J Braz Comput Soc (2010) 16: 177-190
DOI 10.1007/s13173-010-0016-0

ORIGINAL PAPER

Reliable management of checkpointing and application data

in opportunistic grids

Raphael Y. de Camargo - Fernando Castor - Fabio Kon

Received: 22 January 2010 / Accepted: 17 June 2010 / Published online: 28 July 2010

© The Brazilian Computer Society 2010

Abstract Opportunistic computational grids use idle
processor cycles from shared machines to enable the exe-
cution of long-running parallel applications. Besides com-
putational power, these applications may also consume and
generate large amounts of data, requiring an efficient data
storage and management infrastructure. In this article, we
present an integrated middleware infrastructure that en-
ables the use of not only idle processor cycles, but also
unused disk space of shared machines. Our middleware en-
ables the reliable distributed storage of application data in
the shared machines in a redundant and fault-tolerant way.
A checkpointing-based mechanism monitors the execution
of parallel applications, saves periodical checkpoints in the
shared machines, and in case of node failures, supports the
application migration across heterogeneous grid nodes. We
evaluate the feasibility of our middleware using experiments
and simulations. Our evaluation shows that the proposed
middleware promotes important improvements in grid data

This research was supported by CNPq/Brazil, grants #481147/2007-1
and #550895/2007-8.

R.Y. de Camargo ()

Center for Mathematics, Computation and Cognition,
Federal University of ABC (UFABC), R. Catequese, 242,
Santo André/SP, 09090-400, Brazil

e-mail: raphael.camargo @ufabc.edu.br

F. Castor

Informatics Center, Federal University of Pernambuco (UFPE),
Recife/PE, Brazil

e-mail: castor@cin.ufpe.br

F. Kon

Department of Computer Science, University of Sdo Paulo (USP),
Séo Paulo/SP, Brazil

e-mail: kon@ime.usp.br

management reliability while imposing a low performance
overhead.

Keywords Grid computing - Distributed data storage -
Opportunistic grid - Grid middleware

1 Introduction

Opportunistic computational grids [15, 16, 20, 27] use idle
resources from shared commodity machines to execute ap-
plications that need large amounts of computational power.
The classical scenarios for opportunistic grids are universi-
ties, research labs, and organizations that typically have hun-
dreds or thousands of computers that remain idle for most
of the time. The objective is to provide users with large
amounts of computational power and storage space with a
very low cost, since there is no need for acquiring new hard-
ware and for extra physical infrastructure, including elec-
tricity, air-conditioning, and physical space.

The concept of opportunistic grid computing can also
be very useful in dedicated grid infrastructures, such as
Grid’5000 (http://www.grid5000.fr), which comprise thou-
sands of machines connected by dedicated high-speed net-
works. To use computational resources from this grid, it is
necessary to make a reservation in advance and the user
has total access to them. However, for applications that re-
quire hundreds of nodes for several weeks, it is unfeasible
to reserve those resources for such a long time. Grid’5000
includes an opportunistic mode where a user can leverage
its resources while no other user places a reservation on
them. This mode is rarely used in practice though since the
processes running on those machines are killed, and need
to be restart from the beginning whenever the machines are

@ Springer

mailto:raphael.camargo@ufabc.edu.br
mailto:castor@cin.ufpe.br
mailto:kon@ime.usp.br
http://www.grid5000.fr

178

J Braz Comput Soc (2010) 16: 177-190

requested. If one could deploy an opportunistic grid mid-
dleware that uses those thousands machines when they are
idle, one would have a much better resource utilization level.
In the case of Grid’5000, if we consider that machines are
idle for about 50% of the time, we would double the capac-
ity of this multimillion euro infrastructure. Moreover, each
machine has in the order of a hundred Gigabytes of unused
disk space, which combined can easily reach about 100 Ter-
abytes of distributed storage space, connected by high-speed
networks.

In current opportunistic grid systems, resource shar-
ing is limited to idle processor cycles and main memory
[15, 16, 20, 27]. A middleware system that enables the shar-
ing of both processor cycles and unused disk space would
improve resource utilization in the grid machines and in-
crease the amount of available resources. The most impor-
tant difference of opportunistic grids, when compared to
dedicated ones, is that machines will very often fail, be-
come inaccessible, or change from idle to occupied unex-
pectedly. This may compromise the middleware infrastruc-
ture, the data stored in the nodes that became unavailable,
and the execution of grid applications. Consequently, an op-
portunistic grid middleware must be fault-tolerant regarding
its infrastructure, stored data, and application execution.

In this article, we present and evaluate an integrated mid-
dleware system, based on the InteGrade [20] grid system and
OppStore [10] distributed storage system, that enables the
usage of both idle processor cycles and unused disk space of
shared machines. The middleware enables reliable applica-
tion execution using a checkpointing-based fault tolerance
mechanism for parallel applications, which generates peri-
odic checkpoints that contain the application state in the mo-
ment when they were generated and stores the checkpoints
in the grid shared machines in a redundant and fault-tolerant
way. The mechanism then uses the stored checkpoints to re-
cover the application state after a failure, allowing applica-
tion recovery in heterogeneous grid nodes.

To allow storage and management of application input,
output, and checkpointing data, we organize the grid ma-
chines in clusters, connected by a self-organizing and fault-
tolerant peer-to-peer network. Our middleware stores the
data in a distributed fashion and the data is codified into re-
dundant fragments, enabling the reconstruction of the orig-
inal file using only a subset of those fragments. Stored data
can be accessed from any machine in the grid and fragments
can be downloaded from the machines with the fastest con-
nections. To deal with resource heterogeneity, we extended
the Pastry [37] peer-to-peer routing substrate to support vir-
tual ids, which enable the selection of clusters containing
machines with higher availability for data storage.

Our experiments and simulations show that our approach
is viable. In the evaluated scenarios, our middleware en-
abled the immediate retrieval of stored files in over 99% of

@ Springer

the requests, improved retrieval performance by transferring
data in parallel from several distributed machines, and pro-
vided fault-tolerance in the presence of machine departures
or crashes, by reconstructing the lost fragments. The check-
pointing mechanism has low overhead and checkpoints are
stored in a reliable way, enabling the execution of coupled
parallel applications even in the presence of node failures.
The main contributions of this work are:

e development of an integrated middleware infrastructure
that enables the use of both idle processor cycles and un-
used disk space of shared machines in opportunistic grids;

e usage of a new approach to store checkpoint and grid ap-
plication data in a set of non-dedicated, heterogeneous
machines that is highly fault-tolerant and available and, at
the same time, supports fast retrieval of checkpoints when
faults occur; and

e evaluation through experiments and simulations of the
feasibility of using the idle disk space of grid machines
for storage of checkpointing and application data.

2 Related work

Our work encompasses several research areas, but we focus
here on the literature related to the original contributions of
this article, i.e., management of checkpoints of parallel ap-
plications, distributed data storage, and grid data manage-
ment.

In a previous work, we presented OppStore [10], a mid-
dleware for distributed storage of data that could be adapted
to work with existing opportunistic grid systems. In this ar-
ticle, we expand that work by integrating OppStore with the
InteGrade application execution protocol and checkpointing
mechanism, resulting in a middleware that enables the use of
both idle processor cycles and unused disk space of shared
machines in a opportunistic grid. In addition, we discuss the
efficient storage of checkpointing data, management of grid
application input and output data, and the reconstruction of
fragments lost due to node departures.

