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Abstract Let G = (V ,E) be a graph with n vertices.
A clique-colouring of a graph is a colouring of its vertices
such that no maximal clique of size at least two is mono-
coloured. A k-clique-colouring is a clique-colouring that
uses k colours. The clique-chromatic number of a graph G

is the minimum k such that G has a k-clique-colouring.
In this paper we will use the primeval decomposition

technique to find the clique-chromatic number and the
clique-colouring of well known classes of graphs that in
some local sense contain few P4’s. In particular we shall
consider the classes of extended P4-laden graphs, p-trees
(graphs which contain exactly n − 3 P4’s) and (q, q − 3)-
graphs, q ≥ 7, such that no set of at most q vertices induces
more that q − 3 distincts P4’s. As corollary we shall derive
the clique-chromatic number and the clique-colouring of the
classes of cographs, P4-reducible graphs, P4-sparse graphs,
extended P4-reducible graphs, extended P4-sparse graphs,
P4-extendible graphs, P4-lite graphs, P4-tidy graphs and
P4-laden graphs that are included in the class of extended
P4-laden graphs.
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1 Introduction

In this paper we are concerned with the so called clique-
colouring of a graph. To introduce this concept we need the
following definitions. A subset K of G is a clique if every
pair of distinct vertices of K are adjacent in G. A clique is
maximal if it is not properly contained in any other clique of
G. A hypergraph is a pair H = (V , E ), where V is the set
of vertices of H and E is a family of non-empty subsets of
V called edges. A k-colouring of H is a mapping c : V →
{1,2, . . . , k} such that for all e ∈ E with |e| ≥ 2 there exist
u,v ∈ e with c(u) �= c(v), that is, there is no monocoloured
edge of size at least two. The chromatic number χ(H) of
H is the smallest k such that H has a k-colouring.

We will consider special hypergraphs: hypergraphs aris-
ing from graphs. Given a graph G = (V ,E), the clique-
hypergraph of G is the hypergraph H(G) = (V , E ), whose
vertices are the vertices of G and whose edges are the maxi-
mal cliques of G. A k-colouring of H(G) will also be called
a k-clique-colouring of G and the chromatic number χ(H)

of H the clique-chromatic number of G. In other words: a
clique-colouring of a graph is a colouring of its vertices such
that no maximal clique of size at least two is monocoloured.

Clique-colouring is harder than ordinary vertex colour-
ing: it is coNP-complete even to check whether a 2-
clique-colouring is valid [7]. The complexity of 2-clique-
colourability is investigated in [26] where they show it is
NP-hard to decide whether a perfect graph is 2-clique-
colourable even for those with clique-number 3. A valid
2-clique-colouring is not a good certificate, since we can-
not verify it in polynomial time. In [27] it is proved that
it is Σ

p

2 -complete to check whether a graph is 2-clique-
colourable, even for odd-hole-free graphs [15]. However
quite general classes of graphs have been proved to be 2-
clique colourable or 3-clique colourable. In [7] it was proved
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that K1,3-free graphs are 2-clique colourable and that al-
most all perfect graphs are 3-clique colourable. In [29] it
was shown that every planar graph is 3-clique colourable
and in [26] it was proposed a polynomial algorithm to de-
cide if a planar graph is 2-clique colourable. The clique-
colourability of several other classes of graphs has been in-
vestigated in [1, 9, 10, 14, 19].

In this paper we consider some classes of graphs that
have been characterized in terms of special properties of
the unique primeval decomposition tree associated to each
graph of the class. The primeval decomposition tree of any
graph can be computed in linear time [8] and therefore it
is the natural framework for finding polynomial time algo-
rithms of many problems.

