math

26. Silva A (2010) The b-chromatic number of some tree-like graphs.
PhD thesis, Université de Grenoble

27. Velasquez CIB, Bonomo F, Koch I (2011) On the b-coloring of
P4-tidy graphs. Discrete Appl Math 159:60–68

http://arxiv.org/abs/arXiv:1103.1521v1

	b-Coloring graphs with large girth
	Abstract
	Introduction
	Definitions and partial results
	Coloring graphs with a good set
	Conclusion
	Acknowledgements
	References


