J Braz Comput Soc (2010) 16: 229-245
DOI 10.1007/s13173-010-0017-z

ORIGINAL PAPER

The Nested Context Language reuse features

Carlos de Salles Soares Neto -
Luiz Fernando Gomes Soares -
Clarisse Sieckenius de Souza

Received: 8 December 2009 / Accepted: 16 July 2010 / Published online: 21 August 2010

© The Brazilian Computer Society 2010

Abstract NCL, the standard declarative language of the
Brazilian Terrestrial Digital TV System and ITU-T Recom-
mendation for IPTV Services, provides a high level of reuse
in the design of hypermedia applications. In this paper we
detail how its design and conceptual model have succeeded
in supporting reuse at a declarative level. NCL supports not
only static but also running code reuse. It also allows for
reuse inside applications, reuse between applications, and
reuse of code spans stored in external libraries. For a spec-
ification language to promote reuse, however, it must have
a number of usability merits. Aspects of NCL usability are
thus analyzed with the Cognitive Dimensions of Notation
framework.

Keywords Ginga-NCL - DTV - NCL - SBTVD-T -
Middleware - Code reuse - Declarative programming -
Cognitive Dimensions of Notation

1 Introduction

This paper discusses syntactic code reuse (specification
reuse) and running code reuse (execution reuse), from now

C.S. Soares Neto (X)) - L.EG. Soares - C.S. de Souza
Department of Informatics, Pontifical Catholic University of Rio
de Janeiro, Rua Marqués de Sao Vicente, 225, Gavea,

CEP 22453-900 Rio de Janeiro, RJ, Brazil

e-mail: csalles@deinf.ufma.br

L.EF.G. Soares

e-mail: Ifgs @inf.puc-rio.br
C.S. de Souza

e-mail: clarisse @inf.puc-rio.br

C.S. Soares Neto

Department of Informatics, Federal University of Maranhdo,
Av. dos Portugueses, s/n, Campus do Bacanga, CEP 65080-040
Sédo Luis, MA, Brazil

on called active code reuse, in the context of NCL (Nested
Context Language), a declarative DSL (Domain Specific
Language) for hypermedia document authoring.

NCL is the declarative language of the Brazilian Terres-
trial Digital TV System (SBTVD), supported by the middle-
ware called Ginga. NCL and Ginga are part of ISDB (In-
ternational Standard for Digital Broadcasting) standards [1],
and also an ITU-T Recommendation for IPTV services [2].
Given that NCL is a DSL primarily designed for interactive
digital TV (iDTV) applications, we will frame the discus-
sion in this context.

Code reuse, or software reuse, has been an important and
persistent topic in programming language and software en-
gineering disciplines since their earliest days. The main goal
has been to decrease program development time by reusing
well-tested previously developed code, thus promoting in-
creased software reliability and a specification that is less
error-prone in its whole. However, not only static code reuse
but also reuse of running code has been in focus. For exam-
ple, programming languages for parallel systems allow for
reusing code in execution by different parallel control flows
of an application, producing different behavior in each flow.

Software engineering has proposed several methodolo-
gies and techniques for supporting code reuse. Typically and
historically, these approaches have been developed for im-
perative languages, although they can be equally useful for
declarative ones. Declarative languages emphasize the high-
level description of an application rather than its decomposi-
tion into an algorithmic implementation. Moreover, declar-
ative languages usually define specific models to design ap-
plications targeted to specific domains (a declarative DSL),
offering a good balance between flexibility and simplicity. In
other words, one loses some of the expressiveness but gains
increased simplicity. Supporting reuse in declarative DSL is,
however, more difficult to achieve, since reuse cannot come

@ Springer


mailto:csalles@deinf.ufma.br
mailto:lfgs@inf.puc-rio.br
mailto:clarisse@inf.puc-rio.br

230

J Braz Comput Soc (2010) 16: 229-245

at the expense of providing and keeping a clear orientation
towards the domain for which the language was designed.

In this paper we detail how the NCL design and its
conceptual model have succeeded in supporting reuse at a
declarative level. However, in order to move from support-
ing to promoting reuse, a specification language must itself
have a number of usability merits. If it does not, program-
mers (or multimedia document authors in our specific con-
text) are likely to abandon it for a more usable specifica-
tion tool. So, we take the Cognitive Dimensions of Notation
(CDN) framework [3, 4] and analyze aspects of NCL usabil-
ity as an interface language for creating hypermedia applica-
tions. Finally, we also include in this paper a brief outline of
good programming practices that promote increased reuse
in NCL-based authoring processes, which can help existing
and future adopters of this language.

The next sections are organized as follows. As an under-
lying principle, Sect. 2 argues in favor of reuse in several as-
pects of an iDTV application. Section 3 first briefly presents
NCL elements and then discusses how code reuse can be ap-
plied within the same NCL application. In Sect. 4, we show
how to import and reuse code across different NCL applica-
tions. Section 5 presents the methodology we have applied
to analyze NCL reuse features based on the CDN frame-
work. Section 6 overviews some relevant related work. Fi-
nally, Sect. 7 presents our concluding remarks.

2 Reuse on iDTYV applications

An iDTV application is constituted by media assets (video,
audio, text and image perceptual media objects, as well as
other media objects with imperative and declarative code)
and spatial and temporal relationships among these assets.
As parallelism is inherent to iDTV applications, there are
several situations in which it is desirable to provide reuse
both of active code (in this case media objects being pre-
sented) and of static code (in this case, syntactic reuse of
part of a hypermedia document). !

Reuse of a media object’s content is essential in iDTV
applications. It is advantageous to let authors edit image, au-
dio, and video files, and then reuse these contents in different
documents or different parts of the same document. Content
reuse can be related with both: (a) content specification (sta-
tic reuse), allowing several media objects that refer to the
same content to be independently presented by players; and
(b) content presentation (active reuse), allowing for a unique
content presentation to be shared by several media object
players. Moreover, it is convenient to support not only con-
tent reuse but also extensive reuse of all other presentation

! As usual in the hypermedia context, we will use the term document to
refer to an application specification.

@ Springer

attributes (the whole media object specification). In brief, we
are thus talking about syntactic (static) reuse, which means
having several independent instances of the same code (in-
dependent media object exhibitions), and reuse of the same
media object presentation (active code reuse).

Reuse of presentation characteristics is also helpful. Ap-
plying interface design patterns tends to enhance iDTV ap-
plication usability. When the same presentation pattern is
used, families of iDTV applications gain proper identity and
viewers become acquainted with that format. For example, if
several media objects must always be exhibited in the same
screen region of the same device, region-specification (sta-
tic) reuse forces this pattern. If not only the location but also
the way in which the media object is presented (for exam-
ple the level of image transparency, font color, sound level,
etc.) is declared apart, static reuse of this detached code span
forces a predefined style.

Moving the reuse focus to structured document author-
ing, many iDTV applications follow a hierarchical organiza-
tion. For example, a TV series may be composed of the TV
channel logo (image) and various episodes; each episode is
composed of scenes that are composed of shots and possi-
bly some (perhaps interactive) advertisements; and so on. In
other words, an iDTV application is a recursive composition
of objects (media objects and other compositions). Very of-
ten several iDTV applications follow the same structure (the
same TV script). Therefore, it is also convenient to support
structure reuse of a whole iDTV application or part of it,
to make production easier and also to enforce a format that
gives identity to TV programs.

Going to the next reuse claim, one of the biggest advan-
tages of iDTV applications is their capacity to adapt content
or the way content is presented, depending on viewer pro-
files, viewer locations, or exhibition platform profiles. Adap-
tations are based on rule accomplishments, and rules should
be reusable across different adaptations.

Going further, as aforementioned, iDTV applications are
composed of media objects and relationships among them.
Thus, reducing or at least simplifying the definition of re-
lationships is essential to decrease the application develop-
ment time and the programming-error risk. Relationships
are defined by relation types plus relation actors (in our
case, object interfaces) that play roles defined by the rela-
tion types. Relation types are difficult to specify, and it is a
good practice to define them apart from applications and let
them be shared by relationships.

It is also very usual to find part of iDTV applications re-
peated in other applications. This is, for example, the case
of advertisements embedded in applications. Therefore it is
worthwhile to treat application specifications as a library
from which they can be imported by other applications. In-
deed, the hierarchical nesting of compositions previously



J Braz Comput Soc (2010) 16: 229-245

231

mentioned and exemplified in the case of a TV series encap-
sulation can be thought of as a document nesting. In the ex-
ample, each composition can comprise a document. For ex-
ample, each scene specification of an episode can be seen as
a document that can be imported and included into another
document specifying the whole episode, which in turn can
be imported by another document representing the whole se-
ries.

Moreover, it is desirable to treat application libraries as
an information base from which only some aspects of inter-
est can be imported. For example, it should be possible to
import merely the layout of an application to another appli-
cation.

As seen, in iDTV application specifications reuse fea-
tures are supposed to embrace numerous aspects involved
in authoring and presentation tasks. It should be stressed at
this point that although this paper focuses on reuse in NCL
[2], the same approach can be exploited in other time-based
DSLs targeted at the iDTV domain.