2.1 Distributed data storage and management

Our middleware has some similarities with other distrib-
uted storage systems built over P2P networks. PAST [36],
CFS [17], and pStore [2] are peer-to-peer distributed stor-
age systems built over a DHT (Distributed Hash Table) in-
frastructure, such as Pastry [37]. To improve availability,
PAST stores multiple replicas of the files and CFS and
pStore break the files into fragments and store several repli-
cas of those fragments. The main difference to our system
is that PAST, CFS, and pStore organize all machines at a
single level and store data directly in the machines that per-
form message routing. Consequently, each node arrival and

J Braz Comput Soc (2010) 16: 177-190

179

departure requires that large amounts of data be transfered
to compensate for changes in machine organization, as de-
scribed by Blake and Rodrigues [4]. PeerStore [26], like
our work, decouples fragment location from its identifier,
storing the file index and fragments separately, reducing the
maintenance due to data misplacement caused by node join-
ings and departures. Notwithstanding, it recovers lost frag-
ments caused by departures in a lazy way, compromising the
immediate recovery of stored files.

FreeLoader [42] uses free storage space from machines
of a single cluster and unused I/O bandwidth to store scien-
tific data. They use data striping to divide a file into several
fragments to improve performance. Similarly to our work,
they target nondedicated resources for data storage. But they
only consider static sets of machines from a single clus-
ter, while we deal with dynamic sets of machines distrib-
uted across several clusters. Also, they do not consider load-
balancing and machine availability when choosing storage
sites.

In the area of grid data management, JuxMem [1] imple-
ments a data sharing service for grid applications by joining
the concepts of peer-to-peer and distributed shared memory.
As in our work, they organize grid machines as a federation
of clusters organized as a peer-to-peer network and with a
node elected as cluster manager in each cluster. Differently
from our work, they focus on the development of a writable
distributed shared memory for grid applications. This re-
quires maintaining several full replicas of stored data, which
incurs large storage and network overheads, especially when
operating with nondedicated machines, where the replica-
tion level must be higher.

A common technique for data grids is the usage of
data replication in conjunction with a replica location sys-
tem [8, 13, 35]. Some replica management systems [13, 35]
use compression schemes, such as Bloom filters [5], allow-
ing replica managers to have complete knowledge about
replica locations on the grid. The search mechanism is fast
and the system has a high degree of fault-tolerance. Nev-
ertheless, due to global knowledge of replica locations,
these systems have limited scalability, with possibly ex-
pensive table updates. Also, the servers maintaining the
replica locations are usually configured statically. Cai, Cher-
venak, and Frank [8] built a replica location system using
the Chord [39] DHT, to provide self-organization and im-
proved fault-tolerance and scalability for replica location
systems. But this system only deals with replica location,
while our system also deals with storage in nondedicated
repositories, including the selection of appropriate reposito-
ries.

2.2 Storage of checkpointing data

Pruyne and Livny [33] performed studies about the usage of
multiple checkpoint servers to store checkpoints from par-

allel applications. They only compare the usage of single
and dual checkpoint servers and the servers were dedicated.
Plank, Li, and Puening [32] propose the usage of diskless
checkpointing. It consists of storing checkpointing data on
system volatile memory, removing the overhead of stable
storage. The focus of their work was on comparing diskless
with disk-based checkpointing and their experiments were
performed using only parity information for fault tolerance.

Malluhi and Johnston [29] compare analytically the ef-
ficiency of an optimized version of the Information Disper-
sal Algorithm (IDA) proposed by Rabin [34] and 2D parity
coding schemes. Sobe [38] analyzes the use of two different
parity techniques to store checkpoints in distributed systems.
Differently from our work, they focused exclusively on the
storage of data and conducted a purely analytical evaluation,
without performing any experiments.

In the area of grid computing, Luckow and Schnor [28]
propose an adaptive replication mechanism for the storage
and management of checkpoint files in the context of grid
computing. Differently from our work, they distribute the
replicas of checkpoint files in remote sites. This approach
promotes an improvement in reliability but, in the context
of opportunistic grids, is prohibitively expensive in terms of
both disk and bandwidth consumption.

3 The middleware architecture

Our middleware organizes the machines in clusters, where
each cluster contains physically close machines. We use In-
teGrade [20], a CORBA-based object-oriented opportunis-
tic grid system, to perform the management of application
execution. For the storage of checkpointing and application
data, we use modules from OppStore [10], a distributed stor-
age system that allows the reliable storage of application
data in the unused space of idle machines.

Figure 1 shows the organization of the grid machines
in grid clusters and the middleware modules in the clus-
ter machines. Each cluster has a machine designated as
the cluster manager, usually a machine that is available
for most of the time. Application execution is controlled
by the Global Resource Manager (GRM), responsible for
scheduling and managing the cluster resources, the Execu-
tion Manager (EM), responsible for managing application
execution and maintaining checkpointing information, and
the Application Repository (AR), which maintains informa-
tion about grid application files, such as their executable,
input, and output files. Data storage is managed by the Clus-
ter Data Repository Manager (CDRM), which is responsible
for supervising the machines within the same cluster. The re-
source provider machines share their idle resources with the
grid. The Local Resource Manager (LRM) module manages
the machine shared resources and local processes associated

@ Springer

180

J Braz Comput Soc (2010) 16: 177-190

Cluster
Manager

Resource

.Ir
B g Provider

Resource

!fj Provider

(RoR) ()

Resource

-lfj Provider

(RoR) ()

|_Grid Cluster

Grid Cluster Organization

B
a’lfg E"@a’@g
‘ T leg
R —x— PP
g dg
B | B

Fig. 1 Organization of the shared machines in clusters and distribution of the main middleware modules

with grid applications and the Autonomous Data Repository
(ADR) module manages the shared unused disk space on
the machine. The modules executed in the resource provider
machines are written in C++ and use a lightweight CORBA
ORB, called OiL (http://oil.luaforge.net), which results in
a low execution and memory overhead of the middleware
modules executing on these machines.

The integrated middleware, based on InteGrade and Opp-
Store, can be downloaded as open-source software from
http://www.integrade.org.br.

4 Reliable distributed storage

The modules responsible for the management of the reliable
distributed storage are the Autonomous Data Repository
(ADR), which runs on each resource provider machine and
controls the storage and retrieval of stored data in the ma-
chine, and the Cluster Data Repository Manager (CDRM),
which supervises all the machines sharing disk space on its
cluster.

In this section, we describe the organization of the
CDRM and ADR modules, the procedures for file storage
and retrieval, and the protocols for guaranteeing data avail-
ability in the presence of machine departures.

4.1 CDRM organization

We organized the CDRMs in a peer-to-peer network struc-
tured as a distributed hash table (DHT) that leverages
Pastry [37] as its substrate. Pastry assigns to each node
(a CDRM in our case) a random identifier, called Pastry
id, from a range of valid identifiers, called Pastry id space.
Users can now route messages, each containing a message

@ Springer

id, that reach the node with node id closest to the message
id. Routing usually requires several hops, where on each hop
the message reaches a node with an id increasingly closer to
message id, until it reaches the target node. The message
is routed through O (logn) nodes, where n represents the
number of machines in the system.

