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Abstract The Iterated Prisoner’s Dilemma (IPD) has been
used as a paradigm for studying the emergence of coopera-
tion among individual agents. Many computer experiments
show that cooperation does arise under certain conditions.
In particular, the spatial version of the IPD has been used
and analyzed to understand the role of local interactions in
the emergence and maintenance of cooperation. It is known
that individual learning leads players to the Nash equilib-
rium of the game, which means that cooperation is not se-
lected. Therefore, in this paper we propose that when players
have social attachment, learning may lead to a certain rate of
cooperation. We perform experiments where agents play the
spatial IPD considering social relationships such as belong-
ing to a hierarchy or to coalition. Results show that learners
end up cooperating, especially when coalitions emerge.
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1 Introduction

The concept of evolution of cooperation has been success-
fully studied using metaphors such as the Iterated Prisoner’s
Dilemma (IPD), which is the repeated version of the PD
game. In the PD, two individuals are questioned separately
over their involvement on a crime. They have a simple
choice: either to confess a mutual crime (thereby implicat-
ing the other) and accept the consequences, or to deny all
involvement and hope that the other does likewise. We re-
mark that by confessing there is a penalty reduction as it
will be clear when the payoff matrix is introduced.

This game models a more general situation in which two
individuals have to decide, in an isolated way, whether to
cooperate or to defect. The payoff, however, stems from the
joint decision. The game is so formulated that mutual co-
operation yields the highest joint payoff, but there is a high
incentive for individual defection.

Nowadays, the IPD game has been applied to a variety
of disciplines: economy, biology, artificial intelligence, so-
cial sciences, e-commerce, etc. It also occurs in colloquial
situations.1

In a classical work, Axelrod [2] has shown that coop-
eration can emerge in a society of individuals with selfish
motivations. An interesting spatial version of the IPD has
been suggested and analyzed in [24], where Nowak and May
try to understand the role of local interactions in the emer-
gence and maintenance of cooperation. In their formulation,
players imitate their most successful neighbors so that a rea-
sonable rate of cooperation is observed. However, this pure
deterministic approach, in which players have no memory,
was later criticized by Huberman and Glance [14] who have

1http://freakonomics.blogs.nytimes.com/2010/09/17/the-prisoners-
dilemma-makes-a-reality-tv-appearance/
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run an asynchronous updating of strategies, claiming that in
this case the coexistence of cooperators and defectors was
no longer possible.

These two works have motivated an enormous number of
extensions considering several types of relationships among
players. In general, the more strong and nonlocal this rela-
tionship, the higher the rate of cooperation.

In a sense, reinforcement learning (RL) can be seen as
a way to break the effects of that determinism criticized by
[14], because one may design learners with different sensing
capabilities, with different action selection strategies, and/or
with different ways to store their utility estimates, as pro-
posed by Sandholm and Crites [29]. However, RL causes an
agent to learn an individually optimal policy meaning that its
behavior is a best response to the strategies of the other play-
ers. Hence, ultimately it is expected that all agents converge
to mutual defection since this is the best possible response in
the IPD. The excessive concern with learning Nash equilib-
ria in multiagent encounters has been criticized, e.g., in [31,
32]. Shoham and colleagues single out some problems due
to focusing on what they call the “Bellman heritage.” Ac-
cording to these authors, it seems that most of the research
so far has focused on the play to which agents converge, not
on the payoff agents obtain.

This is particularly the case regarding the use of RL in
the IPD. Indeed, results reported in [29] were not encour-
aging: “clear cooperation seldom emerged in experiments
with two learners even though the discount factor was set
high to stimulate cooperation” [29]. Although in some sit-
uations, agents need not to seek cooperation, in the IPD in
particular, the payoff matrix is so formulated that mutual co-
operation leads to the highest payoff for the society. In the
present paper, we assume that agents seek to maximize this
reward.

In the work of [29], another sensitive issue arises: only a
two-player IPD game is considered, in which both players
are aware of the joint actions. This assumes full and reliable
communication among these two agents. If such approach is
extended to a scenario with dozens or hundreds of agents,
the outcome is likely to degrade.

Therefore, further investigations around the RL approach
by [29] are necessary in order to find out whether or not
agents can learn to cooperate. To the best of our knowledge,
there has been no further attempt to address the spatial n-
player IPD game using RL, especially tackling emergence of
cooperation. In [35], IPD is used, but the aim there is to ana-
lyze the dynamics of multiagent learning in multistate prob-
lems. Therefore, they have modified the IPD game which is
then represented by two payoff matrices (two states). In this
modified game, the Nash equilibria in both states are nei-
ther mutual defection nor mutual cooperation. Thus, com-
parisons to other approaches are not straightforward. More-
over, their approach works for two-player games only.

In the present paper, we claim that emergence of coop-
eration in the IPD using RL can only be achieved if agents
are equipped with some kind of behavior that we shall de-
note here as social attachment. These attachments may be
spatial relationships (e.g., [24]), small-world (e.g., [1]), or
emotions toward group attachments (e.g., [5]). The reason
for this claim is that such approaches have proved to im-
prove cooperation, though in none of these cases learning
was used. Here we propose two approaches to couple social
attachment and RL: hierarchical organization and coalition.
The former is based on a preexisting organizational struc-
ture, while in the latter the structure itself emerges out of
the agents’s interactions. Thus, the main question here is
whether these two approaches can support cooperation in
a defection-prone environment.

The remainder of the paper is structured as follows:
Firstly, in Sect. 2, we give more details about the IPD and
point out other relevant works. After, in Sect. 3, we discuss
related works on multiagent RL in order to give an idea of
the challenges behind this problem. In Sect. 4, we formalize
the two approaches for implementing the social attachments
among agents, as discussed previously. Section 5 describes
the scenario used for the empirical validation and analyzes
the results of our experiments. Finally, the conclusions and
future works are presented in Sect. 6.

2 Prisoner’s dilemma

The two-agent PD is an abstraction of some kinds of social
situations. Obviously, it is just a proxy for abstract investi-
gations. Nevertheless, it is useful as it serves as a kind of
benchmark that allows comparisons to be made.

The important characteristics of the PD, as mentioned,
are as follows. Two suspects of a crime (agents or play-
ers) are questioned separately (no communication between
them) over their involvement on a crime. They have a sim-
ple choice, either to remain silent, i.e., cooperate (C) or to
confess a criminal action made by both of them (thereby
implicating the other), i.e., to defect (D). This game models
a more general situation in which two individuals have to
decide, in an isolated way, whether to cooperate or defect.
The payoff however stem from the joint decision.

