
J Braz Comput Soc (2012) 18:3–18
DOI 10.1007/s13173-012-0060-z

L A D C 2 0 1 1

Byzantine fault-tolerant deferred update replication

Fernando Pedone · Nicolas Schiper

Received: 3 November 2011 / Accepted: 13 January 2012 / Published online: 7 February 2012
© The Brazilian Computer Society 2012

Abstract Replication is a well-established approach to in-
creasing database availability. Many database replication
protocols have been proposed for the crash-stop failure
model, in which servers fail silently. Fewer database replica-
tion protocols have been proposed for the byzantine failure
model, in which servers may fail arbitrarily. This paper con-
siders deferred update replication, a popular database repli-
cation technique, under byzantine failures. The paper makes
three contributions. First, it shows that making deferred up-
date replication tolerate byzantine failures is quite simple.
Second, the paper presents a byzantine-tolerant mechanism
to execute read-only transactions at a single server. Third,
we consider byzantine client attacks against deferred update
replication and discuss effective countermeasures against
these attacks.

Keywords Database replication · Byzantine
fault-tolerance · Dependable systems

1 Introduction

Replication is a well-established approach to increasing
database availability. By replicating data items in multiple
servers, the failure of some servers does not prevent clients
from executing transactions against the system. Database
replication in the context of crash-stop failures has been
largely studied in the past years (e.g., [4, 10, 13, 18, 19]).

F. Pedone (�) · N. Schiper
University of Lugano (USI), Lugano, Switzerland
e-mail: fernando.pedone@usi.ch

N. Schiper
e-mail: nicolas.schiper@usi.ch

When a crash-stop server fails, it silently stops its execu-
tion. More recently, a few works have considered database
replication under byzantine failures (e.g., [20, 23]). Byzan-
tine failures are more severe than crash-stop failures since
failed servers can present arbitrary behavior.

Several protocols for the crash-stop failure model are
based on deferred update replication. According to deferred
update replication, to execute a transaction, a client first
picks a server and submits to this server its transaction com-
mands. The execution of a transaction does not cause any
communication among servers until after the client requests
the transaction’s commit, at which point the transaction en-
ters the termination phase and is propagated to all servers.
As part of termination, each server certifies the transaction
and commits it, if doing so induces a serializable execution,
i.e., one in which transactions appear to have been executed
in some serial order.

Deferred update replication scales better than state-
machine replication and primary-backup replication. With
state-machine replication, every update transaction must be
executed by all servers. Thus, adding servers does not in-
crease the throughput of update transactions. With primary-
backup replication, the primary first executes update trans-
actions and then propagates the database changes to the
backups, which apply them without reexecuting the transac-
tions. The throughput of update transactions is limited by the
capacity of the primary, not by the number of replicas. De-
ferred update replication scales better because it allows all
servers to act as “primaries,” locally executing transactions
and then propagating the modifications to the other servers.
As applying transaction modifications to the database is usu-
ally cheaper than executing transactions, the technique pro-
vides better throughput and scalability.

Ensuring strong consistency despite multiple co-existing
primaries requires servers to synchronize. This is typically

mailto:fernando.pedone@usi.ch
mailto:nicolas.schiper@usi.ch

4 J Braz Comput Soc (2012) 18:3–18

done by means of an atomic broadcast protocol to order
transactions and a certification test to ensure the consistency
criterion of interest. One of the key properties of deferred
update replication is that read-only transactions can be ex-
ecuted by a single server, without communication across
servers. This property has two implications. First, in geo-
graphically distributed networks it can substantially reduce
the latency of read-only transactions. Second, it enables
read-only transactions to scale perfectly with the number of
servers in the system.

This paper considers deferred update replication under
byzantine failures. It proposes the first byzantine fault-
tolerant deferred update replication protocol that is faithful
to its crash-stop counterpart: (i) the execution of a transac-
tion does not require communication across servers, only its
termination does, and (ii) only one server executes the trans-
action commands, but all correct servers apply the updates
of a committing transaction. Our protocol is surprisingly
simple and similar to a typical crash-stop deferred update
replication protocol, although based on a more strict certifi-
cation procedure to guarantee that transactions only commit
if they do not violate consistency and read valid data (i.e.,
data that was not fabricated by a byzantine server).

Our most significant result is a mechanism to execute
read-only transactions at a single server under byzantine
failures. Some protocols in the crash-stop model achieve this
property by carefully scheduling transactions so that they
observe a consistent database view. In the byzantine failure
model, however, clients may inadvertently execute a read-
only transaction against a byzantine server that fabricates a
bogus database view. In brief, our solution to the problem
consists in providing enough information for clients to ef-
ficiently tell whether the data items read form a valid and
consistent view of the database. Clients are still subject to
malicious servers executing read-only transactions against
old, but consistent, database views. We briefly discuss in the
paper the extent of the problem and remedies to such attacks.

Finally, we also consider byzantine client attacks against
deferred update replication. Since concurrency control is op-
timistic in deferred update replication, byzantine clients can
launch attacks against honest clients by trying to maximize
the abort rate of the transactions submitted by the latter. We
discuss different such attacks, present countermeasures to
them, and evaluate through simulation byzantine client at-
tacks and our countermeasures.

The remainder of this paper is organized as follows.
Sect. 2 describes the system model. Sections 3 and 4 discuss
deferred update replication in the crash-stop failure model
and in the byzantine failure models, respectively. Section 5
considers byzantine clients and Sect. 6 assesses different
byzantine client attacks and the effectiveness of our counter-
measures. Section 7 discusses related work. Section 8 con-
cludes the paper.

2 System model and definitions

In this section, we detail the system model and assumptions
common to both the crash-stop failure model and the byzan-
tine failure model. Further assumptions, specific to each
model, are detailed in Sects. 3 and 4.

2.1 Clients, servers and communication

Let C = {c1, c2, . . .} be the set of client processes and S =
{s1, s2, . . . , sn} the set of server processes. Processes are ei-
ther correct, if they follow their specification and never fail,
or faulty, otherwise. We distinguish two classes of faulty
processes: crash-stop and byzantine. Crash-stop processes
eventually stop their execution but never misbehave; byzan-
tine processes may present arbitrary behavior.

We study deferred update replication in two models: in
one model faulty servers are crash-stop; in the other model
faulty servers are byzantine. In either case, there are at most
f faulty servers and an unbounded number of clients. We
initially consider crash-stop clients (Sects. 3 and 4) and then
byzantine clients (Sects. 5 and 6).

Processes communicate by message passing, using ei-
ther one-to-one or one-to-many communication. One-to-
one communication is through primitives send(m) and
receive(m), where m is a message. If sender and receiver
are correct, then every message sent is eventually received.
One-to-many communication is based on atomic broadcast,
through the primitives abcast(m) and deliver(m), and used
by clients to propagate messages to the group of servers.

In the crash-stop model, atomic broadcast ensures that
(i) if one server delivers a broadcast message, then all cor-
rect servers also deliver the message; and (ii) no two servers
deliver any two messages in different orders. In the byzan-
tine model, atomic broadcast ensures that (i) if one correct
server delivers a broadcast message, then all correct servers
also deliver the message; and (ii) no two correct servers de-
liver any two messages in different orders.

2.2 Transactions and serializability

Let X = {x1, x2, . . .} be the set of data items, i.e., the
database, Cmd = {commit,abort} ∪ ({r,w}×X ×V) the set
of commands, where V is the set of possible values of a
data item, and S = C × Cmd the set of statements. State-
ment (c, (r, x, v)) means that client c has read item x with
value v; statement (c, (w, x, v)) means that c has modified
the state of x to v.