A problem with Pastry is that the heterogeneity of nodes
is not considered. To deal with this limitation, we assign to
each node an additional identifier, called virtual id [9], us-
ing the same range of valid identifiers from Pastry, which
we now call virtual id space. In our system, each CDRM re-
ceives a virtual id and becomes responsible for a virtual id
range proportional to the capacity of the cluster. We defined
the capacity of the cluster as the sum of the capacities of its
machines, which is proportional to their mean availability
and free disk space. The capacity of the clusters can change
due to machine departures or variations in their free space or
availabilities. If the change in the cluster capacity is above a
threshold, the system adjusts the virtual id of the CDRM to
reflect the new capacity.

Routing using virtual ids is performed using the Pastry
routing infrastructure, with the difference that each CDRM
keeps an extra table containing the virtual ids of its logical
neighbors, which is used to guide the Pastry routing process.
Most of the work of maintaining the peer-to-peer infrastruc-
ture is also performed by Pastry, with the additional task of
updating the table containing the node logical neighbors. We
use the FreePastry implementation of Pastry, which allowed
us to implement the virtual ids with small effort.

We use the DHT to locate the clusters where the middle-
ware will store the file fragments and to retrieve the frag-
ments and reconstruct those files later. The advantage of us-
ing Pastry is that it provides a routing algorithm that is fault-
tolerant and self-organizing, allowing the system to deal cor-

http://oil.luaforge.net
http://www.integrade.org.br

J Braz Comput Soc (2010) 16: 177-190

181

rectly with cluster departures and CDRM failures. In addi-
tion, by implementing an extension to Pastry, called virtual
ids, we could also deal correctly with resource heterogene-

ity.
4.2 Data storage and retrieval

Clients access the distributed storage system through the ac-
cess broker library, which is responsible for contacting the
CDRM and ADR modules to perform file storage and re-
trieval operations. Several types of data can be stored in a
grid system, with each type having different requirements.
In this work, we do not make any assumptions about the in-
ternal organization of the data to be stored. Instead, we focus
on the requirements of applications, in terms of the expected
lifetime of the data they store. Our system lets a client ap-
plication choose one of two storage modes: perennial and
ephemeral.

The perennial mode is used for data with long lifetimes.
In this mode, the broker encodes the files into redundant
fragments, using an optimized version [29] of the Informa-
tion Dispersal Algorithm (IDA) developed by Rabin [34].
This coding generates n fragments, from which any k <n
are sufficient to reconstruct the original file and the total
fragment size is n/k times the original file size. Using this
encoding, one can tolerate n — k failures with an overhead
of only (n — k)/k times the original file size. Weatherspoon
and Kubiatowicz [43] showed that, using the same amount

Fig. 2 Protocol for storage of a
file containing application data
using the perennial mode

Access broker encodes the

Access broker requests the addresses
of the ADRs where it will store the fragments (2)

access
broker

Access brokers transfer the fragment
contents to the selected ADRs
AD!
R

AD

access
broker

file in redundant fragments (1) ‘ fileld =9

R
ADR

of storage space, IDA provides higher reliability than repli-
cation, since it can tolerate a higher number of concurrent
periods of node unavailability.

The broker codes the file into fragments and evaluates
their secure hash, which we call their id, as shown in Fig. 2.
To select the machines that will store the fragments, the
CDRM routes a message for each fragment, which is de-
livered to the CDRM responsible for the fragment id in the
virtual id space (step 2), guaranteeing that selection of clus-
ters with higher capacity will be more likely. Each CDRM
then selects one ADR from its cluster, with a chance pro-
portional to the ADR capacity, and returns the address of
the ADR (step 3). After receiving the addresses, the broker
transfers the fragment contents directly to the ADRs (step 4).
Finally, at step (5), the broker constructs a File Fragment In-
dex (FFI) containing the ADR address of each fragment and
some extra information, hashes the FFI contents to generate
a unique file id, and requests the FFI storage in the CDRM
responsible for the file id, with additional copies stored on
its two logical neighbors for fault-tolerance.

To download a file, the broker queries its cluster CDRM
for the file FFI. The CDRM routes the request to the CDRM
responsible for the file id, which returns the FFI. The bro-
ker then downloads the file fragments directly from the
ADRs, checks the fragments integrity and reconstructs the
file.

We should emphasize that file contents are not routed
through the overlay network. They are transferred directly

\ ‘id=27Hid=76Hid=83‘

CDRMs return the address
of the selected ADRs

ADR

©)

access
broker
~«—
ADR ADR

AI§ \)ADR
ADR

Access broker creates the FFI and sends 5
for storage in the CDRM resposible for it ()

ADR

ADR

@ Springer

182

J Braz Comput Soc (2010) 16: 177-190

from the broker to the ADRs and vice versa. Also, placing
fragment storage locations in the FFI provides an important
advantage: the fragment locations are not tied to the cluster
responsible for their ids. In other words, when the id range
for which a CDRM is responsible changes, there is no need
to move the fragments across clusters. The FFIs are still re-
trieved using the file ids, and consequently, would need to
be moved, but their size is small compared to file contents.

The ephemeral mode is used for data that requires high
bandwidth and only needs to be available for a few hours.
This class of storage is used to store checkpoints gener-
ated by our checkpointing mechanism, as we will see in
Sect. 5.3. Another usage is for storing temporary data, such
as in workflow applications, where data output by one ap-
plication stage is used by a later application stage running
in the same cluster. In this storage mode, two replicas of the
file are stored in machines from the same cluster where the
storage request was issued. Another option would be to use
IDA to distribute the file fragments in the cluster but, as we
will see in Sect. 5.3, in this case it is advantageous to use
replication.

4.3 Data management

Node joins and departures are frequent in opportunistic grid
environments. Although the use of erasure coding improves
data availability significantly [43], when a machine leaves
the grid, fragments are lost and need to be reconstructed.
Moreover, a machine owner may need the disk space that it
shared with the grid, requiring our middleware to immedi-
ately remove the fragments from the machine. Cluster depar-
tures are also possible. To prevent data losses and increase
data availability in the presence of node departures, we de-
veloped protocols that enable the reconstruction of lost frag-
ments.

Our system must determine which files should be mon-
itored and reconstructed. The system uses the leasing pat-
tern [24], providing a lease to each stored file with a du-
ration specified by the client. These leases can be renewed
by clients at any time. During the leasing period, the frag-
ment reconstruction protocol is executed whenever neces-
sary. When the leasing period ends, the file and fragments
are marked as expired, meaning that they are not recon-
structed and can be removed by the ADRs.

Fragment reconstruction protocol

We designed a reconstruction protocol for lost fragments to
guarantee that data is not lost when nodes depart from the
system. The reconstruction protocol works as follows:

1. The CDRM from the cluster where a machine departed
notifies the CDRM:s containing the FFIs of each fragment
that was stored in the departed machine.

@ Springer

2. For each notification a CDRM receives, it verifies
whether the reconstruction threshold was reached. The
reconstruction threshold is the minimum number of frag-
ments that need to be available for a given file. If the
threshold was reached, the CDRM downloads the frag-
ments necessary to reconstruct the original file directly
from the ADRs.

3. The CDRM reconstructs the lost fragments from the file
and, for each generated fragment, routes a message re-
questing an ADR address to store the fragment.

4. The CDRM transfers the generated fragments to their
storage sites and updates the FFI of the files with recov-
ered fragments with the new storage sites.

