
ISSN 0104-6500Journal of the Brazilian Computer Society, 2009; 15(2):3-18.

*e-mail: carla@inf.ufrgs.br

Volume sculpting based on geometric tools

Rafael Huff, Roberto Silveira da Rosa Jr., Luciana Nedel, Carla Maria Dal Sasso Freitas*

Institute of Informatics, Federal University of Rio Grande do Sul,

91501-970, Porto Alegre, RS, Brazil

Received: October 22, 2008; Accepted: June 23, 2009

Abstract: The analysis of volumetric datasets is the main concern in many areas ranging from geophysics to biomedical

sciences. The direct visualization of these data plays an important role in this scenario, and in spite of developments in volume

visualization techniques, interacting with large datasets still demands research efforts due to perceptual and performance

issues. There is a need of interactive sculpting tools which can provide an intuitive way to examine and explore inner parts

of the datasets, as well as to fill missing data for specific purposes. In this paper we report the development of interactive,

intuitive and easy-to-use sculpting tools, which specify regions within the volume to be discarded from rendering, thus

allowing inspection of the volume interior, and to be filled with material to build virtual structures in the volume. Interactive

rates for these sculpting tools were obtained by running special fragment programs on the graphics hardware. The tools were

implemented using two interaction metaphors (virtual pointer and virtual hand) and following different approaches in terms

of devices and single versus two-handed interaction. We report the evaluation of these approaches in detail and concluded

that the use of two different devices together presents a better performance and are preferred by users. Moreover, the use of

virtual hand interaction provided better results than using the virtual pointer during the tests.

Keywords: volume sculpting, virtual pointer, virtual hand, volumetric data, volume rendering.

1. Introduction

Several applications involve the generation, explora-

tion and analysis of volumetric datasets. For years, the

requirements of medical applications have pushed the state-

of-the-art in visualization and interaction techniques, mainly

driven by accuracy and computational time constraints.

Direct visualization of volume data, or volume rendering,

has been playing an important role in this scenario allowing

to obtain helpful images through the use of a variety of asso-

ciated techniques: from colors and transparency29, 19, 18 to

enhance or fade away portions of the dataset to techniques

used by scientific illustrators to improve perception of some

structures10, 3; from geometric clipping planes to allow the

observation of arbitrary slices of the dataset22, 30 to volume

deformation techniques23, 7 to provide ways of browsing the

volume.

In direct volume rendering, transfer functions29 provide a

mapping between data values and image visual properties.

However, although there have been a considerable research

effort on developing these techniques, the generation of

informative renderings from a dataset is still challenging. The

specification of efficient transfer functions11 to segment some

datasets is sometimes impracticable, even with recent frame-

works8, 41, requiring non-automatic segmentation tools based

on interactive manipulation of the volume data. For example,

it is difficult to isolate some inner structures of brain CT scans

due to the resemblance of their density values with others in

the volume, and frequently an expert is required to manually

separate these structures using geometric tools.

In order to assist users to perform this task, volume clip-

ping and deformation tools have been developed30, 38, 23, 4.

However, especially in clipping tools, most of the research

is dedicated to improve performance in order to guarantee

interactive rates, and few of them are concerned with the

interactivity itself. Therefore the objective of our work is to

develop intuitive, easy-to-use and efficient clipping tools

(Figure 1), generic and simple enough to be used in volu-

metric datasets from different fields. In order to guarantee

that, we performed many test with users to evaluate the

interaction with the tools.

The operations performed to clip volumes, removing

material resembling a manual modeling task, have been

referred as volume sculpting37. More recently, Islam et al.17

coined the expression volume splitting as a general form of

referring to both deformation and clipping operations. They

base their work on constructive volume geometry, which is a

nice concept that provides the basis for an important opera-

tion in many applications, the insertion of material into parts

of the volume. For example, in the volume shown in Figure 2a

part of the jaw is missing due to trauma, and the insertion

of material in those voxels can be used as an initial step for

designing a prosthesis (Figure 2b).

Traditional volume sculpting is basically a selection task,

where the voxels inside a volume are first selected (using

some tool like the carving tools in Wang and Kaufman37) and

then deleted. For adding a structure to empty voxels, in this

modeling process, the same actions could be done: selecting

voxels to fill them with a specified material.

Journal of the Brazilian Computer Society4 Huff R, Rosa-Jr RS, Nedel LP and Freitas CMDS

The selection of these voxels can be made using many

different techniques represented by two basic metaphors33:

virtual pointer and virtual hand. In the virtual pointer meta-

phor, the user points at the object of interest using some

cursor even if he is far away from the object. Techniques

based on the virtual pointer metaphor are usually easy to

learn and use because they are based on 2D interaction, i.e.,

in tasks with two degrees-of-freedom (DOFs), and nearly

everybody is familiar with 2D input devices and applica-

tions. However, in 3D interaction techniques based on the

virtual hand metaphor, the continuity between the real and

virtual world is enhanced, because the cursor has six DOFs

and allows the user to “touch” and manipulate virtually the

object of interest.

In an earlier paper16 we described three sculpting tools

following a 3D interaction paradigm – the virtual hand inter-

action technique – to allow real-time volume sculpting in

an efficient and comfortable way while using commodity

PC workstations. Our 3D tools are called: 3D eraser, 3D digger

and 3D clipper (Figures 1a-c). Real-time response rates have

been achieved by running the sculpting tools and volume

rendering on GPU. In that work we were interested in

measuring user’s performance using different devices

(conventional and 3D mouse) as well as one and two hands.

The present paper reports a large extension of our

previous work comprising several aspects. We implemented

the three sculpting tools following also a 2D interaction

paradigm, using the virtual pointer interaction technique

(Figures 1d-f). The efficiency of the interaction was measured

regarding different ways of controlling the tools. Like in the

previous work, we implemented the tools controlled by a

conventional 2D mouse as well as a 3D mouse. As a result of

experiments with users, we also designed and implemented

two additional sculpting operators, for inserting material into

the volume, thus fulfilling the lack we found in the current

scenario regarding volume manipulation. These operators are

mirror and filler, which we classify as filling operators. They

were assessed by exploring alternatives in a usage scenario.

The remainder of the paper is structured as follows. In

the next section, we review some relevant previous work. We

then present the sculpting tools (Section 3) including details

of their implementation (Section 4). The use of the tools by

experimental users is reported and discussed (Section 5).

The filling operators are described and their evaluation is

reported in Sections 6 and 7, respectively). Conclusions and

future work are drawn in the last section.

2. Related Work

Although volumetric visualization techniques have been

proposed since the 80’s, only in the last years the advances

in commodity graphics hardware allowed texture-based

volume rendering to achieve satisfying image quality with

better performance than software-based methods34, 19.

Interacting with volumes to expose inner structures

through clipping tools started with the use of clipping

planes22, 14, 28. Wang and Kaufman37 pioneered the use of

carving and sawing tools, with voxelized geometries as tools

and explicit set operators between volume data and the tools.

Along the years, different clipping approaches have been

considered in scientific visualization30, 39.

Van Gelder and Kim14 used clipping planes to specify the

boundaries of the clipping region in texture-based volume

rendering while Westermann and Ertl40 introduced the

concept of clipping geometries by means of stencil buffer

operations. Later on, Pfister et al.28 proposed the VolumePro

hardware architecture with cropping and cutting planes

features for clipping the volume.