Using the primeval decomposition technique, we will de-
termine the clique-chromatic number of graphs with few
P4’s. In particular we shall consider the classes of extended
P4-laden [16], p-trees [3] (graphs which contain exactly n−
3 P4’s) and (q, q − 3)-graphs, q ≥ 7, [2] such that no set of
at most q vertices induces more that q − 3 distincts P4’s. As
corollary we shall derive the clique-chromatic number and
the clique-colouring of the classes of cograph [11, 12], P4-
reducible graphs [22], P4-sparse graphs [20, 24], extended
P4-reducible graphs [17], extended P4-sparse graphs [17],
P4-extendible graphs [23], P4-lite graphs [21], P4-tidy
graphs [18] and P4-laden graphs [16] that are included in
the class of extended P4-laden graphs. Furthermore we will
extend these results to more general classes obtained by sub-
stituting vertices of the above classes by homogeneous sets.

In Sect. 2 we give some definitions and preliminary re-
sults. In Sect. 3 we show that any graph that it is not
a non-separable p-connected graph is 2-clique-colourable.
In Sect. 4 we show that the class of p-trees is 2-clique-
colourable. In Sect. 5 we find the clique-chromatic number
and the clique-colouring of the remaining classes of graphs
mentioned above. These results lead to polynomial time al-
gorithms for finding the clique-colouring and the clique-
chromatic number of the above classes.

2 Preliminaries

2.1 Basic notions

Throughout this paper let G = (V ,E) be a finite simple
undirected graph and let |V | = n and |E| = m. The comple-
ment graph of G = (V ,E) is the graph G = (V ,E), where
uv ∈ E if and only if uv �∈ E.

For a vertex v ∈ V the neighbourhood of v in G is
N(v) = {u|uv ∈ E} and for U ⊂ V , N(U) is the set of ver-
tices in V − U that are adjacent to at least one vertex of U .
A clique of G is a set of pairwise adjacent vertices of G

and a stable set is a set of pairwise non-adjacent vertices

of G. Given a subset U of V , let G[U ] stand for the sub-
graph of G induced by U . Let Pn denote the chordless path
on n vertices and n − 1 edges. Let Cn denote the chordless
cycle with n vertices. If n ≥ 4 then Cn is called a hole and
its complement an antihole. A graph is called a complete
graph if every pair of distinct vertices is connected by an
edge. A graph is called split graph if its vertex set can be
partitioned in a clique K and a stable set S. A split graph
is a spider if and only if |K| = |S| ≥ 2 and there exists a
bijection f between S and K such that for each v ∈ S, ei-
ther N(v) = {f (v)} (thin legs) or N(v) = K −{f (v)} (thick
legs). The simplest spider is a P4. In a P4 with vertices
u,v,w,x and edges uv, vw,wx, the vertices v and w are
called midpoints whereas the vertices u and x are called
endpoints.

A module of G is a set of vertices M of V such that
each vertex in V − M is either adjacent to all vertices of
M , or to none. The whole V and every singleton vertex are
trivial modules. Whenever G has only trivial modules it is
called a prime graph. A non-trivial module is also called
an homogeneous set. We say that M is a strong module if
for any other module A the intersection M ∩ A is empty or
equals either M or A. For a non-trivial graph G, the family
{M1,M2, . . . ,Mp} of all maximal (proper) strong modules
is a partition of V (G). This partition is the modular decom-
position of G. We will often identify the modules Mi with
the induced subgraphs Gi = G[Mi].

Whenever a graph G has a non-trivial maximal module
M , in order to get some of its structural properties, it is use-
ful to contract the module M to one representative vertex m

obtaining a new graph H where V (H) = V (G) − M ∪ {m}
and E(H) = E(G/M)∪{ym|y ∈ N(M)}. The graph G′ ob-
tained from G by shrinking every maximal non-trivial mod-
ule to a single vertex is called the characteristic graph of G.
If G is a prime graph the G′ = G.

If G is a prime graph we consider the substitution op-
eration which consists of substituting any vertex x of G by
any graph H in such a way that all the vertices of H have
the same adjacencies of x in G. Therefore in the new graph
G′ obtained with this substitution operation V (H) is a ho-
mogeneous set.

