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Abstract Graph clustering is an important issue for several
applications associated with data analysis in graphs. How-
ever, the discovery of groups of highly connected nodes that
can represent clusters is not an easy task. Many assump-
tions like the number of clusters and if the clusters are or
not balanced, may need to be made before the application
of a clustering algorithm. Moreover, without previous infor-
mation regarding data label, there is no guarantee that the
partition found by a clustering algorithm automatically ex-
tracts the relevant information present in the data. This pa-
per proposes a new graph clustering algorithm that automat-
ically defines the number of clusters based on a clustering
tendency connectivity-based validation measure, also pro-
posed in the paper. According to the computational results,
the new algorithm is able to efficiently find graph clustering
partitions for complete graphs.

Keywords Clustering coefficient · Graph clustering ·
Combinatorial optimization

1 Introduction

Data clustering deals with the discovery of data patterns, in
the form of data clusters, in the objects from a dataset. For
such, objects with similar characteristics are placed into the
same group (cluster) and objects with different features are
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placed into different clusters. Several clustering algorithms
have been proposed in the literature, based on several ap-
proaches. These algorithms have been successfully applied
to a wide variety of problems, including applications from
areas like bioinformatics [11], image processing [25] and
market segmentation [2]. Despite the good results obtained
by the use of clustering algorithms in several problem do-
mains, cluster analysis is still seen as a challenging problem.
Some particular clustering problems require more sophisti-
cated algorithms.

A specific problem of clustering is known as graph clus-
tering. Graph clustering looks for patterns among nodes in
a graph in order to produce a meaningful node partitioning.
Many inferences about the node partition may provide use-
ful information regarding the data. A few examples of the
benefits, as well as different approaches for graph cluster-
ing, can be found in [24].

Additionally, in spite of the large number of clustering
algorithms, few of them are able to automatically discover
partitions without the information of the number of clusters
beforehand. Automatic graph clustering algorithms, able to
define by themselves the number of clusters, play an im-
portant role in data analysis, since they allow a more effi-
cient application of clustering algorithms to a dataset with-
out prior knowledge of the data conformation. Therefore,
the investigation of new clustering algorithms able to deal
with graph clustering problems and to automatically define
the number of clusters is an important research issue.

Automatic clustering algorithms usually rely on a vali-
dation criterion to select the number of clusters. Moreover,
the evaluation of the quality of clustering partitions is not as
simple and direct as the evaluation of classification models.
Several validation measures have been specifically designed
to assess graph clustering partitions. Among them, we can
cite modularity [19]. Modularity evaluates the difference be-
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tween the presence of an edge connecting a pair of nodes
from a same cluster and the probability that the same edge
can be found at the same cluster in a random graph. The
lower this probability, the higher the measure value. Thus,
the best value is the highest value that can be achieved.

A measure frequently used to evaluate the clustering ten-
dency of the nodes of a graph is the clustering coefficient
measure [30]. The clustering coefficient of a node measures
how much its neighbors are close to a clique, i.e., a com-
plete subgraph. This measure assesses the number of trian-
gles around a node divided by its number of possible cliques.

In this paper, we propose a new validation measure based
on the clustering coefficient. As a result of the optimiza-
tion of this measure, we introduce an algorithm in order to
find graph clustering partitions with the maximum proposed
clustering coefficient. This algorithm does not require the
previous definition of the number of clusters in the partition.
Computational experiments were carried out and the results
obtained indicate a very good potential for finding good par-
titions using the proposed algorithm.

The rest of this paper is organized as follows. Section 2
presents the proposed measure based on clustering coeffi-
cient. In Sect. 3, a new clustering algorithm based on the
optimization of the proposed measure is presented. Sec-
tion 4 describes another measure, modularity, used in a com-
parison with the proposed measure. Finally, in Sect. 5 we
evaluate the new measure and the quality of the partitions
found by the introduced clustering algorithm. For such, we
perform some experiments with several datasets. To sum
up, Sect. 6 presents the main conclusions derived from the
analysis of the experimental results.

2 Assessment measure

Let G = (V ,E) be a graph where V and E are, respectively,
its set of nodes and edges. The number of nodes of G is n.
Each edge is represented by a pair (i, j), where i and j are
nodes from V . In this paper, the nodes are represented by
natural numbers from 1 to n.

Consider A = [aij ]n×n to be the adjacency matrix of
graph G. Each element of the adjacency matrix has a bi-
nary value, representing the relationship between two nodes.
Thus, aij = 1 if nodes i and j are adjacent, i.e., if there is an
edge linking node i to node j , and aij = 0 otherwise.

This paper deals with weighted graphs. Let W = [wij ]n×n

be the weight matrix for the edges of a weighted graph G.
The element wij of this matrix W is defined as the weight
of the edge that links node i to node j . If there is no edge
between a pair of nodes i and j , then wij = 0.