Weiskopf et al.38 proposed clipping tests using per-

fragment operations on the graphics hardware to maintain

high rendering speed. They propose a depth-based clipping

technique that analyzes the depth structure of the clipping

geometry to decide which parts of the volume have to be

clipped (a similar approach is used by Diepstraten et al.9).

They also propose a clipping tool that uses a voxelized clip-

ping object to identify clipped regions. In this tool, a texture

buffer stores visibility information, and it is used as a mask

that indicates if each voxel will contribute to the final image.

This clipping texture is obtained by the voxelized geometry

of clipping tools on the CPU. Scale, rotation and translation

operations of the clipping object are allowed by adapting the

texture coordinates of the clipping texture. The “voxelized

a b c

d e f

a

Figure 2. a) Part of the jaw (left side) is missing due to trauma; and

b) Voxels filled with material to model a prosthesis.

Figure 1. Volumetric Sculpting Tools: a) 3D Eraser, b) 3D Digger,

c) 3D Clipper, d) 2D Eraser, e) 2D Digger and f) 2D Clipper.

b

5Volume sculpting based on geometric tools2009; 15(2)

clipping object” paradigm is also exploited in our work but

the geometries of our tools are voxelized on the GPU.

Volume deformation tools, as proposed by McGuffin

et al.23, have the advantage of showing inner structures

surrounded by its context. However, as presented in that

work, they do not serve to the purpose of actually segmenting

parts of interest in the volume since they are devoted mainly

to browsing purposes. They provide a way to explore

semantic layers in the dataset (i.e. previously segmented

data), by spreading voxels in a given direction. In the present

work, regarding clipping, we are concerned with the actual

isolation of voxels, removing from the view those that are not

of interest.

VolumeShop, proposed by Bruckner and Gröller4, is a

volume illustration system based on sculpting tools: cutaway

and ghost tools use opacity assignments to remove occluding

regions thus providing visual inspection of inner features.

This is somehow similar to our approach, the difference

relying on the way we select the regions to be eliminated from

(or added to) the volume. They cast a ray from a point clicked

on a screen into the volume. At the first voxel crossed by this

ray, a volumetric brush centered on the voxel can either add

to or erase details from the selection volume for every voxel

within the brush bounding box.

Recently, Chen et al.6 also presented a framework of inter-

active GPU-based tools for real-time volume manipulation

and segmentation. These tools were developed using a point-

based strategy for sculpting volumes and removing occluding

materials. Some operations of these tools were inspired by

medical procedures like drilling, peeling and lasering, and

others provided basic operations like cutting and pasting.

They also implemented a system for region-growing segmen-

tation and multiple seeds planting with sketches.

The research briefly reviewed above proposed new

techniques to improve the performance of sculpting tools,

while guaranteeing interactive frame rates. However, the

authors do not exploit the advantages of different interac-

tion metaphors and devices, although sculpting applications

for modeling purposes have used different devices, such as

conventional 2D mouse37, 3D mouse13, and even both devices

at the same time27.

In our previous work16, we developed three sculpting

tools (3D eraser, 3D digger and 3D clipper) following the

virtual hand interaction technique, using different devices

(conventional and 3D mouse) as well as one and two hands.

Experiments showed that the conventional 2D mouse

yielded better performance in time completion for the eraser

and digger tools, but error rate was lower when using the

3D mouse for controlling the sculpting tool in two-handed

interaction. User’s preference obtained through a question-

naire showed that subjects preferred to use the 2D mouse to

control the sculpting tool and the 3D mouse to control the

volume.

Even though interaction techniques could be classified

into just two basic metaphors – virtual pointer and virtual

hand – several different techniques should be considered to

implement these metaphors. For the virtual pointer meta-

phor, techniques can differ from each other in the shape of

the pointer, the definition of its direction and the methods

of disambiguating the object the user wants to select. The

most common example is the ray-casting technique24 and

its variations: ray-casting with fishing reel1, spotlight25, aper-

ture selection12, and image plane31. Regarding the virtual hand

based techniques, the choice of input devices and mappings

between the position and orientation of real and virtual

hands are the differentiation. The classic virtual hand was

discussed by many authors33, 36, 26 and some extensions have

been presented32, 1, 24.

Moreover, two-handed input has often been viewed as

a technique to improve the efficiency of human-computer

interaction, by enabling the user to perform two sub-tasks

in parallel5, helping users to better perceive a 3D environ-

ment because it takes advantage of people’s innate ability

of knowing precisely where their hands are relative to each

other15, 35. Leganchuck et al.20 also noticed that using both

hands in an application brings cognitive and manual advan-

tages and their work provided a complimentary perspective,

exploring the potential benefits into everyday applications.

In the present work we exploit all these alternatives to

enhance interactivity in volume sculpting while maintaining

high-quality and real-time rendering by employing graphics

hardware programming.

3. Tools for Volume Sculpting

Aiming at an intuitive interface for sculpting volumes, we

designed a set of tools based on interaction techniques using

both the virtual pointer and the virtual hand metaphors.

Since selection using virtual pointer is essentially a

2D operation2, we developed a set of 2D sculpting tools using

the “painting” paradigm present in most ordinary image-

editing applications, where the user controls virtual pens,

brushes, and other free-hand artistic instruments to paint

or erase on a virtual canvas. These tools are called 2D eraser,

2D digger and 2D clipper (Figures 3a-c), and implement basic

sculpting operations, which are used to perform complex

cutting, clipping and cropping tasks. Even though the user is

sculpting a 3D volume, using these 2D tools is like editing a

common 2D image.

The three-dimensional versions of the same tools (3D eraser,

3D digger and 3D clipper, see Figures 3d-f), reported in Huff

et al.16, use the virtual hand metaphor. In these versions, the

virtual hand is represented as different cursors, depending on

the tool in use, and their shapes mimic the operation of the 2D

tools. The following sections describe the conceptual design of

the 2D and 3D tools as well as their implementation.

3.1. Eraser tools

The 2D Eraser tool (Figure 1d) uses the Aperture Selection

technique12, a modification of the ray-casting technique. The

cursor is a circle aligned with the view plane and the origin

of the virtual pointer is set to the location of the user’s point

of view, as shown in Figure 3a.

Journal of the Brazilian Computer Society6 Huff R, Rosa-Jr RS, Nedel LP and Freitas CMDS

The direction vector of this pointer, named line of sight, is

the vector from the point of view to the center of the cursor.

The size of the cursor r is previously established by the user

and the position P is also specified by the user through the

selection of a pixel on the screen. The size and 2D position

of the cursor, together with its distance to the point of view,

determine the selection volume.

When the 2D Eraser tool is applied to the volume, the

position of each voxel is tested against the selection volume,

and all voxels inside this volume are removed. The test is

performed by (perspective) projecting the center of each

voxel onto the view plane. If the 2D Euclidean distance d of

the projected voxel V to the center of the cursor P is smaller

than the radius r of the cursor, the voxel is inside the volume

(Figure 3a).

Observing Figure 3a, it is possible to notice that the

2D Eraser Tool can be interpreted in 3D as a cone (due to

the perspective projection during the volume visualiza-

tion process) perpendicular to the view plane with the apex

located at the user’s point of view and the base at the infinity.

The viewing angle is the opening angle of the cone, consid-

ering a cross section through the apex point and the center of

the cursor.