Let G and G′ be two vertex disjoint graphs. We can de-
fine the parallel composition of G and G′ as the graph
G ∪ G′ so that V (G ∪ G′) = V (G) ∪ V (G′) and E(G ∪
G′) = E(G) ∪ E(G′). The serial composition of G and
G′ is the graph G + G′ defined by V (G + G′) = V (G) ∪
V (G′) and E(G+G′) = E(G)∪E(G′)∪ {vv′ for each v ∈
V (G) and v′ ∈ V (G′)}.

2.2 p-Connectness and primeval decomposition

Following the terminology of Jamison and Olariu [25], a
graph G is p-connected (or, more extensively, P4-connected)
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if, for each partition V1,V2 of V into two non-empty sets,
there exists a chordless path of four vertices P4 which con-
tains vertices from V1 and V2. Such P4 is a crossing between
V1 and V2. An equivalent characterization of p-connected
graphs can be given in terms of p-chains, a natural analogue
of paths in the context of usual connectedness of graphs.
A p-chain connecting vertices u and v is a sequence of pair-
wise different vertices (v1, v2, . . . , vk) such that

1. u = v1, v = vk , and
2. Xi = {vi, vi+1, vi+2, vi+3} induces a P4, for i = 1,2, . . . ,

k − 3.

By Babel and Olariu [5, 6] a graph is p-connected if and
only if for every pair of vertices in the graph there exists a
p-chain connecting them.

The p-connected components of a graph G are the max-
imal induced p-connected subgraphs. Vertices of G that do
not belong to any p-connected component of G are termed
weak vertices. A p-connected graph is called separable if
its vertex set can be partitioned into two non-empty sets V1

and V2 in such a way that each crossing P4 has its midpoints
in V1 and its endpoints in V2. For separable p-connected
graph the following theorem holds.

Theorem 1 [25] A p-connected graph is separable if and
only if its characteristic graph is a split graph.

Separable p-connected components play a crucial role in
the theory of p-connectedness and their introduction is jus-
tified by the following general theorem.

Theorem 2 [25] For an arbitrary graph G exactly one of
the following conditions is satisfied:

1. G is disconnected;
2. G is disconnected;
3. There is a unique proper separable p-connected compo-

nent H of G with vertex partition (V1,V2) such that every
vertex outside H is adjacent to all vertices in V1 and to
no vertex in V2;

4. G is p-connected.

This theorem implies a decomposition scheme for arbi-
trary graphs called primeval decomposition.

For disconnected G, the maximal strong modules are the
connected components. In this case G = G1 ∪G2 ∪· · ·∪Gp

is called parallel.
If G is disconnected, the maximal strong modules of G

are the connected components of G. In this case G = G1 +
G2 + · · · + Gp is called serial.

If both G and G are connected, then either G can be de-
composed according to condition 3 of Theorem 2 and in this
case G is called a decomposable neighbourhood graph or

G is a p-connected graph that may be either separable or
non-separable.

By repeating the process we can associate to any non-
empty graph G its unique primeval decomposition tree
T (G). The root of T (G) is G, the leaves are the p-connected
components and the weak vertices of G and the internal
nodes of T (G) are labeled with P , S or N (for parallel, se-
rial, or decomposable neighbourhood graph, respectively).

3 The clique-colouring of graphs which are not
non-separable p-connected graphs

In this section we will show that the clique-chromatic num-
ber of any graph which is not a non-separable p-connected
graph is equal to 2. In the next sections we shall consider
classes of graphs that contain non-separable p-connected
graphs of special type.

From now on we will assume that the graphs we are con-
sidering are connected, otherwise we could always consider
separately each connected component.

First we show that in order to find an optimal clique-
colouration of a graph, it is enough to have an optimal
clique-colouration of its characteristic graph.

Theorem 3 Every graph G has the same clique-chromatic
number of its characteristic graph G′. Given an optimal
clique-colouration of G′, an optimal clique-colouration of
G is obtained assigning to every vertex belonging to a maxi-
mal strong module of G the same colour of its representative
vertex in G′.