The degree of a node i, degi , from an unweighted or
weighted graph, is calculated considering the number of its

adjacent objects. It is given by (1).

degi =
n∑

j=1

aij . (1)

A measure that evaluates the clustering tendency in
graphs is known as clustering coefficient [30]. It is based
on the analysis of three node cycles around a node i. A for-
mulation of this measure for unweighted graphs is given by
(2).

Ci = 2
∑n−1

j=1
∑n

k=j+1 aij ajkaik

degi (degi − 1)
(2)

Note that
∑n−1

j=1
j �=i

∑n
k=j+1
k �=i

aij ajkaik corresponds to the

number of triangles around node i. The degree degi indi-
cates the total number of neighbors of node i. The denomi-
nator measures the maximum possible number of edges that
could exist between the vertices within the neighborhood.
This measure evaluates the tendency of the nearest neigh-
bors of node i to be connected to each other [20], as illus-
trated by Fig. 1.

This figure presents a subgraph (the first left-handed pic-
ture with no dashed lines) with a central black-colored node
i and its four adjacent nodes (gray-colored). This means that
the degree of i is 4 (the number of its incident edges high-
lighted by solid black lines). The maximum number of edges
between the neighbors of i is 6, which is 4 × 3/2, as can be
noticed in this picture. The number of triangles around the
node i is also 6 (as shown in the 6 subgraphs with dashed
lines), meaning that the clustering coefficient of this partic-
ular node i is 1.

According to [20], to extend this measure to weighted
graphs, it is necessary to replace the part of the numerator,
that indicates the number of triangles around node i, by the
sum of the triangles intensities around node i. The formula-
tion presented by the authors is:

Ci(W) = 2
∑n−1

j=1
∑n

k=j+1(w̃ij w̃ikw̃jk)
1/3

degi (degi − 1)
, (3)

where w̃ij = wij /max{wij |i, j ∈ Z,1 ≤ i, j ≤ n}. It can be
observed that Ci ∈ [0,1] and that (w̃ij w̃ikw̃jk)

1/3 indicates
the cubic root of the weight product of the edge neighbors
around node i. If Ci = 1, then the neighborhood of node
i includes all combinations of triangles that can be formed
and that each edge making part of this triangle has maximum
weight. This index has a higher value when two nodes j and
k that are adjacent to i are also adjacent to each other. If it is
necessary to calculate the clustering coefficient of a graph,
usually the average of the clustering coefficient of all nodes
is considered.
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Fig. 1 Illustration of the
clustering coefficient measure

Based on this weighted clustering coefficient, we propose
a validation measure able to analyze the cluster tendency of
a partition. For such, consider the following equation:

di =
n∑

j=1

aij xij , (4)

where xij is a binary variable that assumes value 1, if the
nodes i and j belong to the same cluster, and 0, otherwise.
It must be observed that di is the number of nodes adjacent
to i and that belong to the cluster with node i. The proposed
clustering coefficient of a node i from a partition π of a
weighted graph is given by the following equation:

Cci(π) = 2
∑n−1

j=1
∑n

k=j+1(w̃ij w̃jkw̃ik)
1/3

di(di − 1)
yijk, (5)

where yijk is a binary variable that assumes value 1 if the
nodes i, j and k belong to the same cluster and 0, otherwise.

In this paper, we propose a solution method (heuristic)
based on the optimization of the introduced clustering coef-
ficient index. No proof with respect to the complexity of the
problem whose goal is to detect the partition with the max-
imum proposed index is provided in this paper. In spite of
this, according to our knowledge, no polynomial algorithm
is always able to find such partition. Moreover, it is well
known that the complexity of a variety of graph partitioning
problems is NP-hard [6].

3 Solution method

Multilevel clustering algorithms are a special class of graph
clustering algorithms that have been extensively used to find
high quality clustering solutions. Some of these algorithms
can be found in [4, 12, 13]. They are known for having three
different phases: coarsening, partitioning, and refinement.
The first phase, coarsening phase, compresses a graph by
contracting its nodes. The second phase, partitioning phase,

partitions the graph found in the coarsening phase. The last
phase, refinement phase, expands the partitioned graph un-
til it reaches its original structure by the simultaneous im-
provement of the current solution by the application of some
method, like a local search.

In this paper, we propose a simple multilevel clustering
algorithm. Its phases work as follows:

1. Coarsening phase: A sequence of matching’s among the
graph edges is performed until the graph reaches a pre-
defined size.

2. Partitioning phase: In this phase, the coarsened graph is
partitioned by the multi-level algorithm METIS [12, 13].
Many other partitioning algorithms, such as spectral clus-
tering algorithms, were tested. However, METIS pro-
duced better results in a shorter time.

3. Refinement phase: The partition found in the previous
phase is improved by a local search after each step of
the expansion of the graph nodes by reverting the coars-
ening. This process continues until the original structure
of the graph is obtained.