The PD is a metaphor for acting in a socially responsible
way (C) or according to self-interest (D), which is harm-
ful to both agents. To see why this is so, consider the pay-
off matrix shown in Table 1. It represents the payoff (also
known as utility or reward) a player obtains depending on
its own action and on the opponent’s one. This matrix is
common-knowledge, i.e., both agents know it, both know
that the both know the matrix, and so on. In this matrix,
T means the temptation to defect, R is the reward for mu-
tual cooperation, P is the punishment for mutual defection,
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Table 1 Payoff-matrix for the
IPD game (payoffs are for j1/j2) Agent j1

C D

Agent j2
C R/R T/S

D S/T P/P

and S is the sucker’s payoff. To be defined as a PD, the game
must respect the following constraints: T > R > P > S and
2R > T + S.

Given these constraints, in the one-shot PD, the optimal
action for both agents is to select D because there is a risk
of ending up with S if selecting C when the opponent se-
lects D. Choosing D ensures the highest payoff for any agent
no matter what the opponent does. In fact, it is easy to show
that mutual defection (DD) is the unique Nash equilibrium
in this game. This is also the outcome when both players
know that they are going to play the game for a given num-
ber of times, because the optimal action in the last round is
to play D and, by induction, playing D in all previous rounds
is the best thing to do.

Collectively speaking, mutual cooperation would do bet-
ter though. For instance, if R = 3, T = 5, P = 1, and S = 0,
mutual cooperation has the social utility of 6, whereas all
other combinations of actions are worse off.

In practice, agents often encounter each other more than
once (and for an unknown number of times), in a repeated
PD (or, as it is more commonly referred, an iterated PD).
Here, it may be beneficial to cooperate in some rounds, even
if one is selfish, in the hope of a reciprocal behavior. There-
fore, the IPD has been used as a paradigm for studying emer-
gence of cooperation among individuals.

Many computer experiments show that cooperation does
arise under specific conditions. This was verified in a com-
puter tournament [2], in which the winner was the strat-
egy called Tit-for-Tat (TFT): it begins cooperating and then
repeats the previous action of the opponent. It is coopera-
tive but retaliates defection, returning to cooperation after
the opponent cooperates. It must be noted that this strat-
egy poses a burden for resource-bounded agents because
it assumes that they are able to remember past encounters
and are able to compute relatively sophisticated strategies,
especially in the case of some more complex extensions
of TFT.

Therefore, Nowak and May [24] have proposed a simple
approach where no memory is necessary and imitation plays
a key role. It works in a two-dimensional spatial array where
agents are either cooperators or defectors. Hence, there is no
need of processing strategies to decide how to play. In every
round, players interact with the immediate neighbors and af-
ter a round is over, each site is occupied by the best player
in the neighborhood (including the previous owner itself).
Best player means the one that has collected the highest pay-
off.

The work by Nowak and May is important because it has
determined that players do not need to play the game with
the whole population. By making this assumption, different
equilibria are likely to be established in different neighbor-
hoods. Thereafter, this idea has appeared also in [22] and
numerous other papers.

As previously mentioned, the purely deterministic ap-
proach introduced by [24] was later criticized [14]. To ad-
dress this issue, other works were proposed. Lindgren and
Nordahl [19] achieved patterns of coexistence using a cel-
lular automata to update strategies on the sites of the grid,
which is able to avoid the synchronization. Abramson and
Kuperman [1] place agents in a small-world network, i.e.,
agents interact not only with their closest neighbors but also
with agents located somewhere in the network (in particu-
lar, their network is a ring). Kim et al. [16] have shown that
the small-world metaphor affects cooperation in the IPD not
only when the agents are placed in a ring. Rescuing the two-
dimensional spatial configuration of Nowak and May, Kim
et al. investigated the effect of the connections of a given
node to other (distant) nodes. This paper also introduces the
notion of an influential node, i.e., a node which can be com-
pared to a mass media person who influences others. The
influential node cannot be influenced by those linked to it
though.

In another line of research (the previously discussed are
all based only on spatial interaction), [5] use sentiments like
generosity toward others and guilt for not having played fair
with someone to prevent IPD players from trying to maxi-
mize the gain in the short term only. The results have shown
that in a society where agents have emotions, to behave ra-
tionally (in the classical sense of game theory) may not be
the best attitude both for the individual and for the social
group.

Two works have combined the spatial interaction and the
sentiment-based approach. In [4], agents may depict various
types of emotions (the so-called OCC model by [25] was
used to categorize the emotions) while playing the IPD. Re-
sults showed that the ratio of cooperators is slightly higher
when agents make decisions using emotions. Other works
have analyzed the performance of agents that can display
an altruistic behavior toward its acquaintances (altruistic
agents), which were interested in the good performance of
their group as a whole since the best performance in the
group would be imitated.

Approaches based on RL are not popular in the IPD liter-
ature probably due to the convergence to the Nash equilib-
rium that means mutual defection. In fact, this was verified
already in 1995 by [29], when RL started turning popular in
multiagent systems. This may explain the lack of interest re-
lating RL and IPD, while RL has been successfully applied
to other games, as discussed in the next section.
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3 Multiagent learning

Before we discuss the multiagent RL (MARL) problem, it
is necessary to introduce the basic, monoagent version of
it. Usually, RL problems in which there is only one agent
are modeled as Markov Decision Processes (MDPs). These
are described by a set of states, S, a set of actions, A, a re-
ward function R(s, a) → R, and a probabilistic state tran-
sition function T (s, a, s′) → [0,1]. At each time step t , an
experience tuple 〈s, a, s′, r〉 denotes the fact that the agent
was in state s ∈ S, performed action a ∈ A and ended up in
s′ ∈ S with reward r . We drop the index t here.

Given an MDP, the goal is to learn a policy π∗, which is a
mapping from states to actions such that the expected value
of the sum of the discounted future reward is maximized.