Proof Let G be a graph and let G′ be its characteristic
graph. Let {M1,M2, . . . ,Mp} be the family of all maximal
(proper) strong modules of G and let {v1, v2, . . . , vp} be the
set of the corresponding characteristic vertices in G′. Let us
assume that an optimal clique-colouration of G′ is known.
Let K ′ = {vi1, vi2, . . . , vis } be any maximal clique of G′.
By replacing each vertex vij of every K ′ with any maxi-
mal clique of the corresponding module Mij we obtain all
the maximal cliques of G. In fact each set of vertices gener-
ated is a clique since each pair of vertices are adjacent either
by construction or by definition of module. The maximality
follows by the maximality of each clique K ′ of G′ and the
maximality of the cliques replacing each vertex of K ′. Now,
we can extend the clique colouration of G′ to G by assigning
the colour of each representative vertex of G′ to every ver-
tex of the corresponding homogeneous set in G. No max-
imal clique of size at least 2 is monocoloured since every
maximal clique of G contains an induced subgraph isomor-
phic to a maximal clique of G′ that is not monocoloured by
hypothesis. The optimality of the colouration of G follows
from the optimality of the colouration of G′. �
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Theorem 4 Every serial graph is 2-clique colourable.

Proof Let G = G1 + G2 + · · · + Gp , p ≥ 2, be a serial
graph. The characteristic graph of G is a complete graph
that is 2-clique colourable. Therefore G is also 2-clique-
colourable by Theorem 3. In fact, it is sufficient to colour
the vertices of G1 with colour 1 and the remaining vertices
with colour 2. �

Lemma 1 Every split graph is 2-clique colourable.

Proof Let G be a split graph. Then its vertex set can be par-
titioned into a maximal clique K and an independent set S.
Every maximal clique of G is either K or a subset of K with
at most one vertex of S. Choose any vertex of K , say x, and
colour it with colour 1. Colour the remaining vertices of K

with colour 2. Colour the vertices of NS(x) with colour 2
and the remaining vertices of S with colour 1. We claim that
this colouring is a 2-clique-colouring of G. In fact, if K is a
maximal clique of G it has two different colours. Any other
maximal clique of G contains vertices of K and only one
vertex of S. If it contains x then it is 2-clique-colourable
since all its adjacent vertices have colour 2. Else, if it con-
tains only vertices of K coloured with colour 2, then the
vertex of S by construction has colour 1. So it is 2-clique
colourable. �

Theorem 5 Every separable p-connected graph is 2-
clique-colourable.

Proof The characteristic graph of every separable p-con-
nected graph G is a split graph by Theorem 1. Any split
graph is 2-clique-colourable by Lemma 1. Therefore G is
also 2-clique-colourable by Theorem 3. �

Theorem 6 Every decomposable neighbourhood graph is
2-clique colourable.

Proof Let G = (V ,E) be a decomposable neighbourhood
graph. Then by condition 3 of Theorem 2 there is a unique
proper separable p-connected component H of G with ver-
tex partition (V1,V2) such that every vertex in V3 = V \
(V1 ∪ V2) is adjacent to all vertices in V1 and to no ver-
tex in V2. Then V3 is a module in G. The characteristic
graph of G is obtained by shrinking V3 to a single vertex,
and by substituting H with its characteristic graph, which
is a split graph by Theorem 1. Then the characteristic graph
of G is also a split graph. Therefore G is 2-clique colourable
by Lemma 1 and Theorem 3. �

4 The clique-colouring of p-trees and p-forests

The purpose of this section is to show that a special sub-
class of the P4-connected graphs, called p-trees is 2-clique-

Fig. 1 The graph Q9

colourable. This class, introduced by Babel in [3], is pro-
vided with structural properties that can be expressed in
a quite analogous way to the characterization of ordinary
trees. A vertex is called a p-end-vertex if it belongs to ex-
actly one P4. A p-cycle is a p-connected graph with no p-
end-vertices, and which is minimal with this property. The
class of p-trees is the class of p-connected graphs with-
out induced p-cycles and containing exactly n − 3 P4’s.
A p-forest is a graph whose p-connected components are
p-trees [3].