We define a history h as a finite sequence of statements
in S. We define the projection h|c of history h on c ∈ C as
the longest subsequence h′ of h such that every statement in
h′ is in c×Cmd. In a projection h|c = σ0 . . . σm, statement σi

is finishing in h|c if it is a commit or an abort; σi is initiating

J Braz Comput Soc (2012) 18:3–18 5

if it is the first statement in h|c or the previous statement
σi−1 is a finishing statement.

A sequence of commands t = σ0 . . . σm in h|c is a trans-
action issued by c if (i) σ0 is initiating in h|c and (ii) σm

is either finishing in h|c or it is the last statement in h|c .
Transaction t is committing if σm is a commit statement. We
denote as com(h) the longest subsequence h′ of h such that
every statement in h′ is part of a committing transaction in
h. In other words, com(h) is the committed projection of h,
with all statements of all committed transactions in h.

Let t and u be transactions in a history h. We say that
t precedes u in h, t <h u, if the finishing statement of t

occurs before the initiating statement of u in h. A history
h is serial if for every pair (t, u) of transactions in h, ei-
ther t <h u or u <h t . History h is legal if in h (i) every
read statement (ci, (r, x, vj)) is preceded by a write state-
ment (cj , (w, x, vj)) and (ii) in between the two there is no
statement (ck, (w, x, vk)), vj �= vk .

History h is serializable if there is a serial permutation h′
of com(h) such that for each data item x, h′|x is legal, where
h′|x is the projection of h′ on x. Serializability is the set of
all serializable histories.

3 Deferred update replication

In this section, we review deferred update replication in the
crash-stop failure model. In this model, some atomic broad-
cast protocols require a majority of correct processes [11].
Thus, we assume the existence of 2f + 1 correct servers in
the system. The database is fully replicated, that is, every
server has a complete copy of the database.

3.1 Overview

In deferred update replication, transactions pass through two
phases in their lifetime: the execution phase and the termi-
nation phase. The execution phase starts when the client is-
sues the first transaction command; it finishes with a client’s
request to commit or abort the transaction, when the termi-
nation phase starts. The termination phase finishes when the
transaction is committed or aborted.

Before starting a transaction t , a client c must select the
server s that will receive and execute t’s commands; other
servers will not be involved in t’s execution. Each data
item in the server’s database is a tuple (x, v, i), where x

is the item’s unique identifier, v is x’s value and i is the
value’s version. We assume that read and write commands
on database tuples are atomic operations. When s receives
a read command for x from c, it returns the current value
of x (or the most up-to-date value if the database is multi-
version) and its corresponding version. Write commands are
locally stored by c. It is only during transaction termination
that updates are propagated to the servers.

In the termination phase, the client atomically broadcasts
t’s readset and writeset, denoted respectively by t.rs and
t.ws—for simplicity, we say that “c broadcasts t .” The read-
set of t is the set of all tuples (x, i), where x is a data item
read by t and i the version of the value read; the writeset of
t is the set of all tuples (x, v), where x is a data item written
by t and v is x’s new value. Notice that the readset does not
contain the values read.

Upon delivering t’s termination request, s certifies t .
Certification ensures a serializable execution; it essentially
checks whether t’s read commands have seen values that are
still up-to-date when t is certified. If t passes certification,
then s executes t’s writes against the database and assigns
each new value the same version number k, reflecting the
fact that t is the k-th committed transaction at s.

To certify t , s maintains a set CT of tuples (i,up), where
up is a set with the data items written by the i-th com-
mitted transaction at s. We state the certification test of t ,
Ccs(t.rs,CT), more formally with the predicate below.

Ccs(t.rs,CT) ≡ ∀(x, i) ∈ t.rs :
�(j,up) ∈ CT s.t. (x ∈ up) and (j > i) (1)

If t passes certification, then s updates the database
and CT . Certifying a transaction and creating new database
items is an atomic operation. When a new version of x is
created, the server can decide to keep older versions of x or
not. If multiple versions of a data item exist, then we say the
database is multi-version; if not it is single-version.

3.2 Algorithm in detail

Algorithms 1 and 2 are high level descriptions of the client’s
and server’s protocol. Notice that to determine the outcome
of a commit request, the client waits for a reply from a sin-
gle server. For brevity, we do not show in Algorithm 1 the
case in which the client decides to abort a transaction. In
Algorithm 2, items(t.ws) returns the set of data items in
t.ws, without the values written by t , that is, items(t.ws) =
{x | (x, v) ∈ t.ws}.

3.3 Read-only transactions

We describe two mechanisms to allow read-only transac-
tions to be executed by a single server only. One mechanism
is based on multiversion databases and does not require up-
dates from committing transactions to be synchronized with
on-going read-only transactions at a server; the other mecha-
nism assumes a single-version database but synchronizes the
updates of committing transactions with read-only transac-
tions at servers.

With multiversion databases, each server stores multiple
versions of each data item (limited by a system parameter).
When a transaction t issues its first read command, the client

6 J Braz Comput Soc (2012) 18:3–18

Algorithm 1 Deferred update replication
1: Client c’s code:

2: Command (c, (r, x, v)) occurs as follows:
3: if first command for t then
4: t.rs ← ∅
5: t.ws ← ∅
6: choose some server s ∈ S

7: if (x, v) �∈ t.ws then
8: send (c, (r, x)) to s

9: wait until receive (c, (x, v, i)) from s

10: t.rs ← t.rs ∪ {(x, i)}
11: return v

12: else
13: return v such that (x, v) ∈ t.ws

14: Command (c, (w, x, v)) occurs as follows:
15: t.ws ← t.ws ∪ {(x, v)}
16: A commit command is executed as follows:
17: if t.ws �= ∅ then
18: abcast(c, commit-req, t.rs, t.ws) to all servers
19: wait until receive (c,outcome) from s

Algorithm 2 Deferred update replication
1: Server s’s code:
2: Initialization
3: CT ← ∅
4: lastCommitted ← 0

5: upon receiving (c, (r, x)) from c

6: retrieve (x, v, i) from database
7: send (c, (x, v, i)) to c

8: upon delivering (c, commit-req, t.rs, t.ws)
9: if Ccs(t.rs,CT) then

10: lastCommitted ← lastCommitted + 1
11: CT ← CT ∪ {(lastCommitted, items(t.ws))}
12: for each (x, v) ∈ t.ws do
13: create database entry (x, v, lastCommitted)

14: send (c, commit) to c

15: else
16: send (c,abort) to c

takes the version of the value returned as a reference for
future read commands. This version number specifies the
view of the database that the transaction will see, t.view.
Every future read command must contain t.view. Upon re-
ceiving a read command with t.view, the server returns the
most recent value of the item read whose version is equal
to or smaller than t.view. If no such a value is available, the
server tells the client that t must be aborted. This technique
is sometimes called multiversion timestamps [9].

If a single version of each data item exists, then read com-
mands must be synchronized (e.g., through two-phase lock-

ing [2]) with the updates of committing transactions. During
the execution of a transaction t , each read command of t

must first acquire a read lock on the data item. If a trans-
action u passes certification, then the server must acquire
write locks on all data items in u’s writeset and then commit
u. Since read and write locks cannot be acquired simulta-
neously, this technique may block transactions. This mecha-
nism has been used by some protocols based on the deferred
update replication model (e.g., [17]).

