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Abstract The interval count problem determines the small-
est number of interval lengths needed in order to represent
an interval model of a given interval graph or interval order.
Despite the large number of studies about interval graphs
and interval orders, surprisingly only a few results on the in-
terval count problem are known. In this work, we provide a
short survey about the interval count and related problems.
a graph and the number of its maximal cliques.

Keywords Interval count · Interval lengths · Number of
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1 Introduction

The interest in interval graphs and orders comes from both
their central role in many applications and purely theoretical
questions [15, 17, 29]. They potentially arise in applications
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for which there are events associated to time intervals cor-
responding to the duration of the events. Among such appli-
cations, as discussed in [27], there are those related to plan-
ning [2], scheduling [26], archeology [22], temporal reason-
ing [1], medical diagnosis [25], and circuit design [33]. Fur-
thermore, there are applications not related directly to dura-
tion of events in the fields of genetics [3], physical mapping
of DNA [7, 21], and behavioral psychology [10].

An interval model is a family of closed intervals of the
real line. A graph G is an interval graph if there exists an
interval model R = {Iv | v ∈ V (G)} such that for all distinct
x, y ∈ V (G), Ix ∩ Iy �= ∅ if and only if xy ∈ E(G). Fig-
ure 1 presents an interval graph and a corresponding interval
model.

An order (X,≺) is a transitive and irreflexive binary re-
lation ≺ on X. An order P = (X,≺) is an interval order if
there exists an interval model R = {Ix | x ∈ X} such that for
all x, y ∈ X, x ≺ y if and only if Ix precedes (is entirely to
the left of) Iy . In these cases, R is an interval model of G

(resp. P ). Besides, we say that G (resp. P ) is the graph (resp.
order) corresponding to R.

For some given graph G (resp. order P ), we consider the
problem of computing the smallest number IC(G) (resp.
IC(P )) of interval lengths for an interval model of G

(resp. P ), named in both cases the interval count prob-
lem [15, 24]. Figure 2 presents another interval model of the
graph defined in Fig. 1 in which there are only two interval
lengths. Clearly, the minimum number of lengths required
for any interval model of this graph is two, which is, there-
fore, the interval count of this graph.

The importance of the interval count is evident. Since the
definition of interval graphs needs the construction of in-
tervals, it is a natural question to determine the minimum
number of lengths of intervals required for a representa-
tion. Furthermore, interval count is related to a number of
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Fig. 1 Interval graph and one
of its interval models

Fig. 2 Two lengths of intervals
is both needed and sufficient

practical applications. The outputs of interest among the ap-
plications that require the construction of interval models
can be constrained by a desirable number of distinct inter-
val lengths, generally as a matter of convenience or fairness.
For instance, the problem of allocating initial and final hours
for presentations at a workshop could require the generation
of only two durations for presentations (one for the ordinary
speakers, another for the invited speakers). Another example
of real-world application is the scheduling of class periods
at a university. A period is a certain time (say, one hour) of
which the duration of any particular class should be a multi-
ple. Some individual classes of a discipline may require sev-
eral consecutive periods to be delivered, whereas for other
classes a single period suffices. Each discipline requires a
certain amount of periods to be delivered. If the scheduling
of disciplines is carried out in such a way that each period
of a discipline is individually planned, then the scheduling
algorithm must assign consecutive periods for some classes.
In order to avoid dealing with dependencies among periods,
we can redefine the total duration required for each class as
a period. In this approach, each class is delivered in only one
period of variable length. Moreover, the interval graph to be
generated as a result of the scheduling process is known to
have a certain interval count by construction (which is, the
total number of distinct required class lengths).

The interval count problem was suggested by Ronald
Graham (cf. [24]). There are graphs having arbitrary interval
count values. In particular, let G1 be the graph consisting
of a single vertex u1. For each k ≥ 2, let Gk be the graph
consisting of three disjoint copies of Gk−1 plus a vertex
uk adjacent to all others. Clearly, Gk is an interval graph.
Furthermore, it is easy to show that IC(Gk) = k for each
k ≥ 1. The complexity of deciding whether IC(G) = k (resp.
IC(P ) = k) for a graph G (resp. order P ) and an integer
k > 1 is open: it is not known presently whether it is an NP-
complete problem.