In the following we shall use the characterization of p-
trees given in [4], based on the structure of the p-chains in a
p-tree, which we recall for reader’s convenience.

A p-chain X = (v1, v2, . . . , vk) is simple if the only P4’s
contained in G[{v1, v2, . . . , vk}] are induced by the set of
vertices {vi, vi+1, vi+2, vi+3} for i = 1,2, . . . , k−3. In other
words a p-chain X is simple if and only if the vertices of the
p-chain induce precisely k − 3 P4’s.

Let Pk be a path with vertex set V = {v1, v2, . . . , vk}
and edge set E = {v1v2, v2v3, . . . , vk−1vk} and let Qk be a
split graph with vertex set V = {v1, v2, . . . , vk}, where A =
{v2i−1 ∈ V |1 ≤ 2i − 1 ≤ k} is a stable set, B = {v2i ∈ V |2 ≤
2i ≤ k} is a clique and the edges connecting each vertex of B

to the vertices of A are {v2iv2i−1 and v2iv2j+1, j > i} (see
Fig. 1). The ordered sequence (v1, v2, . . . , vk) of the vertices
of Pk (k ≥ 4), Qk (k ≥ 5) and their complements are simple
p-chains. It has been proved that graphs whose vertices can
be ordered in a simple p-chains are p-trees and it turns out
that every p-tree can be generated starting from a simple
p-chain extended by a number of p-end-vertices which can
eventually be replaced by cographs [4].

A spiked p-chain Pk is a path Pk , k ≥ 5, eventually ex-
tended, by introducing two additional vertices x and y such
that x is adjacent to v2 and v3 and y is adjacent to vk−1 and
vk−2; moreover we request that x and y do not belong to a
common P4 (see Fig. 2).

A spiked p-chain Qk is a split graph Qk , k ≥ 6, with
eventually, additional vertices z2, z3, . . . , zk−5 such that

N(zi) = {v2, v4, . . . , vi−1, vi+1}
∪ {z2, z4, . . . , zi−1} for i odd;

N(zi) = {v1, v3, . . . , vi−1, vi+1}
∪ {z3, z5, . . . , zi−1} for i even.
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Fig. 2 The spiked p-chain P8

Fig. 3 The spiked p-chain Q9

A spiked p-chain is shown in Fig. 3. A spiked p-chain
P k (or Qk) is the complement of a spiked p-chain Pk (or
Qk).

It is easy to verify that v1, x, y, vk and v1, z2, z3, . . . ,

zk−5, vk are the only p-end-vertices of spiked Pk (P k) and
Qk (Qk) respectively.

Finally we have the following characterization of p-trees
given by Babel.

Theorem 7 [4] A graph is a p-tree if and only if it is either
a P4 with one vertex replaced by a cograph or a spiked p-
chain with the p-end-vertices replaced by cographs.

Theorem 8 Every p-tree is 2-clique-colourable.

Proof From Theorem 7, it follows that the only homoge-
neous sets of a p-tree are the cographs eventually replacing
the p-end-vertices of G. By Theorem 3 graph G has the
same clique-chromatic number of its characteristic graph.
Therefore it is enough to consider the clique-colouration of
the spiked p-chains Pk , Qk and their complements.

Notice that a prime p-tree is separable if and only if it
is either a spiked p-chain Qk or Qk , (k ≥ 6) or a P4. If G

is a separable p-tree then it is 2-clique-colourable by Theo-
rem 5. If G is not separable then G is a spiked p-chains Pk

or P k , (k ≥ 5). Let now consider the case when G is a spiked
p-chains Pk . If the p-end-vertices x and y are not present
then G is a path Pk that can be 2-clique-coloured by assign-
ing to the vertices of the path alternatively colours 1 and 2. If
the p-end-vertices x or y are present they belong to a max-
imal clique of G that already contains a 2-coloured edge so
they can be coloured with colour 1 or 2. Let G be a spiked p-
chain P k . If the p-end-vertices x and y are not present then
G is a P k . Let v1, v2, . . . , vk be the sequence of the vertices