Details of each phase of the algorithm are presented next.

3.1 Coarsening phase

The coarsening phase consists in performing matching’s of
the edges from a graph. A matching on a graph G is de-
fined by a set S of edges where, for every (i, j) ∈ S, there is
no edge (k, j), with k �= i or (k, i) with k �= j that belongs
to S. The maximum matching problem looks for a matching
whose set of edges has the maximum total weight.

In order to perform the matchings in the proposed multi-
level algorithm, a heavy edge coarsening was applied to the
graph. A heavy edge coarsening randomly selects a node i

nonincident to none edge from S. The heaviest edge inci-
dent to i and to a node j not incident to any edge from S is
chosen to be matched, i.e., to belong to S. At each match-
ing, the edge weights between the incident nodes from the
matched edge and their adjacent nodes have to be updated.
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For such, the edge weights between node i (and node j ) and
all its adjacent nodes have now to take into account the edge
weights between these adjacent nodes with the other node in
the matching, node j (and node i). An usual way to calcu-
late the edge weight between a node i and one of its adjacent
nodes, k, is summing up the edge weights connecting i with
k and j with k.

In this paper, the coarsening phase is performed until the
number of nodes becomes lower than or equal to the maxi-
mum value between 100 and 0.2n. If a graph already has a
number of nodes lower than or equal to 100, one iteration
of the matching is performed. This final coarsened graph,
named base graph, is partitioned in the next phase of the
multilevel algorithm. The partitioning of this base graph is
detailed in the next section.

3.2 Partitioning phase

According to multilevel algorithms, after the graph is coars-
ened, it is partitioned by a partitioning algorithm. In this pa-
per, we applied a multilevel partitioning algorithm named
METIS [12]. Other algorithms were tested, but METIS pre-
sented better final partitions.

As METIS requires the number of clusters to be defined a
priori, we find partitions using METIS for {2, . . . ,20} clus-
ters.

As a result, we have 19 different initial partitions to be
refined. After the refinement phase, the partition with the
best proposed clustering coefficient is returned as the final
partition of the algorithm.

3.3 Refinement phase

In this phase, a local search procedure is applied to every
partition found in the partitioning phase. Many different lo-
cal search procedures were evaluated. We chose the local
search with the best combination of efficiency and perfor-
mance. For such, consider

ti =
n−1∑

j=1

n∑

k=j+1

(w̃ij w̃ikw̃jk)
1/3

di(di − 1)
yijk.

Local Search (Solution)
Step 0: Read the graph and its partition to be refined by the

local search. Make it ← 0.
Step 1: Unmark all nodes.
Step 2: Choose an unmarked node i whose ti is lower

than t ′i . t ′i is calculated in the same way as ti , chang-
ing the solution variables as if node i belonged to a
cluster c, different from where it belongs to. Mark
node i. If n < 500, go to Step 3, else, go to Step 4.

Step 3: If moving node i to cluster c improve the current
solution, go to Step 4. Else, go to Step 5.

Step 4: Move node i to cluster c.

Step 5: If all nodes are marked, make it ← it + 1 and go to
Step 6, else, go to Step 2.

Step 6: If there was no improvement in this iteration or it >

100, then go to Step 7. Else, go to Step 1.
Step 7: Return the most updated solution.

If the graph has more than 500 nodes, we eliminate
Step 3, which is very expensive. However, when the graph
has less than 500 nodes, it is viable to perform Step 3. This
local search allows the number of clusters to change from
the initial partition, when this produces a better solution.

As the order of the nodes to perform the matchings is
random, different coarsened graphs can be achieved by the
coarsening phase. For this reason, we perform all steps of
the proposed multilevel algorithm 10 times. Only the best
solution among these 10 runs is kept.

In summary, the proposed multilevel clustering algorithm
(MLA-CC) has the following steps.

Multilevel algorithm (G)
Step 0: Read G. Make it ← 0.
Step 1: (Coarsening phase) Contract graph G as it was pre-

sented in the coarsening phase section.
Step 2: (Partitioning the base graph) Find the 19 partitions

by METIS, as it was explained in Sect. 3.2.
Step 3: (Refinement phase) Apply the local search pre-

sented in Sect. 3.3 at each of the 19 partitions found in
the previous step. Keep the best solution found.

Step 4: (Update solution) If it = 0 or the solution found in
the previous step is higher than the overall best solution,
then the overall best solution is updated by the best solu-
tion found in the previous step. Make it ← it + 1.

Step 5: If it > 10 then go to Step 6, else, go to Step 1.
Step 6: Return the best solution.

Next, a validation graph clustering measure extensively
used in the last years will be presented. Partitions found by
algorithms based on the optimization of this measure will be
used to compare with the results of our algorithm.