Using an orthographic projection, the resulting shape is

a cylinder, which makes more sense when the virtual hand

metaphor is used for controlling the tool, since the cursor

should be independent of viewing parameters. Detaching

the cylinder from the point of view of the user provides the

possibility of freely rotate and translating it. Our 3D Eraser

tool (Figure 1a) was conceived in this way (Figure 3d).

The parameters used for testing a voxel against the volu-

metric region defined by the cylinder (3D Eraser tool) are

similar to those employed for the 2D Eraser tool: a projec-

tion plane, a 2D point P on this plane and the radius r of the

cylinder. It should be noticed that in the 3D Eraser, the cursor

is independent of the viewing parameters, and thus the

projection and the view plane are independent too, as can be

observed in Figure 3d). When the cursor is rotated and trans-

lated, these transformations are applied to this projection

plane. The selection of a voxel for elimination is done by first

orthogonally projecting its center into the projection plane.

For each projected center, a distance to P is computed (called

projected distance d of a voxel). d is a 2D Euclidean distance

since it is calculated on the projection plane (Figure 3d).

Following, every voxel with d < r is removed.

3.2. Digger tools

Often, during volume sculpting, instead of erasing it all the

way through with the Eraser tools, the need is digging a hole

in the volume. Here, this is accomplished by the Digger tools.

The 2D Digger tool (Figure 1e) considers for removal the

same voxels of the 2D Eraser tool, i.e., inside a circle, but only

those within a given depth from the first point on the volume

boundary along the line of sight (Figure 3b). The cursor of

this tool is also a circle that can be translated (by the user) on

the view plane, and its depth is calculated from the cursor

radius r (also defined by the user), the surface distance ds

and the view plane distance dv to the point of view, as given

by Equation 1.

ds
depth = * r

dv
 (1)

When the 2D Digger tool is applied, it is like an object

hitting the surface of the volume and eliminating every voxel

inside a region delimited by its depth. This is obtained by

selecting the first voxel (on the surface of the volume) inter-

cepted by the line of sight and calculating the 3D Euclidean

distance d from it to every other voxel v. All the voxels within

a distance smaller than the depth of the tool are erased. The

a b c

d e f

r

r

r

P

r
P

View plane

View
 plane

Point of
view

Point of
view

Point of
view

Point of
view

Projection plane

Cursor

Cursor

Cursor

View plane
Cursor

d

d

d

d

d

v

v

v

d

v

v

v

Mask

Mask Mask

M
ask Mask

Line of sight

Line of s
ight Point of

view

Point of
view

Depht

dv
ds

p1 p2

Cursor

P
P

Cursor

Mask

Figure 3. 2D Tools: a) Eraser, b) Digger, and c) Clipper. 3D Tools: d) Eraser, e) Digger, and f) Clipper.

7Volume sculpting based on geometric tools2009; 15(2)

selection region associated to the 2D Digger tool can be inter-

preted as a semi-sphere with the center located on the surface

of the volume. The size and position of this semi-sphere are

constrained by viewing parameters: its size varies according

to Equation 1, and the position is determined by the intersec-

tion between the line of sight and the volume surface.

As for the 3D Digger tool, the virtual hand cursor is actu-

ally a sphere detached from the view plane. This means that

the center of the sphere does not have to be located on the

volume surface anymore, and can be placed anywhere in

the volume, being freely controlled by the user (Figure 1b).

Figure 3e shows how it was designed. The sphere has radius

r and center position P both specified by the user, and the

selection of a voxel for removal is done by first calculating

the 3D Euclidean distance d of the voxel’s center to P. If this

distance is smaller than r, the voxel is removed.

3.3. Clipper tools

Differently from the 2D Eraser and Digger tools, the

cursor of the 2D Clipper tool (Figure 1f) is represented by a

line segment on the view plane (Figure 3c), defined by two

points selected by the user on the screen. This line divides

the whole image that the user is observing, in order to delete

part of the volume.

The 2D Clipper defines a convex region that lies inside

the 3D original volume following a carving approach. This is

accomplished by calculating a clipping plane through three

points: the point of view and the two points specified by the

user on the screen. The selection of a voxel for elimination is

done by calculating the smallest distance of its center to that

plane. This (signed) distance is calculated by a dot product

between voxel coordinates and plane coefficients. The voxel

is removed if the distance is negative. Even though a clip-

ping plane and 3D distances are used, due to the perspective

projection, the user visualizes it as a 2D operation.

As for the virtual hand metaphor (Figure 1c), instead of a

line, the user manipulates a square (Figure 3f) that represents

the cutting plane. The square can be freely translated and

rotated, and, differently from the 2D Clipper tool, it is not

attached to the user’s point of view. When this cutting plane

is applied for removing voxels, it slices the current volume

and creates a shape with one additional face. This process

can be repeated as long as needed, and is performed using

the dot product, like for the 2D Clipper tool.

4. Tools Implementation

All the six sculpting tools presented in the previous

section (2D and 3D Eraser, Digger and Clipper) were inte-

grated in a texture-based volume rendering system based on

the paradigm proposed by Weiskopf et al.38. Figure 4 shows

the structure of the system using a clipping plane as an

example of volume sculpting tool.

The first stage (initialization) is the processing of the volu-

metric dataset and its storage as a 3D texture in the GPU.

During this process, if required, a pre-classification according

to a transfer function11 or calculations of scalar values and

gradients for volume shading39 can be used.

The actual sculpting of the volume is accomplished

through special fragment shaders that run on the GPU, and

use the tool geometry to eliminate voxels. This is accom-

plished by the stages update and drawing.

With few parameters, the geometries of our tools are

voxelized on the GPU by specialized fragment shaders,

differently from the work developed by Weiskopf et al.38,

where tools are voxelized on the CPU.

Updates are requested when the user interacts with the

system, either changing viewing parameters or sculpting the

volume. Viewing changes are issued at camera manipula-

tion, but sculpting can be produced by any tool. Since the

tools are voxelized on the GPU, the active clipping tool can

be changed interactively, resulting in real time tools manipu-

lation and volume sculpting operations. If a sculpting tool is

applied to a volume, voxels that lie within the geometry asso-

ciated to the tool are marked to be removed, resulting in a

3D mask. Values associated with marked voxels can be either

binary (1 = visible; 0 = removed) or Euclidean distances to the

closest point on the clipping object, in order to avoid jaggy

artifacts. This is accomplished by fragment shaders.

The fragment shader that implements the eraser tools

is called FSEraser, and receives as input the 3D mask

(SculptMap), the projection plane, the 2D point P, and the

tool radius r (refer to Figures 3a, d). For each fragment in the

proxy rectangle, the steps shown in Figure 5 are performed.

The digger tools (Figure 3b, e) are implemented by the

same fragment shader called FSDigger shown in Figure 6.

The inputs for the shader are the 3D mask SculptMap, the

point P and the cursor radius r.

Figure 4. Clipping example: a volume containing a red sphere is

clipped.

Interface/Device CPU GPU

Fragment Processor Target

2D Images 3D Texture

3D Texture

3D Mask

Clipping PlaneUser Input 3D Mask

Frame Buffer

3D Mask

Proxy Geometric

Initialization

Update

Drawing

Shader

Shader

Journal of the Brazilian Computer Society8 Huff R, Rosa-Jr RS, Nedel LP and Freitas CMDS

Finally, FSClipper is the fragment shader that implements

the clipper tools (Figures 3c, f). As the other shaders, the

SculptMap is a parameter for this one, and the cutting plane

completes the arguments needed for rendering the result of

the clipper tools. Cg code for FSClipper is shown in Figure 7.