In this paper, we use Q-learning, a popular model-free RL
algorithm, which is useful when agents do not have a model
of the state transition function T . Q-Learning works by esti-
mating state–action values, the Q-values, which are numeri-
cal estimators of quality for a given pair of state and action.
More precisely, a Q-value Q(s, a) represents the maximum
discounted sum of future rewards an agent can expect to re-
ceive if it starts in s, chooses action a and then continues to
follow an optimal policy. The Q-Learning algorithm approx-
imates Q(s, a) as the agent acts in a given environment. The
update rule for each experience tuple 〈s, a, s′, r〉 is as in (1),
where α is the learning rate and γ is the discount for future
rewards. If all pairs state–action are visited infinitely often,
then Q-learning is guaranteed to converge to the correct Q-
values with probability one [37].

Q(s, a) ← Q(s, a) + α
(
r + γ max

a′ Q(s′, a′) − Q(s, a)
)

(1)

Next, we discuss the problems posed by a high number
of agents in a multiagent reinforcement learning (MARL)
scenario.

In game theoretic terms, multiagent learning can be trans-
lated into the problem of learning to play best replies. Sim-
ilarly to the monoagent RL problem that is modeled by an
MDP, the multiagent version is modeled by an MMDP (mul-
tiagent MDP), also known as stochastic game (SG). In an
SG, if every agent is playing a best reply to its opponents,
the combination of strategies is called a Nash equilibrium.
Here, agents may or may not know the structure of the game
they are playing, meaning their joint states, joint actions, and
rewards. As put by Sandholm [28], MARL is very important
in case agents do not know the structure of the game which is
the case in most SG. This problem thus involves two learn-
ing tasks: learning the structure of the game and learning
how to play. Several approaches to these tasks have been
proposed. Since a comprehensive discussion is not possible
here, we refer the reader to [26, 31] and references therein.
We remark that the SG formalism is not the only approach to

MARL. For a discussion on multiagent learning in general,
see [32].

There are basically two ways to handle a MARL prob-
lem. The first option is that a central entity updates a huge
Q-table where each entry is retrieved by the combination of
each agent’s state and action pair, i.e., by a joint state and
joint action combination. Hence, the vector that contains the
reward of all agents is determined as r : S1 · · · × Sn × A1 ×
· · · × An → R

n, where n is the number of agents. This of
course is not feasible for more than a handful of agents given
that the size of the table is exponential in n. Moreover, it
makes the strong assumption that such a central entity exists
in the first place, which comes in total contradiction to the
very basic idea of distributed, multiagent systems. Hence,
this formalization is rarely seen in multiagent systems.

The second option is that each agent individually keeps
its own Q-table where an entry is simply the combination
of its state and action, i.e., a pair. Of course this table may
grow as well if the number of states and/or actions is too
high but it does not increase as fast as in the first option.
The problem with this latter approach is that it is not effi-
cient. The main reason is due to the fact that while one agent
is trying to model the environment (other agents included),
the others are doing the same and potentially changing the
environment they share. This yields an environment that
is inherently nonstationary. Therefore, at least in the gen-
eral case, the convergence guarantee, as previously known
from monoagent reinforcement learning (e.g. Q-learning),
no longer holds. This means the convergence to a Nash equi-
librium is not guaranteed.

In summary, considering a high number of agents in
MARL turns the problem inherently more complex. This
complexity has many consequences. In particular, it has im-
plications in the computational complexity, in the conver-
gence to the Nash equilibrium, or both.

Fulda and Ventura [11] have isolated three factors that
can cause a system to behave poorly: suboptimal individual
convergence, action shadowing, and the equilibrium selec-
tion problem. The latter was discussed initially by Claus and
Boutilier [8] and is especially an issue in common-reward
coordination games. One characteristic of these games is
that there will always exist a Pareto optimal equilibrium,2

but this needs not be unique. This structure of the game
often leads agents to miscoordinate. Action shadowing oc-
curs when one individual action appears better than another,
even though the second individual action is potentially su-
perior. This can occur because agents maintain Q-values
only for individual actions, but receive rewards based on
the joint action executed. Action shadowing is likely to oc-
cur where failed coordination attempts are punished, as in

2Pareto optimal implies that no joint action improves any agent’s pay-
off without making another agent worse off.
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penalty games. The relevant factor in the present paper is
the suboptimal individual convergence. It is related to the
presence of multiple agents in the environment and the con-
sequent lack of convergence guarantee as already discussed.
Suboptimal here may mean either nonconvergence to a Nash
equilibrium, or in our case, convergence to a poor social
equilibrium. Next we refer to some classical approaches re-
marking that most of them address the nonconvergence to
Nash equilibria.

The case of zero-sum stochastic games3 was discussed by
[20] and attempts of generalizations to general-sum SG ap-
peared in [13] (Nash-Q). Littman introduced Friend-or-Foe
Q-learning (FFQ) [21], which learns to play Nash equilib-
ria if the overall stochastic game has a global optimum or a
saddle point. The algorithm requires that each agent is told
whether it is facing a friend or a foe. In particular, the Friend-
Q’s guarantees are considerably weaker than the Foe-Q due
to incompatible coordination equilibria.

Wang and Sandholm [36] propose the Optimal Adaptive
Learning (OAL) algorithm, which creates virtual games for
each matrix game. In these virtual games, suboptimal Nash
equilibria are eliminated. This means that Nash equilibria of
the original game must be computed in the first place. Al-
though in practice Nash equilibria can be found for reason-
ably large games, it is unknown whether a Nash equilibrium
can be found in worst-case polynomial time. Besides, vir-
tual games are solved exponentially in the number of agents,
and it assumes perfect monitoring, i.e., all agents observe all
joint actions, thus turning it nonefficient for a high number
of agents. This assumption is particularly strong and here
we subscribe to the view of Stone and Veloso [33] who ar-
gue that complete communication reduces a multiagent sys-
tem to a central process. On the other hand, OAL guaranteed
finds the global optimum in fully cooperative SG.

Brafman and Tennenholtz [7] follow a model-based ap-
proach for the same problem. It assumes a priori coordina-
tion of the agents’ learning processes (e.g., agreement over a
joint exploration phase followed by a settlement on the joint
policy that has yielded maximum reward). This results in
a near-optimal polynomial-time algorithm in the number of
actions of the agents. Recently, Kuminov and Tennenholtz
[17] have introduced a near-optimal polynomial algorithm
that considers imperfect monitoring in a two-player game
where it is assumed that player 1 does not know the payoff
matrices or the action taken by player 2; player 2, however,
is fully informed about both the payoff matrices and the his-
tory of the game.