This protocol is fault-tolerant, since failures in the re-
construction of some fragments in steps 2 and 3 results in
an FFI with a smaller number of stored fragments, but still
above the reconstruction threshold. Also, if part of the infor-
mation in the FFI becomes stale during the reconstruction
protocol, such as when other fragments are lost, the algo-
rithm still works, since it will reconstruct the fragments that
were missing when the protocol started. Finally, the protocol
should also work in the case of burst-like workloads, since
even if most of the resources of a cluster are suddenly allo-
cated to a user, the fragments stored in other clusters in the
grid could still be recovered.

It is difficult to know whether a node departure is tempo-
rary or permanent. We use heartbeats as a way to detect node
departures and, consequently, false departure detections can
happen in the case of transient network failures. To mini-
mize the impact of transient departures and false node depar-
ture detection, we delay the beginning of the reconstruction
until reaching the reconstruction threshold, in the hopes that
some of the nodes left the grid only temporarily or that the
departure was a false positive. The reconstruction threshold
value is set at the midpoint between the number of fragments
required to reconstruct the file and the total number of frag-
ments. For instance, if a file is encoded in 9 fragments, from
which 3 are sufficient to recover the file, the reconstruction
threshold is set to 6.

Another important traffic generator event occurs when
machines join or leave the system. In this case, it is neces-
sary to correct data misplacement due to the reorganization
of the id space [4, 26]. Since our system decouples the frag-
ment storage location from its id, large data transfers are not
required during machine joins and departures.

Local fragment copy

The fragment reconstruction protocol presented above can
reconstruct lost fragments in all scenarios, but incurs in a
large amount of communication. However, it is possible to
avoid starting the fragment reconstruction process in the ma-
jority of cases by keeping, for each fragment stored in clus-
ter, an extra copy of that fragment in another machine from

J Braz Comput Soc (2010) 16: 177-190

183

the same cluster. When a machine departs, the CDRM can
immediately regenerate each of the lost fragments using the
copies stored in the cluster. In other words, machine depar-
tures are treated locally within the cluster.

In this approach, we have to double the required storage
space, but fragments are lost only when the two machines
holding the copies of a fragment fail or leave the grid almost
simultaneously. If we combine the local fragment copy with
a reconstruction threshold, we eliminate the need for the re-
construction protocol in the vast majority of cases. More-
over, keeping local fragment copies puts no extra burden on
the intercluster connections, which normally have a more
limited amount of bandwidth than local networks. Conse-
quently, if storage space is not scarce, we can use this ap-
proach to solve the data maintenance problem.

The usage of local network bandwidth for reconstructing
lost fragments using the local fragment copy is also lower. In
the reconstruction protocol without the local fragment copy,
every time the fragments are transferred in the intercluster
network, they are also transferred in the local networks of
two different clusters. More details can be found in [12].

5 Reliable execution of parallel applications

Opportunistic grid middleware systems should allow the ex-
ecution of parallel applications in the presence of frequent
periods of machine unavailability. InteGrade has a check-
pointing mechanism that generates and stores periodical
checkpoints containing the application state. The Execution
Manager (EM) module monitors the application execution
and, when it detects failures during the execution, it restarts
the application from the last stored checkpoint.

But to guarantee the continuity of application execution
and prevent loss of data in case of failures, it is necessary
to store the periodical checkpoints and application tempo-
rary, input, and output data in a reliable way. We extended
InteGrade to use the unused disk space of the shared grid
machines to store this data in a reliable and fault-tolerant
way.

In this section, we describe how the storage of check-
pointing and application data enables the reliable execution
of sequential and parallel applications. We start the section
describing how we implemented the management of appli-
cation data in InteGrade. Next, we describe the checkpoint
generation process in InteGrade and finish the section com-
paring the storage methods we use to store checkpointing
data.

5.1 Management of application data

The execution of an application on InteGrade [20] starts with
the user registering its executable in the Application Reposi-
tory (AR). The user then requests the execution of the appli-
cation, providing the identifier of the stored binary file and

a list of input files, located in the user submission machine,
that will be used by the grid application. The user requests
the execution to the Global Resource Manager (GRM) of its
cluster, which selects the machines (LRMs) that will exe-
cute the application. The selected LRMs then download the
binary file from the AR and the input files from the machine
where the user submitted the execution request. When the
execution finishes, the LRMs send the output files directly
to the user machine. All the execution process is monitored
by the Execution Manager.

The main limitation of this approach is that the user sub-
mission machine must stay online during all the execution
process, since input and output files are transferred directly
to/from it. Moreover, the execution may not start immedi-
ately after the request and the execution can last for several
days.

To solve this problem, we modified InteGrade to store
application input and output data using the perennial mode.
When the user submits an application for execution, it can
either use input data already stored in the distributed nodes
or provide new input data, which will be uploaded for stor-
age. When the application finishes its execution, its results
are stored in the distributed nodes, and the user can retrieve
the results immediately or later. We use the Application
Repository (AR) module to maintain the mapping of the ex-
ecutable, input, and output files to file ids used to locate the
files stored using the perennial mode.

5.2 Checkpointing mechanism

To provide fault-tolerance, InteGrade has a checkpoint-
based rollback recovery mechanism [11, 19], which saves
the application state into checkpoints and, in case of node
failure, reinitializes the application from the state contained
in the last saved checkpoint. The mechanism works for se-
quential, bag-of-tasks, and BSP coupled parallel applica-
tions. The BSP (Bulk Synchronous Parallel) model [41] di-
vides the computation into a sequence of parallel supersteps,
where each superstep is composed of a computation and
a communication phase, followed by a barrier of synchro-
nization. Since communication is always followed by a syn-
chronization barrier, it is possible to avoid the well-known
problems of distributed checkpointing [25] by only creating
checkpoints after the synchronization step.

InteGrade uses application-level checkpointing
[7,23,40], which consists of instrumenting application
source code to save its state periodically. It contrasts with
traditional system-level checkpointing, where the data is
saved directly from the process virtual memory space by
a separate process or thread [31]. Since in application-level
checkpointing one manipulates application source code, se-
mantic information regarding the type of data being saved
is available both when saving and recovering application

@ Springer

184

J Braz Comput Soc (2010) 16: 177-190

data. This semantic information allows the data saved by
a process on a hardware architecture to be recovered by a
process executing on another hardware architecture and/or
on a different operating system [23, 40]. This is an impor-
tant advantage for a Grid composed of heterogeneous ma-
chines since it enables better resource utilization. The main
drawback of application-level checkpointing is that manu-
ally inserting code to save and recover application state is
a tedious and error prone process. To resolve this problem,
InteGrade provides a precompiler that automatically inserts
the required code. It works for applications written in C or
in a subset of C++ and is based on OpenC++ [14], an
open source tool for compile time reflective computing. Al-
though applications in other languages are not supported by
the precompiler, checkpoints for these applications could be
obtained using existing system-level checkpoint tools, such
as libckpt [31] and CryoPID [3], with the drawback that
portability would be lost.

In the case of coupled parallel applications, such as BSP
applications, it is necessary to guarantee that the generated
checkpoints are consistent. The InteGrade implementation
of the BSP model, called BSPIib [21], contains extra func-
tions that can be used to control the generation of check-
points. The precompiler also analyzes the BSP calls and
modifies them to allow the generation of consistent check-
points.