The visualization of the dataset is achieved by sampling

a 3D texture using a set of planes aligned with the viewing

direction as proxy geometry (see drawing phase in Figure 4).

During the rendering stage, these planes are drawn in sorted

order. For the 3D texture to be sampled, we use the combina-

tion of two different 3D volumes, one with the original dataset,

and a second one, the texture mask SculptMap, with visibility

information. Voxels marked to be removed have their alpha

values modified in the texture mask. The visualization is

performed by combining the original dataset with the texture

mask, discarding marked voxels which should not contribute

to the final image. The texture mask is frequently smaller than

the original volume and a tri-linear interpolation of visibility

values should also be considered during the combination

process. In our system, the combining step is performed in a

fragment shader, called FSCombiner (Figure 8).

5. Testing the Volume Sculpting Tools

In our work, we aimed at developing efficient, precise,

intuitive and comfortable interactive tools. Based on these

criteria of quality, we conducted two sets of tests with users.

Since the tests were not planned for expert users from a

specific field, we used generic volumes, which every user

could understand and complete the task. For both tests, the

experiments consisted of the elimination of red voxels from

red-and-grey volumes (Figure 9).

Figure 5. Cg code for FSEraser.

Figure 6. Cg code for FSDigger.

Figure 7. Cg code for FSClipper.

struct vertex2fragment {float2 Tex0: TEXCOORD0;};

void main(vertex2fragment v2f,

 uniform float4x4 ProjPlane : C0,

 //P.xy = 2D Point ‘P’ | P.z = tool radius ‘r’

 uniform float3 P : C4,

 uniform sampler3D SculptMap : TEXUNIT0,

 uniform sampler2D PolygonCoord: TEXUNIT1,

 out float4 Col : COLOR0) {

 // Texture mapping

 float4 texCoord = tex2D(PolygonCoord, v2f.Tex0);

 Col = tex3D(SculptMap, texCoord.xyz);

 // Projection

 float4 PlaneCoordinates =

 mul(float4(texCoord.xyz - 0.5f, 1.0f), ProjPlane);

 PlaneCoordinates.xyz /= PlaneCoordinates.w;

 // 2D Euclidean distance

 float D = length(PlaneCoordinates.xy - P.xy) / P.z;

 if (D < Col.a) Col.a = D;

}

struct vertex2fragment {float2 Tex0: TEXCOORD0;};

void main(vertex2fragment v2f,

 //P.xyz = 3D Point ‘P’ | P.a = tool radius ‘r’

 uniform float4 P : C0,

 uniform sampler3D SculptMap : TEXUNIT0,

 uniform sampler2D PolygonCoord: TEXUNIT1,

 out float4 Col : COLOR0) {

 // Texture mapping

 float4 texCoord = tex2D(PolygonCoord, v2f.Tex0);

 Col = tex3D(SculptMap, texCoord.xyz);

 // 3D Euclidean distance

 float D = distance(float4(P.xyz,1), texCoord) / P.a;

 if (D < Col.a) Col.a = D;

}

struct vertex2fragment {float2 Tex0: TEXCOORD0;};

void main(vertex2fragment v2f,

 uniform float4 clipPlane : C0,

 uniform sampler3D SculptMap : TEXUNIT0,

 uniform sampler2D PolygonCoord: TEXUNIT1,

 out float4 Col : COLOR0) {

 // Texture mapping

 float4 texCoord = tex2D(PolygonCoord, v2f.Tex0);

 Col = tex3D(SculptMap, texCoord.xyz);

 // Distance

 D = clamp(dot(clipPlane,

 float4(texCoord.xyz-0.5f, 1.0f))+1.0f, 0.0f, 1.0f);

 if (D < Col.a) Col.a = D;

}

struct vertex2fragment {float2 Tex0: TEXCOORD0;};

void main(vertex2fragment v2f,

 uniform sampler3D SculptMap: TEXUNIT0,

 uniform sampler3D VolumeTex: TEXUNIT1,

 out float4 Col : COLOR0) {

 // Textures mapping

 float4 mask_voxel = tex3D(SculptMap, v2f.Tex0);

 float4 volume_voxel = tex3D(VolumeTex, v2f.Tex0);

 // Textures combination

 Col.rgb = volume_voxel.rgb;

 Col.a = volume_voxel.a * floor(mask_voxel.a);

}

Figure 8. Cg code for FSCombiner.

9Volume sculpting based on geometric tools2009; 15(2)

Considering the assumption that using 2D tools is as

easy and natural as the editing of common 2D images with

a mouse in a “painting” system, the first set of tests was

designed to evaluate the preference and performance of users

when manipulating and carving volumes with the 3D tools.

In these tests, the user could choose between a regular mouse,

a 3D mouse, or both concurrently to manipulate the volume

and the tools. Section 5.1 presents details of the experiment

reported in Huff et al.16.

The second set of tests intended to verify which inter-

action metaphor (virtual hand or virtual pointer) is the most

appropriate for sculpting volumes. These tests actually

compare user performance and preference between 2D and

3D sculpting tools. Details are presented in Section 5.2.

5.1. Which is the best device to control 3D tools?

The main goal for using 3D tools is to enlarge the conti-

nuity between visualization and interaction. In the first set

of tests, we adopted the virtual hand as the 3D interaction

metaphor to control the tools, so the user is not forced to

decompose a 3D task into a series of 2D or 1D tasks21.

We used a Magellan Space mouse (see Figure 10, upper

left part), since it has 6 degrees of freedom (DOFs), and it

is relatively simple, robust and easy to learn. However, for

evaluation purposes, we also implemented the virtual hand

metaphor controlled by a conventional mouse since it is the

most commonly used input device.

In our testbed application, two different objects can be

manipulated by the input devices: the tools and the volume

of interest (VOI). The tools can be rotated around themselves

and translated in x, y, and z axis. The VOI can also be rotated

around itself but cannot be translated. While the 3D mouse

allows easy control of 3D rotations and translations on a

virtual hand interaction, these transformations are not trivi-

ally executed with a conventional 2D mouse.

In order to compare both devices, we had to compen-

sate the lack of DOFs of the 2D mouse. Translations along

the x and y axis were normally performed by moving the

2D mouse, but translations along the missing z dimension

were performed by rolling the wheel of the common mouse

(Figure 10). Rotations were performed by holding down a

button and moving the mouse around in a dragging move-

ment.

The user could select in the interface of the application

which object (tools or VOI) he/she wanted to manipulate

with each mouse (2D or 3D). The manipulation of both objects

with the same device at the same time was not allowed. The

user would have to switch between them explicitly. In order

to manipulate both objects at the same time, two-handed

interaction was enabled by using the 2D and 3D mouse at the

same time. In this case, the user could choose which device

would be associated with each object (tools and VOI). Due to

implementation issues, two 3D mice or two 2D mice could

not be used at the same time.

Our evaluation was based on three hypotheses,

concerning to the combination of input devices used:

฀฀฀฀฀s฀ (��฀ 4HE฀ MANIPULATION฀ OF฀ TOOLS฀ IS฀ FASTER฀ USING฀ A฀
conventional mouse.

฀฀฀฀s฀ (��฀4HE฀ERROR฀RATE฀DECREASES฀WHEN฀THE฀SUBJECTS฀ADOPT฀
the 3D device to manipulate the tool.