The interval count problem is an intriguing problem, in
which very intuitive statements are proved not to hold. As

an example, Graham stated the conjecture that the interval
count of a graph decreases by at most one unit when exactly
one vertex is removed. Intuitively speaking, if a graph has an
interval model requiring at least k different interval lengths,
the operation of removing one interval from this model (or,
equivalently, a vertex of this graph) seems not to result in a
graph which has an interval model using k − 2 or less dif-
ferent interval lengths. This conjecture was proved to hold
only for certain interval graphs, as we discuss in the next
sections.

Since the interval count problem is defined only for in-
terval graphs (resp. orders), it is assumed that the graphs
(resp. orders) have an associated interval model when this
problem is considered. Denoting by IC(R) the number of
distinct lengths of a given interval model R, for a given or-
der P , we can write

IC(P ) = min
{
IC(R) | R is an interval model ofP

}

and, similarly, given a graph G,

IC(G) = min
{
IC(R) | R is an interval model of G

}
.

When there exists an interval model R which is an inter-
val model of both an order P and a graph G, we say that
P agrees with G. Note that an interval order agrees with a
unique interval graph, but the converse is false: an interval
graph may have exponentially many interval orders agreeing
with it. Using this relation of agreement, we can enunciate
the interval count of graphs in a way which evidences its re-
lationship to the interval count of orders. Given a graph G,
we can write that:

IC(G) = min
{
IC(P ) | P agrees with G

}
.

In the literature, there exist a collection of results on the
interval count of graphs and orders. In this paper, we present
them in the version as they were originally stated, concern-
ing the interval count of either orders, or graphs, or both.
Note that when a result is presented only for the interval
count of graphs (resp. orders), the counterpart result for the
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interval count of orders (resp. graphs) does not necessarily
hold.

Denote the left and right extreme points of an interval I

by �(I ) and r(I ), respectively. When an interval model of
an interval graph (resp. interval order) is clear in the con-
text, for convenience, we may use the concepts of vertex
(resp. element) and its corresponding interval interchange-
ably. A unit interval graph is an interval graph which admits
an interval model whose intervals are unitary length. A K1,r

graph is the complete bipartite graph in which the cardinal-
ity of the sets forming the bipartition are 1 and r . A (1 + 3)-
order is isomorphic to the order ({a, b, c, d},≺) such that
b ≺ c ≺ d and a is incomparable to b, c, and d . A proper
interval graph is an interval graph which admits an interval
model for which there do not exist intervals Ix and Iy such
that �(Ix) < �(Iy) < r(Iy) < r(Ix). Finally, if the adjacent
vertices to a given vertex v is a clique, then v is called a
simplicial vertex.

In Sects. 2, 3, and 4, we provide a brief survey about the
interval count of graphs and orders which have respectively
interval count one, interval count two, and arbitrary interval
count values. In Sect. 5, we present solutions of the interval
count problem when the graphs and orders are restricted to
belong to certain subclasses of interval graphs and interval
orders. In Sect. 6, we show a relation between the interval
count of a graph and the number of its maximal cliques, pro-
viding a tight upper bound for the interval count of graphs
having q cliques. In Sect. 7, we present related problems
which are also concerned about the interval lengths, but not
about the minimization of the number of them. Finally, in
Sect. 8, we provide concluding remarks on the interval count
problem.

For the omitted notation in this paper, refer to [5] for gen-
eral graph theory, [32] for general order theory, and [15, 17]
for a specialized discussion about interval graphs and inter-
val orders.

2 Interval count one

The question of deciding whether IC(G) = 1 for an interval
graph G is equivalent to that of recognizing whether G is
a unit interval graph. In fact, given an interval model using
only intervals of the same length, it is possible to either com-
press or expand proportionally all intervals so that they are
transformed into unit intervals. The recognition problem of
unit interval graphs is well known since the sixties [28] and
can be solved by polynomial-time algorithms, some of them
being of linear time [11–14, 16, 19, 28]. Moreover, unit in-
terval graphs are characterized by a single finite forbidden
structure, as stated in Theorem 1 (firstly obtained by [28]).

Theorem 1 ([4]) If G is an interval graph, then G is a unit
interval graph if and only if G is K1,3-free.