of Pk . The vertex set of a maximal clique of P k is any max-
imal ordered sequence of vertices S = vi1, vi2, . . . , vis such
that for each two consecutive vertices vip and viq , iq − ip is
either 2 or 3. Since S is a maximal sequence then vi1 must
belong to the set {v1, v2} and vis to the set {vk−1, vk}. Then
every maximal clique of P k contains one of the edges v1vk

or v1vk−1 or v2vk or v2vk−1. Therefore, in order to obtain
a 2-clique colouration of P k it is enough to colour the ver-
tices v1 and v2 with colour 1, the vertices vk and vk−1 with
colour 2 and any other vertex with colour 1 or 2. If the p-
end-vertices x or y are present they belong to a maximal
clique of G that already contains a 2-coloured edge so they
can be coloured with colour 1 or 2. �

Theorem 9 Every p-forest is 2-clique-colourable.

Proof A p-forest G is either a serial graph or a decompos-
able neighbourhood graph or a p-tree. Then G is 2-clique-
colourable by Theorems 4, 6 and 8 respectively. �

5 The clique-colouring of graphs with few P4’s

In this section we shall consider graphs which, in a local
sense, contain only a restricted number of P4’s. It all started
with the class of cographs, which is a class of graphs
where no P4 is allowed to exist. These graphs have been
investigated in [11, 12] and many nice structural results are
known. In particular it has been shown in [11] that every
connected cograph is a serial graph and therefore it is 2-
clique-colourable by Theorem 4.

The study of cographs has been extended by many au-
thors. Hoáng [20] introduced the class of P4-sparse graphs,
which is the class such that no set of five vertices induces
more than one P4. The non-trivial leaves of its associated
primeval tree are spiders [24]. Jamison and Olariu [21–23]
introduced the class of P4-reducible graphs, P4-extendible
and P4-lite. The P4-reducible graphs are the graphs such that
no vertex belongs to more than one P4, and its p-connected
components are P4’s. The P4-extendible are graphs where
each p-connected component consists of at most five ver-
tices. Each p-connected component is either P5 or P5 or C5,
or P4 with one vertex eventually substituted by a homoge-
neous set with cardinality two. The P4-lite are graphs such
that every induced subgraph with at most six vertices either
contains at most two P4’s or is isomorphic to a spider. The
p-connected components of a P4-lite graph are either a spi-
der (possibly with one vertex replaced by a homogeneous
set of cardinality 2) or one of the graphs P5, P5. The P4-
laden [16] are graphs such that every induced subgraph with
at most six vertices either contains at most two P4’s or it is
isomorphic to a split graph. The p-connected components
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of a P4-laden graph are spiders (possibly with one vertex re-
placed by a homogeneous set of cardinality 2), split graphs,
P5’s or P5’s [16]. The above classes are ordered as follows:

cographs ⊂ P4-reducible ⊂ P4-sparse ⊂ P4-lite ⊂ P4-laden.

Another generalization of the above classes are the ex-
tended P4-reducible [17], extended P4-sparse graphs [17],
P4-tidy graph [18] and the extended P4-laden graphs [16].
These classes are obtained from P4-reducible and P4-sparse
graphs, P4-lite and P4-laden respectively, by also allowing
C5’s as p-connected components. All the previously men-
tioned classes are included in the class of extended P4-laden
graphs.

Using the primeval decomposition we have the following.

Theorem 10 Every extended-P4-laden graph G is 2-clique-
colourable with the exception of C5 which is 3-clique-
colourable.

Proof If G is a serial graph or a decomposable neighbour-
hood graph, it is 2-clique-colourable by Theorem 4 and The-
orem 6 respectively. If G is a p-connected graph different
from C5, then either it is isomorphic to a P5 or P5 that are
trivially 2-clique-colourable or it is a separable p-connected
graph isomorphic either to a spider graph (possibly with one
vertex replaced by a homogeneous set of cardinality 2), or to
a split graph. The characteristic graph in both cases is a split
graph and therefore it is 2-clique-colourable by Lemma 1. If
G is a C5 then G is 3-clique-colourable. �

Corollary 1 Every cograph, P4-reducible, P4-sparse and
P4-lite graphs are 2-clique-colourable.