3.4 Correctness

To reason about correctness, we must define when read,
write and commit commands of a transaction t take place.
For read and write commands this is simple: a read happens
when the client receives the corresponding reply from the
server that executes t ; a write happens after the client up-
dates t’s writeset. It seems natural to assume that the commit
of t also happens when the client receives the first commit
reply from a server. In our model, however, clients are al-
lowed to crash and so, the commit may never take place,
despite the fact that some databases consider the transaction
committed. To avoid such cases, without assuming correct
clients, we define the commit event of t as taking place when
the first server applies t’s updates to its database.

We initially argue that Algorithm 1 is correct for update
transactions only. We then extend our argument to include
read-only transactions.

(1) Update transactions: Let h0 be a history created by Al-
gorithm 1. We must show that we can permutate the
statements of committed transactions in h0 such that the
resulting history, hs , is serial and legal. Our strategy is
to create a series of histories h0, . . . , hi, . . . , hs where
hi is created after swapping two statements in hi−1.

Let t and u be two committing transactions in hi such
that t commits before u, which implies that t’s com-
mit request was delivered before u’s. We show that all
of t’s statements that succeed u’s statements in hi can
be placed before u’s statements. There are two cases to
consider.
(a) Some u’s statement σu precedes t’s read statement

(ct , (r, x, v)). If σu is a read on x, or a read or a
write on an item different than x, then we can triv-
ially swap the two. Assume now that σu is a write on
x. Since t is delivered before u and only values of a
delivered transaction can be read by other transac-
tions, we know that t’s read statement did not read
the value written by σu, and thus, the two can be
swapped.

(b) Some u’s statement σu precedes t’s write statement
(ct , (w, x, v)). If σu is a statement on an item differ-
ent than x, then the two can be obviously swapped.
Assume then that σu is a statement on x. If σu is a

J Braz Comput Soc (2012) 18:3–18 7

write, then we can swap the two as no read state-
ment from other transactions have seen them; they
only take effect after a transaction is delivered and
t is delivered before u. Finally, let σu be a read. We
show by way of contradiction that (cu, (r, x, vu))

cannot precede (ct , (w, x, vt)). Since u is certified
after t and u passes certification, from the certifica-
tion test, it must be that version read by u is still up-
to-date. But since t modifies x, it updates x’s ver-
sion, a contradiction that concludes our argument.

(2) Read-only transactions: We consider first read-only
transactions in the presence of multiversion databases.
Let t be a read-only transaction in some history hi of the
system. We extend the argument presented in the previ-
ous section to show that all of t’s read commands can be
placed in between two update transactions, namely, af-
ter the transaction u that created the first item read by t

and before any other update transaction. From Sect. 3.3,
every future read of t will return a version that is equal
to or precedes t.view. Therefore, every read command
issued by t can be placed before any command that suc-
ceeds u’s write commands.

We claim now that read-only transactions are also se-
rializable with single-version databases. In this case, the
local execution at a server follows the two-phase locking
protocol, which is serializable [2]. Notice that although
read and write commands are synchronized in a server,
certification of update transactions is still needed since
two update transactions executing on different servers
may see inconsistent reads. For example, transaction t

may read data item x and write y, while transaction u,
executing at a different server, may read y and write x.
In such a case, certification will abort one of the trans-
actions.

4 BFT deferred update replication

To adapt our protocol to the byzantine failure model, we
make a few extra assumptions. We first assume that the num-
ber of servers is at least 3f + 1. This is the minimum to
solve atomic broadcast with malicious faults [12]. We make
use of message digests produced by collision-resistant hash
functions to ensure data integrity [21], and public-key sig-
natures to ensure communication authenticity [22]. We fol-
low the common practice of signing message digests in-
stead of signing messages directly. We also assume that each
client-server pair and each pair of servers communicate us-
ing private channels that can be implemented using symmet-
ric keys [5]. Finally, clients are authenticated and servers en-
force access control. This forbids unauthorized clients from
accessing the database, and prevents potentially byzantine
servers from issuing transactions that may compromise the

integrity of the database. Obviously, a byzantine server can
compromise its local copy of the database, but this behavior
is handled by our protocols.

4.1 Overview

A byzantine server could easily corrupt the execution of the
algorithm presented in the previous section. For example, it
could hamper the execution of the atomic broadcast protocol
or answer client commands with incorrect data. While the
first problem can be solved by replacing the atomic broad-
cast algorithm for crash-stop failures with one that tolerates
byzantine failures [16], the second problem is less obvious
to address.

A byzantine server may return two types of “incorrect
data”: invalid or stale. Invalid data, as opposed to valid data,
is fabricated by the server and does not correspond to any
value created by a committed transaction. Stale data is too
old, although it may be valid. We address the problem of
stale data with the certification test by checking that the
values read are still up-to-date. To guarantee that transac-
tions read valid data, each database tuple is redefined as
(x, v, i, d), where in addition to x’s value v and version i, it
contains a digest d of v. A read command returns the value
read and its digest, and readsets include the digest of values.

We decompose the certification test into a component that
checks the validity of data read, Cv

b (t.rs,CT), and another
component that checks whether the items read are up to date,
Cu

b (t.rs,CT).1 Moreover, tuples (i,up) in CT contain in set
up elements (x, d), that is, the items written and the digest
of the values written.

Cu
b (t.rs,CT) ≡ ∀(x, i, d) ∈ t.rs :
�(j,up) ∈ CT s.t.

(
(x,∗) ∈ up

)
and (j > i) (2)

Cv
b (t.rs,CT) ≡ ∀(x, i, d) ∈ t.rs :
∃(j,up) ∈ CT s.t.

((
x, d ′) ∈ up

)
and

(
d = d ′) (3)

Additionally, to shield clients from byzantine servers that
would commit a transaction t that violates serializability,
clients wait for more than one server’s reply before conclud-
ing the outcome of transactions. It turns out that at commit
time, by waiting for a set of f + 1 identical replies, t’s out-
come can be safely determined by the clients since only up
to f servers can be compromised.

The left side of Fig. 1 illustrates the protocol for update
transactions. Note that step 5 in the illustration will be ex-
plained as part of the protocol for read-only transactions (cf.
Sect. 4.3).

1The decomposition of the certification test into two components is
done for clarity purposes. An implementation would probably combine
the two to speed up the execution.

8 J Braz Comput Soc (2012) 18:3–18

Fig. 1 BFT deferred update replication: update (left) and read-only transactions (right)

Algorithm 3 Deferred update replication
1: Client c’s code:

2: Command (c, (r, x, v)) occurs as follows:
3: if first command for t then
4: t.rs ← ∅
5: t.ws ← ∅
6: choose some server s ∈ S

7: if (x, v) �∈ t.ws then
8: send (c, (r, x)) to s

9: wait until receive (c, (x, v, i, d)) from s

10: t.rs ← t.rs ∪ {(x, i, d)}
11: return v

12: else
13: return v such that (x, v) ∈ t.ws

14: Command (c, (w, x, v)) occurs as follows:
15: t.ws ← t.ws ∪ {(x, v)}
16: A commit command is executed as follows:
17: if t.ws �= ∅ then
18: abcast 〈c, commit-req, t.rs, t.ws〉σc to all servers
19: wait for identical (c,outcome) from f + 1 servers

x: the data item’s key v: the data item’s value
i: the data item’s version d : the data item’s digest

4.2 Algorithm in detail

Algorithms 3 and 4 present the client’s and server’s protocol.
To execute a read command, a client c contacts a server s

and stores the version, the value, and the digest in t.rs. Write
operations are buffered in t.ws as before. When c wishes to
commit t , c atomically broadcasts a signed message to all
servers. This is denoted by 〈m〉σc , where m is a message and
σc is c’s signature. Signing messages guarantees that only