4 Modularity index

The modularity index was proposed in [19]. It measures
the clustering tendency of a graph partition, considering its
probability in the same partition in a random graph with the
same node degree sequence. To see how it works, let π be a
partition from a graph G. Consider the following equation:

q(π) = 1

2m

n∑

i=1

n∑

j=1

rij xij .

If G is a weighted graph, 2m = ∑n
l=1

∑n
k=1 wlk , and rij

defined by the following equation:

rij = wij −
∑n

k=1 wik

∑n
k=1 wjk∑n

l=1
∑n

k=1 wlk

. (7)
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Heuristics based on the search of the partition with max-
imum modularity have been extensively proposed in litera-
ture [3]. Due to the quality of the partitions found by these
algorithms, they are largely used as the main references for
graph clustering.

5 Computational experiments

In order to analyze the performance of the proposed algo-
rithm, we performed two sets of experiments: the first with
artificial graphs and the second with real datasets converted
into similarity graphs. Each one of the experiments is ex-
plained in the next sections. In these experiments, we com-
pare our heuristic with the following graph clustering al-
gorithms from the literature: a spin glass-based algorithm
(Spinglass) [23], a fast greedy modularity-based algorithm
(FastGreedy) [3] and a walktrap algorithm (Walktrap) [21].
They were all proposed for graph clustering problems and
do not require the definition of the number of clusters. We
used their implementation from the R-project [29] in the
package igraph. All of them use the validation measure
adopted by the authors, the modularity measure (the parti-
tion with the best modularity in the iterations of the algo-
rithms is always chosen). The comparison of the algorithms
is based on the real classification of the datasets. For such,
we use the Adjusted Rand Index (ARI), proposed in [10].
This index allows to compare the similarity between the par-
tition found by an algorithm for a given dataset with the real
classes. The value for this index is better when its value is
higher. The minimum and maximum values achieved by this
measure are, respectively, −1 and 1.

5.1 First experiment

In order to analyze the behavior of the proposed solution
method, MLA-CC, experiments were carried out with sixty
artificial modular graphs, generated using the function Sim-
DataAffiliation from the package Statistical Inference for
Modular Networks (SIMoNe). The parameters used to gen-
erate the graphs were set in order to make them highly mod-
ular. We generated six graphs for each of the following num-
ber of nodes: 100, 200, 300, 400, 500, 600, 700, 800, 900,
and 1000. For each number of nodes, there is one graph with
2, 3, 4, 5, 10, and 20 modules (clusters in the structure of the
graph).

As a result of this experiment, we observed that the pro-
posed algorithm presented ARI values worse than the other
algorithms used in the comparison. The analysis of these re-
sults showed that, in general, a poor performance of MLA-
CC was observed when the input graph was not complete.
Additional experiments were then carried out using com-
plete graphs. In these new experiments, our algorithm per-
formed better than the other algorithms used in the compar-
ison. These results suggest that a transformation of a non

Table 1 Average ARI values of the partitions found by the algorithms
regarding the clustering labels provided by the data generator. Each
average corresponds to the mean ARI of the partitions for all artificial
graphs with the same number of nodes

Dataset (�nodes) MLA-CC Spinglass Walktrap FastGreedy

100 0.68 0.59 0.66 0.89

200 0.30 0.41 0.50 0.95

300 0.02 0.21 0.33 0.95

400 0.11 0.59 0.83 0.51

500 0.16 0.91 0.99 0.86

600 0.16 0.99 0.99 0.95

700 0.09 0.80 1.00 0.78

800 0.09 0.83 0.83 0.87

900 0.15 0.88 1.00 0.80

1000 0.13 0.84 1.00 0.79

complete graph into a complete graph could improve the
performance of the proposed algorithm in the other datasets.
However, this transformation may not be efficient, since to
work with a sparse matrix is, in general, computationally
easier than with non sparse matrices. We tested a conversion
of non complete graphs to a complete graph version using an
approach based on the pairwise shortest paths between the
nodes. Even though the proposed algorithm achieved bet-
ter results with these converted graphs than with the orig-
inal noncomplete graphs, the performance of the resulting
algorithm was inferior to the performance observed in the
other evaluated algorithms. Table 1 shows these results (us-
ing graphs transformed to complete graphs by a shortest path
approach for MLA-CC and raw graphs for the other algo-
rithms).

The results from Table 1 show that the proposed algo-
rithm has ARI values similar to the other algorithms only
for the smallest number of nodes. Its performance becomes
significantly worse than the other algorithms with the in-
crease of the number of nodes. These results suggest that
the proposed algorithm should not be used in noncomplete
graphs. However, additional experiments using real datasets
indicated a niche where the proposed algorithm has a very
good potential. These experiments are presented in the next
section.

5.2 Second experiment

In this second experiment, fourteen real datasets were used.
Eleven of them are biological datasets and three are bench-
mark datasets largely used in cluster analysis. The main as-
pects of these datasets are explained in Tables 2 and 3.