Suboptimal individual convergence can also be ap-
proached by some forms of nonexplicit biased exploration.
Three are worth mentioning here as two are related to our

3In a game with zero sum, the sum of payoffs of all players is zero; the
IPD for instance is a nonzero sum game as seen from Table 1.

hierarchical approach (Sect. 4.2), and one is applied in the
IPD. The first was proposed in [38, 39] where Zhang et al.
introduce a supervision framework to speed up the conver-
gence of MARL algorithms. Hierarchically superior agents
keep abstract states of lower-level agents. This view is used
to generate rules (that agents must follow) or suggestions
(these are optional), passed down to local agents. In the pa-
per, it is not clear how rules are formed and whether or not
they are domain-dependent.

The second form of biased exploration is due to Hines
and Larson [12], who use repeated games (these are SG
with a single state) where agents can follow the advice of
a mediator that makes suggestions to the agents as to what
actions to take. However, the authors do not deal with co-
ordination games with multiple states, and the combination
with Q-learning was left as future work.

Finally, it is worth to mention that biasing exploration
has also been applied in the IPD. Babes et al. [3] show that
agents playing the IPD can both lead (i.e., encourage adap-
tive opponents to cooperate), and follow (i.e., adopt a best-
response strategy when paired with a fixed opponent. How-
ever, in this paper, the authors consider only two opponents,
i.e., the spatial version is not explored.

4 Methods

As mentioned in the introduction, our aim is to investigate
whether cooperation can emerge in the IPD when agents
learn by reinforcement. From the previous sections, we have
seen that mutual cooperation is not a Nash equilibrium in
this game, and thus is related to suboptimal individual con-
vergence. We believe that the exploration made by the agents
has to be biased toward joint actions that yield higher social
payoff. In the IPD, this means mutual cooperation.

Given this, we consider three different formalisms for the
SG, including the two previously mentioned (hierarchical
organization and coalition). In the third one (used for com-
parison purposes), agents just play and learn individually.
Following the terminology proposed by Claus and Boutilier
in [8], we call these agents independent learners (henceforth
IL’s).

In all cases, we use the spatial configuration proposed by
[24] (a set N of agents placed on a square lattice), and Q-
learning as learning method. The three formalisms are de-
tailed in the next subsections.

4.1 Independent learners and the IPD

An n-agent IPD game is a tuple (N,S,A,R) where:

N = 1, . . . , j, . . . , n is the set of agents
S = ×Sj is the discrete state space (each Sj corresponds to
the set of states of an agent j )
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Algorithm 1 Individual learning
1: for all j ∈ N do
2: initialize Q-values, list of neighbors
3: end for
4: while not time out do
5: for all j ∈ N do
6: when in state sj , select a random action with prob-

ability ε or greedy action with probability 1 − ε

7: end for
8: for all k in neighborhood of j do
9: play aj against ak

10: receive reward
11: update Qj {// (1)}
12: end for
13: end while

A = ×Aj is the discrete action space (each Aj corresponds
to the set of actions of an agent j )
Rj is the reward function (Rj determines the payoff for
agent j as rj : S1 × · · ·Sn × A1 × · · · × An → R)
T is the transition probability map (set of probability dis-
tributions over the state and action spaces).

For the specific case discussed here, the set of actions
and respective payoffs (rewards) are as in Table 1 and agents
play the IPD game with m other agents (neighbors) at each
time step. The state is given by the payoff matrix.

As mentioned, IL’s interact and learn by using Q-learning
in an independent way. Hence, the main parameters are: the
learning rate α, and the discount rate γ .

For action selection, we use ε-greedy: the agent selects
the action with highest Q-value with probability 1 − ε, and
explores selecting an action randomly with probability ε.
Depending on the action selected by each pair of agents, a
reward is given to the agent, and the Q-value for the partic-
ular pair (s, a) is updated (1). In practice, this means that
each agent plays m two-person games as it is common in
n-person spatial IPD. Each agent updates its Q-table consid-
ering the rewards received by playing with the m interacting
neighbors. This is formalized in Algorithm 1.

As discussed before, individual learning is not efficient
in the IPD (see also results presented in Sect. 5). Hence, the
next two sections discuss alternatives, starting with the one
based on a hierarchy.

4.2 Playing the IPD in a hierarchy

The first approach for biasing exploration toward a socially
higher reward is to use hierarchically superior agents to give
recommendations to agents they supervise in a kind of or-
ganizational control. This has been used successfully by [6,
38, 39] in completely different domains, leading to more ef-
ficient equilibrium selection.

Fig. 1 Two-level organization: 16 agents (α1, . . . , β1, . . . , δ4) in the
lower level, supervised by α, β , γ , and δ in the second level; full-line
boxes mean agents with whom α4 is interacting; white boxes mean
defection (D)

The idea is to have two sets of agents: supervisors and
low-level agents. The former supervise a group of the latter.
Low-level agents behave basically as ILs (Sect. 4.1), unless
they are given recommendations that regard action selection.
This way a low-level agent Lj plays the IPD game repeat-
edly with m other neighbors. We stress that these neighbors
are not necessarily those that belong to Lj ’s group, i.e., Lj ’s
interactions transcend its own group. In fact, because each
low-level agent Lj only communicates with its supervisor,
it is not even necessary that Lj knows it belongs to a group.

As illustration, we refer to Fig. 1 in which low-level
agents are divided in groups (α1, . . . , α4, β1, . . . , β4, γ1, . . . ,

γ4, δ1, . . . , δ4) that are supervised by 4 supervisors (α,β,

γ, δ). In this figure, an arrow indicates that the two agents
sharing it play the IPD. This, however, does not mean that
they communicate explicitly as noncommunication between
players is one of the assumptions underlying the IPD. No-
tice that despite the fact that a group exists (e.g., α1, . . . , α4),
each of these members have interactions outside the groups
(e.g., α4 also interacts with β3). Conversely, α4 does not in-
teract with α1. This is a real-world situation that makes the
game more complex and the MARL more difficult. For in-
stance in an organization, interactions not only occur inside
a department; they also happen among agents from different
departments. Otherwise, coordination would be much sim-
pler.