Algorithm 4 Deferred update replication
1: server s’s code:
2: Initialization
3: CT ← ∅
4: lastCommitted ← 0

5: upon receiving (c, (r, x)) from c

6: retrieve (x, v, i, d) from database
7: send (c, (x, v, i, d)) to c

8: upon delivering 〈c, commit-req, t.rs, t.ws〉σc

9: if Cu
b (t.rs,CT) and Cv

b (t.rs,CT) then
10: lastCommitted ← lastCommitted + 1
11: CT ← CT ∪ {(lastCommitted, items(t.ws))}
12: for each (x, v) ∈ t.ws do
13: create database entry. . .
14: . . . (x, v, lastCommitted, v’s digest)
15: send (c, commit) to c

16: else
17: send (c,abort) to c

x: the data item’s key v: the data item’s value
i: the data item’s version d : the data item’s digest

authenticated clients issue commit requests. After receiving
f +1 identical replies from servers, c can determine t’s out-
come.

Besides a change in the certification test and in the data
sent back to the client when answering read requests, the
server’s code is similar to the crash-stop case. In Algo-
rithm 4, we must instantiate items(t.ws) (see line 11) as
items(t.ws) = {(x, v’s digest) | (x, v) ∈ t.ws}.

J Braz Comput Soc (2012) 18:3–18 9

4.3 Read-only transactions

A simple way to handle read-only transactions is to execute
and terminate them in the same way as update transactions.
This leads to a simple solution but increases the latency
of read-only transactions since they need to be atomically
broadcast and certified by servers. In the following, we de-
scribe a mechanism that allows read-only transactions to be
executed locally to a server only, just like deferred update
replication in the crash-stop failure model.

To allow read-only transactions to execute at a single
server, without interserver communication, clients must be
able to tell unilaterally whether (i) a value returned by
a server as a response to a read command is valid (cf.
Sect. 4.1) and (ii) any set of valid values read by the client
belongs to a consistent view of the database. If the client de-
termines that a value returned by the server is invalid or in-
consistent, it aborts the transaction and retries using another
server.

A set of values read by a client is a consistent view of
the database if the values could be the result of a serial ex-
ecution of the committed transactions. For example, assume
that transactions t and u modify the values of data items x

and y. Any transaction that reads x and y must see either the
values created by t or the ones created by u or none, but not
a mix of the two (e.g., x from t and y from u).

We ensure proper transaction execution by letting the
client ask the server, at the end of the transaction execu-
tion, for a proof that the values read are valid and consis-
tent. A validity and consistency proof for a transaction t ,
denoted as vcp(t), consists of all elements of CT whose ver-
sion lies between the lowest and highest data item version
read by t . Moreover, to ensure that byzantine servers do not
fabricate data, every element (i,up) in vcp(t) must be signed
by f + 1 servers, denoted 〈i,up〉�f +1 . Given a validity and
consistency proof vcp(t), the client decides to commit t if
the following conditions hold:

(1) The proof vcp(t) is valid: If imin and imax are, respec-
tively, the minimum and maximum data item versions
read by t , then vcp(t) contains all tuples (i,up) such
that imin ≤ i ≤ imax. Moreover, each element of vcp(t) is
signed by f + 1 servers, which guarantees that at least
one correct server abides by this element.

(2) The values read by t are valid: Each data item with
version i read by t matches its corresponding digest in
vcp(t) with version i.

(3) The values read by t are consistent: For each item x

read with version i, no newer version i′ > i of x exists
in vcp(t).

Conditions 2 and 3 can be stated more precisely with
predicates (4) and (5), respectively. Note that these predi-
cates are similar to those used to certify update transactions

(cf. Sect. 4.1). The main difference is that read-only trans-
actions do not need to be certified against elements in CT
whose version is newer than the highest data item version t

read.

Cc
r

(
t.rs, vcp(t)

) ≡ ∀(x, i, d) ∈ t.rs :
�〈j,up〉�f +1 ∈ vcp(t) s.t.

(
(x,∗) ∈ up

)
and (j > i) (4)

Cv
r

(
t.rs, vcp(t)

) ≡ ∀(x, i, d) ∈ t.rs :
∃〈i,up〉�f +1 ∈ vcp(t) s.t.

((
x, d ′) ∈ up

)
and

(
d = d ′) (5)

To build a validity and consistency proof from CT , we
add to each CT entry a certificate of f +1 server signatures.
Database servers build certificates asynchronously. When
the i-th update transaction t commits on s, the value, ver-
sion, and digest of each data item x written by t are updated.
Periodically, server s signs new tuples (i,up) and sends this
information to all servers. When s gathers f + 1 signatures
of the tuple (i,up), s inserts this new element in CT . This
asynchronous scheme does not add communication over-
head to update transactions. However, a read-only transac-
tion t may stall until the server answering t’s requests gath-
ers enough signatures to provide a validity and consistency
proof for t . The protocol for read-only transactions is illus-
trated on the right side of Fig. 1.

Algorithms 5 and 6 present the client and server protocols
to execute read-only transactions. In the algorithms, given a
transaction t and a validity and consistency proof vcp(t) for
t , read validity and consistency are expressed by predicates
Cv

r (t.rs, vcp(t)) and Cc
r (t.rs, vcp(t)), respectively.

Algorithm 5 Read-only transactions
1: Client c’s code:

2: Command (c, (r, x, v)) occurs as follows:
3: if first command for t then
4: t.rs ← ∅
5: choose some server s ∈ S

6: send (c, (r, x)) to s

7: wait until receive (c, (x, v, i, d)) from s

8: t.rs ← t.rs ∪ {(x, i, d)}
9: return v

10: Command (c, commit)/(c,abort) occurs as follows:
11: imax ← max({i | (x, i,∗) ∈ t.rs})
12: imin ← min({i | (x, i,∗) ∈ t.rs})
13: send(c, commit-req, imin, imax) to s

14: wait until receive(c, vcp(t))
15: if vcp(t) is valid and

Cc
r (t.rs, vcp(t)) and Cv

r (t.rs, vcp(t)) then
16: outcome ← commit
17: else
18: outcome ← abort

x: the data item’s key v: the data item’s value
i: the data item’s version d : the data item’s digest

10 J Braz Comput Soc (2012) 18:3–18

Table 1 summarizes the costs of the proposed protocols
for the crash-stop and byzantine failure models. To compute
these costs, we consider a transaction t that performs r reads
and present the latency and number of messages sent for the
execution and termination phases, when t is an update and a
read-only transaction.

4.4 Liveness issues

Byzantine servers may compromise the progress of the
above protocol by being nonresponsive or slow. Besides at-
tacks that would slow down the delivery of atomic broadcast
messages [1], byzantine servers may also not answer client
read requests or slow down their execution. The first case
can be treated as in the crash-stop case, that is, the client
may simply consider that the server has crashed and restart

Algorithm 6 Read-only transactions
1: Server s’s code:

2: Initialization
3: forwarded ← ∅
4: upon receiving (c, (r, x)) from c

5: retrieve (x, v, i, d) from database
6: send (c, (x, v, i, d)) to c

7: upon receiving (c, commit-req, imin, imax)

8: vcp ← ∅
9: for i in imin to imax do

10: wait until element e = 〈i,up〉�f +1 is in CT
11: vcp ← vcp ∪ {e}
12: send (c, vcp) to c

13: periodically do
14: for each (i,up) ∈ CT \ forwarded do
15: send 〈i,up〉σs to all servers
16: forwarded ← forwarded ∪ {(i,up)}
17: upon receiving 〈i,up〉∗ from f + 1 servers
18: CT ← CT ∪ {〈i,up〉�f +1}

x: the data item’s key v: the data item’s value
i: the data item’s version d : the data item’s digest

executing the transaction on another server. The second case
is more problematic since it may not be possible to distin-
guish between a slow honest server and a malicious one. To
avoid such an attack, the client can execute the transaction
on two (or more) servers and abort the transaction on the
slower server as soon as the faster server is ready to commit.