3 Reuse in a same NCL application

NCL is an XML application that follows the modulariza-
tion approach. The NCL design naturally favors code reuse
when detaching the several specification aspects of the au-
thoring process of iDTV applications. This section begins
with a brief presentation of NCL that will be useful in the
discussion in the remainder of this section and in Sect. 4.

3.1 NCL overview

Very briefly presenting the main NCL elements (others
will be described along the text), the general document
structure is divided into <head> and <body> elements, as
usual in W3C standards. The <head> contains all base
elements (<regionBase>, <descriptorBase>, <ruleBase>,
<transitionBase>, and <connectorBase>) whose child ele-
ments are targets of reuse by child elements of the <body>.

The <body> element contains <media>, <context>,
<switch>, and <link> child elements. A <media> element
defines a media object, specifying its type and its content
location. The <context> element defines a context object.
A context object is a composite that contains a set of objects
(media, context, or switch) and a set of links (defining rela-
tionships among objects). The <switch> element allows the
definition of alternative objects (represented by <media>,
<context>, and <switch> elements) to be chosen during pre-
sentation time. Test rules used in choosing the switch com-
ponent are defined by <rule> or <compositeRule> elements,
defined in the <head> part of the document.

An object’s interfaces are used in relationships with other
objects’ interfaces. The <area> element allows for the defin-
ition of a content anchor representing a spatial, temporal, or

Table 1 Reuse in NCL

Element Attribute Reused element
media refer media

context refer context
descriptor region region
descriptor transIn transition
descriptor transOut transition

bind descriptor descriptor

link xconnector causalConnector
bindRule rule rule

switch refer switch
regionBase region region

spatiotemporal segment of a media object’s content, and also
a code span in imperative media objects. The <property> el-
ement is used for defining an object’s property (a local vari-
able) or a group of object’s properties as one of the object’s
interfaces. The <port> element of a <context> allows exter-
nalizing an interface of any of its internal child objects.

The temporal and spatial information needed to present
each media object may be defined by <descriptor> el-
ements. The element may refer to a <region> element
to define the initial position of a <media> element in
some output device. A <descriptor> element may also
refer to a <transition> element to define transition ef-
fects in the beginning or end of a media object presen-
tation. The <head> part of a document encloses the de-
finition of <descriptor>, <region>, and <transition> ele-
ments.

A <causalConnector> element represents a relation that
may be used for creating <link> elements. In a causal re-
lation, a condition role shall be satisfied in order to trigger
an action role. A <link> element binds an object’s interfaces
to connector roles (conditions or actions), defining a spa-
tiotemporal relationship among objects.

Table 1 shows, in the first column, an NCL element that
may reuse features defined in another NCL element pre-
sented in the third column, by using its attribute specified in
the second column. However, these are not all of the reuse
cases supported by NCL, as discussed in the following sec-
tions.

3.2 Content reuse

In NCL, a media object specification defines its content, its
interfaces (content anchors and properties), and how (and
where) the content must be exhibited. In this section let us
pay attention only to the content.

A media object defines its content by reference through
its src attribute. The src value locates content independently
from where it is (for example, stored in a local or remote file

@ Springer



232

J Braz Comput Soc (2010) 16: 229-245

<media id="videol"
src="../media/movie.mp4"
descriptor="descVideol"/>

<media id="video2"
src="../media/movie.mp4"
descriptor="descVideo2"/>

<media id="video3"
src="ncl-mirror://video2"
descriptor="descVideo3"/>

Fig. 1 Content reuse

system, in a data carousel transmitted by some pushed data
protocol, or in streaming pushed data). Therefore, an NCL
application is composed by an NCL document, which de-
scribes the application structure and semantics, and by me-
dia contents defined on the outside.

The same content can be referred and reused by more
than one distinct media object. Usually, these objects have
independent exhibitions. Thus, for example, if a 100 s video
is referred by two objects that are started within a 50 s lag,
two 100 s exhibitions will be started from their beginning
with a superposition of the 50 s end part of one onto the 50 s
initial part of the other.

However, NCL also allows for a media object to define
its content as a mirror of another media object’s content. In
the case of parallel presentations of the two objects, they
must be identical. Going back to the previous example, if
one content is defined as a mirror of the other one, the last
instantiated (mirroring) media object would only have a du-
ration of 50 s, starting from the second half part.

Figure 1 illustrates the first reuse case with “videol”
and “video2” objects, and then the second reuse case with
“video2” and “video3” media objects. The descriptor at-
tribute is discussed in the next section.

3.3 Layout reuse

An important and time-consuming issue in hypermedia
document design is the spatial positioning of media con-
tents. The same occurs with the initialization of other pre-
sentation parameters specifying how a media object must
be presented. These two issues are addressed with first
class entities in an NCL document, namely <region> and
<descriptor>.

Each set of <region> elements constitutes a <regionBase>,
defining rectangular regions in a presentation device (a TV
screen, for example) referred to by the device attribute of
the <regionBase> element.> Regions can be superposed, as
defined by their zindex attribute.

Figure 2 exemplifies a scenario with two exhibition de-
vice classes: the base device, declared by default from

21t should be remarked that NCL provides support to display an iDTV
application on multiple exhibition devices working cooperatively un-
der the NCL player control.

@ Springer

<regionBase>

N =

<region id="backgroundRg"
left="0%" top="0%" width="100%"
height="100%"zIndex="1">
3: <region id="centerRg"
left="25%" top="25%" width="50%"
height="50%" zIndex="2"/>
4. <region id="buttonRg"
right="2%" top="2%" width="5%"
height="5%" zIndex="2"/>

5: </region>
6: </regionBase>
7. <regionBase

device="systemScreen (2)">

<region id="merchandizingRg"
left="25%" top="25%"
height="50%" width="50%"/>

9: </regionBase>

Fig. 2 Region bases for multiple devices

lines 1 to 6; and the “systemScreen(2)” class of devices, de-
fined from lines 7 to 9. One or more devices can join a class.
The base device has a “backgroundRg” region defined cov-
ering the whole screen. Two child regions are defined inside
the “backgroundRg”: “centerRg”, corresponding to a half
and centralized screen; and “buttonRg” where a button will
be exhibited in the right upper corner. Devices registered in
the “systemScreen(2)” class have only one region defined:
“merchandizingRg”, corresponding to a half-cut and cen-
tralized screen on this class of devices.

Figure 2 could be used in a scenario in which a video me-
dia object is exhibited in a central region (“centerRg”) of a
TV set, over (greater zIndex) a background image that fills
the whole screen. At a certain moment an icon would ap-
pear in the upper right corner (“buttonRg”). If an interactiv-
ity button was pressed using a secondary device (for exam-
ple, a remote control with a small screen), an advertisement
would be exhibited in a central region (“merchandizingRg”)
of the secondary device screen. Note that in this scenario
the advertisement would be presented only to those that had
engaged an interaction, without annoying other viewers and
making the watching experience more individual.

In NCL a <descriptorBase> element defines how media
objects must be initially presented, detaching the content
from the content presentation specification. This allows for
a new reuse feature, since several media objects can share
the same presentation initialization style.

Of course, the initial position of a media object is
part of how an object must start its presentation. Thus a
<descriptor> element can define by itself a region on a de-
vice screen or refer to a <region> element. Since several de-
scriptors can share the same region, referring to a <region>
element is another useful reuse feature.

Figure 3 adds a descriptor base to the scenario of Fig. 2.
The “centerDs” descriptor refers to the “centerRg” region,
also specifying that the sound level must be set to 50% of



J Braz Comput Soc (2010) 16: 229-245

233

1: <descriptorBase>
2: <descriptor id="centerDs"
region="centerRg">
3: <descriptorParam
name="soundLevel" value="0.5"/>
4: </descriptor>
5: <descriptor id="buttonDs"
region="buttonRg">
6: <descriptorParam
name="transparency"
value="0.2"/>
7: </descriptor>
8: <descriptor id="merchandizingDs"
region="merchandizingRg"/>
9: </descriptorBase>
Fig. 3 Descriptor base
1: <media id="merchandizing”

descriptor="merchandizingDs”
src="index.html”/>

2: <!-— An alternative -->
3: <media id="merchandizing”
src="index.html”>

4: <property name="device”
value="systemScreen(2)"”/>

5: <property name="left”
value="25%"/>

6: <property name="top” value="25%"/>

7 <property name="height”
value="50%"/>

8: <property name="width”

value="50%"/>
9: </media>

Fig. 4 Alternatives for <media> element definition

its recorded level (lines 2 to 4). The “buttonDs” descriptor
refers to the “buttonRg” region and also specifies that the
image transparency must be set to 20% (lines 5 to 7). The
“merchandizingDs” descriptor (lines 8 and 9) only refers to
the “merchandizingRg” region in the secondary device.

Usually, NCL promotes reuse referring to identifiers of
the reused parts, as location values used in the src attributes,
or id values, when the reference is to an NCL entity, as
in Fig. 1 (descriptor attribute values) and Fig. 3 (region
attribute values). As in most XML application languages,
NCL entities must have a distinct identifier in a document
(the id attribute value).