The Execution Manager (EM) monitors application exe-
cution and coordinates the recovery of failed applications. It
maintains a list of active processes executing on each node
and a list of the processes from each parallel application.
When the GRM detects that a resource provider machine is
unreachable, it notifies the EM, which reschedules the appli-
cations that had processes executing on the failed machines
for execution in another machine. The application is then
restarted, using the last generated checkpoint and its input
files.

5.3 Checkpoint storage

We modified InteGrade to use the ephemeral mode of Opp-
Store to store most of the generated checkpoints, since the
usage of local networks generates a lower overhead. To pre-
vent losing the entire computation due to a failure or discon-
nection of the cluster where the application was executing,
periodically, the checkpoints are also stored in other clusters
using the perennial storage mode, for instance, after every 5
generated checkpoints. With this strategy, we can obtain low
overhead and high availability at the same time.

We implemented the management of which checkpoint
belongs to which application in the Execution Manager and
used the OppStore modules exclusively for checkpoint stor-
age and retrieval. There are two strategies that we can use for
storing the checkpoints in the cluster, which are data repli-
cation and IDA.

@ Springer

Using data replication, the system stores full replicas of
the generated checkpoints. If one of the replicas becomes
unaccessible, the system can easily find another. The advan-
tage is that no extra coding is necessary, but the disadvan-
tage is that this approach requires the transfer and storage
of large amounts of data. For instance, to guarantee safety
against a single failure, it is necessary to save two copies of
the checkpoint.

In our scenario, transferring checkpointing data twice
would generate too much local network traffic, possibly
compromising the execution of the parallel application, so
the approach we adopted was to store a copy of the check-
point locally and another remotely. Although a failure in a
machine running the application makes one of the check-
points unaccessible, it is still possible to retrieve the other
copy. Moreover, the other application processes can use their
local checkpoint copies. Consequently, this storage mode
provides recovery as long as one of the two nodes containing
a checkpoint replica is available.

The other strategy is to use IDA, which we described in
Sect. 4.2. IDA provides the desired degree of fault-tolerance
with lower space overhead, but it incurs a computational cost
for coding the data and an extra latency for transferring the
fragments from multiple nodes. We compare the checkpoint-
ing overhead in the execution time of a parallel application
when using IDA and replication to store the checkpoints in
Sect. 6.5.

6 Middleware evaluation

We evaluated the feasibility of using our middleware to store
application data in the unused disk space of shared machines
and the overhead to periodically generate and store check-
points. We used experiments and simulations to evaluate
both the performance in practical deployment environments
and the large-scale properties of our system.

6.1 Data availability

We used simulations to evaluate the availability of data
stored in the middleware using the perennial mode, simu-
lating file retrieval operations in realistic scenarios. In the
simulations, we instantiate several CDRMs in a single Java
Virtual Machine and execute the protocols using our mid-
dleware implementation. We only simulate the ADRs, the
access broker, and fragment transfers, for which we imple-
mented a simulator in Java.

We simulated an opportunistic grid composed of 30 clus-
ters of desktop machines. The number of machines in each
cluster was randomly chosen among 10, 20, 50, 100, and
200. To evaluate file availability, we used data from several
machine utilization measurements [6, 18, 30] to define three

J Braz Comput Soc (2010) 16: 177-190

185

Fig. 3 Rate of successful file 1 —
retrievals when using IDA and L __ | =
replication to store the files. We 8 091 -
used different redundancy levels s
and number of fragments § r ==
=08
E
2 |
S 07|
“ L
o
QL
306
21
0.5
ROt @b(\
) rb\-'\oﬁ\. fb.\.v\O‘\. fb.\‘v\OQ
D et @™
Y e 3

different usage patterns, which were randomly assigned to
each cluster. In the first pattern, cluster resources are idle,
on the average, 60% of the time during the day and 80% of
the time during the night and weekends. The second pattern
has idle times of 25% and 40%, and the third 40% and 70%,
respectively. We consider that clusters are uniformly distrib-
uted across 24 time zones.

We consider that machines from a single cluster have
similar properties. The simulator randomly assigns one of
the usage patterns for all the machines of the cluster. For half
of the clusters, each machine receives an amount of free disk
space randomly chosen between 1 and 10 GB, and for the
other half, they receive values between 20 GB and 50 GB.

We simulated the storage of 1,000 files and evaluated the
rate of successful file retrieval using the machine usage pat-
terns described above, considering the scenario where we
can recover only in the idle periods of the machines. We
stored dummy fragments of a few bytes, which are used only
to test their availability during the retrieval simulation. We
repeated the simulation 12 times, each with a different ran-
dom grid configuration, which resulted in a small standard
deviation. We considered that during the simulation time
there are no ADR and CDRM departures. We analyze the
scenario with node departures in Sect. 6.2.

We simulated file retrieval for a period of 1 month. For
each retrieval request, machines containing fragments from
the file return a dummy fragment, if the machine is idle, or
an error, if the machine is unavailable. The state of a ma-
chine during a retrieval trial is defined using a Bernoulli dis-
tribution, where the chance of the machine being in the idle
state depends on the request time (day of the week and hour)
and the machine availability pattern, for example, 40% dur-
ing the weekdays in the third pattern. If the broker retrieves
all the fragments necessary to reconstruct a file, we consider
the retrieval as successful.

We used several data coding schemes IDA(k, n), where
k is the number of fragments required to recover the orig-
inal file and n is the number of generated fragments, and

ad oo

»)
Q 6 (o
\OP’ \OP’

eF PP P

O/fb\ @:}}c\

oF

compared with the usage of fragment replication. We used
the schemes IDA(2.4), IDA(2, 6), IDA(2, 8), IDA(6, 12),
IDA(6, 18), IDA(6,24), and replication with 2, 3, and 4
replicas. The objective was to compare the impact of the
number of fragments on data availability.

The vertical bars in Fig. 3 show the mean rate of success-
ful file retrievals over 12 simulation runs and the error bars
represent the standard deviations. As we can see, the prob-
ability that a requested file is not available at the moment a
request is made is small using reasonable redundancy lev-
els. For instance, we achieved a successful retrieval rate of
99.3% when using IDA(6, 18), 96.0% when using IDA(2, 6)
and 94.0% when storing 3 replicas of the files. The standard
deviation was small, due to the large number of files and
long simulation period. Besides increasing data availability,
using IDA improves retrieval performance, since the access
broker can select the fastest servers to download the files.

But even when a file cannot be recovered immediately,
the system can wait for the files to become available, ei-
ther keeping the resources reserved for the application or
rescheduling the application for later execution, allowing
another application to execute. Since it is not possible to
predict when this file will be available, a good choice here
would be to reschedule when other applications are waiting
in the execution queue or to keep waiting when the execu-
tion queue is empty.

6.2 Data availability with node departures

In this simulation, we evaluate the availability of files stored
in our middleware in the presence of machine departures.
We stored 3,000 files in a grid configured in the same way as
Sect. 6.1 and simulated a one-month period with a machine
departure rate of 10% per day, running the fragment recon-
struction protocols. At the end of this period, we requested
the recovery of all stored files and measured the percentage
of the files that could be recovered.