A more subtle attack is for a byzantine server to provide
read-only transactions with old, but valid and consistent,
database views. Although serializability allows old database
views to be seen by transactions (i.e., strictly speaking it is
not an attack), useful implementations try to reduce the stal-
eness of the views provided to transactions. There are (at
least) two ways to confront such server misbehavior. First,
clients can broadcast read-only transactions and ask servers
to certify them, just like update transactions. If the transac-
tion fails certification, the client can retry using a different
server. Second, clients may submit a read command to more
than one server and compare their versions. Submitting read
commands to f +1 servers ensures the “freshness” of reads,
but may be an overkill. More appropriate policies would be
to send multiple read commands when suspecting a server
misbehavior, and possibly try first with a small subset of
servers.

4.5 Optimizations

Our protocols can be optimized in many ways. In the fol-
lowing, we briefly present three optimizations.

Client caches To increase scalability, clients can cache
data item values, versions, digests, and elements of CT . In
doing so, clients can execute queries without contacting any
server, provided that the necessary items are in the cache.
Before inserting a tuple (x, v, i) in the cache, where v and
i are x’s value and version, respectively, we verify the va-
lidity of v and make sure that version i of x has value v by
using the appropriate element of CT . We proceed similarly
with elements of CT by verifying their signatures before in-
serting them in the cache. At the end of the execution of a
read-only transaction t , the consistency of the values read

Table 1 The cost of the proposed protocols (n is the number of
servers, f is the maximum number of faulty servers, r denotes the
number of items the transaction reads, abcastcs denotes an atomic

broadcast algorithm for crash-stop failures, and abcastbyz is an atomic
broadcast algorithm for byzantine failures)

Failure
model

Number of
servers

Transaction
type

Execution Termination

latency messages latency messages

Crash-stop 2f + 1 update r × 2 O(r) δ(abcastcs) + 1 msgs(abcastcs) + O(n)

read-only r × 2 O(r) – –

Byzantine 3f + 1 update r × 2 O(r) δ(abcastbyz) + 1 msgs(abcastbyz) + O(n2)

read-only (r + 1) × 2 O(r) – –

J Braz Comput Soc (2012) 18:3–18 11

can be checked using cached elements of CT . If some ele-
ments of CT are missing, they are retrieved from a server. If
t is an update transaction, the consistency of the values read
by t are performed by the certification test. To avoid read-
ing arbitrary old values, cache entries are evicted after some
time (e.g., a few hundreds of milliseconds).

Limiting the size of CT We limit the number of element in
CT by some value K to reduce the space overhead of the
set of committed transactions on the servers. After the k-th
transaction commits and server s inserts tuple 〈k,up〉�f +1

into CT , s checks whether CT contains more than K ele-
ments. If so, the element of CT with the lowest timestamp
is removed. This scheme may force servers to unnecessarily
abort transactions due to missing versions in CT . Choosing
K must thus be done carefully.

Efficient message authentication In the above protocol,
public-key signatures are used by servers to sign elements
of the set of committed transactions and by clients to au-
thenticate their commit messages. Public-key signatures are
expensive however. In particular, it is orders of magnitude
slower than message authentication codes (MACs). In con-
trast to public-key signatures, a MAC cannot prove the au-
thenticity of a message to a third party. We thus replace sig-
natures by vectors of MACs [3]. This vector contains one en-
try per machine of the system, that is, clients and servers. In
doing so, any vector of MACs can be verified by any client
or server.

4.6 Correctness

Correctness of the protocol for update transactions relies on
the fact that at certification, we use value digests to check
for data integrity and versions to check for data staleness.
The rest of the correctness argument is based on the same
principles as the crash-stop case and we thus omit it.

Proving the correctness of read-only transactions is more
subtle. To be serializable, read-only transactions must read
values from a consistent view of the database that is the re-
sult of a serial execution of some finite sequence of trans-
actions. Let imax and imin, respectively, be the highest and
lowest data item versions read by a transaction t . We claim
that if t commits, then the view of the database t observes
is the result of the execution, in version order, of all trans-
actions whose corresponding tuple in CT has a version that
is smaller than, or equal to imax. Let ht be the sequence of
such transactions sorted in ascending version order.

We first note that since t commits, the server s on which
t executed behaved as prescribed by the protocol. This is
because each element of the validity and consistency proof
vcp(t) of t is signed by f + 1 servers, and thus ensures that
the values and versions read by t are those that would be
returned by a correct server.

Since the client checks that (i) vcp(t) contains all ver-
sions between imin and imax and (ii) for any data item x read
by t , no newer version of x exists in vcp(t), t reads a con-
sistent view of the database that is the result of the serial
execution of transactions in ht .

5 Tolerating byzantine clients

In this section, we discuss serializability in light of byzan-
tine clients and consider some attacks that could be perpe-
trated by byzantine clients against the deferred update repli-
cation technique. We conclude the section with countermea-
sures to these attacks.

5.1 Consistency issues

In order to accommodate byzantine clients in our failure
model, we must reconsider our consistency criterion since
with the current definition, it would be easy for a byzantine
client to generate histories that are not serializable. One sim-
ple attack is a byzantine client who issues read operations
that return bogus information. Another attack is a byzantine
client who executes read operations (e.g., against a byzan-
tine server) and does not include them in the transaction’s
readset. As a consequence, honest servers would certify the
transaction using a subset of the transaction’s read opera-
tions, which could violate serializability.

Our proposal to accomodate byzantine clients in our
model is similar to [15], developed in the context of lin-
earizability: Correctness must take into consideration cor-
rect clients only. More precisely, (1) correct clients in a his-
tory must observe values that could be generated in a seri-
alizable history where all clients are correct, and (2) if at
some point all byzantine clients stop execution (e.g., the ac-
cess rights of byzantine clients are revoked), then the sys-
tem eventually recovers, that is, the number of fictitious
writes needed to justify the values read by correct clients
is bounded.2

Interestingly, the algorithm presented in Sect. 4 ensures
the first property of the modified serializability commented
above, but does not guarantee the second property: byzan-
tine clients can leave an unbounded number of “bogus trans-
actions” (denoted “lurking writes” in [14]) in the system af-
ter they stop. To see why, notice that a byzantine client can
atomically broadcast an unbounded number of transactions
before it stops, and it is perfectly possible for these trans-
actions to be delivered after the client stops. In Sect. 5.3,
we describe a mechanism to guarantee the second property
presented above.

2Notice that a byzantine client may issue commands that violate the
integrity of the database. Defining mechanisms that preserve database
integrity despite malicious clients is out of the scope of this work.

12 J Braz Comput Soc (2012) 18:3–18

5.2 Byzantine client attacks

Byzantine clients can launch a number of attacks to dis-
rupt the execution of correct clients. The attacks we discuss
next target certification by increasing the chances of abort-
ing transactions issued by correct clients.