It is important to stress that NCL allows for, but does
not impose, reuse practices. Reference to <descriptor> and
<region> elements are optional. A <descriptor> element
could define a region using <descriptorParam> elements,
thus without referring to <region> elements. A <media>
element can also define all necessary presentation prop-
erties using <property> elements, without reference to a
<descriptor> element. Indeed, descriptors are used only to
initialize these properties. Figure 4 illustrates the <media>
element whose content is the advertisement to be shown in
the scenario illustrated in Figs. 2 and 3 (line 1), and an alter-
native for this <media> element definition without referring
to descriptors (lines 3 to 9).

1: <media id="mainvideo"
descriptor="centerDs"
sre="sbtvd-ts://0x01.0x05"/>

2: <media id="button"
descriptor="buttonDs"
sre="media/redButton.png"/>

3: <media id="merchandizing"
descriptor="merchandizingDs"
src="index.html"/>

4: <media id="buttonRef"
refer="button" instance="new"/>

Fig. 5 Media object reuse

3.4 Media object reuse

As stated in Sect. 2, when defining a media object it is nec-
essary to specify its content location and its interface and
how it must be presented. However, there is another way.
A <media> element can be defined referring another one, in-
heriting all the media object definition (content, properties,
and anchors).

Figure 5 extends the previous example scenario. In it, the
main TV video (id="“mainVideo”) refers to the “centerDs”
descriptor, as previously explained (line 1). Its src attribute
specifies that the content must be retrieved from the trans-
port stream, and more precisely, from the transport el-
ementary stream with program_number.component_tag=
“Ox01.0x05”. Line 2 defines the “button” media object,
and line 3 the “merchandizing” HTML media object.

In line 4 of Fig. 5, the “buttonRef” media object refers
to the “button” media object, inheriting all its definition (in
this case, properties defined by the “buttonDs” descriptor).
The instance attribute is explained in what follows.

In the NCL conceptual model, document structuring is
made using contexts. A context is a special object that
groups media objects and other contexts, recursively. The
single constraint applicable is that a context cannot be in-
cluded recursively in itself. A context can also contain rela-
tionships among its components. In NCL a context is rep-
resented by the <body> and the <context> elements. The
<body> element is just a name for the ancestral of all con-
texts in an NCL document.

The context nesting creates what NCL calls a perspective
for an object, a concept similar to the “scope” in general-
purpose languages. An object’s perspective is the nesting
structure from the most external context (represented by the
<body> element) to the object. In a perspective, an object in-
herits all relationships defined in ancestral contexts referring
directly or indirectly to it.

Object reuse (in spite of being a media object or a
context) allows an object to pertain to more than one per-
spective, and thus to more than one context. This is a very
important reuse feature since a single object in different per-
spectives may have different behaviors (depending on the in-
herited relationships), promoting the concept of active code
reuse for media objects.

@ Springer



234

J Braz Comput Soc (2010) 16: 229-245

In a <media> element specification that refers to (and
thus reuses) another <media> element, the instance attribute
allows for defining whether syntactic (static) reuse of code is
desired (instance="“new”, see Fig. 5), or if active code reuse
is the goal. In the last case, reuse may be either instantaneous
(instance="instSame”) or gradual (instance="gradSame”),
as follows.

Assume that media object A refers to media object B.

(1) If instance="new”, a new independent instance of A
will be created when A is started, inheriting all defined
code for B, independently of the fact that B is in exhi-
bition or not. A inherits B interfaces, but can add new
ones. Moreover, all interfaces take part only in the re-
lationships defined in the perspective where the object
was created.

(2) In the case of active code reuse (instance equal to
“instSame” or “gradSame”), A and B are the same ob-
ject.

(i) If instance="instSame”, interfaces for this same
object come from the A and B specifications. More-
over, relationships defined both in the A perspective
and in the B perspective are enabled.

(i1) If instance=*gradSame”, the single difference is
that each object representation must receive an ac-
tion for its activation. Once active, its interfaces are
incorporated to the common object in presentation.
Likewise, relationships defined in the perspective of
an activated media object become enabled.

Running media object code reuse has shown to be very use-
ful, even more so than static code reuse.

3.5 Relation reuse

Unlike other XML languages, NCL detaches the relation
and the relationship concepts [5], as is usual in ADLs (Ar-
chitecture Description Languages [6]).

Relations are defined in a relation base in the head part of
the document (<head> element). Relations define roles and
the glue relating roles. NCL allows defining any kind of re-
lation, but reserved words have been defined to simplify the
definition of causal temporal and spatial relations. Causal
relations are defined by <causalConnector> elements. In
causal relations, conditions defined over roles must be sat-
isfied in order to trigger actions to be applied in roles (the
same or others).

Relationships (represented by NCL <link> elements) can
be defined referring to a relation and defining actors to play
the relation roles. Thus relation reuse is natural in NCL.
Although this is the only way to define relationships in
NCL 3.0, a syntactic sugar can be added to the language
to allow relation and relationship definition within a single
element, as discussed in Sect. 7.

@ Springer

As an example of relation reuse, assume that during a
multimedia presentation the beginning of a video presenta-
tion must start an image presentation in parallel. Assume
also that in a certain moment of the presentation the begin-
ning of an audio track must start, also synchronously, an an-
imation. These two relationships can share (reuse) the same
relation: “on begin X role then start Y role”. Based on this
relation, the first relationship may bind the X role to the
video and the Y role to the image. On the other hand, the
second relationship may bind the X role to the audio track
and the Y role to the animation.

It must be remarked that relationships may be defined
among any media object type: perceptual media objects, me-
dia objects with imperative code (Lua code, for example), or
media objects with NCL or other declarative language code
(e.g., HTML).

3.6 Structure reuse

The context concept, defined in Sect. 3.4, is important not
only to structure documents but also to encapsulate presen-
tation semantics. Since a context contains not only objects
but also relationships among them, a context actually de-
fines a document embedded into another document: with a
well-defined temporal and spatial semantics defined by the
context’s links.

Structuring an NCL document using contexts is a good
programming practice. There are several examples (see
www.club.ncl.org.br) that demonstrate its usefulness, some
of them already discussed in this paper.

Just like media objects, contexts can be reused by an-
other context definition. However, only static code reuse is
allowed. Both contexts are considered independent new in-
stances. There is no equivalent to “instSame” or “gradSame”
values for context reuse.

Structure reuse is associated with the minimum and the
maximum abstraction level exposed by the language nota-
tion, and by how many notation details can be encapsulated.

3.7 Rule and transition effect reuse

In the <head> of an NCL document rule bases and transi-
tion bases can be defined. Transitions are visual or acoustic
effects that can be employed in the beginning or in the end
of media object presentations. Rules make up a logic dialect
that can be used to support content and content presentation
adaptations.

Figure 6 illustrates an example of transition base (lines
2 to 4). Line 3 specifies the “fade” transition effect that
must be applied to a content presentation during 3 seconds.
Lines 12 and 13 show how a <descriptor> element refers to
this transition to apply its effect in the beginning (transln)
of a media object presentation


http://www.club.ncl.org.br

J Braz Comput Soc (2010) 16: 229-245

235

<head>
<transitionBase>

</transitionBase>
<ruleBase>

O -JoyU s WN -

</compositeRule>
10: </ruleBase>

11: <descriptorBase>
12: <descriptor id=
13: </descriptorBase>

14: </head>

15: <body>

16: <switch id="merchandizing">

<transition id="fade3s" type="fade" dur="3s"/>

<compositeRule id="canPlayPtVideoR" operator="and">
<rule id="ptR" var="system.language" comparator="eq" value="pt"/>
<rule id="processR" var="system.CPU" comparator="gt" value="0.4"/>

merchandizingDs" region="merchandizingRg" transIn="fade3s"/>

17: <bindRule rule="canPlayPtVideoR" constituent="vMerchandizing"/>
18: <defaultComponent component="fMerchandizing"/>
19: <media id="vMerchandizing" descriptor="merchandizingDs"

src="merchandizing.mp4"/>

20: <media id="fMerchandizing" descriptor="merchandizingDs" sre="index.html"/>

21: </switch>
22: </body>

Fig. 6 Transition and rule bases

It is likewise for the separation of the <descriptor> and
<region>; detaching transitions effects from the descriptors
allows their reuse. It is very common to have the definition
of a few transition effects used by several media objects dur-
ing an iDTV presentation. However, unlike what happens
with regions, a <descriptor> element must always refer to a
transition if the effect is requested. There is no way to define
transitions as parameters of a <descriptor> element. Maybe
this is a language concept that should be revised in the next
version of the language.

As mentioned, rules express criteria that allow content
and content presentation adaptations [7]. Rules can be sim-
ple or compound. Simple rules compare a variable to a value
or to another variable. Compound rules are made up by the
“or” and “and” expressions of rules (simple or compound).

In Fig. 6 the “canPlayPtVideoR” compound rule tests if a
device can play a Portuguese video (lines 6 to 9), evaluating
two system variables.

In NCL, <switch> elements contain alternative objects
that can be chosen based on which rule is satisfied. Similar
to <context> elements, <switch> elements can also be syn-
tactically reused. As a <switch> example, Fig. 6 defines the
<switch id="“merchandizing” ...> (lines 16 to 21). Line 17
specifies that if the exhibition device can play the Portuguese
video (“canPlayPtVideoR” rule), the “vMerchandizing” me-
dia object must be selected. Otherwise, the “fMerchandiz-
ing” default media object is the correct choice.