Proof Clearly a K1,3 graph cannot be represented by a unit
interval model. Conversely, suppose that G is K1,3-free. We
claim that there exists an interval model of G in which no
interval is included in another interval. By way of contra-
diction, suppose that the claim is false. Let R = {Iv | v ∈
V (G)} be the interval model having the fewest number of
interval inclusions, and let Ix ⊆ Iy for some x, y ∈ V (G).
Since �(Ix) cannot be moved to the left passing through
�(Iy), by the minimality of the number of interval inclu-
sions, then there exists a ∈ V (G) such that Ia ∩ Iy �= ∅ and
r(Ia) < �(Ix). Symmetrically, there exists b ∈ V (G) such
that Ib ∩ Iy �= ∅ and r(Ix) < �(Ib). But then G[{y, a, x, b}]
is isomorphic to a K1,3, a contradiction. Therefore, let R =
{Iv | v ∈ V (G)} be an interval model of G having no interval
inclusions. We build a unit interval model of G iteratively
transforming R as follows.

In each iteration, let I be the nonunit interval having
the leftmost left interval extreme point. If there is no right
extreme point contained in the portion (�(I ), r(I )) of the
model, then let p = �(I ). Otherwise, let p be the largest
such an extreme point (in this case, p would belong to
an interval that has already been adjusted to have unitary
length, in order to not contradict both the fact of R hav-
ing no interval inclusion and the choice of I ). Thus, p ≤
min{�(I ) + 1, r(I )}. Adjust the model by compressing or
expanding proportionally the portion of the model defined
by [p, r(I )] so that it fits in the portion [p,�(I ) + 1] of
the model (translate the portion [r(I ),∞) of the model to
[�(I ) + 1,∞)). The order of interval extreme points does
not change, intervals iterated earlier than I remains unitary
length, and now I has also length 1. Clearly, when no more
intervals can be selected as I , the resulting interval model is
a unit interval model of G. �

Corollary 2 ([11–14, 16, 19, 28]) If G is an interval graph,
then G is a unit interval graph if and only if G is a proper
interval graph.

Proof Clearly, a unit interval graph is a proper interval
graph. Conversely, the proof of Theorem 1 transforms a
proper interval model into a unit interval model. �

Corollary 3 ([28]) If P is an interval order, then P is a unit
interval order if and only if P has no induced (1 + 3)-order.

Proof It follows from Theorem 1 and the fact that every or-
der which agrees with a K1,3 graph is a (1 + 3)-order. �

Therefore, having interval count one for graphs and or-
ders is a well-solved question. Moreover, note that Graham’s
conjecture holds trivially for all graphs having interval count
one.
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3 Interval count two

Although deciding whether a graph or order has interval
count one is a well-known and well-solved problem, having
linear-time recognition algorithms, it is not known whether
the complexity of deciding if IC(G) = 2 (resp. IC(P ) = 2)
for a graph G (resp. order P ) is a polynomial-time solvable
problem.

Despite the lack of an efficient procedure to recognize
whether the interval count of a graph is at most two, Skrien
characterized those, among such graphs having interval
count two, that admit a two-length model where the short-
est size is equal to zero [30]. In other words, Skrien char-
acterized the graphs which can be represented by a model
in which every length is either zero or one. Obviously, if G

is a graph which admits a model like this, the set S of ver-
tices having length equal to zero is a set of simplicial ver-
tices. Furthermore, the graph G[V (G) \ S], induced from G

by the vertices having length equal to one, is a unit interval
graph. Conversely, the existence of a set S of simplicial ver-
tices such that G[V (G) \ S] is a unit interval graph does not
suffice to state that there is a model of G having only zero
or one interval length, as exemplified in [30]. The conditions
for sufficiency is stated as follows.

Theorem 4 ([30]) Let G be an interval graph, and S be a
set of simplicial vertices of G. Such a graph G can be rep-
resented by a model having only zero or one interval length
if and only if there are orientations O of G \ S and F of G

such that:

1. O ∪ F is a transitive orientation.
2. OF ∪FO ∪FF ⊂ F (where AB denotes the set of pairs

ab such that ax ∈ A and xb ∈ B).

The conditions of this characterization can be tested in
O(n3) time (cf. [30]).