We consider that when a machine departs, all the frag-
ments in the ADR are lost. To keep the number of machines

@ Springer

186

J Braz Comput Soc (2010) 16: 177-190

Table 1 Mean data availability using the fragment reconstruction pro-
tocol with several values for the reconstruction threshold (¢) and the
local fragment copy (fc) protocol

IDA t=9 t=12 t=15 fc

k=6,n=12 0.45133 - - 0.84733
k=6,n=18 0.73833 0.87500 0.95867 1.00000
k=6,n=24 0.88100 0.92933 0.99733 1.00000

stable, when a machine leaves the grid, another one joins the
grid immediately in a random cluster. Finally, we consider
that the network is reliable and that messages are always de-
livered.

Table 1 shows the mean availability for several IDA con-
figurations and threshold values and for the local fragment
copy. As we increase the threshold, the mean availability of
the stored files also increases, since the fragment recovery
protocol is executed more often. However, increasing the
reconstruction threshold increases the bandwidth to recon-
struct fragments, as we show in the next section.

The availability when using the local fragment copy
(Sect. 4.3) is always higher, since lost fragments are imme-
diately reconstructed from their local copies. Actually, when
using the local fragment copy, the availability was slightly
higher than the results from the experiment with no node
departures, since there are two copies of each fragment per
cluster.

6.3 Network usage for fragment maintenance
In this simulation, we measure the network traffic generated

by the maintenance of files stored with the perennial mode
under different ADR departure rates. We stored 3,000 files

of different sizes in a simulated opportunistic grid, described
in Sect. 6.1, with a total size of about 65 GB. We simulated
a period of 1 month, where ADRs depart or lose their stored
fragments at different rates per day.

Figure 4 shows the bandwidth used to store the files and
recover the lost fragments for several ADR departure rates.
The figure emphasizes inter-cluster traffic, since the band-
width available within local area networks is usually much
higher and, therefore, less critical, than the bandwidth of
wide-area networks. We have employed IDA(6, 12) with
threshold 9, IDA(6, 24) with threshold 9, IDA(6, 24) with
threshold 15, and IDA(6, 12) with the local fragment copy
strategy.

When not using local fragment copy, the required band-
width increases linearly with the departure rate. But even
when considering a departure rate of 1.25% of the nodes per
day (leftmost points), the used bandwidth is about 130 GB
to store the files and 150 GB to maintain those files, when
using IDA(6, 24) with threshold 9. Consequently, in a single
month, an amount of data comparable in size to all of the
stored data is transferred between clusters. This amounts to
a traffic of approximately 58 KB per second. Also, for higher
departure rates, we see that increasing the replication level
lowers the bandwidth necessary to maintain the data, for ex-
ample, when we increase the number of fragments to 24.
Reducing the reconstruction threshold also lowers the used
bandwidth. But as we saw in the previous experiment, file
availability decreases when we decrease the reconstruction
threshold.

When using the local fragment copy, for all ADR depar-
ture rates, the intercluster bandwidth is constant and lower
than the other strategies. This occurs because this bandwidth
is used only for the transfer of fragments during file storage.

Fig. 4 Bandwidth for fragment 300 I

reconstruction when fragments

are lost due to node departures i O k=6, n=12, t=9
2501 | B—H k=6,n=24,t=15

&< fragment copy
- | A=A k=6, n=24, t=9

200 —

150 -

100 |~

Inter-cluster bandwidth used (x 10 GB)

50—

@ Springer

Machine departure rate (per day)

J Braz Comput Soc (2010) 16: 177-190

187

Fig. 5 Results for the time 1000

required to store and retrieve

files into/from different clusters 100 k-

[T] Total storage time
[T Partial storage time

Storage Time (s)
=
T TTTTIT T TTTINT T T T T TTT

0.1
100kB 1IMB 10MB 100MB 500MB
File Size
1000 £ 5
= 100 [|/ Slowest servers]
2 E |1 Fastest servers E
£ F]
= 10F =
> E 3
-2 = 3
& g i
100kB 1MB 10MB 100MB 500MB
File Size

Consequently, when considering the intercluster bandwidth
used, the local fragment copy strategy is very efficient and
the required bandwidth does not increase with the node de-
parture rate.

6.4 Data storage and retrieval

In this experiment, we evaluate the time necessary to store
and retrieve files of different sizes using the perennial mode.
We used a real grid environment, where we instantiated 5
geographically separated clusters, composed of commodity
machines distributed among three Brazilian cities. Sdo Paulo
contained three clusters while Goidnia and Sdo Luis con-
tained a single cluster each. They are distant 900 km and
3000 km to Sdo Paulo, respectively. The clusters are con-
nected via the public Internet.

We instantiated the broker in a 2 GHz Athlon64 machine
with 4 GB of RAM and stored and retrieved files of sizes
1 MB, 10 MB, 100 MB, and 500 MB. The broker split the
file into 5 fragments, from which 2 were sufficient for data
recovery. Since our experimental system had only 5 clusters,
we forced the fragments to be stored on different clusters.
Each experimental session was composed of the storage of
one file of each size and its recovery.

In Fig. 5, we show the mean time required to store files
and recover stored files and the corresponding standard de-
viations. For file storage, when a number of fragments suffi-
cient to recover the file is already stored, the broker can al-
ready generate a file fragment index (FFI) and store it, while
the remaining fragments are stored. When the storage of all
fragments finishes, the FFI is updated.

In the figure, the topmost graph shows the time required
for both the case where only the fragments sufficient for file

recovery are stored and when all fragments are stored. The
time to store all the fragments is bounded by the slowest
ADREs, specially for large files. In this case, uploading a ver-
sion of the FFI as soon as a sufficient number of fragments
are stored can decrease the storage time by ten. For smaller
file sizes, the time for complete and partial storage are simi-
lar, since the storage time is bounded by the time to find the
ADRs that will store the fragments and to store the FFI.

To recover a file, the broker needs to download only the
fragments necessary to reconstruct the file. The choice of the
ADRs used to download the fragments is critical when de-
termining the file recovery time. In the bottommost graph,
we show the time necessary to recover the fragments when
the fastest ADRs and slowest ones are selected. These two
lines reflect the extreme cases, with the average situated be-
tween them. A good solution to select the fastest ADRs is to
start downloading all the fragments simultaneously, to deter-
mine the download speeds, and then continue the download
only from the fastest ones.

6.5 Storage of checkpoints from parallel applications

To evaluate the viability of using our middleware to provide
a reliable execution environment for parallel applications,
this experiment measures the impact of the checkpointing
mechanism over the application execution time. We com-
pared the time to execute the application without and with
checkpointing. In the later case, we store the checkpoint us-
ing the ephemeral mode, configured to store the checkpoint
using replication and erasure coding.

We selected a matrix multiplication BSP application, de-
veloped by Hayashida et al. [22], since it is a highly cou-
pled and long-running parallel application and produces

@ Springer

188

J Braz Comput Soc (2010) 16: 177-190

3200x3200
125%
120% ...
(9}
£
; 1 15% ...
2
§ 110% ...
=
m 105% ...
100% — S
original replication IDA(7,8) IDA(6,8)
nCkp =0 nCkp = 18.0 nCkp =18.2 nCkp = 18.7
4800x4800
125%
1T
° 120% ... _|_ .. XX EEITEEEEE
g .
i L5k [-eevveeememee s [bbb
8 —+=
§ 1 10% ...
=
m 105% ...
100% —— S
original replication IDA(7,8) IDA(6,8)
nCkp=0 nCkp =19.8 nCkp =20.7 nCkp =21.0

Fig. 6 Execution overhead of the checkpointing mechanism

large checkpoints. We configured the application to run in
8 nodes and used two different matrix sizes, 3200 x 3200
and 4800 x 4800, which generate global checkpoints of sizes
351.6 MB and 791.0 MB, respectively. The minimum in-
terval between checkpoints in this experiment is 60 s. The
cluster where the application was executed is composed of 9
1.46 GHz AthlonXP machines with 1 GB of RAM, running
GNU/Linux 2.6 and connected by a switched 100 Mbps Fast
Ethernet network.