Similarly to <switch> elements, <descriptorSwitch> el-
ements contain alternative descriptors that can be chosen
based on which rule is satisfied. Similarly to <descriptor>
elements, <descriptorSwitch> elements can also be referred
by media objects.

It is important to note that it is impossible to reuse a rule
in order to define other rules. Moreover, rules can refer to
global properties (properties of a special media object type:

“application/x-ncl-settings””) without having them explicitly
declared. On the other hand, any other use of a property re-
quires that the property be explicitly declared. Rules are rare
exceptions in the NCL reuse coherence. Maybe this is a lan-
guage concept that should be revised in the next version of
the language.

4 Reuse across NCL applications

In all previously mentioned cases of Sect. 3, reuse was dis-
cussed within the scope of a single NCL application. How-
ever, it is possible to import information bases defined in
other NCL applications and reuse their components as if
they have been defined in the importing document. In ad-
dition, the whole structure of a document, or part of it, can
be imported and reused. This allows for improving the fi-
nal document structure more extensively than seen before,
spreading its scope over several documents. For illustration,
think of an advertisement (an NCL application) that may be
embedded and exhibited in several iDTV applications (de-
fined by other NCL documents).

4.1 Nesting NCL documents

There are two alternatives to reusing an entire document
specification (that is, its structure and presentation layout).
The first one amounts to importing a document and reusing
it as a context object in the new document. The second one
amounts to treating the document as a media object with
NCL declarative code in the new document.

Importing document A as a context of document B al-
lows for the creation of an independent copy of A inside B,
as in any context reuse. The imported document must be re-
ferred to as “alias#docID” (where alias is an arbitrary string

@ Springer



236

J Braz Comput Soc (2010) 16: 229-245

(a) Document A.ncl
1: <?xml version="1.0"
encoding="IS0-8859-1"7?>
2: <nel id="A" (...) >
3: (...)
4: </nel>

(b) Importing Document A.ncl into B.ncl

1: <?xml version="1.0"
encoding="IS0-8859-1"7?>

2: <nel id="reuse-NCL” (...) >

3: <head>

4 <importedDocumentBase>

5 <importNCL documentURI="A.ncl”

alias="docA”/>

6 </importedDocumentBase>

7: </head>

8: <body>

9: (...)

10: <context id="referDocA”

refer="docA#A" />
11: </body>
12: </necl>

Fig. 7 Importing and nesting an NCL document

associated with the document URI and informed in the im-
porting document’s head; docld is the id attribute value as-
sociated with the imported document). Parts of an imported
document can also be reused, but this discussion is left to
Sect. 4.3.

Figure 7(a) illustrates an NCL document with id="A".
The content of “A” is deliberately omitted without any prej-
udice. Figure 7(b) shows an NCL document with id=“B”
that imports “A” defining an alias (“docA”) for this imported
document in the “B” scope (line 5). The “referDocA” con-
text reuses the “A” document definition referring to the “A”
document id (“docA#A”). This is sufficient to create a copy
of “A” able to be related with links defined in the “B” docu-
ment. Note that when the context is exhibited, its node must
follow the same layout defined in the “A” document.

The reuse of an NCL document as an NCL media ob-
ject with NCL code (“application/x-ncl-NCL” type) allows
for presenting the reused object in a region of an exhibition
device screen, as if this region were the (virtual) available
screen. Figure 8 illustrates this case, where the same docu-
ment of Fig. 7(a) is now defined to be presented in a region
specified by the “centerDs” descriptor.

4.2 Importing information bases

Every base defined in the <head> element of an NCL doc-
ument can be imported by a corresponding base in an-
other document by using the <importBase> element of
NCL. This element defines an alias for the imported base
and refers to the imported base through its URI (docu-
ment’s_URI#base_id).

Region bases and descriptor bases can be defined in files
apart from NCL application specification files and then im-
ported by these documents as if they were layout libraries.

@ Springer

(a) Document A.ncl

1: <?xml version="1.0"
encoding="IS0-8859-1"7?>

2: <necl id="A" (...) >

3: (...)

4: </ncl>

(b) Importing A.ncl into a region of C.ncl

1: <?xml version="1.0"
encoding="IS0-8859-1"7?>

2: <ncl id="C” (...) >
3: <body>
4: <media id="cDocA” src="A.ncl”

type="application/x-ncl-NCL"”
descriptor="centerDs” />

5: (...)

6: </body>

7: </ncl>

Fig. 8 Importing an NCL document to be exhibited in a region defined
in the importing document

This is very useful in families of applications that should
have the same presentation standard as a family identity and
also improves usability. This is typical in iDTV dramas and
other TV series.

Transition bases may also be imported and reused by
descriptors of another document. The same works for rule
bases. Practical experience shows that there is a trend of us-
ing the same set of rules by an author in several of its au-
thored documents.

Connector base importing is the most common practice
in NCL applications. Authors and organizations tend to add
each relation they define in a common base shared by all
their applications. Usually, <causalconnector> elements are
defined by NCL language experts and put into a common
connector base in order to be imported by naive program-
mers into their applications. Mostly, a convention is defined
by a company to identify their connectors in order to facili-
tate their reuse. It is rare in usual iDTV applications to need
connectors different from the usual ones [1].

Importing and reusing connectors has an additional ad-
vantage of reducing the language learning curve, since con-
nectors are one of the language’s most difficult concepts.
Importing and reusing connectors allows authors to produce
iDTV applications from the very beginning of the language
learning.

4.3 Importing objects of an NCL application

Section 4.1 discussed how a document can be imported and
reused as a whole. In addition, parts of a document can also
be reused. Indeed, any NCL object (media objects, contexts,
and switches) can be reused.

In all these cases the reuse is similar to the whole
document reuse. The single difference is to refer to the
reused object identifier instead of the document identi-
fier.



J Braz Comput Soc (2010) 16: 229-245 237
Fig. 9 Importing bases and 1: <?xml version="1.0" encoding="ISO-8859-1"?>
documents 2: <ncl id="importing" (...) >
3: <head>
4: <descriptorBase>
5: <importBase alias="desc" documentURI="descriptors.ncl"/>
6: </descriptorBase>
7: <connectorBase>
8: <importBase alias="conn" documentURI="connectors.ncl"/>
9: </connectorBase>
10: <importedDocumentBase>
11: <importNCL alias="docA" documentURI="A.ncl"/>
12: </importedDocumentBase>
13: </head>
14: <body>
15: <context id="refDoc" refer="docA#someContext"/>
16: <media id="refMediaA" instance="new" refer="docA#someMedia"/>
17: <media id="image" src="someImage.png" descriptor="desc#centerDs"/>
18: (...)
19: <link xconnector="conn#onBeginStopStart">
20: <bind component="image" role="onBegin"/>
21: <bind component="refMediaA" role="stop"/>
22: <bind component="refDoc" role="start"/>
23: </1link>
24: </body>
25: </ncl>

Figure 9 shows several importing examples. Two bases
are imported by the document: the descriptor base in “de-
scriptors.ncl” (line 5), and the connector base in “con-
nectors.ncl” (line 8). In addition, the “A.ncl” is imported
(line 11): its body content and all its bases.

In the body of the document in Fig. 9, the “someCon-
text” imported context is reused (line 15) to be presented in
the same regions defined in the imported “A” document. The
“refMediaA” media object reuses the “someMedia” (line 16)
media object defined in the “A” document. The “image” me-
dia object (line 17) with the content defined by the “somelm-
age.png” file must be initially exhibited following the im-
ported “centerDs” descriptor from “descriptors.ncl”.

Still in Fig. 9, note that the <link> element (lines 19 to 23)
refers to the imported “onBeginStopStart” connector. As can
be noted, the nomenclature used is sufficient for an author
to understand what the relation means. Thus, the <link> ele-
ment only establishes the binds, defining that when the “im-
age” media object begins to be presented (line 20), “refMe-
diaA” media object must be stopped (line 21), and “refDoc”
(line 22) context must start to be presented.

5 Analyzing NCL usability

Among possible methods to evaluate how usable NCL reuse
features are for its intended users, there are empirical meth-
ods (involving empirical observations of how people actu-
ally use the features provided by NCL in real task situations
or realistic lab settings) and analytic methods (derived from
theories, models or frameworks, in varying degrees of for-
mality). A combination of methods is clearly the best choice
to gain insight and understanding with respect to how and

why NCL supports reuse in practical contexts. However, one
must decide how to combine them: for example, should they
be applied independently of each other, or sequentially? Our
choice in this research is the latter, starting with an ana-
lytic method. Among the advantages of this choice, two are
particularly relevant. First, analytic methods can help detect
specific features of NCL that we (its designers) were not
aware of. Once detected, these features can then be empiri-
cally tested with NCL users in different contexts of use. Sec-
ond, analytic methods can help establish theoretical or pre-
theoretical connections among (classes of) features, helping
analysts in probing the nature and consequences of NCL fea-
tures and relations among them. This possibility allows us to
establish connections between NCL and other programming
or specification languages, a factor that plays a major role
in recruiting participants for empirical tests, for instance. To
mention but one, if we were to find that NCL shares cer-
tain features with event-oriented programming languages,
for example, empirical tests should perhaps discriminate be-
tween participants with and without prior knowledge of such
languages.