฀฀฀฀s฀ (��฀ 4HE฀ SUBJECTS฀ WILL฀ PREFER฀ TWO
HANDED฀ INPUT�฀
using both devices simultaneously to manipulate

volume and tools.

The first hypothesis rises from the thought that common

users are used to the conventional mouse and a training stage

with the 3D mouse would not provide them the same skills.

The second hypothesis, on the other hand, is based on the

statement that 3D devices are better suited for 3D interaction

techniques21. Finally, the last hypothesis relies on the cogni-

tive benefits that reduce the load of mentally composing

and visualizing the tasks at an unnatural low level which is

imposed by traditional single-handed techniques5.

5.1.1. Scenario and subjects

The experiment consisted of the elimination of red voxels

in a red-and-grey volume. The testbed application takes as

input different datasets, which are volumes composed by a

set of images with red and grey pixels. We designed three

different datasets, one for each tool, because of the geometry

associated with each tool. A fourth volume was used to train

the users before they start the evaluation process (Figure 9).

The user has to remove the maximum number as possible

of red voxels from the volume, while avoiding the elimina-

tion of the grey ones as well.

a b c d

Figure 9. Experiment datasets: a) eraser evaluation volume, b) digger

evaluation volume, c) clipper evaluation volume and d) training

evaluation volume.

+Z

+Z

–Z

–Z

+Y

+Y

–Y

–Y

–X

–X

+X

+X

Figure 10. System interface and the interpretation of input devices

operation to manipulate 3D tools.

Journal of the Brazilian Computer Society10 Huff R, Rosa-Jr RS, Nedel LP and Freitas CMDS

To test the three hypotheses we defined 12 user tasks

consisting of a basic task performed with different combi-

nation of input devices. The combination of three sculpting

tools (digger, eraser and clipper), two different objects (tools

and volume) to be manipulated as well as two input devices

(2D and 3D mouse) resulted in the set of 12 different tasks.

We have performed tests with 15 subjects (one professor

and 14 students), most of them with a Computer Science

major. Even though only two of the students were not working

in computer graphics projects, most of them had no or little

experience with 3D mouse (Figure 11). Our population was

heterogeneous, consisting of three women and 12 men with

ages between 20 and 40, average 25 years old. Each of them

tested the three tools and the two devices, performing the

12 tasks.

 5.1.2. Methodology and procedure

We performed our tests in a Windows XP platform on a

standard PC (AGP 4) with a single 3.2 GHz Intel Pentium IV

with 512 Mb of RAM, and an ATI Mobility Radeon X600

graphic card with 256 MB.

The following steps were applied in the same order to

all subjects: 1) instructions about the application and devices

were provided; 2) a pre-test questionnaire was completed by

the subject; 3) unlimited time for training was allowed; 4) the

12 tasks were performed randomly, being the log file recorded;

5) a post-test questionnaire was completed by the subject.

Before being asked to perform the tasks, each user had

unlimited time to learn and become familiarized with the

application and devices. For this the users had training

dataset and tasks (Figure 9d) to practice and only during

this stage they could freely switch devices. Once the user felt

comfortable, the 12 tasks were performed.

Tasks were selected in random order. After the display

of a task specification, the user had to press a start button to

actually begin the task. The task did not finish automatically,

but when the user felt that he had accomplished it, he/she

pressed a button. Then, the new task was randomly chosen

by the application and displayed, until all the 12 tasks were

accomplished.

Since the hypotheses were based on measuring user’s

performance during 12 tasks, we designed the experiment

with independent and dependent variables as explained

below. The log file generated for each user contained the

following data items associated with each task: description of

the task, total number of grey and red voxels removed from

the volume, remaining number of white and red voxels and

time spent during the task.

Independent variables are the experiment variables

that generate different conditions to be compared. As inde-

pendent variables we used: age; gender; user’s occupation;

previous use of 2D and 3D devices; previous use of 2D and

3D applications, like games, CAD, 3D Studio, Blender, etc.,

and finally the 12 tasks.

Flock of birds

Data glove

Head-mounted
display

Keyboard

Mouse 3D

Mouse 2D

3D Games

2D Games

3D Applications

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

13.33%

13.33%

6.66%

6.66%

6.66% 66.66%

53.33%

13.33%

100%

100%

40%

60%

73.33%

26.66%

26.66%

26.66%

26.66%

20%

20%

20%

20%

20%

20%

20%

20%

40%

40%

Excellent Good Poor None

Subjects previous experiences

Figure 11. Subjects previous experiences with 2D and 3D applications and devices.

11Volume sculpting based on geometric tools2009; 15(2)

Dependent variables are measures taken during the

execution of tasks. They can be objective, as the time spent

to accomplish a task, or subjective, like the level of satisfac-

tion, collected from post-test questionnaires answered by the

subjects. The dependent variables used in our experiment

were: task completion time; error rate and device preference.

The completion time was measured from the beginning

of each task until the user finished it by pressing a button.

The error rate (Equation 2) took into account the error after

the sculpting task is completed and time spent to perform the

task, as given by Equation 2:

error_rate = * T (2)

where T is completion time and is given by Equation 3:

=
#

e eR W

voxels
 (3)

with R
e
 being the number of remaining red voxels and W

e
 the

number of deleted grey voxels.

Finally, ease of use and device preference were verified

through the analysis of questionnaires.

5.1.3. Results and discussion

For the statistical analysis of collected data, several varia-

bles were considered. These variables were obtained through

the pre- and post-test questionnaires and the log files. The

pre-test form answered by the subjects provided us with

their previous experience with 2D and 3D applications and

devices (Figure 11). This table shows that the users had excel-

lent previous experience using the 2D mouse and keyboard,

but only a few of them had experience with the 3D mouse.

The correlation between the data from the pre-test ques-

tionnaire and the log files (independent and dependent

variables) was calculated.

It was possible to verify that performance with the digger

and clipper tasks was correlated to the previous experiences

of the subjects with 3D devices, especially when the user

had to use the 2D mouse to manipulate the tools and the

3D mouse to control the volume (r > 0.514, p < 0.05). Other

variables, like age and gender, did not show having influence

on performance.

We used ANOVA (Analysis of Variance) to verify the

significance of the time and error results obtained from the

log files.

To evaluate the first hypothesis (The manipulation of the

tools is faster using a conventional mouse) the time spent by the

users to complete each task was analyzed. ANOVA results

showed that the difference of the time spent in each task was

significant only for the digger (F = 5.308, p < 0.02) and eraser

(F = 4.663, p < 0.04) tools. When setting the 2D mouse for

controlling volume manipulation, the mean time using the

3D mouse for guiding the tool is higher than the time spent

using the 2D mouse for that, both for the digger and the eraser

(Figure 12).

In order to verify the second hypothesis (The error rate

decreases when users adopt the 3D device to manipulate the tool),

the error rate was calculated multiplying user’s error by the

time spent in each task, as stated in Equation 2. The user’s

error was the number of remaining red voxels and deleted

grey voxels (recalling that the task was to remove only the

red voxels). The difference of performance was not signifi-

cant according to ANOVA. Therefore the second hypothesis

was not confirmed.

The analysis of the post-test questionnaire confirmed

the third hypothesis (The users will prefer two-handed input,

using both device simultaneously to manipulate volume and

tools). Figure 13a shows that the great majority of the users

preferred the 2D mouse to manipulate the tools and the 3D

mouse to control the volume separately. Figure 13b shows

that the users also preferred this combination of devices for

two-handed input.