In order to construct a similarity graph from the datasets
observed in Tables 2 and 3, we used the following strategy.
Let G be a complete graph from a given dataset. Each ob-
ject from the dataset represents a node from G, whereas the
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Table 2 Table of the description of the biological datasets used in the second experiment

Golub [8] is a dataset with 3,571 gene expression levels of 47 tissues of acute lymphocyte leukemia (ALL) samples and 25 tissue samples of acute
myeloid leukemia (AML). ALL may be classified in 2 classes: B-lineage with 38 samples and T-lineage with 9 samples

BreastA [28] and BreastB [31] are datasets with, respectively, 98 and 48 samples, of breast tumor generated using one-channel oligonucleotide
and two-channel microarrays. The version employed is pre-processed with 1,213 attributes each. Regarding the classification, in [9] can be
observed an analysis of BreastA dividing it in 3 classes with 11, 51, and 36 samples. BreastB, like in [18], was decomposed into 2 classes
regarding the estrogen receptor (ER). In this dataset, there are 25 samples of positive ER (ER+) 24 samples of negative (ER−). The collection of
tumors consists of 13 samples of ER+ lymph node (LN)+ tumors, 12 samples of ER− LN+ tumors, 12 samples of ER+ LN− tumors, and 12
samples of ER− LN− tumors

DLBCLC [26] is a dataset with 58 samples of patients with Diffuse large B cell lymphoma (DLBCL). Its number of attributes is 3,795, which
corresponds to a preprocessed version from [9]. The classes of this dataset correspond to the cured DLBCLs (32 samples) and the fatal/refractory
tumors (26 samples)

Leukemia [32]: This dataset has 327 samples with 271 gene expression levels. It can be classified into 7 classes: BCR-ABL (15 samples),
E2A-PBX1 (27 samples), Hiperdiploid>50 (64 samples), MLL (20 samples), T-ALL (43 samples), TEL-AML1 (79 samples) and others (79
samples). An alternative grouping divides the example in 3 more general subgroups, in which the first includes B-ALL, which consists of samples
BCR, E2A, TEL, and MLL; the second is composed of T-ALL; and last one consists of “others” type

Lung [1]: This dataset consists of 197 lung tumor samples with 1,000 gene expression levels. Its classification into 4 types of cancer includes 139
samples of adenocarcinomas, 21 samples of carcinomas from squamous cells and 20 samples of carcinoids. A pre-processed version from [16]
was used

MultiA [27] is a preprocessed cancer tissue dataset [9]. It has the same examples and classes as Novartis, except for the number of attributes, which
is higher, 5565

MultiB [22] is, as well as MultiA, a cancer tissue dataset. It is also a pre-processed version found in [9] and has 32 samples with 5,565 attributes.
This dataset has 4 classes corresponding to different types of tissues: 5 breast tissues, 9 prostate tissues, 7 lung tissues and 11 colon tissues

Novartis [16, 27]: This dataset has 1,000 gene expression levels from 103 cancer tissue samples. The classification comes from their origin: 26
from breast, 26 from prostate, 28 from lung and 23 from colon

MiRNA [14]: This dataset corresponds to 218 mammal tissue samples of human and tumor origins with gene expression profiles of 217
microRNAs. The samples are classified into 20 classes with 6, 15, 10, 11, 3, 9, 18, 7, 19, 10, 8, 5, 14, 2, 26, 28, 8, 8, 3 and 8 samples according to
their origin

Yeast [17] is a 8 attribute dataset with 1484 yeast proteins samples. As it can be observed in [17], the dataset can be classified into 10 classes
regarding the localization site of proteins, with 463, 429, 244, 163, 51, 44, 37, 30, 20, and 5 objects

Table 3 This table shows the description of the non-biological datasets used in the experiments

Glass [5] is a classical 9 attribute dataset of criminal investigation scenes with 214 samples. The samples may be divided into 6 classes according
to the physic chemical properties, with 70, 76, 17, 13, 9 and 29 examples

Iris [7] is a 4 classical attribute dataset with 150 examples of 3 species of the Iris flower: 150 samples of Iris setosa, 150 samples of Iris virginica
and 150 samples of Iris versicolor

Simulated6 [16] is an artificial dataset with 60 samples with 600 genes as attributes. This dataset can be divided into 6 classes with 8, 12, 10, 15, 5
and 10 samples. Each class is defined by 50 distinct genes, which are uniquely regulated for each class

edges linking pairs of nodes are weighted according to the
weight matrix W . The weights are calculated according to
the Euclidean distance, using (8).

wij = 1 − dij

dmax
, (8)

where dij is the Euclidean distance between objects i and
j , and dmax is the maximum distance between any pair of
objects from the dataset. Other ways for constructing a graph
from a dataset could be used. However, many studies, like

[15], claim that the discovery of the most suitable way to
represent a dataset in a graph is not an easy task. Therefore,
for simplicity, in this paper, we just used this strategy for
constructing graphs from datasets.