A commonly used analytic tool for evaluating the usabil-
ity of computer languages in the last few years has been
the Cognitive Dimensions of Notation (CDN) framework
[3, 4]. Although CDN originally consists of design princi-
ples for analyzing the usability of information artifacts, it
only takes viewing computer languages as information ar-
tifacts themselves to gain considerable leverage in under-
standing the cognitive effort they may occasionally impose
to programmers with different backgrounds and levels of ex-
pertise. It has, indeed, been lately criticized for not being
“scientific according to standards normally applied in re-
search” [8]; however, for researchers who acknowledge the

@ Springer



238

J Braz Comput Soc (2010) 16: 229-245

importance of interpretation and interpretive frameworks in
science, this criticism does not apply. CDN can and, as we
will show, does provide important insights on how to in-
terpret the meaning and impact of syntactic and semantic
features of programming languages on human cognition. It
takes the analyst, however, an extra step compared to using
noninterpretive predictive approaches in scientific research.
We must define how each cognitive dimension is to be sys-
tematically applied to the object of analysis before we appre-
ciate the results of such applications. So, we briefly list and
define each dimension proposed by the CDN framework,
stating how we apply it to the analysis of NCL. This ap-
plication can be viewed as our subsidiary contribution for
other researchers interested in analyzing other iDTV speci-
fication languages, and possibly other kinds of specification
languages as well.

CDN is a framework commonly applied when thinking
with diagrams [9], especially when designing Visual Pro-
gramming Languages (VPLs). It has also been applied to
evaluate different tools and programming languages. For ex-
ample, Z formal specifications in the TranZit environment
[10] and end user programming techniques in Interactive
Football Playbook (IFP) [11] have been analyzed with CDN.
In fact, because end user programming and development ac-
tivities highlight the importance of usability and low cogni-
tive loads in software development tools, CDN has gained
popularity as an evaluation framework in this context [12],
of which Web mash-ups [13, 14] and game scripting [15] are
two noteworthy instances.

5.1 Method of analysis

The first step in our analysis was to cast NCL as an in-
formation artifact of some sort. Viewing a specification
language as an artifact is easy. Artifacts are non-natural
objects, man-made objects designed for a particular end.
This being undoubtedly the case with NCL, we must only
show that it is an information artifact. We take an infor-
mation artifact to be one that not only carries information
(which most artifacts arguably do, given that they carry
meaning), but whose primary purpose is to represent and
support information processing. This definition seems to
accommodate the whole spectrum of artifacts that CDN
has been used to analyze to date, and comfortably locates
NCL within it for the purposes of the analysis that fol-
lows.

Next, computer languages are artifacts that have a dual
nature. They represent information in a referential sense, and
they also construct information in a generative sense [16].
In other words, they may not only refer to pre-existing in-
formation (for example a programming language construct
like ‘if a =1 then ...” tests an existing condition to
verify whether a is equal to 1 or not), but they may also

@ Springer

create representations as a consequence of computational
execution (for example a construct like ‘if a =1 then
b = false’ causes the assignment of value ‘false’ to b,
something that did not necessarily exist before). In practi-
cal terms, this dual nature leads us to include, in the analy-
sis of computer languages, not only the linguistic constructs
that it offers for specifying computer representations and
processes, but also its operational semantics (i.e., what ef-
fects language constructs bring about when they are inter-
preted by a computer). We propose to add a third aspect
of computer languages in the analysis: the programming in-
frastructure that supports programmers in creating and in-
terpreting language constructs. Although the latter may be
certainly considered an external factor that is not really in-
trinsic to the language being analyzed (for we can always
use different editors and CASE tools to produce programs,
regardless of the language we are working with), we claim
that program editors, for example, underline and in an ex-
tensive way make explicit certain features of programming
languages. This is especially true for NCL and its declarative
abstractions.

In Fig. 10 we show how we organize the space of analy-
sis. On the upper part of the figure, we see the NCL docu-
ment, which is produced with the support of computer lan-
guage editors. These typically focus on the lexical and syn-
tactic aspects of computer languages, helping their users to
perceive certain features of the language, avoid certain er-
rors, establish certain relations, and so on. On the lower part
of the figure, we see the NCL presentation, which results
from a computer interpretation of the NCL code. This is car-
ried out by computer interpreters called NCL Players that
produce representations and behavior that help their users
perceive the result of language constructs, their meaning,

Editor:
Supports the
expression of Applicable
LEXICAL and CDN
SYNTACTIC aspects Dimensions
of the language

=

Interpreter:
Supports the
externalization of
SEMANTIC aspects
of the language

Applicable
CDN

Dimensions
Presentation

Fig. 10 Organizing the application of CDN dimensions to NCL fea-
tures




J Braz Comput Soc (2010) 16: 229-245

239

scope, and the range of effects for which they can be used.
Together, and only together, these two determine the usabil-
ity of NCL as an information artifact. So, this is why we will
include aspects of editors and interpreters in our analysis of
NCL reuse with the CDN framework. Note that, as shown in
Fig. 10, certain dimensions will be applied to both static and
active code reuse, whereas others will only make sense (or
be remarkably more relevant) in terms of one or the other.
Note also that in the very definition of CDN dimensions, as
is the case of visibility, for example, one must consider cer-
tain computational environment characteristics, lest we are
not able to decide how elements of the language are “ac-
cessed” or “made visible”. So, we think that our scope of
analysis is sufficiently justified.

The editors we are considering in this analysis are: a non-
specialized XML text editor, the NCL Eclipse [17], and the
Composer [18]. The characteristics evaluated in the first en-
vironment are intrinsically related to NCL notation, focus-
ing on an almost neutral environment that does not provide
specific NCL features. NCL Eclipse [17], however, is a tex-
tual authoring tool with few graphical features that never
overlap with text exhibition. It has been proposed to support
author interaction directly with the NCL notation. Composer
[18] is an authoring tool that makes use of four synchronized
graphical views. Composer users can focus on specific views
depending on the task they are currently performing. Obvi-
ously, NCL usability evaluation is different in each of these
three environments, since they constitute different overall
systems (notation + environment). The interpreter we are
considering is the same in all three cases, NCL Player, the
reference implementation of the Ginga standard [1, 19].

The thirteen CDN dimensions used in our analysis are
defined in [3], and quoted below, along with notes on the
specific interpretation we give to them in this paper.

e Visibility: “ability to view components easily”.

Is all needed information easily identified and accessible
when authors are editing part of an NCL document? How do
editors improve visibility?

e Abstraction Gradient: “types and availability of abstrac-
tion mechanisms”.

How easy is it to support composition and encapsulation
in NCL? How do editors take advantage of the specification
abstraction levels?

o Closeness of Mapping: “closeness of representation to do-
main”.

How closely does the NCL document specification cor-
respond to its presentation? How do editors help with this
mapping?

e Consistency: “similar semantics are expressed in similar
syntactic forms”.

Is it possible to infer other NCL constructs once a basic
subset of this language is learned? Are there exceptions or
special cases to be learned?

e Diffuseness: “verbosity of language”.

How many first-class NCL elements must be defined in
a document for producing perceptible visual results in NCL
presentations?

e Error Proneness: “the notation invites mistakes and the
system gives little protection”.

Does NCL notation induce programming or semantic er-
rors? Do editors create new types of induced errors?

e Hard Mental Operations: “high demand on cognitive re-
sources”.

Which NCL authoring tasks become easier when one
uses external annotations? How do editors make use of ex-
ternal annotations? Which NCL authoring tasks can be made
easier by means of external cognitive aids? Which aids are
these? Do editors and player provide them?

e Hidden Dependencies: “important links between entities
are not visible”.

How are dependencies identified in NCL documents?
Which editor features are designed to help find dependen-
cies?

e Premature Commitment: “constraints on the order of do-
ing things”.

In which order must NCL elements be created during
document authoring? Do editors offer predefined orders or
do they enable authors to create things in whichever order
they wish?

e Progressive Evaluation: “work to date can be checked at
any time”.

Is it possible to get feedback for partially defined presen-
tations of an NCL document? Is it possible to play incom-
plete documents?

e Role Expressiveness: “the purpose of an entity is readily
inferred”.

How obvious is the role of each NCL element in the
whole solution?

e Secondary Notation: “extra information in means other
than formal syntax”.

Which are the comment and documentation types that
can be found in NCL documents? How do editors handle
comments and metadata?

e Viscosity: “resistance to change”.

How much effort is required to make a change in an NCL
document? What kind of changes are harder to commit?

@ Springer



240

J Braz Comput Soc (2010) 16: 229-245

5.2 Usability issues associated with NCL reuse

In this section we describe some typical needs authors have
when creating NCL hypermedia applications. The section
extends the analysis made in Sects. 3 and 4 by evaluating
NCL usability in the context of using three authoring en-
vironments. Instead of evaluating the NCL notation expres-
siveness per se, we now evaluate how the notation communi-
cates (to users) its design principles and the intent of its de-
signers with the support of different computer environments
that provide the necessary infrastructure for NCL program-
ming.

The order in which the cognitive dimensions are dis-
cussed was chosen for fluency only. The reader should refer
to the previous subsection to recall our interpretation of each
cognitive dimension in the context of this research. As in
previous sections, the term element below refers to an XML
element, and the term attribute to an attribute of an XML
element. As usual, XML attribute names appear in italics.