In the replication scenario, our system stores one replica
of the checkpoint in the machine running the process that
generated the checkpoint and the other replica in a machine
running another process of the application. We also used two
IDA configurations. The first, IDA(7, 8), generates 8 frag-
ments from which 7 are required to reconstruct the original
file, and the second, IDA(6, 8), generates 8 fragments and
requires 6 for file reconstruction.

Figure 6 shows the results of 16 executions for each
strategy. For a matrix of size 4800 x 4800, which gener-
ates global checkpoints of 791 MB, and a minimum inter-
val between checkpoints of 60 s, the overhead is 13% when
using replication, 18% when using IDA(7, 8) and 20% for
IDA(6, 8), when compared to the execution time of 1101.6 s
without checkpointing. The small standard deviation was
expected, since the cluster was used exclusively during our
experiment. These results show that the usage of checkpoint-
ing has a low overhead even when running coupled applica-
tions that generate large checkpoints.

@ Springer

Using the IDA strategy causes a higher overhead, since
it is necessary to code the checkpoints using the processor
cycles from the machines running the parallel application.
Using replication causes a smaller overhead, but uses more
network and storage resources. Since parallel applications
normally run on a single cluster connected by a local LAN
and storage space is not a scarce resource, the default strat-
egy used is replication. Also, the overhead can be greatly
reduced by increasing the checkpointing interval. For exam-
ple, with a checkpointing interval of 5 minutes, the overhead
would be of approximately 2.6% using replication.

7 Conclusions

We presented an integrated middleware system that allows
institutions to use idle resources from existing machines to
carry out high-performance computing and store applica-
tion data in a reliable way. Different from previous works in
the field, our middleware allows the sharing of unused disk
space, in addition to idle processor cycles and main memory.

Reliable execution of parallel applications in nondedi-
cated resources is provided by a checkpointing mechanism
with a low execution overhead, with the application in-
put, output, and checkpointing data managed by specialized
modules that store the data in the local cluster or distributed
across several clusters. Regarding data storage, we showed

J Braz Comput Soc (2010) 16: 177-190

189

that we can achieve successful recovery rates above 99%,
using a moderate level of redundancy, even in the presence
of a high number of node departures and failures and us-
ing only the idle period of machines. Also, file storage and
retrieval are efficient and take advantage of the fastest avail-
able connections. These results indicate that our integrated
middleware successfully permits both the reliable execution
of applications and the storage of application data.

As ongoing work, we will deploy our middleware for
long periods and monitor its usage, validating results ob-
tained in the simulations in a real deployment. When evalu-
ating the machine availability, we should also consider disk
usage to avoid penalizing machines that deal mostly with
disk intensive applications. Finally, we will consider limit-
ing the network usage when there are machine owners uti-
lizing the local networks for their tasks. This is relevant in
some cases because if users notice a significant loss in net-
work performance, they will be unwilling to share their re-
sources with the grid.

References

1. Antoniu G, Bougé L, Jan M (2005) Juxmem: An adaptive support-
ive platform for data sharing on the grid. Scalable Comput Pract
Exp 6(3):45-55

2. Batten C, Barr K, Saraf A, Trepetin S (2002) pStore: A secure

peer-to-peer backup system. Tech Rep MIT-LCS-TM-632, MIT
LCS
Blackham B (2009) Cryopid page. http://cryopid.berlios.de/
4. Blake C, Rodrigues R (2003) High availability, scalable storage,
dynamic peer networks: pick two. In: HotOS’03: Proc of the 9th
workshop on hot topics in operating systems, USENIX
5. Bloom BH (1970) Space/time trade-offs in hash coding with
allowable errors. Commun ACM 13(7):422-426. doi:10.1145/
362686.362692
6. Bolosky WIJ, Douceur JR, Ely D, Theimer M (2000) Feasibility
of a serverless distributed file system deployed on an existing set
of desktop pcs. SIGMETRICS Perform Eval Rev 28(1):34-43.
doi:10.1145/345063.339345
7. Bronevetsky G, Marques D, Pingali K, Stodghill P (2003) Au-
tomated application-level checkpointing of MPI programs. In:
PPoPP ’03: Proceedings of the 9th ACM, SIGPLAN symposium
on principles and practice of parallel programming, pp 84-89
8. Cai M, Chervenak A, Frank M (2004) A peer-to-peer replica loca-
tion service based on a distributed hash table. In: SC *04: Proceed-
ings of the 2004 ACM/IEEE conference on supercomputing. IEEE
Computer Society, Washington, p 56. doi:10.1109/SC.2004.7
9. de Camargo RY, Kon F (2006) Distributed data storage for oppor-
tunistic grids. In: ACM/IFIP/USENIX middleware doctoral symp,
Melbourne, Australia
10. de Camargo RY, Kon F (2007) Design and implementation of a
middleware for data storage in opportunistic grids. In: Proceedings
of the 7th IEEE international symposium on cluster computing and
the grid (CCGRID 2007), Rio de Janeiro, Brazil. IEEE Computer
Society, Washington, pp 23-30

11. de Camargo RY, Kon F, Goldman A (2005) Portable checkpoint-
ing and communication for BSP applications on dynamic hetero-
geneous Grid environments. In: SBAC-PAD’05: The 17th interna-
tional symposium on computer architecture and high performance
computing, Rio de Janeiro, Brazil

w

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

de Camargo RY, Castor Filho F, Kon F (2009) Efficient mainte-
nance of distributed data in highly dynamic opportunistic grids.
In: Proceedings of the 24th ACM symposium on applied com-
puting (SAC 2009), Track on dependable and adaptive distributed
systems (DADS), Honolulu, HI, USA. ACM, New York
Chervenak AL, Palavalli N, Bharathi S, Kesselman C,
Schwartzkopf R (2004) Performance and scalability of a
replica location service. In: HPDC ’04: Proceedings of the 13th
IEEE international symposium on high performance distributed
computing (HPDC’04). IEEE Computer Society, Washington,
pp 182-191. doi:10.1109/HPDC.2004.27

Chiba S (1995) A metaobject protocol for C++. In: OOPSLA
’95: Proceedings of the 10th ACM conference on object-oriented
programming systems, languages, and applications, pp 285-299
Chien A, Calder B, Elbert S, Bhatia K (2003) Entropia: ar-
chitecture and performance of an enterprise desktop grid sys-
tem. J Parallel Distrib Comput 63(5):597-610. doi:10.1016/
S0743-7315(03)00006-6

Cirne W, Brasileiro F, Andrade N, Costa L, Andrade A, Novaes R,
Mowbray M (2006) Labs of the world, unite!!! J Grid Comput
4(3):225-246

Dabek F, Kaashoek MF, Karger D, Stoica I Morris R (2001) Wide-
area cooperative storage with cfs. In: SOSP ’01: Proceedings of
the eighteenth ACM symposium on operating systems principles.
ACM, New York, pp 202-215. doi:10.1145/502034.502054
Domingues P, Marques P, Silva L (2005) Resource usage of win-
dows computer laboratories. In: Proc of the int conf on parallel
processing (ICCP’05): workshops, pp 469476