5.2.1 Results of the second experiment

Table 4 shows the for the four investigated algorithms. The
columns Dataset and #C indicate, respectively, the tested
dataset and its number of classes according to its available
real classifications. The column #CL shows the number of
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Table 4 ARI values of the partitions found by the algorithms. The best ARI for each dataset is highlighted in bold

MLA-CC Spinglass Walktrap FastGreedy

Dataset #C #CL ARI #CL ARI #CL ARI #CL ARI

Golub 2 3 0.425 3 0.441 1 0.000 2 0.837

Golub 2 3 0.011 3 0.011 1 0.000 2 0.032

Golub 3 3 0.395 3 0.428 1 0.000 2 0.645

Golub 4 3 0.318 3 0.341 1 0.000 2 0.630

BreastA 3 2 0.654 3 0.712 3 0.562 2 0.741

BreastB 4 3 0.202 2 0.269 1 0.000 2 0.269

DLBCLC 2 2 −0.017 2 −0.018 1 0.000 2 −0.018

Glass 6 6 0.189 3 0.170 3 0.238 2 0.261

Iris 3 4 0.638 3 0.513 2 0.568 2 0.523

Leukemia 3 9 0.236 5 0.138 4 0.200 3 0.041

Leukemia 7 9 0.689 5 0.521 4 0.550 3 0.392

Lung 4 6 0.303 3 0.151 3 0.254 2 0.117

MultiA 4 5 0.702 3 0.664 3 0.580 3 0.633

MultiB 4 2 −0.027 2 −0.027 1 0.000 2 −0.027

Novartis 4 4 0.946 4 0.946 2 0.331 3 0.612

Simulated6 6 5 0.871 3 0.326 2 0.180 3 0.326

MiRNA 20 8 0.315 2 0.097 2 0.094 2 0.098

Yeast 10 3 0.156 8 0.084 2 0.035 2 0.082

clusters of the partitions found by the indicated algorithm.
These results are concerned with the real classification of
the datasets provided in literature.

As can be seen on Table 4, according to the ARI mea-
sure, MLA-CC found the best ARI more times than the
other algorithms. In the cases where one of the other al-
gorithms obtained better results than MLA-CC, their ARI
values were very close (except for the dataset Golub). There-
fore, considering these datasets, the proposed graph cluster-
ing algorithm for weighted graphs produced good results.
Moreover, it can be noticed that the majority of the results,
for all algorithms, were lower than 0.4. This fact suggests
that in many cases the dataset had not a clear clustering
structure, or that it is not easily identified. Taking as ex-
ample the dataset MiRNA, one may observe that the par-
titions found by the other algorithms have a very low re-
semblance with the real classification of the dataset (since
their ARI values were around 0.098). The partition found
by MLA-CC for this same dataset has a much better suit-
ability to the real data classification (in this case, the ARI
was 0.315, more than three times higher than the other algo-
rithms). Another dataset for which the proposed algorithm
achieved much better results, when compared with the other
algorithms, was the dataset Simulated6. On the other hand,
for the dataset Golub, the FastGreedy algorithm found a par-
tition with a much better average ARI value than the other
algorithms.

Table 5 Table of objective
function values Dataset CC

Golub 0.590159

BreastA 0.78431

BreastB 0.575682

DLBCLC 0.630128

Glass 0.793655

Iris 0.839137

Leukemia 0.642047

Lung 0.687603

MultiA 0.490546

MultiB 0.598776

Novartis 0.543799

Simulated6 0.685092

MiRNA 0.715988

Yeast 0.776264

Table 5 presents the resulting clustering coefficient pro-
posed in this paper for each partition found by MLA-CC.
Observe that, in most cases, the clustering coefficient of the
partitions is higher than 0.5. This means that the partitions
found have a good cluster tendency, and that the algorithm
proposed to obtain these partitions had a good performance.
In particular, the partition found for the dataset Iris had high
clustering coefficient. This means that regarding this valida-
tion measure the partitions obtained by the algorithm had a
very good quality, since the possible maximum value is 1.
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Regarding the computational efficiency of the proposed
heuristic, there is a significant impact of both the number
of natural clusters and the number of nodes in the dataset
on the computational time. In general, the lower the num-
ber of natural clusters, the higher the computational time.
Although there is no clear pattern associating the number of
clusters and the computational time, we estimate an increase
of 10% in running time for each cluster (e.g., a dataset with 3
clusters and 100 nodes took 4 seconds, whereas the running
time for a dataset with the same number of nodes and 2 clus-
ters was about 4.5 seconds). There is also a large impact of
the number of nodes on the computational time necessary to
find the solution (although we can make no assertion about
its relation to the number of nodes, it is approximately twice
the solution time for a dataset with one hundred less nodes).
In comparison with the other algorithms, MLA-CC took ap-
proximately the same time as Spinglass to find the parti-
tions (both took the largest computational times among all
tested algorithms, about ten times slower than FastGreedy
and Walktrap).