Fishburn investigated the topology of the models of or-
ders in P2, the class of orders having interval count equal
to 2. Given an order P ∈ P2, it is clear that there exist in-
terval models of P having the smallest of the two distinct
interval lengths equal to one. The question was to determine
the set θ(P ) of admissible lengths for the greatest length. In
other words, given an interval order P = (X,≺), the prob-
lem is to determine the set

θ(P ) = {
α > 1 | there exists an interval model

R = {Ix | x ∈ X} of P having

IC(R) = 2 such that |Ix | ∈ {1, α}
for each x ∈ X

}

As an example, if R is an interval model of the graph
K1,t+2, t ≥ 1, and P is the corresponding interval order

Fig. 3 Example of order P having θ(P ) = (1,2)

to R, then θ(P ) = (t,∞). In a first glance, θ(P ) seems
to be connected. The longer lengths in a two-length inter-
val model seem to allow their incremental increase without
affecting the two-length representation of the model, in a
similar way that a K1,3’s model does. Fishburn proved that,
for some orders, such an increase on the longer length has
a limit. He presented examples of orders P ∈ P2 such that
θ(P ) = (1, k) for each k ≥ 2. We present such an example
for k = 2 below. Examples for k > 2 can be found in [15].

Theorem 5 ([15]) If P is the corresponding order to the
interval model depicted in Fig. 3, then θ(P ) = (1,2).

Proof Let {Ix | x ∈ X} be a two-length interval model of
P having the shorter size equal to 1, and let α ∈ θ(P )

be the longer length. Due to the suborders induced by the
sets {d, e, f,h}, {a, b, c, i}, and {k, l,m,n}, it follows that
|Ih| = |Ii | = 1 and |Il | = α (in Fig. 3, note that the right
extreme points of intervals coincide with the left extreme
points of succeeding intervals drawn in the same line; for
example, r(Ia) = �(Ib), r(Ib) = �(Ic), r(Ig) = �(Ih), and
so on). Clearly, α < 2. Moreover, it is easy to check that
the interval model of Fig. 3 can be adjusted so that every
1 < α < 2 is admissible, by changing the size of the longer
intervals b, e, l (in Fig. 3, α = 1.5). �

In [31], it is conjectured that θ(P ) would be an open
interval. However, Fishburn also presented orders P ∈ P2

such that θ(P ) = (2 − 1/k,2) ∪ (k,∞) for each k ≥ 2,
which means that, surprisingly, θ(P ) can be a disconnected
set. Furthermore, he proved that for each k ≥ 2, there ex-
ists P ∈ P2 such that θ(P ) is the union of k distinct open
intervals.

Regarding the Graham’s conjecture, all graphs having
interval count two trivially satisfy it. Furthermore, Lei-
bowitz, Assmann, and Peck [24] characterized another case
for which the conjecture holds: if G is a graph such that
IC(G \ x) = 1 for some vertex x of G, then IC(G) ≤ 2.

4 Arbitrary interval count

Just as the complexity of deciding the existence of an in-
terval model using two interval lengths, it is also unknown
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Fig. 4 Definition of order Qr ,
for each r ≥ 3

whether deciding if the interval count of graph is k, for an
integer k > 1, is an NP-complete problem.

Since having interval count one has a simple characteri-
zation in terms of forbidden induced subgraphs, a natural ap-
proach is to investigate characterizations of graphs (resp. or-
ders) of arbitrary interval count values by forbidden induced
subgraphs (resp. suborders) as well. In [15], it is shown that
the list of forbidden suborders to characterize the orders
which have interval count equal to k ≥ 2 is infinite. A similar
result holds for graphs.

Theorem 6 ([15]) If S is the set of orders such that, given
an interval order P and k ≥ 2, IC(P ) ≤ k if and only if P

has no induced suborder isomorphic to one of those in S ,
then S is infinite.

Proof First interval orders P = (X,≺) of arbitrary large fi-
nite cardinality which have IC(P ) > 2 whose every proper
induced suborders P ′ have IC(P ′) = 2 are constructed, set-
ting the result for k = 2. Then the result is extended for the
case k > 2.

Let P = Qr be the order defined in Fig. 4 for each r ≥ 3.
If IC(Qr) = 2, then a1, . . . , ar+1, b1, . . . , and br must have
a shorter length. But then x and y could not have the same
length since, representing the shorter length by β , y’s left
extreme point is within rβ units of x’s left extreme point,
whereas y’s right extreme point is more than rβ units greater
than x’s right extreme point. Therefore, IC(Qr) > 2.

To prove that every proper induced suborder Q′ of Qr has
IC(Q′) = 2, it suffices to consider only induced suborders
obtained by removing one element from X as follows:

1. Q′ = Qr \ x: Clearly there exists an interval model hav-
ing d and y as the longer length and the remaining inter-
vals with the shorter.