Elnozahy M, Alvisi L, Wang YM, Johnson DB (2002) A survey
of rollback-recovery protocols in message-passing systems. ACM
Comput Surv 34(3):375-408

Goldchleger A, Kon F, Goldman A, Finger M, Bezerra GC (2004)
InteGrade: Object-oriented grid middleware leveraging idle com-
puting power of desktop machines. Concurr Comput Pract Exp
16:449-459

Goldchleger A, Goldman A, Hayashida U, Kon F (2005) The im-
plementation of the bsp parallel computing model on the integrade
grid middleware. In: MGC ’05: Proceedings of the 3rd interna-
tional workshop on middleware for grid computing. ACM, New
York, pp 1-6. doi:10.1145/1101499.1101504

Hayashida UK, Okuda K, Panetta J, Song SW (2005) Generating
parallel algorithms for cluster and grid computing. In: ICCSA °05:
The 2005 international conference on computational science and
its applications. Springer, Berlin, pp 509-516

Karablieh F, Bazzi RA, Hicks M (2001) Compiler-assisted het-
erogeneous checkpointing. In: SRDS ’01: Proceedings of the 20th
IEEE symposium on reliable distributed systems, New Orleans,
USA, pp 56-65

Kircher M, Jain P (2004) Pattern-oriented software architecture,
Volume 3: patterns for resource management. Wiley, New York
Lamport L (1978) Time, clocks, and the ordering of events in a
distributed system. Commun ACM 21(7):558-565

Landers M, Zhang H, Tan KL (2004) Peerstore: Better perfor-
mance by relaxing in peer-to-peer backup. In: P2P ’04: Proc of
the 4th int conf on peer-to-peer computing. IEEE Computer Soci-
ety, Washington, pp 72-79. doi:10.1109/P2P.2004.38

Litzkow M, Livny M, Mutka M (1988) Condor—a hunter of idle
workstations. In: ICDCS ’88: Proceedings of the 8th int confer-
ence of distributed computing systems, pp 104-111

Luckow A, Schnor B (2008) Adaptive checkpoint replication for
supporting the fault tolerance of applications in the grid. In: Pro-
ceedings of the 2008 seventh IEEE international symposium on
network computing and applications. IEEE Computer Society,
Washington, pp 299-306. doi:10.1109/NCA.2008.38

Malluhi QM, Johnston WE (1998) Coding for high availability of
a distributed-parallel storage system. IEEE Trans Parallel Distrib
Syst 9(12):1237-1252. doi:10.1109/71.737699

@ Springer

http://cryopid.berlios.de/
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1145/345063.339345
http://dx.doi.org/10.1109/SC.2004.7
http://dx.doi.org/10.1109/HPDC.2004.27
http://dx.doi.org/10.1016/S0743-7315(03)00006-6
http://dx.doi.org/10.1016/S0743-7315(03)00006-6
http://dx.doi.org/10.1145/502034.502054
http://dx.doi.org/10.1145/1101499.1101504
http://dx.doi.org/10.1109/P2P.2004.38
http://dx.doi.org/10.1109/NCA.2008.38
http://dx.doi.org/10.1109/71.737699

190

J Braz Comput Soc (2010) 16: 177-190

30.

31.

32.

33.

34.

35.

36.

Mutka MW, Livny M (1991) The available capacity of a pri-
vately owned workstation environment. Perform Eval 12(4):269—
284. doi:10.1016/0166-5316(91)90005-N

Plank JS, Kingsley MBG, Li K (1995) Libckpt: Transparent
checkpointing under unix. In: Proceedings of the USENIX win-
ter 1995 technical conference, pp 213-323

Plank JS, Li K, Puening MA (1998) Diskless checkpointing.
IEEE Trans Parallel Distrib Syst 9(10):972-986. doi:10.1109/
71.730527

Pruyne J, Livny M (1996) Managing checkpoints for parallel pro-
grams. In: IPPS *96: Proceedings of the workshop on job schedul-
ing strategies for parallel processing. Springer, London, pp 140—
154

Rabin MO (1989) Efficient dispersal of information for secu-
rity, load balancing, and fault tolerance. J] ACM 36(2):335-348.
doi:10.1145/62044.62050

Ripeanu M, Foster I (2002) A decentralized, adaptive replica lo-
cation mechanism. In: HPDC ’02: Proceedings of the 11th IEEE
international symposium on high performance distributed comput-
ing. IEEE Computer Society, Washington

Rowstron A, Druschel P (2001) Storage management and caching
in past, a large-scale, persistent peer-to-peer storage utility. In:
SOSP ’01: Proceedings of the eighteenth ACM symposium on
operating systems principles. ACM, New York, pp 188-201.
doi:10.1145/502034.502053

@ Springer

37.

38.

39.

40.

41.

42.

43.

Rowstron AIT, Druschel P (2001) Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems.
In: Middleware 2001: IFIP/ACM international conference on dis-
tributed systems platforms, Heidelberg, Germany, pp 329-350
Sobe P (2003) Stable checkpointing in distributed systems with-
out shared disks. In: IPDPS ’03: Proceedings of the 17th inter-
national symposium on parallel and distributed processing. IEEE
Computer Society, Washington, p 214.2

Stoica I, Morris R, Karger D, Kaashock M, Balakrishman H
(2003) Chord: a scalable peer-to-peer lookup protocol for inter-
net applications. IEEE/ACM Trans Netw 11(1):17-32

Strumpen V, Ramkumar B (1996) Portable checkpointing and re-
covery in heterogeneous environments. Tech Rep UI-ECE TR-
96.6.1, University of lowa

Valiant L (1990) A bridging model for parallel computation. Com-
mun ACM 33(8):103-111

Vazhkudai SS, Ma X, Freeh VW, Strickland JW, Tammineedi N,
Scott SL (2005) Freeloader: Scavenging desktop storage resources
for scientific data. In: SC ’05: Proceedings of the 2005 ACM/IEEE
conference on supercomputing. IEEE Computer Society, Wash-
ington, p 56. doi:10.1007/s13173-010-0016-0

Weatherspoon H, Kubiatowicz J (2002) Erasure coding vs. repli-
cation: a quantitative comparison. In: IPTPS *01: Revised papers
from the first international workshop on peer-to-peer systems.
Springer, London, pp 328-338

http://dx.doi.org/10.1016/0166-5316(91)90005-N
http://dx.doi.org/10.1109/71.730527
http://dx.doi.org/10.1109/71.730527
http://dx.doi.org/10.1145/62044.62050
http://dx.doi.org/10.1145/502034.502053
http://dx.doi.org/10.1007/s13173-010-0016-0

	Reliable management of checkpointing and application data in opportunistic grids
	Abstract
	Introduction
	Related work
	Distributed data storage and management
	Storage of checkpointing data

	The middleware architecture
	Reliable distributed storage
	CDRM organization
	Data storage and retrieval
	Data management
	Fragment reconstruction protocol
	Local fragment copy

	Reliable execution of parallel applications
	Management of application data
	Checkpointing mechanism
	Checkpoint storage

	Middleware evaluation
	Data availability
	Data availability with node departures
	Network usage for fragment maintenance
	Data storage and retrieval
	Storage of checkpoints from parallel applications

	Conclusions
	References