The most obvious attack to be attempted by a byzantine
client is to submit transactions with many write operations
and few read operations or no read operation at all (i.e., a
“blind transaction”). A reduced number of read operations
would increase the chances of the byzantine transaction to
commit, while at the same time increasing the probability
that legitimate transactions abort. Moreover, as commented
in the previous section, a byzantine client can submit an un-
bounded number of such transactions concurrently.

A more subtle strategy is for multiple byzantine clients
to collude and coordinate their attack by minimizing the
chances that one byzantine transaction would abort another
byzantine transaction, but together they would maximize the
chances of aborting legitimate transactions. More precisely,
this can be obtained as follows. Let TB be a set of byzantine
transactions created by colluded byzantine clients. For any
two transactions ti and tj in TB , the readset and the writeset
of ti do not intersect the writeset of tj .

At the very extreme, coordinated byzantine clients could
divide the database into disjoint sets, each set associated
with one coordinated byzantine client. Then, each byzan-
tine client would permanently submit blind transactions that
modify all items in its set.

5.3 Countermeasures against byzantine clients

In this section, we discuss mechanisms to address the at-
tacks presented in the previous section. Our first counter-
measure limits the number of concurrent transactions that a
client can submit to the system to K and addresses bogus
transactions. This countermeasure also reduces the negative
impact byzantine clients can have on the abort rate of legiti-
mate transactions.

• CM 1. At most K concurrent transactions per client. Two
transactions t and t ′ are concurrent if t starts before t ′ has
terminated (i.e., committed or aborted).

To implement CM 1, we assume that clients are authen-
ticated. Thus, an honest server can unmistakably tell which
client has submitted a transaction. Each client c appends a
sequence number to each of its submitted transaction. This
sequence number is provided together with the result of the
previous transaction submitted by c and is signed by f + 1
servers. The emission of such sequence numbers is used to
limit the number of concurrent transactions clients can sub-
mit to K . We now explain in details the implementation of
CM 1.

Initially, each server s sends signed sequence numbers 1
through K to each client c, and sets the next sequence num-
ber to emit, Nc

s , to K + 1. Whenever s accepts to certify a
new transaction, s increments Nc

s and sends Nc
s signed to

c. Server s only accepts to certify transactions whose se-
quence numbers belong to set V c

s . Initially, this set contains
sequence numbers 1 to K . Each time s accepts to certify a
transaction with sequence number seq, seq is removed from
V c

s and Nc
s is added to the set after being incremented.

Countermeasure 1 avoids bogus transactions since if a
byzantine client stops, it can leave at most K transactions,
which will be eventually processed. Another way to address
bogus transactions is to blacklist clients that were identi-
fied as byzantine. A violation to one of the countermeasures
proposed here is a way to identify malicious behavior. For
instance, a violation of CM1 happens when f + 1 servers
detect that a client c submitted a transaction with an invalid
sequence number. A proof of this violation is obtained by re-
ceiving f + 1 signed messages asserting that c misbehaved.

We now consider two strategies to reduce the number of
aborts due to byzantine clients. Notice that, as commented
earlier, aborts due to concurrent transactions are inherent to
the deferred update replication technique. This fact makes it
impossible to completely countermeasure attacks targeting
certification. The techniques we describe for such attacks
are best effort, that is, they will reduce the effectiveness of
an attack, but they will not avoid it altogether.

• CM 2. At most L writes per transaction. The number of
transaction writes is upper bounded by simply aborting
transactions whose number of writes exceed some con-
stant L at certification time.

• CM 3. No blind transactions. Servers enforce no blind
transactions by aborting transactions whose writeset is not
included in their readset.

The countermeasures proposed here limit the impact that
each individual byzantine client can have on the abort rate
but do not address the byzantine client collusion attack de-
scribed above. In fact, it is unclear how such an attack could
be dealt with. Luckily, Sect. 6 shows that this attack has lit-
tle impact on the abort rate. Determining whether there exist
other collusion attacks that would negatively impact the per-
formance of byzantine deferred update replication protocols
is an open question.

6 Performance assessment

We now assess the attacks described in Sect. 5.2 and the
effectiveness of the countermeasures proposed in Sect. 5.3
through a simple simulation model. We start by describing
the simulator and then evaluate the various attacks individu-
ally and combined.

J Braz Comput Soc (2012) 18:3–18 13

6.1 The simulation model

A run of the simulator is a sequence of steps, where a step
can be a read operation or a certification operation. Our goal
is to evaluate variations in the abort rates of deferred up-
date replication caused by byzantine clients under data con-
tention, not due to communication and processing delays.
Therefore, for simplicity, we assume that each step takes a
single time unit.

Table 2 shows the parameters that can be configured in
the simulator and the ranges of values used in our experi-
ments. We consider a large and a small database in the ex-
periments. All read and write operations are uniformly dis-
tributed throughput the database, unless noted otherwise in
the text. Clients submit a new transaction as soon as the pre-
vious one has terminated.

In all experiments reported, there are no blind honest
transactions, that is, every write operation on item x is pre-
ceded by a read operation on x. Each point in the graphs
is the result of a run of the simulator in which one million
honest transactions were executed.

Table 2 Simulation parameters

Parameter Value range

Database size 1 million and 10 thousand entries

Number of honest clients 1..1024

Percentage of byzantine clients 0%, 5%, 10%, 25%, 33%

Concurrent transactions per client 1..10

Reads in honest transactions 2..128

Writes in honest transactions 2..128

Reads in byzantine transactions 2..128

Writes in byzantine transactions 2..128

6.2 Abort rates under normal conditions

Our first set of experiments assesses abort rates in the ab-
sence of byzantine clients (see Fig. 2). In these experiments,
each client submits one transaction at a time (i.e., K = 1)
and transactions have the same number of read and write
operations. In the experiments reported on the left of Fig. 2
each transaction has 8 read and 8 write operations in the
small database configuration, and 32 reads and 32 writes in
the large database configuration. In the experiments reported
on the right of the figure, there are 44 and 256 clients, re-
spectively, in the small and in the large database configura-
tions.

As shown in the graphs, deferred update replication is
sensitive to the number of clients and the size of transac-
tions. Intuitively, as the number of clients and the number
of reads and writes in a transaction increase, the probabil-
ity of conflicts augments due to data contention, resulting
in more aborts. In the space of parameters searched, con-
tention is more important in the small database than in the
large database.

6.3 The “concurrent-transactions” and “write-set” attacks

We initially look at the concurrent-transactions and the
write-set attacks. The former attack corresponds to the case
in which byzantine clients submit multiple concurrent trans-
actions. The latter attack corresponds to the case in which
byzantine clients submit transactions larger than the trans-
actions submitted by honest clients. In both cases, honest
and byzantine clients do not submit blind transactions. The
abort rates reported in Fig. 3 are for honest transactions only.

In both experiments, we set the number of operations
in honest transactions to 8 reads and 8 writes in the small
database and 32 reads and 32 writes in the large database.
There are 44 and 256 clients accessing the small and the
large databases, respectively. In the absence of byzantine
clients, these configurations lead to abort rates of 10% for

Fig. 2 Abort rate versus number of clients (left) and number of items in a transaction (right) in the absence of byzantine clients

14 J Braz Comput Soc (2012) 18:3–18

Fig. 3 Abort rate versus concurrent-transactions attack (left) and write-set attack (right)

Fig. 4 Effectiveness of countermeasures CM1 (left, K = 1) and CM2 (right, L = 8 in small database and L = 32 in large database)

both database sizes. In these experiments, we configured
25% of clients to act maliciously.