The supervised learning works as in Algorithms 2 to 4,
which are explained next.4 Before, we remark that super-
visors do not actually play the game, thus they are not in-
cluded in the set N of low-level agents. In fact, supervisors
must be seen as facilitators or tutors that will observe the lo-
cal agents’ in their groups from a broader perspective, and

4We drop the initialization steps as they are the same as in Algorithm 1.
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Algorithm 2 Individual learning stage (stage 1)
1: while t ≤ �ind do
2: for all Lj ∈ L do
3: when in state sj , select a random action with prob-

ability ε or greedy action with probability 1 − ε,
and receive reward obtained by playing against
each m-th neighbor

4: update Qind
j m times {// (1)}

5: end for
6: for all Si ∈ S do
7: observe state, action, and reward for each Lj

8: compute the average reward r (among Lj ’s)
9: if tuple 〈at , st , r〉 not yet in the base of cases then

10: add tuple 〈at , st , r〉
11: else
12: if r > rold then
13: replace by tuple 〈at , st , r〉
14: end if
15: end if
16: end for
17: end while

eventually recommend actions to them. This recommenda-
tion is based on a group perspective, in opposition to the
purely local perspective of low-level agents.

Besides the parameters already used by the IL, others
that are now necessary are: the set of low-level agents N =
L = {L1, . . . ,Ln}; the set S = {S1, . . .} of supervisor agents;
the threshold τ (explained below); �ind (time period during
which each Lj learns and acts independently, updating the
Q-table Qind

j ); �tut (time period during which each Si pre-
scribes an action to each Lj in its group based on cases ob-
served so far); and �crit (time period during which each Lj

can act independently or follow the recommendation of the
supervisor). These time periods are henceforth called stages
1, 2, and 3, respectively.

Stage 1 is described in Algorithm 2. During �ind time
steps, the N low-level agents play the IPD as ILs and their
supervisors only observe them. Each Lj ∈ N learns a policy;
each supervisor Si observes its low-level agents and records
information to a base of cases. This information consists of
joint states, joint actions, and rewards. Thus, this base is
composed by the tuples 〈s,a, r〉 where r is averaged over
all supervised agents. The case that has yielded the highest
r so far is kept in the base (line 13 of Algorithm 2).

The second stage (Algorithm 3) takes further �tut time
steps. In this stage, each Si : (i) observes the joint state of its
low-level agents; (ii) retrieves at for which r is the highest.
It is important to note that in any case the local Q-tables
continue to be updated. The main difference to stage 1 is
that at stage 2, low-level agents are committed to the action
prescribed by the supervisor, even when the expected reward
is not as good as the computed Q-values.

Algorithm 3 Tutoring stage (stage 2)
1: while �ind < t ≤ �ind + �tut do
2: for all Si ∈ S do
3: communicate with supervisor at upper level; get

similar cases; add to case base
4: given st , find at in case base for which r is highest;

communicate a
p
j to each Lj {//where a

p
j is action

prescribed by the supervisor for this agent}
5: end for
6: for all Lj ∈ L do
7: perform action a

p
j communicated by supervisor

{or follow local policy if supervisor has not pre-
scribed any action}

8: receive reward obtained by playing against each m-
th neighbor

9: update Qind
j m times {// (1)}

10: end for
11: for all Si ∈ S do
12: observe state, action, and reward for each Lj

13: compute the average reward (among Lj ’s) r

14: if tuple 〈at , st , r〉 not yet in case base then
15: add tuple 〈at , st , r〉
16: else
17: if r > rold then
18: replace by tuple 〈at , st , r〉
19: end if
20: end if
21: end for
22: end while

In the third stage (which takes �crit steps, as in Algo-
rithm 4), low-level agents need not follow the prescribed ac-
tion. Rather, after comparing the expected reward r that was
communicated by the supervisor, with the locally computed
Q-value for this particular prescribed action, each agent may
select the action associated with its local policy. This means
that the low-level agent will only select the prescribed ac-
tion if this is at least as good as the expected Q-value (here
considering a tolerance factor τ as in line 7 in Algorithm 4).
No matter whether the low-level agents do follow the pre-
scription or not, the supervisor is able to observe actions and
rewards, and update its base of cases.

4.3 Playing the IPD in coalitions

The approach presented in the previous subsection has the
drawback that groups must be given a priori, i.e., it works
in static environments and/or when there is a clear grouping
factor. It does not allow the emergence of such groups in a
dynamic way.

One issue that has attracted many attention in multiagent
systems is how to partition or organize a multiagent system
in an effective way. Several approaches to this exist in the
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Algorithm 4 Critique stage (stage 3)
1: while �ind + �tut < t ≤ �ind + �tut + �crit do
2: for all Si ∈ S do
3: given st , find at in case base for which r is max-

imal; communicate a
p
j to each LJ plus expected

reward r

4: end for
5: for all Lj ∈ L do
6: {//compare Qind

j and re:}

7: if r × (1 + τ) > Qind
j then

8: perform a
p
j against each m-th neighbor {//

where a
p
j is action prescribed by the supervisor

for this agent}
9: receive reward

10: update Qind
j m times

11: else
12: perform aind

j against each m-th neighbor {//

where aind
j is ε-greedy selected following local

policy}
13: receive reward
14: update Qind

j m times
15: end if
16: end for
17: for all Si ∈ S do
18: observe state, action, and reward for each Lj

19: compute the average reward (among Lj ’s) r

20: if tuple 〈at , st , r〉 not yet in case base then
21: add tuple 〈at , st , r〉
22: else
23: if r > rold then
24: replace by tuple 〈at , st , r〉
25: end if
26: end if
27: end for
28: end while

multiagent systems literature, but here we focus on coalition
formation because it is a well-established approach from
game theory, having solid mathematical grounds. Unfortu-
nately, partitioning agents in coalitions that lead to an effi-
cient utility is not a trivial problem. In the general case, the
number of coalition structures (O(|N ||N |)) is so large that
it cannot be enumerated for more than a few agents [30].
Therefore, it is necessary to use domain knowledge and/or
games with particular structures and where agents have par-
ticular characteristics (e.g., they form a network in which the
neighborhood plays a role) to solve the problem of coalition
formation in a reasonable efficient way. For example, coali-
tions among neighbors make sense and help them to collect
a much higher payoff. In the spatial IPD game, only coali-
tions among neighboring agents are initially formed. Thus,
the number of coalition structures is manageable (it is much

smaller than |N ||N |). This does not mean that coalitions are
restricted to four or five agents. Rather, they may grow as
agents in the initially formed coalitions may propose to their
immediate neighbors to join and so forth.