2. Q′ = Qr \ y: d and x having the longer length and the
remaining intervals with the shorter.

3. Q′ = Qr \d : All, but a1, x, and y, with the shorter length;
the longer length for a1 allows x and y to have the same
longer length.

4. Q′ = Qr \ c: All, but d , x, and y, with the shorter length;
begin a1 to the right of the left extreme point of x so that
x and y can have the same longer length.

5. Q′ = Qr \ a0: All, but a1, d , x, and y, with the shorter
length.

6. Q′ = Qr \ ai , for some 1 ≤ i ≤ r : This leaves a gap in
the path a1, . . . , ar , and consequently there is a point of
x which belongs only to x and d . Therefore, clearly there
exists an interval model in which all, but d , x, and y, have
the shorter length.

7. Q′ = Qr \ ar+1: All, but ar , d , x, and y, with the shorter
length. A possible model is the following: Ic = [−1,0],
Ia0 = [−1 − λ,−λ], Iai

= [i − 1, i] for each 1 ≤ i ≤ r −
1, Ibi

= [r −2+ i +N + iλ, r −1+ i +N + iλ] for each
1 ≤ i ≤ r + 1, Ix = [λ,N + λ], Iy = [N − λ,2N − λ],
Id = [−λ,N −λ], Iar = [r −1, r −1+N ]. Such a model
clearly suffices when λ > 0 is small and N is large.

8. Q′ = Qr \ bi for some 1 ≤ i ≤ r : For convenience,
renumber the elements {b1, . . . , br+1} \ {bi} as b1, . . . , br

following the original order. Use the preceding model for
x, c, a0, . . . , and ar−1 along with Iai

= [i − 1, i] for
each r ≤ i ≤ r + 1, Ibi

= [N − 1 + i + (i + 1)λ,N +
i + (i + 1)λ] for each 1 ≤ i ≤ r , Iy = [r, r + N ], Id =
[r +1−N,r +1]. Again, this model suffices when λ > 0
is small and N is large. Furthermore, for y to intersect br ,
we need r +N ≥ N −1+ r + (r +1)λ, or λ ≤ 1/(r +1).

Cases 1 through 8 account for all elements in X. Hence,
for each proper induced suborder Q′ of Qr , it holds that
IC(Q′) ≤ 2.

To prove the result for k ≥ 3, assume by way of contra-
diction that, for some k ≥ 3, there exists a finite set S of
interval orders such that IC(P ) ≤ k if and only if P has no
induced suborder isomorphic to one of those in S for every
interval order P . The reasoning below shows that the same
would hold for k − 1 in place of k. Applying the claim suc-
cessively, it follows that the same would hold for k = 2, a
contradiction.

Note that IC(Q) > k for each Q ∈ S . Let S ′ consist of
all induced suborder Q′ of Q ∈ S such that IC(Q′) ≥ k.
Clearly, S ⊆ S ′, and S ′ is finite. It will be proved that S ′
is a finite set for k − 1 as S is for k.

Let R = (XR,≺R) be an order such that IC(R) ≥ k.
If IC(R) > k, then a proper induced suborder of R is in

S ⊆ S ′. Assume therefore that IC(R) = k and let R′ be
the interval order obtained from R by adding an element
a preceding each element in XR , an element b succeed-
ing each element in XR , and an element c incomparable
to both a and b (and, therefore, incomparable to each ele-
ment in XR). Clearly, IC(R′) = k + 1, and therefore there



108 J Braz Comput Soc (2012) 18:103–112

Fig. 5 For the graph G above,
IC(G) = IC(G \ x) + 2

is a proper induced suborder R′′ of R′ such that R′′ ∈ S .
Note that R′′ \ {a, b, c} is an induced suborder of R. Be-
sides, R′′ must contain c, or R′′ could be representable
by k lengths, a contradiction. In addition, IC(R′′ \ {c}) =
IC(R′′ \ {a, b, c}) ≤ IC(R) = k, and IC(R′′ \ {a, b, c}) can-
not be less than k, or otherwise IC(R′′) would not be k + 1.
Since IC(R′′ \{a, b, c}) = k, R′′ \{a, b, c} is in S ′. The claim
follows as a result. �

In contrast to the previous sections, Graham’s conjecture
does not necessarily hold for graphs having arbitrary interval
count values. Leibowitz, Assmann, and Peck [24] presented
examples of graphs having IC(G) > 2 for which IC(G) =
IC(G \ x) + 2 given a particular vertex x of G. Figure 5
depicts one of such examples.