The number of concurrent transactions submitted by
byzantine clients, graph on the left of Fig. 3, has almost iden-
tical effect on both database setups. Notice, however, that
with 25% of byzantine clients, there are 11 byzantine clients
in the small database setup and 64 byzantine clients in the
large database setup. Thus, increasing the number of con-
current transactions per byzantine client represents a larger
number of byzantine transactions in the large database than
in the small database.

The graph on the right of Fig. 3 shows that growing the
size of byzantine transactions leads to more aborted hon-
est transactions. While the impact of this attack seems to
be more effective in the small database than in the large
database, we note that when byzantine transactions are twice
the size of honest transactions (i.e., 16 operations and 64 op-
erations in the small and large database configurations), the
abort rate of honest transactions is 12% in both cases.

In both experiments, countermeasures CM1 and CM2 are
effective in reducing the abort rate by limiting the num-
ber of transactions issued by byzantine clients to one at a
time (CM1), as done by honest clients (graph on the left of

Fig. 4), and by keeping the number of reads and writes in
byzantine transactions equal to the number of such opera-
tions in honest transactions (CM2) (graph on the right of
Fig. 4). Effectiveness is the ratio between the abort rate with
an attack and without it, after the corresponding counter-
measure was applied.

6.4 The impact of the “blind-transactions” attack

We consider now the blind-transactions attack when com-
bined with the concurrent-transactions attack (graph on the
left of Fig. 5) and the write-set attack (graph on the right of
Fig. 5). To evaluate the blind-transactions attack, we ran the
experiments presented in the previous section after remov-
ing all read operations from byzantine transactions.

Blind transactions, a powerful mechanism to boost byzan-
tine client attacks, benefit from two properties: (a) they never
abort and (b) they execute more quickly than honest trans-
actions, which contain read operations. From property (a),
every transaction created by a byzantine client may cause
honest transactions to abort. Property (b) stems from the
fact that without reads, byzantine transactions are executed
in a single step. As a consequence, more transactions can be

J Braz Comput Soc (2012) 18:3–18 15

Fig. 5 Abort rate versus blind-transactions attack combined with concurrent-transactions attack (left) and write-set attack (right)

Fig. 6 Effectiveness of countermeasures CM3 alone, CM1 combined with CM3 (left), and CM2 combined with CM3 (right)

generated by byzantine clients in an execution. We have as-
sessed that property (b) can created more damage to honest
transactions than property (a). In our assessment, we con-
figured byzantine transactions to issue read operations that
no transaction updates. Thus, such transactions never abort,
although they issue read operations. It turned out that in this
case, byzantine transactions were much less harmful than
blind transactions.

Figure 6 assesses the effectiveness of countermeasures
CM1 and CM3 combined, CM2 and CM3 combined, and
CM3 alone, targeting blind transactions only. Effectiveness
of CM3 alone is calculated as the ratio between the abort
rate of the combined attacks (e.g., write-set and blind trans-
actions attacks) and the abort rate without blind transactions
(e.g., write-set attack alone).

The effectiveness of CM3 alone decreases with the in-
crease of the number of concurrent byzantine transactions
and the number of writes in a byzantine transaction, regard-
less the database size. This happens because as the abort rate
increases, due to more concurrent byzantine transactions per
client and augmented writes in byzantine transactions, there
are fewer honest transactions to be aborted by blind transac-
tions. Therefore, there is less gain in preventing blind trans-

actions. Combining CM3 with CM1 and CM2 can neutralize
both client attacks.

6.5 The impact of the “colluded-clients” attack

Figure 7 shows the abort rate of the colluded-clients attack
combined with the concurrent-transactions and the write-
set attacks. In the colluded-clients attack, we assigned each
byzantine client to a range of database keys. Ranges were
of same size and nonoverlapping. A byzantine client creates
transactions that read and write data items within its range.

The colluded-clients attack led to a small increase in the
abort rate of the two other attacks: the differences between
the abort rates reported in Figs. 3 and 7 are almost unno-
ticed. The colluded-clients attack aims to reduce the number
of byzantine transactions aborted by other byzantine trans-
actions. Since the overall abort rate is low, this technique
leads to few additional committed byzantine transactions,
and these transactions are not enough to significantly abort
more honest transactions.

We also ran experiments combining the blind-transac-
tions attack and the colluded-clients attack but do not re-
port the results as they provided no new insight. Since blind

16 J Braz Comput Soc (2012) 18:3–18

Fig. 7 Abort rate versus colluded-clients attack combined with concurrent-transactions attack (left) and write-set attack (right)

Fig. 8 Normalized abort rate versus number of writes in byzantine transactions in small database (left) and large database (right)

transactions are never aborted, there was no benefit from
avoiding byzantine transactions to overlap.

6.6 Vulnerability to percentage of byzantine clients

Our last experiments target the effect of the number of
byzantine clients. The y-axis in Fig. 8 is normalized by the
abort rate of the corresponding configuration without byzan-
tine clients. While the effect of a larger number of byzantine
clients is more pronounced in the large database configura-
tion than in the small database configuration, in both cases
more byzantine clients implies more aborted transactions.

From the graphs, the effect of the number of byzan-
tine clients is limited in two cases: (a) when there are few
writes per transaction and (b) when there are approximately
34 writes in the small database and 80 writes in the large
database. In case (a), the abort rate is quite low, thus the
number of byzantine clients is not important. In case (b), the
number of abort is very high, and there is not much more
damage that can be caused by adding additional byzantine
clients.

6.7 Summary

To conclude, we have assessed four attacks that can be per-
petrated by byzantine clients against certification: (a) write
set, (b) concurrent transactions, (c) blind transactions, and
(d) colluded clients attacks. We determined that the first
three attacks can increase the number of aborts in honest
transactions, but not the last. Luckily, the counter measures
proposed in Sect. 5.3 target attacks (a)–(c), and can prevent
them. Had the colluded byzantine clients attack proved more
effective, deferred update replication would suffer from a se-
rious vulnerability since it is not clear what counter measure
could be used against collusion.

7 Related work

Database replication and deferred update replication have
been largely studied under benign faults (e.g., non-byzantine
servers subject to crash-stop failures). Few works have con-
sidered the effects of byzantine servers on database repli-
cation. The first paper to consider the problem is [8], writ-
ten more than two decades ago. This paper investigates the

J Braz Comput Soc (2012) 18:3–18 17

use of byzantine agreement and state machine replication in
the context of databases. It proposes to execute transactions
atop serializable databases at the expense of limiting trans-
action concurrency. The deferred update replication proto-
col we propose allows concurrency among transactions in
that multiple transactions can be simultaneously executed
by different servers. Only transaction termination needs to
be serialized.

More recently, Vandiver et al. [23] proposed a system
that allows more concurrency between transactions. Clients
communicate through a central coordinator that chooses a
replica as primary and the rest as secondaries. Transactions
are first executed on the primary to determine which transac-
tions can be executed in parallel. When the result of a query
is returned to the coordinator, the latter ships this query to
the secondaries. A commit barrier, maintained by the coor-
dinator and incremented whenever a transaction commits,
is used to determine which transactions can be executed in
parallel at the secondaries. That is, two transactions that ex-
ecuted in parallel on the primary will be executed in parallel
on the secondaries, provided that no transaction commits in
the mean time. This is, roughly speaking, the basics of the
Commit Barrier Scheduling protocol proposed in [23]. This
approach is similar to ours in the sense that it allows the con-
current execution of transactions, although our protocol al-
lows the execution of transactions at any replica. Moreover,
in contrast to [23], our protocol does not require a trusted
coordinator, a strong assumption.