5.2.1 Visibility

Content reuse in NCL has the potential to introduce a vis-
ibility problem because an author may not see any media
content (images, videos, etc.) by just reading an NCL doc-
ument. However, this is an unavoidable problem, found in
all textual languages designed for hypermedia document au-
thoring.

NCL Eclipse supports preview of contents, so that im-
ages, audio, and videos can be easily displayed during the
authoring phase. This helps authors to integrate contents
mentally with their referring media objects. Although the
latter is related to the visibility dimension, it is clear that
it also alleviates the load of cognitive operations (another
CDN dimension) inasmuch as it supports recognition rather
than recall in retrieving objects by their names.

As NCL is a textual language for specifying hyperme-
dia documents of any size, it will always pose some cogni-
tive problem when a large document is being edited. This
remains true even if more concise graphic abstractions are
employed.

As mentioned in Sect. 3, running media object code reuse
has shown to be very useful, even more so than static code
reuse. However, in this case, the reuse can lessen the visibil-
ity problem, since the same object can be repeated in differ-
ent parts of a code, only with its interfaces of interest.

Since relationships in NCL are always defined referring
to a previously defined relation, this can also cause visi-
bility cognitive problems. However, syntactic sugar can be
added to the language to lessen this problem, as discussed in
Sect. 7.

As discussed in Sect. 3, there is no way to define transi-
tions as parameters of a <descriptor> element. This means

@ Springer

that transitions are more prone to visibility cognitive prob-
lems than regions. Although this has not been considered
relevant in the NCL 3.0 EDTV profile [1], this is a language
concept that should be revised in the next version of the lan-
guage.

In most general-purpose XML editors, it is possible to
collapse and expand the XML tree structure in such a way
that code spans can be hidden or shown, as desired. The
same feature is offered both on NCL Eclipse and Composer
tools. This, in itself, provides some visibility control.

NCL Eclipse, in addition, supports hypertext navigation
from one editing position to another. Shortcuts (hyperlinks)
are defined by NCL Eclipse when an NCL element refers
to another element. With this feature, an NCL author can
quickly switch from document body to head, in order to
reach nonvisible code spans. The environment also provides
a shortcut to return to the previous editing position.

5.2.2 Abstraction gradient

Structure reuse is in a straight line with the abstraction gradi-
ent cognitive dimension. Having hypermedia compositions
(context) as the central abstraction concept of NCL shows
the importance of this dimension in this language design,
and the importance of this dimension in itself.

NCL notation is designed to help authors with several
abstraction levels. General-purpose XML editors provide no
support to help the encapsulation of code fragments.

The Composer structural view, however, represents the
document as a composite graph, where graph nodes repre-
sent media objects or contexts, and graph edges represent
links. This view reveals the several abstraction levels spec-
ified in an NCL document and makes it easier to achieve
structure reuse. For example, authors can easily identify
similarities between structures at a particular level of ab-
straction, and choose to reuse code corresponding to the ab-
stractions they see.

5.2.3 Closeness of mapping

The NCL importing feature relates to the closeness of map-
ping dimension in CDN, as the concept can be considered a
“programming trick”. To import a document is to make its
head and body “visible” to the importing document. Once
the importing is concluded, reuse can be done by referring
to the document bases or part of the body of the imported
document.

As previously mentioned, NCL Eclipse treats an NCL
specification as a hypertext, representing references to
reused elements as hyperlinks. Thus, the hypermedia en-
vironment is itself a metaphor of the applications it has
been designed to create. However, mapping NCL code onto
NCL presentations in this editor is still a complex operation.



J Braz Comput Soc (2010) 16: 229-245

241

So, reuse opportunities that depend on recognizing common
presentation features when looking at NCL code are more
difficult to do.

Composer, in turn, makes use of multiple synchronized
graphical views, each one of them related to a particular as-
pect of editing tasks, or to particular user profiles. In this
way the tool meets a wider range of user needs, and is apt
to support code reuse and abstraction mappings more easily
than other editors. In structural view, a document is depicted
as a composite graph, which may not be natural for authors
without prior programming skills. The temporal view, how-
ever, depicts a document as an object that unfolds and be-
haves differently over time, which can be more familiar to
audiovisual content producers with few program skills and
more acquainted with timeline editions. These two represen-
tations can help authors detect reuse opportunities, which
are closely related to presentational characteristics of a doc-
ument, while dealing with the NCL code specification.

5.2.4 Consistency

The understanding of the three basic elements of NCL (<me-
dia>, <link>, and <context>) guide the understanding of
the other ones; what is in line with the consistency cogni-
tive dimension, that is, how much can be inferred from the
knowledge of only part of the notation. Secondarily, the <de-
scriptor> and <region> elements can be optionally used to-
gether with <media> elements. Likewise, <causalConnec-
tor> elements are used together with links. Interface ele-
ments (<area>, <property>, and <port>) are used together
with <media> or < context> elements.

It is important to mention again that it is impossible to
reuse a rule in order to define other rules. This is a rare ex-
ception in NCL reuse coherence, as previously mentioned.
Still regarding consistency, as presented in Sect. 3, rules can
refer to global properties without having them explicitly de-
clared. As mentioned in that section, this is a language con-
cept that should be revised in the next version of the lan-
guage.

NCL has several merits in terms of consistency. As more
extensively discussed in Sect. 3, understanding a small set
of core concepts and a few XML elements is sufficient for
authors to anticipate and guess the whole. We believe that
the editing and playback infrastructure is not as relevant for
analyzing NCL usability for purposes of reuse as the strictly
linguistic aspects of NCL discussed in previous sections.

5.2.5 Diffuseness
The auto-complete feature of NCL Eclipse suggests valid

values when editing NCL attributes. When an author acti-
vates auto-complete while editing the region attribute of a

<descriptor> element, for example, only identifiers of <re-
gion> elements are presented. This quick reminder mech-
anism helps reduce the diffuseness problem by shortening
codification distances between related elements, that is, the
editor aggregates elements dispersed in the NCL code.

In Composer spatial view, authors are able to view and set
all media positions applicable to any given point in presen-
tation time. The spatial view helps decrease diffuseness by
aggregating document representations on screen that are in
one-to-one correspondence with the final exhibition spatial
characteristics.

However, the diffuseness of NCL code can create prob-
lems when reusing an element because it introduces depen-
dency chains (i.e., one element reuses another, which reuses
another, and so on). Some common element chains are:

e media — descriptor — region
e media — descriptor — transition
e switch — rule — bindRule

This NCL feature is also related to hidden dependencies,
further discussed in this section. With respect to diffuseness,
we only remark that NCL “verbosity” somehow contributes
to aggravating hidden dependency problems, and that our
current editing and playback infrastructure does not yet pro-
vide robust solutions for them.

5.2.6 Error proneness

Two types of errors can be distinguished. The first is simply
a defective NCL code, which makes an NCL document pre-
sentation impossible. Such errors should be detected during
the authoring phase. NCL Eclipse provides efficient and ex-
tensive code validation support, which allows authors to eas-
ily find and remove programming errors. The second type of
errors is semantic, which are found in properly coded docu-
ments that do not meet the author’s expectations or intent.

NCL documents typically have several elements that re-
fer to other elements. This is a welcome feature for reuse, but
it can also create the need to check nonvisible code. When
specifying a link, for example, the author needs to check the
role cardinality in the referred connector specification. This
information is not immediately available and can be mis-
leading. The referring mechanism can lead to various other
kinds of mistakes. Avoiding this is a matter of language de-
sign and programming infrastructure, tightly related to the
previous discussion of the visibility dimension.

5.2.7 Hard mental operations
NCL coding and reuse still poses considerable problems re-
lated to hard mental operations. In spite of facilitating reuse

in many other respects, there remain a few cases where im-
provement is clearly needed. Let us take NCL regions as an

@ Springer



242

J Braz Comput Soc (2010) 16: 229-245

example. A region is typically defined by attributes such as
left, top, width, and height, which can have values in pixels
or percentage (of the parent region). It is not so simple to
mentally visualize the region area when reading the region
attribute values. The region also carries the overlap infor-
mation (zlndex attribute), stating which region must be pre-
sented when two or more of them occupy the same screen
area. Authors usually need to display the desired content in
order to find its appropriate position and dimension. More-
over, an object’s exhibition area may change during a pre-
sentation. Therefore, defining and managing region geome-
tries are considerably difficult tasks, and usually require
associated tools. The problem is worse in reuse situations
where related information is scattered throughout several el-
ements.

Content preview in its corresponding screen area may
help authors while performing such hard mental operations.
As already mentioned, Composer’s layout view supports re-
gion specifications by graphical manipulations. Basically,
Composer displays a rectangle for each screen area. Their
position and dimensions can be changed using drag-and-
drop operations. The layout view also allows for screen area
editing with respect to specific points on the presentation
timeline, helping authors to make changes to previously de-
fined parameters.

5.2.8 Hidden dependencies

As expected, when authors edit an NCL element, other ele-
ments that refer to it will change as well. In isolation, a re-
ferred element does not carry information about which other
elements refer to it. Dependencies are only visible in the re-
ferring element.