This result refutes the conjecture, but it makes room for
a generalized version of it, which we pose here: does there
exist some integer k > 1 for which it holds that the interval
count of a graph decreases by at most k when exactly one
vertex is removed? In [31], it is conjectured that the removal
of a vertex may decrease the interval count by an arbitrary
large amount.

Fishburn also considered extremal problems on the inter-
val count of an order, its number of elements, and its num-
ber of maximal antichains. Given a graph G (resp. order
P ), denote by q(G) (resp. q(P )) the number of its maximal
cliques (resp. maximal antichains). Consider the following
functions:

σ(k) = min
{|X| | P = (X,≺) is an order and IC(P ) ≥ k

};
and

ν(k, q) = min
{|X| | P = (X,≺) is an order, q(P ) = q,

IC(P ) ≥ k
}

Obviously, σ(k) is equal to the minimum of ν(k, q) vary-
ing q over its domain. Particularly, Fishburn showed that
σ(k) = min{ν(k, q) | q ≥ 2k−1}. The restriction q ≥ 2k−1
follows from the fact that the function ν(k, q) is unde-
fined for each k > �(q + 1)/2�, i.e., IC(P ) < k for all
k > �(q + 1)/2� and order P such that q(P ) = q . Besides,
he proved that ν(k, q) ≤ k + q − 1 holds in general and cal-
culated the exact value of the function ν(k, q) when k and q

are restricted to some specific values. In Sect. 6, we show

that for any graph G, it holds that max{IC(G) | q(G) =
q} = �(q + 1)/2�, which implies the domain of the function
ν(k, q). We provide a simpler proof than that from [15].

5 Interval count of subclasses of graphs and orders

In this section we present results which come from the in-
vestigation of the interval count problem restricted to certain
subclasses of interval graphs and interval orders.

Let Pn be an induced path on n vertices. Let G be a
graph, and v ∈ V (G). The neighborhood of v is the set
N(v) = {w | (v,w) ∈ E(G)}. The substitution of v by the
graph G′ is the graph H obtained from the disjoint union
(G \ v) ∪ G′ plus the edges uw such that u ∈ N(v) and
w ∈ V (G′). In such a case, we say that H is obtained from
G by substituting v by G′.

A graph is a tree if it is connected and acyclic. A graph
is threshold if its vertex set can be partitioned into K ∪ I

such that K is a clique, I is an independent set, and there
exists an ordering v1, . . . , v|I | of the vertices of I such that
N(vi) ⊆ N(vi+1) for each 1 ≤ i < |I | (or, equivalently,
there exists an ordering u1, . . . , u|K| of the vertices of K

such that I ∩ N(ui+1) ⊆ I ∩ N(ui) for each 1 ≤ i < |K|).
A graph G is almost-K1,3-free if there exists v ∈ V (G) such
that G \ v is K1,3-free. A graph G is starlike-threshold if
it can be obtained from a threshold graph substituting each
vertex of the independent set by a corresponding clique. An
interval graph is trivially perfect (TP) if it is P4-free [17].

A graph is generalized-threshold if it can be obtained
from a threshold graph by substituting each vertex of the
independent set by a corresponding unit-interval graph. An
XFn

1 graph (n ≥ 0) consists of a path P of length n + 2 and
a vertex that is adjacent to every vertex of P except its ex-
tremes [6]. Therefore, XF 0

1 is a K1,3, and XF 1
1 is a bull. For

convenience, in this paper we call the graph XFn
1 for each

n ≥ 1 an extended-bull. The extended-bull graph is depicted
in Fig. 6. A graph is extended-bull-free if it has no extended-
bull as an induced subgraph.

Figure 7 presents the inclusion diagram among these
graph classes. In this diagram, a class A is a generalization
of a class B precisely when there exists a top-down path
from A to B. Each class in the figure is labeled by a graph
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belonging to this class, which is a separating example, that
is, which shows that this class is distinct (either proper con-
taining, or proper being contained, or not having a gener-
alization relationship) from each other class. In those exam-
ples, a graph G having an edge uv where v is represented by
a white vertex labeled with G′ represents the graph obtained
from G substituting v by G′.