6 Final remarks

This paper presented a novel graph clustering algorithm
based on a well-studied measure known as clustering coef-
ficient. The measure consists in the analysis of the connec-
tivity of a node regarding the connectivity of its neighbors

and is commonly used to measure the clustering tendency
of the nodes in a graph. In this paper, a variation of an exist-
ing weighted version for clustering coefficient is proposed
in order to evaluate the quality of the partitions of weighted
graphs. Using this variation, an algorithm based on the opti-
mization of the proposed measure is presented.

In order to validate the quality of the proposed algorithm,
we compared its results with the results of other graph clus-
tering algorithms from literature. The comparison was based
on a measure that evaluates the fitness of a pair of partitions
(the partitions found by algorithms and the real classifica-
tion of the data). In a first experiment with artificial modular
graphs, we observed a poor performance of the proposed al-
gorithm, with much worse results than from the literature for
noncomplete graphs. By studying the behavior of the results
of our algorithm, we discovered that it worked better when
the case study was a complete graph. Then, in a second ex-
periment with complete graphs, we attested that the parti-
tions found by the proposed algorithm had a better quality if
compared with the partitions obtained with algorithms from
literature considering the classification of the real datasets.
Therefore, the proposed algorithm for weighted graphs is
a valuable novel contribution for graph clustering for com-
plete graphs.
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Table 6 Weight matrix of the toy example, where the matching of the coarsening phase is represented by the edges highlighted by gray boxes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 0.8 0.9 1.0 0.9 0.9 0.9 0.6 0.2 0.3 0.2 0.2 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.2

2 – 0 0.8 0.8 0.7 0.9 0.9 0.4 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.1 0.2

3 – – 0 0.9 0.8 0.8 0.8 0.4 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1

4 – – – 0 0.9 0.9 0.9 0.4 0.1 0.2 0.1 0.2 0.2 0.2 0.1 0.1 0.2 0.1 0.1 0.2

5 – – – – 0 0.9 0.9 0.5 0.2 0.2 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.1 0.2 0.2

6 – – – – – 0 0.9 0.4 0.2 0.2 0.1 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.1 0.1

7 – – – – – – 0 0.4 0.2 0.2 0.1 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.1 0.2

8 – – – – – – – 0 0.5 0.5 0.5 0.5 0.6 0.5 0.4 0.5 0.6 0.6 0.5 0.5

9 – – – – – – – – 0 0.9 0.8 0.9 0.9 0.9 0.8 0.9 0.9 0.9 0.9 0.8

10 – – – – – – – – – 0 0.9 1.0 0.9 1.0 0.9 0.9 0.9 0.9 0.8 1.0

11 – – – – – – – – – – 0 0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.9

12 – – – – – – – – – – – 0 1.0 0.9 0.9 0.9 1.0 0.9 0.9 0.9

13 – – – – – – – – – – – – 0 0.9 0.8 1.0 0.9 1.0 0.9 0.9

14 – – – – – – – – – – – – – 0 0.8 0.9 0.9 0.9 0.8 1.0

15 – – – – – – – – – – – – – – 0 0.8 0.9 0.8 0.8 0.9

16 – – – – – – – – – – – – – – – 0 0.9 0.8 0.8 0.9

17 – – – – – – – – – – – – – – – – 0 0.9 0.9 1.0

18 – – – – – – – – – – – – – – – – – 0 0.8 0.9

19 – – – – – – – – – – – – – – – – – – 0 0.9

20 – – – – – – – – – – – – – – – – – – – 0
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Table 7 The pairwise weight
matrix of the coarsened graph
from the example

[12,13] [20,10] [2,7] [8,17] [11,19] [14,18] [4,1] [15,9] [16,6] [3,5]

[12,13] 0 1.11 0.13 0.89 1.08 1.12 0.14 1.07 0.65 0.10

[20,10] – 0 0.15 0.86 1.04 1.13 0.16 1.03 0.61 0.09

[2,7] – – 0 0.27 0.08 0.12 1.04 0.08 0.56 0.95

[8,17] – – – 0 0.77 0.83 0.34 0.79 0.53 0.28

[11,19] – – – – 0 0.99 0.06 0.99 0.49 0.06

[14,18] – – – – – 0 0.14 1.03 0.57 0.03

[4,1] – – – – – – 0 0.08 0.58 1.09

[15,9] – – – – – – – 0 0.55 0.05

[16,6] – – – – – – – – 0 0.51

[3,5] – – – – – – – – – 0

Appendix: a running example

This Appendix presents one iteration of a toy example of
MLA-CC with a small dataset. In this example, we used the
first 20 objects of the dataset Simulated6. Each step of the
algorithm is presented in the next sections.