NCL Eclipse provides a reverse hyperlink mechanism,
previously mentioned, with which users can see the ele-
ments that refer to an element being edited. Thus, authors
can check for dependencies in both directions, possibly
identifying which is the impact of a change.

The synchronized views of Composer provide immediate
feedback about changes to authors, helping to reduce hidden
dependency effects.

There are several examples of hidden dependency prob-
lems specifically related to reuse. For example, when an at-
tribute of a region changes, all associated descriptors collat-
erally receive the effects of this change. Likewise, changes
in descriptors have impact on media objects that refer to
them. Of course, this hidden dependency effect can be
avoided if authors specify all presentation attributes using
<property> elements, as discussed in Sect. 3.

5.2.9 Premature commitment

NCL Eclipse forces premature commitment because it vali-
dates the document as the editing goes. This gives authors an

@ Springer

instantaneous feedback on codification errors and discour-
ages the creation of documents that are purposefully incom-
plete or invalid. On the other hand, requiring a predefined
order of specification of referred elements can annoy authors
who usually choose to work using their own strategies. Thus,
in NCL Eclipse, authors can turn off the warning messages
generated by the code validation feature, and build specifica-
tions in a different order than the one that produces correct
and playable code. The problem is, as will be emphasized
in the next sub-section, that authors will not be able to see
what their partial codification looks like as a presentation.
The NCL Player requires strict syntactic constructs to be in
place for it to play back a document.

Composer still has a primitive mechanism for code vali-
dation when compared to NCL Eclipse, and it does not ad-
vance the problem of playing back partially specified NCL
code.

5.2.10 Progressive evaluation

Neither NCL Eclipse nor Composer supports any kind of
progressive evaluation, or provides partial feedback for in-
complete programs. Both environments are coupled to an
external NCL interpreter that displays only valid and syntac-
tically complete documents. This is an important usability
issue, not only with respect to reuse, but also in general. In
broad terms, it forces a particular top-down compositional
strategy on the part of authors, which may go against the
talent and preference of individual authors. It is thus an im-
portant item in the list of requirements for improved NCL
usability in authoring tools.

5.2.11 Role expressiveness

The role expressiveness dimension helps to explain why
NCL is easily learned by non-programmers and how reuse
features help in this task. There are <media> elements
to represent specific media objects (content). Causal sen-
tences are expressed by first-class <link> elements, which
reuse temporal relation specifications defined in connec-
tors, which are also first-class elements (<causalConnec-
tor>). The same pattern is repeated for all elements needed
to specify a document. Each element has a clearly defined
role in the NCL data conceptual model.

Composer relies heavily on the role expressiveness of the
NCL data model in providing its several authoring views.
The auto-complete feature of NCL Eclipse also explores the
role expressiveness extensively. Code suggestions are of-
fered depending on the document position where authors
are currently working. When giving suggestions inside the
<ncl> element, for example, NCL Eclipse shows only two
possible child elements: <head> or <body>. The same hap-
pens when the tool suggests attribute values, in particular,
reference values for elements in reuse.



J Braz Comput Soc (2010) 16: 229-245

243

5.2.12 Secondary notation

XML comments provide a secondary notation to NCL.
NCL also allows for the definition of metadata, through
its <meta> and <metadata> elements. This can enhance the
source code with extended semantic information. Secondary
notation can help documentation about reuse features.

NCL Eclipse supports code highlighting, using different
fonts and colors for element and attribute names and at-
tribute values. The environment makes use of other types
of secondary notation existing in NCL, such as XML com-
ments and metadata. NCL Eclipse also supports in its cur-
rent version its own documentation notation.

The current textual view of Composer does not support
code highlighting. In other Composer’s views, there could
be extra annotations, but they are not implemented in the
current version. XML comments are not explored by any of
Composer’s views except the textual view.

Secondary notation is ignored by the NCL interpreter.

5.2.13 Viscosity

In a way viscosity is a cognitive dimension affected by most
(or all) of the previous dimensions discussed in this section.
This dimension evaluates how difficult it is to make changes
in an object of interest manipulated by an information arti-
fact. In the context of NCL reuse, this practically amounts
to asking how difficult it is to reuse objects. The previous
subsections suggest that NCL editing and playback environ-
ments are still viscous mainly because of some issues with
diffuseness, hard mental operations, hidden dependencies,
and premature commitment. Mechanisms to control visibil-
ity and levels of abstraction, to support different kinds of
mapping between representations and domain objects, to de-
crease error proneness, to increase role expressiveness, and
to provide consistent language design and flexibility in in-
corporating secondary notation help users deal with current
viscosity issues in NCL programming.

6 Related work

The NCL abstraction level is not close to that of low-level
languages, such as HTML, but it is not close to that of
higher level ones either, in particular to modeling languages
in the Web field. Some reuse support is often considered in
model-driven approaches. However, as NCL has an abstrac-
tion level related to its conceptual model, NCL should sup-
port reuse in its own declarative level.

There has been a lot of work reported in the literature
about reuse provisioning in imperative languages [20, 21].
Although some declarative hypermedia authoring languages
include reuse among their design principles, much less re-
lated work is found specifically about these languages. This

section focuses only on reuse in declarative languages for
hypermedia authoring.

In hypermedia authoring languages, at least the layout
reuse is under concern since Style Sheets [22] were intro-
duced for HTML. Likewise, content specification referring
to an external file is common in several languages, such
as SMIL (Synchronized Multimedia Integration Language),
and, with lesser flexibility, especially with respect to anchor
definition, in HTML.

Scalable Vector Graphics (SVG) [23], an XML-based
W3C standard for describing vector graphics in two di-
mensions, allows for geometrical shape reuse through its
<def> and <use> elements. Geometrical shapes are defined
by <def> elements. To render them, an author must define
the <use> element with xlink:href, x and y attributes. The
xlink:href attribute specifies the geometrical shape identi-
fier, as defined by the <def> element. The x and y attributes
specify the position where the geometric shape must appear
on the screen. In addition to this reuse feature, the <def> el-
ement also allows an author to include (import and reuse)
elements from external namespaces, making SVG an easily
extensible language.

SMIL [24], also an XML-based W3C standard, allows
for several reuse features similar to the NCL ones. Like
NCL, the specification of the presentation layout and the
transition effects are made in the <head> part of a SMIL
document. However, unlike NCL, the layout specification
must be done in a single element, instead of the <region>
and the <descriptor> division of NCL. This allows for ex-
tended reuse features in NCL. In SMIL, media objects
and the document presentation semantics are defined in the
<body> section, primarily including media objects in time
containers (<par> and <seq> elements). SMIL does not al-
low for media object reuse, but only content reuse. More-
over, only static code reuse is allowed. No support is offered
to active code reuse.

The synchronization paradigm of SMIL is based on com-
positions (containers) with temporal semantics (<par> and
<seq> elements). There is no support for document struc-
turing other than the temporal structure. Structure reuse is
thus impossible. SMIL 3.0 has extended its synchronization
paradigm to include relationships defined by ‘“conceptual
links” embedded into target content anchors. Unlike NCL
relations, SMIL relations may not be reused.

Both SMIL and SVG show an impoverished import sup-
port, except for the previously mentioned SVG feature.

Neither SMIL, SVG, nor HTML provides any support for
active code reuse. To the best of our knowledge, NCL is the
only hypermedia authoring language with this feature.

@ Springer



244

J Braz Comput Soc (2010) 16: 229-245

7 Concluding remarks

The general NCL structure is composed of a header and
a body. The header has several information bases, and the
body specifies the organizational structure and the presenta-
tion semantics of a document. This general structure shows
the designers’ concern with reuse in NCL, in which lan-
guage elements in the body frequently refer to elements in
the header. This paper shows how an NCL author can benefit
from the general structure of the language and create docu-
ments with higher levels of reuse.

The disconnection between hypermedia relations, on the
one side, and relationships, on the other, is an important
feature for NCL expressiveness and reuse. The definition
of relation types is the most difficult task in authoring a
document. However, once relations are defined, they can be
reused in several relationships. As previously mentioned, it
is common to see iDTV producers having a well-defined
base of relations composed by expert programmers and
shared among naive document authors. Visibility problems
in using a predefined relation can be solved using a good
naming strategy for relation identification. Terminology that
is well known by authors, as exemplified in Sect. 3.5, is an
asset in all authoring tasks.

It is rare to see an iDTV application that calls for connec-
tors other than the usual ones. Several reserved words are
defined by NCL in order to facilitate the creation of spatial
and temporal relations. However, for the rare cases where
new relation definitions are needed, a visibility problem per-
sists. Relationships are created far from where relations are
defined in the text. As opposed to other optional reuse fea-
tures of NCL (like the layout definition), there is no option
in this case. In order to bypass this problem, syntactic sugar
has already been proposed for inclusion in future releases.
This will allow for the joint definition of a relationship and
its relation in a procedural code, written in quasi natural lan-
guage, child of a pseudo link element. An NCL parser will
then be responsible for translating this pseudo element into
NCL <causalConnector> and <link> elements.

The definition of relationships as first-class entities, also
allowing them to be part of hypermedia compositions (con-
texts), provides presentation semantics to these structures.
In NCL, relationships that are external to contexts can act
on them through well-defined interface points. Therefore,
contexts encapsulate objects and their internal relationships.
This concept is quite simple but very difficult to control [1].
It provides compositionality to contexts allowing for formal
proofs of document properties [25], in addition to a rich po-
tential for reuse.