In [23], it is proved that the interval count of trees, thresh-
old graphs and almost-K1,3-free graphs is at most 2. In [8], it
is observed that the starlike-threshold graphs also have inter-
val count at most 2. Recently, Cerioli, Oliveira, and Szwar-
cfiter [9] extended the result of having the interval count
limited to 2 to generalized-threshold graphs. Furthermore,
in [9], it has been described polynomial-time algorithms
to compute the interval count of extended-bull-free graphs
(and, in particular, trivially perfect graphs). Such a class con-
tains instances of graphs with arbitrary interval count values.

To our knowledge, there are no other subclasses of inter-
val graphs and orders for which it is currently known how to
compute their interval count efficiently.

Fig. 6 The extended-bull
graph, for n ≥ 1

6 Relation to the number of maximal cliques

Obviously, IC(G) ≤ |V (G)| for any graph G, which con-
sists in a trivial upper bound on the interval count of a graph.
It is possible however to derive better upper bounds. For
instance, consider the following observation. Let R be an
interval model of the graph G such that IC(R) = IC(G).
Reading the maximal cliques of G from left to right in R,
note that there exists an interval I1 belonging exclusively
to the first maximal clique, or otherwise the first maximal
clique would be a subset of the second one. By a similar
argumentation, there exists an interval Iq belonging exclu-
sively to the last maximal clique. Since there is no reason
to have I1 and Iq with distinct lengths, we have IC(G) ≤
|V (G)| − 1 for any graph G.

In this section, we address an extremal problem concern-
ing the interval count of graphs having a fixed number of
maximal cliques. For any q ≥ 1, let f (q) = max{IC(G) |
q(G) = q}, where q(G) denotes the number of maximal
cliques of G.

Theorem 7 For each q ≥ 1, f (q) = �(q + 1)/2�.

Proof The result is clear when q ≤ 2, since such graphs are
K1,3-free. Therefore, assume that q > 2. For each i ≥ 1, let
Gi be the graph defined schematically in Fig. 8. The double
lines linking ui to Hi−1 mean that the vertex ui is adjacent
to all vertices of the induced subgraph Hi−1.

Fig. 7 Inclusion diagram
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Fig. 8 Auxiliary graphs Hk ,
k ≥ 0, and Gi , i ≥ 1

Fig. 9 One of the interval models of the graph Gi , i ≥ 1

For each i ≥ 1, the number of maximal cliques of Gi

can be easily worked out according to its definition as being
q(Gi) = 2i + 1. Moreover, for any interval model {Iv | v ∈
V (Gi)} of Gi , |Iuk

| > |Iuk−1 | for each 1 ≤ k ≤ i. Thus,
IC(Gi) ≥ i + 1. As a matter of fact, IC(Gi) = i + 1 as it can
be verified in the interval model of Gi depicted in Fig. 9.

Let G be either the graph G(q−1)/2 if q is odd or the
graph G(q−2)/2 plus an isolated vertex, otherwise. There-
fore, f (q) ≥ IC(G) = �(q + 1)/2�.

On the other hand, let G be a graph with q maximal
cliques. We show an upper bound for f (q) by describing
an algorithm which builds an interval model R of G such
that IC(R) ≤ �(q + 1)/2�. Since G is a general graph with
q maximal cliques, we have f (q) ≤ �(q + 1)/2�.

Let C1, . . . ,Cq be the maximal cliques read from left to
right of some interval model of G, and let m = �(q + 1)/2�.
Initially, assume that all intervals in the cliques Cm or Cm+1

are unit length. Then, on each step i = 1, . . . ,m − 1, move
each left extreme point of the intervals in Cm−i ∩ Cm−i+1

to the left and move each right extreme point of the in-
tervals in Cm+i ∩ Cm+i+1 to the right in such a way that
the following two conditions hold: (i) the modified inter-
vals have the greatest length, and (ii) there exist two points
p1 < p2 such that the sets of intervals which contain p1 and
p2 are Cm−i ∩ Cm−i+1 and Cm+i ∩ Cm+i+1, respectively.
For each v ∈ Cm−i \ Cm−i+1, add Iv such that |Iv| = 1 and
r(Iv) = p1. Symmetrically, for each v ∈ Cm+i+1 \ Cm+i ,
add Iv such that |Iv| = 1 and �(Iv) = p2. In each iteration,
clearly, at most one new interval length is added. Therefore,
IC(G) ≤ IC(R) ≤ (m − 1) + 1 = �(q + 1)/2�. �

Therefore, if a graph G has q maximal cliques, then
IC(G) ≤ f (q) = �(q + 1)/2� ≤ �(|V (G)| + 1)/2�.