Corollary 2 Every P4-extendible, extended P4-reducible
and extended P4-sparse graphs are 2-clique-colourable
with the exception of C5 which is 3-clique-colourable.

A generalization of some of the above classes was given
by Babel and Olariu. They proposed to call a graph a (q, t)-
graph if no set of at most q vertices induces more than t dis-
tinct P4’s. In this terminology, the cographs are precisely the
(4,0)-graphs, the P4-sparse graphs coincide with the (5,1)-
graphs. In particular the (7,4)-graphs properly contain all
cographs, P4-reducible, P4-sparse, p-trees and p-forests.
The (9,6)-graphs additionally contain all P4-extendible, ex-
tended P4-reducible and extended P4-sparse graphs.

The p-connected (q, q −3)-graph has been characterized
as follows.

Theorem 11 [4] Let G be a p-connected graph with n ver-
tices.

(i) If n ≥ 7, then G is a (n,n − 3) graph if and only if G

is a p-tree.

(ii) If n > q , q ∈ {7,9}, then G is a (q, q − 3)-graph if and
only if precisely one of the following conditions holds
(a) G is a p-tree;
(b) G is a hole or antihole;
(c) G is a spider.

(iii) If n > q , q = 8, or q ≥ 10, then G is a (q, q −3)-graph
if and only if precisely one of the following conditions
holds
(a) G is a p-tree;
(b) G is a hole or antihole.

In order to find the clique-colouration of (q, q − 3)-
graphs we will need the following result.

Theorem 12 Every antihole Ck , with k > 5 is 2-clique-
colourable.

Proof Let v1, v2, . . . , vk , k ≥ 6, be the sequence of the ver-
tices of Ck . Any 2-colouring where v1, v2, v3 have colour
1 and v4, v5, v6 have colour 2 is a 2-clique-colouring. In
fact a clique that misses 3 consecutive vertices vi, vi+1, vi+2

is not maximal because we could include vi+1 obtaining a
bigger clique. Hence, any clique has (at least) one vertex in
{v1, v2, v3} and (at least) one vertex in {v4, v5, v6} and it is
2-clique-coloured. �

Note that Theorem 12 can be obtained also as a particular
case of results contained in [1, 7].

Now we are ready to prove the following theorem.

Theorem 13 Let q ≥ 7 be a fixed integer and G a (q, q −
3)-graph with n vertices, n ≥ q . G is 2-clique-colourable,
unless it is a Cn with n odd (which is 3-clique-colourable).

Proof If n = q then G is a p-tree, which is 2-clique-
colourable by Theorem 8. If n > q then G is either a se-
rial graph or a decomposable neighbourhood graph or a
p-connected graph. In the first two cases it is 2-clique-
colourable by Theorems 4 and 6 respectively. In the last
case, G has more than 7 vertices and it is either a p-tree,
or a hole, or an antihole, or a spider by Theorem 11. Ev-
ery p-tree is 2-clique-colourable by Theorem 8. Every spi-
der is a split graph and therefore it is 2-clique-colourable
by Lemma 1. Every antihole is 2-clique-colourable by The-
orem 12. Finally every hole is 2-clique-colourable if it is
even, otherwise is 3-clique-colourable. �

6 Final remarks

We would like to point out that, in order to study the clique-
colouration of a graph, it is enough to consider the clique-
colouration of its characteristic graph that can be obtained
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in linear time through the modular decomposition of that
graph [13, 28]. We have showed that every serial graph, ev-
ery separable p-connected graph and every neighbourhood
decomposable graph is 2-clique-colourable. Furthermore we
have solved the clique-colouring problem for classes of
graphs that contain very special non-separable p-connected
graphs. Moreover, if the clique-colouration of a prime graph
G is known, then any graph obtained by substituting any ver-
tex of G with any graph H has the same clique-colouration
of G. The problem remains open for general non-separable
p-connected graphs.
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