These facts have motivated our second approach for
achieving a socially higher reward in the IPD, namely the
formation of coalitions of cooperators. A preliminary ver-
sion of this approach was tested with positive results in [27],
where the focus was to compare Q-learning and learning au-
tomata [23] techniques.

The coalitional approach is also based on ILs. These,
however, have here a different set of actions to choose from.
Instead of just selecting C or D as described in the two pre-
vious subsections, now actions are to act as IL and play C, to
act as IL and play D, and to be in a coalition or not. Agents
may leave the coalition whenever they want, thus becoming
an IL.

When belonging to a coalition, an agent cooperates with
other members of the coalition, thus it plays C. The action
to be played with non-members (outsiders) is decided col-
lectively, by means of a voting process. Hereby, each agent
votes to play the action which is the best according to its own
individual Q-table. Each vote is weighted by its Q-value.
This has the same effect as if the whole coalition would
keep a Q-table with the sum of Q-values over all its agents,
followed by a greedy action selection. Again, this is used
only when playing against outsiders. Inside a coalition, the
agent does not have to decide which is the action against its
coalition mates, as it is assumed that they all cooperate. This
assumption is a reasonable one because since actions are
public inside the coalition, noncooperators would be seen
as someone betraying their coalition members. This would
cause the “black sheep” to be expelled from the coalition
and suffer retaliation (D) in future plays.

Although this procedure is simple, it has been used in a
similar way in, e.g., [15]. In this particular case, however, ev-
ery agent locally chooses the action yielding the maximum
value, and from these maximum values, the action corre-
sponding to the highest value is chosen.

In our case, each agent decides which is the best action
to take, based on the local policy (Q-value). After the agents
have individually done that, they vote and the action that
receives more votes is the one that the coalition is going to
perform. Algorithm 5 indicates how the learning proceeds.

5 Experiments and analysis

For each of the formalisms introduced in Sects. 4.1 to 4.3,
we have run experiments using the same payoff matrix and
spatial configuration. The results of these experiments are
presented and analyzed next.

Table 2 summarizes the parameters used and their val-
ues. A star indicates that values were varied and are then
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Algorithm 5 Coalition learning
1: for all Lj ∈ N do
2: initialize Q-values, list of neighbors
3: end for
4: while not time out do
5: when in state sj , select greedy action aj with proba-

bility 1 − ε or a random action with probability ε

6: if Lj ’s selected action is to be in coalition then
7: join coalition
8: play C with coalition members
9: vote to select how to play with outsiders

10: play winner action with outsiders
11: else
12: play as IL
13: end if
14: receive reward and update Q-values (m times) (1)
15: end while

Table 2 Parameters and their values

Parameter Description Value

T temptation to defect 5

R reward for mutual cooperation 3

S sucker’s payoff 0

P punishment for mutual defection 1

N = |L| number of agents ∗
m nb. neighbors 4

α learning coefficient 0.5

γ discount rate 0

ε greedy action selection ∗
g size of group 4

�ind stage 1 50

�tut stage 2 10

�crit stage 3 40

τ intolerance factor ∗

reported in the appropriate section. We indicate some pa-
rameters that are specific of the supervision-based method
(light grey). The others were used in the three variants.

We have performed experiments with two different grid
sizes: 4 × 4 and 24 × 24. This way, N = 16 and N = 576
respectively. This aimed at demonstrating that the pattern
remains, no matter the number of agents. The values T , R,
S, and P for the payoff matrix (Table 1) are given in Table 2
and are commonly used in experiments regarding the IPD.

All experiments were repeated 100 times and the simu-
lations run for 100 time steps or 100 action selections. Al-
though we do not show error bars in the resulting plots, the
standard deviations are at most 20% for the grid of size 4
and less than 5% in the case of the grid size 24.

To demonstrate that ILs perform poorly because they end
up learning the Nash equilibrium and thus converging to mu-

Fig. 2 Grid 4 × 4: Average reward along time, for independent learn-
ers, supervised learning, and coalition-based learning (τ = 0)

Fig. 3 Grid 24 × 24: Average reward along time, for independent
learners, supervised learning, and coalition-based learning (τ = 0)

tual defection, we have run the first series of experiments
changing N and also ε. Unless noted, we give results for
ε = 0.3 but note that the pattern of mutual defection does
not change significantly. In fact, the exploration rate cannot
prevent this behavior, as already noticed in [29].

Figure 2 depicts how the average reward over all N =
16 agents changes along time. Similarly, Fig. 3 plots this
evolution for N = 576.

Mutual cooperation would lead to an average reward of
R = 3, while mutual defection leads to average reward of
P = 1. The learning curve for the ILs is marked by circles
in Fig. 2. Observing this curve, we notice that the value of
this reward at step 100 is above 1. This happens due to the
exploration that agents still perform as ε was not decreased
with time (no annealing). This means that on average half of
the ε × N agents were cooperating by chance, which yields
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a payoff of T = 5 to the opponent, thus slightly increasing
the average reward.

The approach based on supervision improves this picture
(plots marked with squares) but not to the extent that was
verified in other games and scenarios (e.g. [6] and in an-
other attempt using coordination games). The reason is that
supervision is more efficient to guide agents to equilibrium
selection when more than one exists. In coordination games
for instance, where two or more equilibria exist, the bias im-
posed by the supervisor can guide agents to a more efficient
selection as the supervisor is able to record good coordi-
nated actions (and recommend them later), while avoiding
the recording of miscoordinations, which are then not rec-
ommended.

In the IPD, the problem is that the supervisors observe
few mutual cooperations,5 recommend them, but once the
supervised agents select C and are defected, they tend to re-
ject this recommendation in the future.

This is exactly what is seen in Fig. 2, looking at the curve
marked with squares. During stage 1 (first �ind = 50 time
steps), the behavior is the same as for the ILs already dis-
cussed. During this time, the supervisors eventually record
good cases occurred in the group they supervise. For the
next �tut = 10 steps, these good cases are recommended,
low-level agents must select such actions (this is mandatory
in stage 2), but the reward achieved is not high enough to
drive individual agents away from a higher expected payoff
associated with defection. Hence, once this period is over
(around t = 60), low-level agents tend to refuse recommen-
dations. We have performed simulations with various values
for τ but no tolerance level is able to keep agents from de-
fecting.