Byzantium [20] considers byzantine failures of servers
that guarantee snapshot isolation, as opposed to serializabil-
ity. Under snapshot isolation, transactions observe a com-
mitted instant of the database, which may correspond to
the database state when the transaction started or, more
likely in a distributed environment, to some earlier state of
the database [6]. Transactions that execute concurrently can
only commit if they do not modify the same data items, a
policy sometimes referred to as first-commiter-wins rule. In
Byzantium, a client first selects a replica that will act as the
coordinator for its transaction and then atomically broadcast
the begin operation to all replicas so that they all use the
same database snapshot for the transaction. The transaction
is entirely executed by the coordinator. At commit time, the
operations along with their results are atomically broadcast
to all replicas. If the transaction was executed in a correct
coordinator, then a quorum of servers will obtain the same
results and the transaction can commit; otherwise, the trans-
action is aborted and the client is notified about the byzan-
tine coordinator. Both update and read-only transactions are
atomically broadcast.

Byzantium is extended in [7] to a more efficient protocol
that allows read-only transactions to be executed on any sub-
set of f + 1 replicas and propagates operations before com-
mit time for better performance. Their empirical assessment

shows that the extended version of Byzantium introduces a
moderate performance overhead of roughly 30% over non-
replicated solutions in the TPC-C benchmark.

8 Final remarks

This paper has considered the deferred update replication
technique in the byzantine failure model. Deferred update
replication has been largely used to implement database
replication in the crash-stop failure model. It is more scal-
able than other replication techniques such as state machine
replication and primary-backup since transactions may be
executed at any server. Moreover, it allows read-only trans-
actions to be executed at a single replica. The paper shows
that it is surprisingly simple to use deferred update repli-
cation under byzantine failures—in fact, our protocol only
requires a small modification of the certification procedure
and an additional check, performed by clients, to filter out
transaction outcomes sent by byzantine servers. The paper
also shows that even though some servers may behave ma-
liciously, read-only transactions can be executed at a sin-
gle server—the execution must be certified by the client at
the end of the transaction however. Finally, the paper con-
siders the effects of byzantine client attacks against certifi-
cation, presents countermeasures against these attacks, and
analyzes their performance and effectiveness.

Acknowledgements The authors wish to thank Antonio Carzaniga,
Rui Oliveira, Ricardo Padilha, José Orlando Pereira, José Enrique
Armendáriz-Iñigo, and the LADC 2011 and JBCS anonymous review-
ers for the insightful comments about this work.

This work was supported in part by the Hasler Foundation, Switzer-
land, under grant number 2316.

References

1. Amir Y, Coan BA, Kirsch J, Lane J (2008) Byzantine replication
under attack. In: DSN, pp 197–206

2. Bernstein P, Hadzilacos V, Goodman N (1987) Concurrency con-
trol and recovery in database systems. Addison-Wesley, Reading

3. Castro M, Liskov B (2002) Practical byzantine fault tolerance and
proactive recovery. ACM Trans Comput Syst 20(4):398–461

4. Cecchet E, Marguerite J, Zwaenepoel W (2004) C-jdbc: flexi-
ble database clustering middleware. In: USENIX annual technical
conference, FREENIX track

5. Diffie W, Hellman ME (1976) Multiuser cryptographic tech-
niques. In: AFIPS ’76: proceedings of the June 7–10, 1976, na-
tional computer conference and exposition. ACM, New York,
pp 109–112

6. Elnikety S, Pedone F, Zwaenepoel W (2005) Database replication
using generalized snapshot isolation. In: Symposium on reliable
distributed systems (SRDS’2005), Orlando, USA

7. Garcia R, Rodrigues R, Preguiça N (2011) Efficient middleware
for byzantine fault tolerant database replication. In: Proceedings
of the sixth conference on computer systems (EuroSys ’11). ACM,
New York, pp 107–122

18 J Braz Comput Soc (2012) 18:3–18

8. Garcia-Molina H, Pittelli FM, Davidson SB (1986) Applications
of byzantine agreement in database systems. ACM Trans Database
Syst 11(1):27–47

9. Garcia-Molina H, Ullman JD, Widom J (2008) Database systems:
the complete book. Prentice Hall, New York

10. Kemme B, Alonso G (2000) A new approach to developing and
implementing eager database replication protocols. ACM Trans
Database Syst 25(3):333–379

11. Lamport L (1998) The part-time parliament. ACM Trans Comput
Syst 16(2):133–169

12. Lamport L, Shostak R, Pease M (1982) The Byzantine generals
problem. ACM Trans Program Lang Syst 4(3):382–401

13. Lin Y, Kemme B, Patino-Martinez M, Jimenez-Peris R (2005)
Middleware based data replication providing snapshot isolation.
In: International conference on management of data (SIGMOD),
Baltimore, Maryland, USA

14. Liskov B, Rodrigues R (2005) Byzantine clients rendered harm-
less. Technical report MIT-CSAIL-TR-2005-047, MIT, July 2005

15. Malkhi D, Reiter M, Lynch N (1998) A correctness condition for
memory shared by byzantine processes. Unpublished manuscript,
Sept 1998

16. Martin J-P, Alvisi L (2005) Fast byzantine consensus. In: DSN’05,
pp 402–411

17. Pedone F (1999) The database state machine and group commu-
nication issues. PhD thesis, École Polytechnique Fédérale de Lau-
sanne, Switzerland, Number 2090

18. Pedone F, Guerraoui R, Schiper A (1997) Transaction reordering
in replicated databases. In: Proceedings of the 16th IEEE sympo-
sium on reliable distributed systems, Durham, USA

19. Plattner C, Alonso G (2004) Ganymed: scalable replication
for transactional web applications. In: Proceedings of the 5th
ACM/IFIP/USENIX international conference on middleware,
pp 155–174

20. Preguiça NM, Rodrigues R, Honorato C, Lourenço J (2008)
Byzantium: Byzantine-fault-tolerant database replication provid-
ing snapshot isolation. In: HotDep

21. Rivest RL (1992) The md5 message-digest algorithm. Internet rfc-
1321

22. Rivest RL, Shamir A, Adleman L (1978) A method for obtaining
digital signatures and Public-Key cryptosystems. Commun ACM
21(2):120–126

23. Vandiver B, Balakrishnan H, Liskov B, Madden S (2007) Tolerat-
ing byzantine faults in transaction processing systems using com-
mit barrier scheduling. In: SOSP, pp 59–72

	Byzantine fault-tolerant deferred update replication
	Abstract
	Introduction
	System model and definitions
	Clients, servers and communication
	Transactions and serializability

	Deferred update replication
	Overview
	Algorithm in detail
	Read-only transactions
	Correctness

	BFT deferred update replication
	Overview
	Algorithm in detail
	Read-only transactions
	Liveness issues
	Optimizations
	Client caches
	Limiting the size of CT
	Efficient message authentication

	Correctness

	Tolerating byzantine clients
	Consistency issues
	Byzantine client attacks
	Countermeasures against byzantine clients

	Performance assessment
	The simulation model
	Abort rates under normal conditions
	The "concurrent-transactions" and "write-set" attacks
	The impact of the "blind-transactions" attack
	The impact of the "colluded-clients" attack
	Vulnerability to percentage of byzantine clients
	Summary

	Related work
	Final remarks
	Acknowledgements
	References