73.8000

140.8000

103.5384

63.4615

2D Mouse 3D Mouse

160

140

120

100

80

60

40

20

0

T
im

e
(s

ec
o

n
d

s)

Digger Eraser

Figure 12. Digger and Eraser mean times (in seconds) when control-

ling the volume with the 2D mouse.

Figure 13. a) Preferred device to control the volume or tools; and

b) preferred combination of devices.

26.67%

26.67%

46.67%

73.33%

73.33%

53.33%

33.33%66.67%

0% 50% 100%

Volume

Eraser

Digger

Clipper

2D Mouse 3D Mouse

a

26.66%

66.66%
6.66%

Volume: 2D Mouse
Tools: 2D Mouse

Volume: 3D Mouse
Tools: 2D Mouse

Volume: 3D Mouse
Tools: 3D Mouse

b

Journal of the Brazilian Computer Society12 Huff R, Rosa-Jr RS, Nedel LP and Freitas CMDS

5.2. Are 3D tools better than 2D ones?

Regarding the volume sculpting tools, our main goal

was to make them intuitive and easy to manipulate. To

compare user’s performance using 2D and 3D tools we chose

the conventional mouse to control both the volume to be

sculpted and the actual sculpting tools. This was supported

by the results from the first set of experiments. Rotation of the

volume was implemented by dragging the mouse with the

right button pressed, while the left button is used to apply

the tools to the volume.

The manipulation of 2D tools with a conventional mouse

is trivial, since all tools have the same degrees of freedom

(DOFs), and follows the convention shown in Figure 10.

Depth perception was enhanced through visual feedback

provided by lighting, fake shadows, guide lines, grid and

rulers.

The interface of our application also provides some

other features to help with the use of sculpting tools. Axial,

coronal and saggital sections of the volume can be shown to

allow observation of inner structures of the dataset during

the use of digger tools (see Figure 10). The 3D Eraser tool

can be rotated and additional translation options are also

available.

The evaluation was based on three hypotheses, all of them

regarding the use of the two different sets of sculpting tools,

i.e., using the virtual pointer metaphor (2D) or the virtual

hand (3D):

s฀ (��฀5SING฀THE฀�$฀VOLUME฀SCULPTING฀TOOLS฀IS฀FASTER฀THAN฀
using the 3D ones.

s฀ (��฀ 4HE฀ ERROR฀ RATE฀ DECREASES฀ WHEN฀ USING฀ THE฀ �$฀
volume sculpting tools.

s฀ (��฀3UBJECTS฀PREFER฀THE฀�$฀VOLUME฀SCULPTING฀TOOLS�฀

The first hypothesis was conceived upon the fact that

regular users are familiar with 2D interactive tools, and the

training period in 3D tools is not enough to provide them

the same skills to manipulate 3D tools as they would have

with 2D ones. The second hypothesis, on the other hand,

was based on the consideration that 3D tasks are better

performed using a 3D interaction metaphor, because some

problems of mapping from 3D to 2D (as the projection, for

example) would be avoided. Finally, the third hypothesis

relied on the cognitive benefits from the reduction of the

workload of mentally decomposing 3D tasks into unnatural

2D tasks.

5.2.1. Scenario and subjects

As before, the experiment consisted on the elimination of

red voxels from red-and-grey volumes. In order to facilitate

the visualization of cuts and holes, illumination and a marble

procedural texture were applied onto the volumes.

The testbed application used 5 phantom datasets as input,

each one composed by a stack of images with red and grey

pixels: one for training the users before they start the evalua-

tion process (Figure 14a); three for the evaluations of the

tools (digger, eraser and clipper), independent of the interac-

tion technique applied (Figures 14b-d); and a fifth volume to

evaluate the use of the three tools concurrently (Figure 14e).

All datasets used were opaque. Transparency was used in

Figure 14 only to illustrate inner structures.

Tests were performed by 16 Computer Science students,

most of them knowledgeable in Computer Graphics. In spite

of that, the pre-test questionnaires analysis showed that most

of them had little experience with 3D environments. The

subjects were between 20 and 29 years old, average of 23.5

and there were only three women in the group. Each of the

subjects tested the six sculpting tools in eight tasks.

5.2.2. Methodology and procedure

We performed the experiments on a HP Pavillion zd8000

notebook with a single 3.20 GHz Intel Pentium IV CPU,

512 MB of RAM, ATI Radeon X600 PCI Express x16 graphics

card with 256MB, running WindowsXP.

The following steps were performed in the same order by

each subject: 1) instructions about the application and devices

were provided; 2) a pre-test questionnaire was completed;

3) unlimited time for training was allowed; 4) the 8 tasks

were performed in a defined order; and 5) a post-test ques-

tionnaire was completed.

Tasks were presented to users in a certain order; after the

display of a task specification, the user had to press a start

button to actually begin the task. The task did not finish

automatically, and when the user felt that he/she had accom-

plished it, he/she pressed a button. Then, the new task was

displayed by the application, until all the 8 tasks were accom-

plished.

Users were separated into two groups with the same size

to avoid the order factor: one group tested the 2D set of tools

first than the 3D, while the other did the opposite. Each set

of tools was evaluated in the same order: the digger tool was

followed by the eraser and clipper, and the task to evaluate all

Figure 14. Datasets for experiment 2: a) a cube and a cylinder, for training; b) a mushroom, for the digger evaluation; c) a teapot, for the eraser

evaluation; d) a cube, for the clipper evaluation; and e) a bitten apple, for the evaluation of the three tools at the same time.

a b c d e

13Volume sculpting based on geometric tools2009; 15(2)

the tools together was the last one. This order was selected

based on results obtained from the previous experiment.

For each user, a log file was generated with the following

data items associated with each task: task id; total number of

grey and red voxels of the volume; remaining number of grey

and red voxels; time spent in the task; and history of actions

performed.

As independent variables we used: age; gender; user’s

occupation; previous use of 2D and 3D devices; previous

use of 2D and 3D applications such as image editors, games,

CAD, 3D Studio Max, Blender, etc.; and the eighth tasks.

The dependent variables considered were: task comple-

tion time; error rate; and device preference. The completion

time was measured from the beginning of each task until the

user finished it by clicking on a button in the system inter-

face. The error rate is calculated as in the first experiments

(Equation 2).

Ease of use and device preference were verified through

the analysis of questionnaires.

5.2.3. Results and discussion

The pre-test form answered by the subjects provided us

with their previous experience with 2D and 3D applications.

The correlation between the data from the pre-test question-

naires and the data saved in the log files was calculated.

There was no correlation between previous experiences that

the subjects had with the performance obtained during this

second set of tests. Other variables like age and gender did

not show any correlation too.

As before, we used ANOVA to verify the significance of

time and error results obtained from log files. To evaluate the

first hypothesis (Using the 2D volume sculpting tools is faster

than using the 3D ones) the time spent by the users to complete

each task was analyzed.

ANOVA test results showed that the difference in the

time spent in each task was significant only for tasks where

we allowed the use of all the tools together (F = 9.433,

p < 0.00494). In this case, the first hypothesis was confirmed,

because the mean time of sculpting the volume using the 3D

tools was much higher than the mean time spent with the 2D

tools (Figure 15).