The same discussion is valid for N = 576 (Fig. 3). Be-
sides the curve for ε = 0.3, the curve for ε = 0.1 is also
shown as it has led higher rewards in stage 1, when less
agents explore. Hence, some mutual cooperation remains for
a longer time. Supervisors are able to observe better cases
and recommend them thus improving the cooperation level.
A similar behavior is not observed for small N since here,
the influence of a single defection is much higher than when
N is big.

The lesson taken from this set of experiments is that su-
pervision improves the picture over the IL but not as much
as it would be desired, namely a value closer to R.

The approach using coalition, as expected, is more effi-
cient as it explores the flexibility of the emergence of groups
that indeed are willing to cooperate because this has proven
good in the past (otherwise the ε-greedy action selection
would not lead agents to cooperate). Comparing this vari-
ant to the one based on supervision the differences are clear.

5The tendency to observe full mutual cooperation in the group de-
creases with the increase in the group size.

Fig. 4 Grid 24 × 24: Number of cooperators and number of agents
that form coalitions, along time

In the latter, if an agent is willing to cooperate but happens
to be in a “bad” group (regarding behavior), it will learn to
defect on the neighbors as well. However, the coalition is a
much more flexible structure that emerges only among those
that have experienced cooperation as rewarding in the past
and thus want to continue following this action.

Results corroborate this. In both Fig. 2 and Fig. 3, one
sees that the coalition approach ends up rewarding the col-
lectivity. It starts with the worst performance among the
three approaches (curves marked with diamonds) because
agents are exploring the possibilities (and they have more
actions to explore). But it establishes itself as supportive of
cooperation. Moreover, this happens relatively early (around
time step 30). From this point on, the number of agents be-
longing to coalitions increase and so the average reward.
The fact that this average reward does not fully reach the
value of R = 3 (it falls 0.5 short), is explained by two issues.
First, experimentation is still performed (with probability ε);
second, clusters of defections establish that are difficult to
break.

Figure 4 shows the number of agents in coalition and the
number of cooperators along time for the grid 24 × 24. To-
ward the end of the simulation, almost all cooperators be-
long to coalitions. Therefore, the difference between the
total number of agents (576) and the cooperators (both
in coalitions and acting independently) corresponds to the
number of defectors. These are few as it can be observed.

6 Conclusions and future work

Despite the obvious limitations and simplifications, the two-
agent PD can be seen as an abstraction of very simple social
situations that deal with cooperation. However, this game
can be better appreciated in the spatial and repeated version,
the so-called n-player IPD. This is played in a square lattice.
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Previous results using some forms of social attachment (e.g.,
spatial neighborhood) reported a reasonable rate of coopera-
tion. However, when pure RL is used, cooperation vanishes
because agents learn that mutual defection is the Nash equi-
librium for this game.

The present paper has then departed from the use of
pure RL, claiming that some form of social attachment must
be employed to bias the exploration agents perform during
the learning process. Two kinds of biases were tried. First,
we have used a method that has proven successful in other
kinds of games, namely the supervised learning. The second
method is by allowing agents to form coalitions that sustain
cooperation.

In order to validate these methods, a series of experiments
using them were performed. In such experiments, we have
changed the number of agents, the exploration rate, and the
values of other parameters. Results show that both methods
were able to depict mutual cooperation. However, the rate
of cooperation was higher when coalitions were used (e.g.,
the average reward agents received was close to the highest
possible, R). The reason for the coalitional method perform-
ing better than the supervision-based one is twofold. First
coalitions may emerge among agents that have experimented
some benefits in past encounters. Groups in the supervised
learning are fixed, thus they do not fully support the dynam-
ics of the game. The second reason is that the supervision-
based approach works better for the cases in which more
than one equilibria exist—which is not the case of the IPD—
and their selection must be coordinated.

These results show that learning to cooperate is feasi-
ble when the exploration is biased. Bias may stem either
by some agent(s) having a broader view (and hence knowl-
edge) as it is the case in the hierarchical method, or by agents
forming groups that support mutual cooperation. Obviously,
the latter is preferred but we remark that there are other
games, e.g., the coordination game mentioned, where the
hierarchical approach is more efficient given that it helps
agents to distinguish between two or more equally good
equilibria.

The methods and results presented and discussed here
can be employed in scenarios that involve data networks
such as P2P, sensor, and vehicular networks. In all of these
cases, dealing with free-riders and malicious agents is an im-
portant issue. These issues are partially discussed in [9, 10,
18, 34].

As future work, it is intended to investigate reputation
among agents, as this continues in the direction of bringing
in the IPD game more issues that are socially backed. This
could be important, for instance, when agents have to de-
cide which action to play against outsiders. If these outsiders
have a reputation degree, this could be used in such decision-
making. Also, reputation may turn important among mem-
bers of coalitions themselves, for instance to decide when
coalitions must be dissolved.

References

1. Abramson G, Kuperman M (2001) Social games in a social net-
work. Phys Rev E 63

2. Axelrod R (1984) The evolution of cooperation. Basic Books,
New York

3. Babes M, Cote EMD, Littman ML (2008) Social reward shaping
in the prisoner’s dilemma. In: Padgham L, Parkes D, Müller J,
Parsons S (eds) Proc. of the 7th int. joint conf. on aut. agents and
multiagent systems, IFAAMAS, May 2008, pp 1389–1392

4. Bazzan ALC, Bordini RH (2001) A framework for the simulation
of agents with emotions: Report on experiments with the iterated
prisoners dilemma. In: Müller JP, Andre E, Sen S, Frasson C (eds)
Proceedings of the fifth international conference on autonomous
agents, Montreal, Canada, May 2001. ACM, New York, pp 292–
299

5. Bazzan ALC, Bordini RH, Campbell JA (1999) Moral sentiments
in multi-agent systems. In: Intelligent agents V. Lecture notes
in artificial intelligence, vol 1555. Springer, Berlin, pp 113–131.
Also appeared as Proc. of the workshop on agent theories, archi-
tecture and languages (ATAL98), Paris, July 1998

6. Bazzan ALC, de Oliveira D, da Silva BC (2010) Learning in
groups of traffic signals. Eng Appl Artif Intell 23:560–568

7. Brafman RI, Tennenholtz M (2002) Efficient learning equilibrium.
In: NIPS, pp 1603–1610

8. Claus C, Boutilier C (1998) The dynamics of reinforcement learn-
ing in cooperative multiagent systems. In: Proceedings of the fif-
teenth national conference on artificial intelligence, pp 746–752