7.1 Coarsening phase

As we are dealing with a complete graph example, let us rep-
resent its weighted edges on a weight matrix. The resulting
matching between the nodes of this example is represented
in the weight matrix illustrated in Table 6 by the gray boxes.

According to Table 6, the edge between nodes 4 and 1
is matched, since the box corresponding to the first row and
forth column is marked by the gray color. In Table 7, the
node of the coarsened graph corresponding to the matching
of this edge is referred as [4,1]. Thus, one has a graph with
10 nodes (resulted from the coarsening of the original graph
by the matching) whose weighted edges are showed in Ta-
ble 7 (calculated as explained before).

7.2 Partitioning phase

The coarsened graph is then partitioned at this phase of the
algorithm. In this paper, we used a strategy that generates
partitions from 2 to 10 clusters using METIS (for a larger
dataset, it would be possible to generate 2 to 19 clusters, as
presented in the algorithm description). The resulting parti-
tions are presented in the matrix in Table 8, where the ith
row represents the node i from the coarsened graph, and
each number of the matrix is the class label of the result-
ing partition (represented in each column). Using these 9
partitions, the refinement phase of the proposed algorithm is
performed.

7.3 Refinement phase

In this phase of the algorithm, at each uncoarsening step (in
this example, it is just one step, due to the small size of the

Table 8 Table with the partitions found by METIS for the coarsened
graph

Partitions

Nodes � 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 � 9

[12,13] 1 3 1 4 2 4 1 9 4

[20,10] 1 3 1 4 2 4 1 7 5

[2,7] 2 1 3 1 5 2 5 1 9

[8,17] 1 2 2 3 1 6 3 5 1

[11,19] 1 3 2 4 1 6 3 5 1

[14,18] 1 3 1 3 2 4 1 9 5

[4,1] 2 1 3 1 6 3 6 2 9

[15,9] 1 2 1 5 3 5 2 8 3

[16,6] 2 2 4 2 4 1 8 4 8

[3,5] 2 1 3 1 6 3 6 2 7

dataset), a local search is applied to the current partition. For
each of the 9 partitions, the uncoarsening of the coarsened
graph followed by a local search is performed (updating the
labels). For example, in the forth partition of the coarsened
graph, the first row corresponds to the first node of the coars-
ened graph that corresponds to the nodes 12 and 13 of the
original graph (indicated as [12,13]). Both of them will re-
ceive the label 1, as indicated in Table 9.

At this phase, the local search is applied to the partition of
the current iteration. As already described, the local search
consists in the transfer of nodes between the clusters in the
partition of a graph in such a way that the transfer produces
a partition with a better clustering coefficient-based index.
The refinement phase of the forth partition (the one that pro-
duces the solution with best proposed index in the end of the
procedure) is summarized in Table 10.

It is important to remind that this example corresponds
solely to one of a total of 50 iterations. At each iteration, a
different matching is used (generated with a different seed).
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Table 9 This table shows the uncoarsened partition number four

Nodes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Label 1 1 1 1 1 2 1 3 5 4 4 4 4 3 5 2 3 3 4 4

Table 10 The partitions found at each of the 14 iterations of the local search from the refinement phase of MLA-CC. The movements of the local
search are highlighted by gray boxes

Iterations

Nodes 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 5 5 5 5 5 5 5 5 5 5 5 5 5

2 1 1 2 2 2 2 2 2 2 3 4 4 4 4

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 3 3 3 3 3 3 3 3 3 3 3

5 1 1 1 1 1 1 1 1 1 1 1 2 2 2

6 2 2 2 2 2 2 2 2 2 2 2 2 2 2

7 1 1 1 1 1 1 1 1 1 1 1 1 1 2

8 3 3 3 3 2 2 2 2 2 2 2 2 2 2

9 5 5 5 5 5 5 5 5 5 5 5 5 5 5

10 4 4 4 4 4 1 1 1 1 1 1 1 1 1

11 4 4 4 4 4 4 1 1 1 1 1 1 1 1

12 4 4 4 4 4 4 4 4 4 4 4 4 1 1

13 4 4 4 4 4 4 4 4 4 4 4 4 4 4

14 3 3 3 3 3 3 3 3 3 3 3 3 3 3

15 5 5 5 5 5 5 5 5 5 5 5 5 5 5

16 2 2 2 2 2 2 2 2 2 2 2 2 2 2

17 3 3 3 3 3 3 3 1 2 2 2 2 2 2

18 3 3 3 3 3 3 3 3 3 3 3 3 3 3

19 4 4 4 4 4 4 4 4 4 4 4 4 4 4

20 4 4 4 4 4 4 4 4 4 4 4 4 4 4
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