In order to verify the second hypothesis (The error rate

decreases when using the 3D volume sculpting tools), the error

rate was calculated multiplying the user’s error by the time

spent in each task, as stated in Equation 2. The difference of

performance was significant according to ANOVA when the

users tested the eraser (F = 42.222, p < 6.90207E – 07) and the

clipper tools (F = 4.264, p = 0.0490). In these cases, the second

hypothesis was confirmed because the error rate when

using the 2D tools was higher than when using the 3D ones

(Figure 16).

The analysis of post-test questionnaires confirmed the

third hypothesis (Subjects prefer the 3D volume sculpting

tools). Figure 17 shows that most of the users preferred 3D

interaction techniques for sculpting volumes. The only case

where this hypothesis was not confirmed was for eraser tools

Figure 15. Mean time for tasks combining the use of eraser, digger

and clipper concurrently.

566.5714

566.5714

2D Tools 3D Tools
0

100

200

300

400

500

600

700

800

900

1000

T
im

e
(s

ec
o

n
d

s)

Mean time using three tools in the same task

Figure 16. Mean error rate for eraser and clipper tools.

6.0578

1.4934

7.3239

14.5711

2D 3D

E
rr

o
r

×
 T

im
e

Eraser and Clipper mean error rate
16

14

12

10

8

6

4

2

0

Eraser Clipper

Figure 17. Preference of the users after the evaluation of 2D and 3D

volume sculpting tools.

37.50%

56.25%

81.25%

31.25%

18.75%

38.75%

43.75%

62.50%In general

Eraser

Digger

Clipper

0% 50% 100%

2D Interaction 3D Interaction

evaluation. Even though the users preferred the 2D Eraser,

the performance analysis (Figure 16) shows that the 2D Eraser

was much worse than the 3D Eraser. This is probably due to

the illusion that the 2D Eraser removes the voxels as if it was

a cylinder perpendicular to the view plane, instead of a cone.

The illusion is caused by the perspective projection intrinsic

to the Aperture Selection technique.

Journal of the Brazilian Computer Society14 Huff R, Rosa-Jr RS, Nedel LP and Freitas CMDS

6. Filling Tools

 Volumetric datasets can also be used for modelling

missing structures, as exemplified in Figure 2. Such structures

can be sculpted by inserting material in selected voxels, and

can be used to build models of prosthesis based on isosur-

faces extracted from the sculpted volumes.

Since our volume sculpting tools were developed based

on selection and marking of voxels inside volumetric

datasets, it was a straightforward idea to devise tools that

instead of cutting out volume parts would add material

to the selected voxels. We developed two such filling tools

as a proof-of-concept of our idea. A mirror and a filler tool

were implemented based on the 3D virtual hand interaction

metaphor already employed in our 3D Clipper and Digger

tools (Figure 18).

The following subsections describe these two filling tools

and Section 7 reports their assessment in a practical applica-

tion.

6.1. Mirror

This tool was designed based on the existing symmetry

of many structures of the human body (like the head, for

example). A reflection plane, dividing the volume in two parts,

acts by copying the content of one side to the other. The posi-

tion and orientation of the reflection plane are interactively

selected by the user, the direction of mirroring represented by

an arrow on the plane representation (Figure 18a). The direc-

tion of mirroring represents the part of the volume that must

be the target (selected) area for copying purposes, while the

opposite direction corresponds to the source region.

The mirroring process works by calculating for each

voxel V of the selected part of the volume, the coordinates of

V’, reflected by the plane (Figure 19a). V’ coordinates are then

used to access the voxel in the source region for the copying

operation. If there exists visible material on V’, V will be set

to the same value, representing the insertion of the same

material in V. Assuming d the distance between V and its

orthogonal projection P on the reflection plane: the mirrored

voxel V’ is located at the absolute distance abs(d) of P, on the

same direction of the vector v(V-p).

6.2. Filler

This tool was created for providing direct insertion of

material in voxels at any position in the volume (Figure 18b).

The 3D cursor can be moved, and works exactly as the 3D

Digger tool, being a sphere of radius r and center P speci-

fied by the user. By moving the sphere in the volume space,

each voxel visited by the tool is marked with inserted mate-

rial if the distance d of the voxel center to P is smaller than

r (Figure 19b). It should be emphasized that the Filler does

not overwrite existing material, by first checking the current

value of the voxels inside the sphere. The voxels are filled

only if they have background values.

6.3. Implementation of filling tools

Mirror and filler tools were integrated in the same texture-

based volume rendering system presented in Figure 4. The

same texture used as a mask representing the marked infor-

mation to be excluded from the rendering by the volume

sculpting tools is used for representing the inserted mate-

rial. Actually the filling tools use a different color channel

(B), while the clipping tools use the A values for visibility

information. This way the user can freely add and remove

voxels before concluding the sculpting process since she/he

manipulates only the 3D mask.

Following the same strategy of the volume clipping tools,

the filling tools were implemented by specific shaders.

The shader FSMirror (Figure 20) is applied for each

fragment of the proxy geometry, and the code shows the

implementation considering a plane that moves along the X

axis. The Filler tool is implemented by the fragment shader

shown in Figure 21.

The integration of the filling tools to the pipeline shown in

Figure 3 required a modification in the following way: in the

update part, the (SculptMap) now represents two masks with

the visibility information and the inserted material, which are

updated by all the tools; the drawing part (and consequently

the shader FSCombiner) now combines the content of both

masks with the original dataset. The modified FSCombiner is

shown in Figure 22.

7. Evaluation of the Filling Tools

 Since the previous experiments showed that 3D volume

sculpting tools were the preferred ones by the users while

yielding lower error rate, we planned the assessment of the

filling tools as a scenario-based evaluation approach, i.e., by

describing a practical usage scenario.

In order to assess the effectiveness and quality (efficiency,

precision, intuitiveness and comfort) of the filling tools, we

Figure 18. Filling tools: a) Mirror, and b) Filler.

a b

Figure 19. Implementation of filling tools: a) Mirror, b) Filler.

MaskMaskMaskMaskMaskMaskMaskMask

MaskMask

Cursor

CursCursoror

v’v’
vv

v

d’d’ d
dddddddddd

ppppppp

ppp r

Point of

view

a b

15Volume sculpting based on geometric tools2009; 15(2)

orientation are achieved, and apply the mirroring opera-

tion. However, due to the fact that the jaw is shifted and that

usually it presents some asymmetry, the simple application

of this tool does not correctly rebuild the new structure. More

material than needed is added to that part of the volume as

well as there are voxels that still need to be filled in. So, the

designer chooses to inspect the condyle (see circled region in

Figure 23, top center) with axial, coronal and sagittal views.

To do that she moves the cursor and use the views to reach the

new desired position. Then, in successive steps, she uses the

clipping tools and filler to refine the added material, reaching

the result shown in Figure 23, top right. At this point, the

resulting rendered volume shows the original voxels as well

as the added material.