7 Related problems

It is clearly possible to assume, without loss of generality,
that an interval graph or an interval order has an interval
model in which all interval extreme points are integer num-
bers. In [18] (cf. [31]), Greenough discusses the problem of
computing the minimum “width” of such models, that is,
the problem of determining the minimum positive integer r

for which there exists an interval model of an order using
only integer extreme points from the interval [0, r]. Related
to this problem, we considered the interval count problem
assuming that all interval extreme points are distinct and in-
teger. Particularly, our question was to determine how the
interval count of a graph (order) is affected when the in-
terval models are assumed to have distinct integer extreme
points. We showed in [9] that the interval count of a graph
(order) is invariant under such an assumption. Motivated by
both, this result and Greenough’s discussion, we suggest the
problem of determining the minimum positive integer r for
which there exists an interval model of an order realizing
its interval count using only distinct integer extreme points
from [0, r].

There are also results regarding the interval lengths which
are not directly concerned about minimizing their number.
In [15], it is considered the problem of deciding whether
there exists an interval model of a given interval graph such
that each interval length is between p and q for a given
pair of real numbers 1 ≤ p ≤ q . Fishburn described a char-
acterization by forbidden induced subgraphs of the graphs
for which such a question has an affirmative answer. He
proved that such a list is finite if and only if p/q is a ra-
tional number. In this case, the characterization leads to an
exponential-time nO(pq) recognition algorithm, where n is
the number of vertices of the graph. In [20], the author in-
vestigated this question restricted to the case in which all in-
terval extreme points of the model are integer numbers and
provided a polynomial-time O(min{n3, n2,5 log(n(p+q))})
recognition algorithm.

In [27], a more general question is studied. Let G be
an interval graph, and C be a set of constraints on the dis-
tances between interval extreme points of interval models
of G. Each constraint is of the form x − y ≤ Cxy , where x

and y are interval extreme points, and Cxy is a real number.
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The inequalities �(Ix)−r(Iy) ≤ 4 and r(Iz)−r(Iw) ≤ −√
2

are examples of such constraints for vertices x, y, z,w. The
problem consists in deciding whether there exists an interval
model of G satisfying all constraints in C . A second prob-
lem comes from the previous one by requiring that each con-
straint involves only interval extreme points of the same ver-
tex. Without loss of generality, in this case it is assumed that
all constraints are in the form either �(Iv) − r(Iv) ≤ −Lv

or r(Iv) − �(Iv) ≤ Uv , where v ∈ V (G), and Lv,Uv are
nonnegative real numbers. Equivalently, such constraints are
written as Lv ≤ r(Iv) − �(Iv) ≤ Uv . Finally, a third prob-
lem is considered, originated from the previous one when
Lv = Uv for each constraint, i.e., each constraint is written
in the form r(Iv) − �(Iv) = Lv , where v ∈ V (G), and Lv

is a nonnegative real number. Pe’er and Shamir showed that
this latter problem is NP-complete, and therefore so are the
other two. On the other hand, restricted to the case of graphs
that admit models having a unique ordering of its maxi-
mal cliques (up to reversion), they provided a polynomial-
time algorithm to the first problem and, consequently, to
the other two. They showed that for these graphs, the first
problem can be reduced to that of deciding whether a sys-
tem of inequalities is feasible, which can be decided in time
O(min{n3, n2,5 log(nC)}), where C is a number produced
by the reduction.

8 Concluding remarks

The interval count is a basic problem regarding the well-
known class of interval graphs. Recognizing whether a
graph is interval count one is a well-solved problem, for
which there are several efficient algorithms. However, the
problem of recognizing interval count k, k ≥ 2, is widely
open. When the problem is restricted to particular classes of
graphs or orders, efficient algorithms for interval count k are
known. This is the case of extended-bull-free, generalized-
threshold, and almost-K1,3-free graphs.

Intuitive conjectures have been proven not to hold. As
examples, Graham’s conjecture (the removal of a single ver-
tex can decrease the interval count by at most one unit)
was proven to hold in general only for graphs having in-
terval count at most two. Similarly, the counterexamples for
Trotter’s conjecture (regarding the admissible lengths of the
greatest size in a two-size representation) show that there
exist unexpected “holes” in the set of admissible lengths.

Despite its fundamental importance for interval graphs,
there are relatively few results on the interval count problem.
We consider that this problem deserves more attention due
to both its importance and the lack of improvement on the
subject for more than twenty years.
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