Because of NCL support for document importing and
nesting, and the ability to import information bases, the
building process of large and complex documents becomes
scalable, without bringing any collateral harm to the creation

@ Springer

of simple and small documents. The reuse and import lan-
guage features allow authors to rationalize and to easily un-
derstand the final presentation, grouping semantic informa-
tion and accelerating inferential reasoning. This is another
consequence of the encapsulation offered by contexts.

Detaching and spreading several authoring aspects into
individual bases might be a point of criticism of NCL, since
it seems that relevant interdependent parts of a document are
being dispersed only to benefit reuse. However, this does
not happen in practice because the information contained
in each base is self-contained. The reference made to ele-
ments in a base helps to enrich the referring element with
information that can be understood by itself (as first-class
information) and not as partial information without mean-
ing. Moreover, reuse is in the majority of cases an optional
feature that can be avoided if necessary.

Concerning the editing and playback infrastructure of
NCL as an information artifact, the CDN analysis suggests
that for reuse in particular, but also for NCL specification in
general, the environment currently provided for iDTV au-
thors is still viscous. Viscosity arises mainly from issues
with diffuseness, hard mental operations, hidden dependen-
cies, and premature commitment. However, NCL merits
in terms of language design consistency and multiple re-
sources, visibility, abstraction, conceptual mapping, and role
expressiveness, among others, contribute to alleviate prob-
lems.

The reuse of running code besides static code gives the
language a unique reuse feature that is not found in any other
declarative language for iDTV application authoring, as far
as the authors know. This support makes the hypermedia ap-
plication code cleaner, easier to understand, and less prone
to errors [26].

The NCL language design and its conceptual model drive
application authors to create documents with higher reuse
degree. As a document increases in size along the authoring
activity, there is a natural tendency to organize contents into
contexts. This is in itself sufficient to promote reuse and to
conjecture that sustained use of NCL leads to good program-
ming practices.

Acknowledgements Carlos de Salles Soares Neto thanks CAPES
for supporting his Ph.D. program. Luiz Fernando Soares and Clarisse
de Souza thank CNPq for supporting their research financially.

References

1. ABNT NBR 15606-2:2007 (2009) Digital terrestrial television—
Data coding and transmission specification for digital
broadcasting—Part 2: Ginga-NCL for fixed and mobile
receivers—XML application language for application cod-
ing. April 2009

2. Soares LFG, Rodrigues RF, Moreno MF (2007) Ginga-NCL: the
declarative environment of the Brazilian digital TV system. J Braz
Comput Soc 4(12):37-46



J Braz Comput Soc (2010) 16: 229-245

245

10.

11.

12.

14.

. Blackwell AF, Green TRG (2003) Notational systems—the cogni-

tive dimensions of notations framework. In: Carroll JM (ed) HCI
models, theories and frameworks: toward a multidisciplinary sci-
ence. Morgan Kaufmann, San Francisco, pp 103-134

. Blackwell AF (2006) Ten years of cognitive dimensions in visual

languages and computing. J Vis Lang Comput 17(4):285-287

. Muchaluat-Saade DC, Rodrigues RF, Soares LFG (2002) XCon-

nector: extending XLink to provide multimedia synchronization.
In: I ACM symposium on document engineering—DocEng2002,
McLean, USA

. Clements PC (1996) A survey of architecture description lan-

guages. In: 8th international workshop on software specifications
and design. IEEE Comput Soc, Washington

. Soares LFG, Rodrigues RF, Cerqueira RFG, Barbosa SDJ (2009)

Variable and state handling in NCL. Multimed Tools Appl.
ISSN/ISBN: 13807501

. Moody D (2009) Theory development in visual language

research: beyond the cognitive dimensions of notations.
In: IEEE symp. visual languages and human-centric com-

puting, 2009. IEEE conference proceedings series. IEEE
Press, New York, pp 151-154. doi:10.1109/VLHCC.2009.
5295275

. Blackwell AF, Whitley KN, Good J, Petre M (2002) Cognitive fac-

tors in programming with diagrams. Artif Intell Rev 15(1-2):95-
114

Khazaei B, Triffitt E (2002) Applying cognitive dimensions to
evaluate and improve the usability of Z formalism. In: SEKE *02:
Proceedings of the 14th international conference on software en-
gineering and knowledge engineering, July 2002

Neumann C, Metoyer RA, Burnett M (2009) End-user strat-
egy programming. J Vis Lang Comput 20(1):16-29. doi:10.1016/
j.jv1c.2008.04.005. ISSN 1045-926X

Guerra E, de Lara J, Malizia A, Diaz P (2009) Supporting user-
oriented analysis for multi-view domain-specific visual languages.
Inf Softw Technol 51(4):769-784. doi:10.1016/j.infsof.2008.
09.005. ISSN 0950-5849

. Le-Phuoc D, Polleres A, Hauswirth M, Tummarello G, Mor-

bidoni C (2009) Rapid prototyping of semantic mash-ups through
semantic web pipes. In: Proceedings of the 18th international con-
ference on World Wide Web, Madrid, Spain, April 20-24, 2009

Ennals R, Gay D (2007) User-friendly functional programming
for web mashups. In: ICFP *07: Proceedings of the 12th ACM

15.

16.

17.

20.

21.

22.

23.

24.

25.

26.

SIGPLAN international conference on functional programming,
October 2007

Kauhanen M, Biddle R (2007) Cognitive dimensions of a game
scripting tool. In: Proceedings of the 2007 conference on future
play, Toronto, Canada, November 14-17, 2007

Gelernter D, Jagganathan S (1990) Programming linguistics:
a first course in the design and evolution of programming lan-
guages. MIT Press, Cambridge

Azevedo RGA, Lima BS, Soares Neto CS, Teixeira MM (2009)
Uma abordagem para autoria textual de documentos hipermi-
dia baseada no uso de visualizacdo programdtica e navegacdo
hipertextual. In: XV Simpésio Brasileiro de sistemas multimidia
e Web—WebMedia 2009. Fortaleza, CE (available only in Por-
tuguese)

Guimaraes RL, Costa RMR, Soares LFG (2008) Composer: au-
thoring tool for iTV programs. In: European interactive TV
conference—EurolTV2008, Salzburg, Austria

ITU-T Recommendation H.761 (2009) Nested Context Language
(NCL) and Ginga-NCL for IPTV services. Geneva

Johnson RE (1997) Components, frameworks, patterns. In: Pro-
ceedings of the 1997 symposium on software reusability. ACM,
New York, pp 10-17. ISBN: 0-89791-945-9

Frakes WB, Fox CJ (1995) Sixteen questions about software
reuse. Commun ACM 38(6):75-ff. ISSN: 0001-0782

Lie HW, Bos B (1997) Cascading style sheets. World Wide Web
J 2(1):75-123. Special Issue on advancing HTML.: style and sub-
stance. ISSN: 1085-2301. O’Reilly & Associates, Inc.

W3C (2008) Scalable Vector Graphics (SVG): XML graphics for
the Web. http://www.w3.org/Graphics/SVG/.2008

W3C (2008) Synchronized Multimedia Integration Language
(SMIL 3.0) W3C recommendation. http://www.w3.org/TR/2008/
REC-SMIL3-200812.2008

Felix MF, Haeusler EH, Soares LFG (2002) Validating hyperme-
dia documents: a timed automata approach. In: Monografias em
ciéncia da computagdo—PUC-Rio, Brasil, 2002

Soares Neto CS, Souza CS, Soares LFG (2008) Linguagens com-
putacionais como interfaces: um estudo com nested context lan-
guage. In: Simpdsio Brasileiro de fatores humanos em sistemas
computacionais, Porto Alegre, RS, 2008 (available only in Por-
tuguese)

@ Springer


http://dx.doi.org/10.1109/VLHCC.2009.5295275
http://dx.doi.org/10.1109/VLHCC.2009.5295275
http://dx.doi.org/10.1016/j.jvlc.2008.04.005
http://dx.doi.org/10.1016/j.jvlc.2008.04.005
http://dx.doi.org/10.1016/j.infsof.2008.09.005
http://dx.doi.org/10.1016/j.infsof.2008.09.005
http://www.w3.org/Graphics/SVG/.2008
http://www.w3.org/TR/2008/REC-SMIL3-200812.2008
http://www.w3.org/TR/2008/REC-SMIL3-200812.2008

	The Nested Context Language reuse features
	Abstract
	Introduction
	Reuse on iDTV applications
	Reuse in a same NCL application
	NCL overview
	Content reuse
	Layout reuse
	Media object reuse
	Relation reuse
	Structure reuse
	Rule and transition effect reuse

	Reuse across NCL applications
	Nesting NCL documents
	Importing information bases
	Importing objects of an NCL application

	Analyzing NCL usability
	Method of analysis
	Usability issues associated with NCL reuse
	Visibility
	Abstraction gradient
	Closeness of mapping
	Consistency
	Diffuseness
	Error proneness
	Hard mental operations
	Hidden dependencies
	Premature commitment
	Progressive evaluation
	Role expressiveness
	Secondary notation
	Viscosity


	Related work
	Concluding remarks
	Acknowledgements
	References