9. Costa-Montenegro E, Burguillo-Rial JC, González-Castaño FJ,
Vales-Alonso J (2007) Agent-controlled sharing of distributed re-
sources in user networks. In: Lee RST, Loia V (eds) Computa-
tional intelligence for agent-based systems. Studies in computa-
tional intelligence, vol 72. Springer, Berlin, pp 29–60

10. Costa-Montenegro E, Burguillo-Rial JC, Gil-Castiñeira F,
González-Castaño FJ (2011) Implementation and analysis of the
bittorrent protocol with a multi-agent model. J Netw Comput Appl
34:368–383

11. Fulda N, Ventura D (2007) Predicting and preventing coordina-
tion problems in cooperative Q-learning systems. In: Proceedings
of the 20th international joint conference on artificial intelligence
(IJCAI), pp 780–785

12. Hines G, Larson K (2008) Learning when to take advice: A sta-
tistical test for achieving a correlated equilibrium. In: McAllester
DA, Myllymäki P (eds) UAI. AUAI Press, Menlo Park, pp 274–
281

13. Hu J, Wellman MP (1998) Multiagent reinforcement learning:
Theoretical framework and an algorithm. In: Proc. 15th interna-
tional conf. on machine learning. Kaufmann, Los Altos, pp 242–
250

14. Huberman BA, Glance NS (1993) Evolutionary games and com-
puter simulations. Proc Natl Acad Sci USA 90:7716–7718

15. Humphrys M (1997) Action selection methods using reinforce-
ment learning. PhD thesis, Cambridge

16. Kim BJ, Trusina A, Holme P, Minnhagen P, Chung JS, Choi MY
(2002) Dynamic instabilities induced by asymmetric influence:
Prisoner’s dilemma game in small-world networks. Phys Rev E
66

17. Kuminov D, Tennenholtz M (2008) As safe as it gets: Near-
optimal learning in multi-stage games with imperfect monitoring.
In: Proceeding of the ECAI. IOS Press, Amsterdam, pp 438–442

18. Lin R, Kraus S, Shavitt Y (2007) On the benefits of cheating by
self-interested agents in vehicular networks. In: Proceedings of the
6th international joint conference on autonomous agents and mul-
tiagent systems (AAMAS 2007). ACM, New York, pp 327–334

19. Lindgren K, Nordahl M (1994) Evolutionary dynamics of spatial
games. Physica D 75:292–309



174 J Braz Comput Soc (2011) 17:163–174

20. Littman ML (1994) Markov games as a framework for multi-agent
reinforcement learning. In: Proceedings of the 11th international
conference on machine learning, ML, New Brunswick, NJ. Kauf-
mann, Los Altos, pp 157–163

21. Littman ML (2001) Friend-or-Foe Q-learning in general-sum
games. In: Proceedings of the eighteenth international conference
on machine learning (ICML01), San Francisco, CA, USA. Kauf-
mann, Los Altos, pp 322–328

22. Mailath G, Samuelson L, Shaked A (1993) Correlated equilibria
as network equilibria. Discussion paper, University of Bonn

23. Narendra KS, Thathachar MAL (1989) Learning automata: an in-
troduction. Prentice-Hall, Upper Saddle River

24. Nowak MA, May RM (1992) Evolutionary games and spatial
chaos. Nature 359:826–829

25. Ortony A, Clore GL, Collins A (1988) The cognitive structure of
emotions. Cambridge University Press, Cambridge

26. Panait L, Luke S (2005) Cooperative multi-agent learning: The
state of the art. Auton Agents Multi-Agent Syst 11(3):387–434

27. Peleteiro A, Burguillo JC, Bazzan ALC (2010) Enhancing coop-
eration in the ipd with learning and coalitions. In: Proc. of the 2nd
Brazilian workshop on social simulation, S. Bernardo do Campo.
SBC, Porto Alegre

28. Sandholm T (2007) Perspectives on multiagent learning. Artif In-
tell 171(7):382–391

29. Sandholm TW, Crites RH (1995) Multiagent reinforcement learn-
ing in the iterated prisoner’s dilemma. Biosystems 37:147–166

30. Sandholm T, Larson K, Andersson M, Shehory O, Tohmé F (1999)
Coalition structure generation with worst case guarantees. Artif
Intell 111(1–2):209–238

31. Shoham Y, Powers R, Grenager T (2007) If multi-agent learning
is the answer, what is the question? Artif Intell 171(7):365–377

32. Stone P (2007) Multiagent learning is not the answer. It is the
question. Artif Intell 171(7):402–405

33. Stone P, Veloso M (2000) Multiagent systems: A survey from a
machine learning perspective. Auton Robots 8(3):345–383

34. Vinyals M, Rodríguez-Aguilar JA, Cerquides J (2011) A survey on
sensor networks from a multiagent perspective. Comput J 54:455–
470

35. Vrancx P, Tuyls K, Westra RL (2008) Switching dynamics of
multi-agent learning. In: Padgham L, Parkes D, Müller J, Parsons
S (eds) Proceedings of the 7th international joint conference on
autonomous agents and multiagent systems, Estoril, vol 1. pp 307–
313

36. Wang X, Sandholm T (2002) Reinforcement learning to play an
optimal Nash equilibrium in team Markov games. In: Advances in
neural information processing systems (NIPS-2002), vol 15

37. Watkins CJCH, Dayan P (1992) Q-learning. Mach Learn
8(3):279–292

38. Zhang C, Abdallah S, Lesser VR (2008) Efficient multi-agent rein-
forcement learning through automated supervision (extended ab-
stract). In: Padgham L, Parkes D, Müller J, Parsons S (eds) Pro-
ceedings of the 7th international joint conference on autonomous
agents and multiagent systems, Estoril, vol 3. pp 1365–1368

39. Zhang C, Abdallah S, Lesser V (2009) Integrating organizational
control into multi-agent learning. In: Sichman JS, Decker KS,
Sierra C, Castelfranchi C (eds) Proceedings of the 8th interna-
tional conference on autonomous agents and multiagent systems
(AAMAS), Budapest, Hungary


	Learning to cooperate in the Iterated Prisoner's Dilemma by means of social attachments
	Abstract
	Introduction
	Prisoner's dilemma
	Multiagent learning
	Methods
	Independent learners and the IPD
	Playing the IPD in a hierarchy
	Playing the IPD in coalitions

	Experiments and analysis
	Conclusions and future work
	References