Figure 22. Cg code for FSCombiner with the additive mask.

struct vertex2fragment {float2 Tex0: TEXCOORD0;};

void main(vertex2fragment v2f,

 // P.xyz = 3D Point ‘P’

 uniform float4 P : C0,

 uniform sampler3D SculptMap : TEXUNIT0,

 uniform sampler2D PolygonCoord: TEXUNIT1,

 uniform sampler3D VolumeTex : TEXUNIT2,

 out float4 Col : COLOR0) {

 // Texture mapping

 float4 texCoord = tex2D(PolygonCoord, v2f.Tex0);

 float3 t0 = texCoord.xyz;

 float d = P.x - t0.x;

 t0.x = d+P.x;

 float4 r_mask = tex3D(SculptMap, t0.xyz);

 float4 r_texel = tex3D(VolumeTex, t0.xyz);

 float4 volume_voxel = tex3D(VolumeTex, texCoord.xyz);

 Col = tex3D(SculptMap, texCoord.xyz);

 d*=P.w;

 if (((r_texel.r != 0.0f)&&(r_mask.a != 0.0f))&&

 ((volume_voxel.r == 0.0f)||(Col.a == 0.0f))&&

 (d > 0.0f)){

 Col.b = 1.0f;

 }

}

Figure 20. Cg code for FSMirror.

struct vertex2fragment {float2 Tex0: TEXCOORD0;};

void main(vertex2fragment v2f,
 uniform sampler3D SculptMap: TEXUNIT0,
 uniform sampler3D VolumeTex: TEXUNIT1,
 out float4 Col : COLOR0) {

 // Textures mapping
 float4 mask_voxel = tex3D(SculptMap, v2f.Tex0);
 float4 volume_voxel = tex3D(VolumeTex, v2f.Tex0);

 float viewmask = mask_voxel.a;
 float addmask = mask_voxel.b;

 if (addmask == 1.0f) {
 Col.a = 1.0f;
 Col.rgb = v2f.Tex0.rgb;
 } else {
 Col.a = volume_voxel.a * floor(mask_voxel.a);
 Col.rgb = volume_voxel.rgb;
 }
}

Figure 21. Cg code for FSFiller.

struct vertex2fragment {float2 Tex0: TEXCOORD0;};

void main(vertex2fragment v2f,
 // P.xyz = 3D Point ‘P’ | P.a = tool radius ‘r’
 uniform float4 P : C0,
 uniform sampler3D SculptMap : TEXUNIT0,
 uniform sampler2D PolygonCoord: TEXUNIT1,
 uniform sampler3D VolumeTex : TEXUNIT2,
 out float4 Col : COLOR0) {

 // Texture mapping
 float4 texCoord = tex2D(PolygonCoord, v2f.Tex0);
 float4 volume_voxel = tex3D(VolumeTex, texCoord.xyz);

 // Col.a = visibility mask | Col.b = addition texture

 Col = tex3D(SculptMap, texCoord.xyz);

 // 3D Euclidean distance
 float D = distance(float4(P.xyz,1), texCoord) / P.a;

 if (D < Col.a) {
 // Do not overwrite existing material
 if (volume_voxel.r == 0.0f) || (Col.a == 0.0f) {
 Col.b = 1.0f;
 }
 }
}

describe how these tools could be used by a biomodel designer

on a dataset of a cranium from an injured patient, which has

lost part of the jaw as result of a tumor (Figure 2a). The jaw

is partially shifted, which can be seen by the positions of the

incisor teeth, probably due to the lack of structural support.

Since the maxilla is similar in both sides of the cranium,

our biomodel designer starts using the mirror tool (Figure 23,

top left). She moves the reflection plane representation

using the conventional mouse until the desired position and

Figure 23. Case study of filling tools. Top images, left to right: mode-

ling a prosthesis for an injured jaw. After reflecting one of the sides by

applying the mirror tool, the resulting material was segmented using

clipping tools. The application of filler tool completes the modeling

process: three additional windows show axial, coronal and sagittal

slices at the cursor position. Bottom row: the resulting volume is

presented in the three final images.

Journal of the Brazilian Computer Society16 Huff R, Rosa-Jr RS, Nedel LP and Freitas CMDS

As a final step, the designer can submit the combined

volume to a mesh extraction method and obtain a geometric

model of the added structure. This model could then be used

with rapid prototyping tools to build physical models to

serve as implants for our patient.

 8. Final Remarks

We presented a set of volume sculpting tools using both

2D and 3D interaction techniques to allow exposing inner

parts of volumes. We also investigated filling tools to allow

the user to build structures that fit in the volume data, filling

gaps for building prosthesis, for example. The proposed

tools are based on the multi-texturing facilities provided by

modern GPUs and implemented in special fragment shaders

that discard fragments based on visibility information. This

way we achieved real-time performance in volume and tools

manipulation.

A first set of experiments with users allowed us to evaluate

the use of different devices to interact with the application for

manipulating the sculpting tools and controlling the volume

position and orientation. Analysis of results showed that,

in the few cases where the difference of performance was

significant, using the 2D mouse to control the tools allowed

a better time performance. Moreover, although the results

were not significant under ANOVA, the error rate was lower

when using the 3D mouse for controlling the tools. Analysis

of the questionnaires showed that the users prefer to use

both hands and both devices (2D mouse for moving the tool

and 3D mouse for manipulating the volume) to perform the

sculpting tasks. As a conclusion, collected data shows that

better results are obtained when the mapping between the

interaction in the real and virtual worlds is direct.

A second set of experiments was carried out to find the

best set of tools (2D or 3D) from the user’s point of view.

Analyses of results showed that when all tools that are based

on the same interaction metaphor are used together, the mean

time of those that use 3D interaction is higher. This would

be interpreted as a disadvantage of our 3D volume sculpting

tools if we had taken only time as a performance measure.

Significant results favoring the 3D tools were obtained when

analyzing the error rate. Users had fewer errors when using

techniques based on the virtual hand metaphor. The prefer-

ence of the users, obtained from questionnaires, was also for

the use of the 3D volume sculpting tools.

Based on results favoring 3D interaction tools we devel-

oped filling tools so the user can build structures that can be

further visualized or extracted as meshes. These tools have

direct application to the design of biomedical models to serve

as prosthesis and implants. Two case studies were conducted

as an assessment of such tools, one was reported here. Next

steps of our work are concentrated on validating filling tools

by building a physical prototype of the added structure in

order to compare it with the prosthesis built by designers

following conventional procedures.

Acknowledgements

We gratefully acknowledge the experimental users as well

as all colleagues from the Computer Graphics Lab at UFRGS

for suggestions and helpful comments. We also acknowledge

the financial support from CNPq, and the Design and Material

Selection Laboratory (LdSM) from UFRGS, mainly Liciane

Bertol, for sharing with us her experience in biomodel design

and providing us the data we used in the case studies

References

1. Bowman DA and Hodges LF. An Evaluation of Techniques for

Grabbing and Manipulating Remote Objects in Immersive Virtual

Environments. Providence, RI, USA: ACM; 1997. p. 35-38.

2. Bowman DA, Johnson D and Hodges LF. Testbed Evaluation

of Virtual Environment Interaction Techniques. Presence:

Teleoperators and Virtual Environments 2001;10(1):75-95.

3. Bruckner S and Gröller E. Enhancing Depth-Perception with

Flexible Volumetric Halos. IEEE Transactions on Visualization

and Computer Graphics 2007;13(6):1344-1351.

4. Bruckner S and Gröller ME. VolumeShop: An Interactive

System for Direct Volume Illustration. Proceedings of the IEEE

Conference on Visualization; 2005. p. 671-678.

5. Buxton W and Meyers BA. A Study in Two-Handed Input.

Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems; 1986; Boston, MA, USA. p. 321-326.

6. Chen HJ, Samavati FF and Sousa MC. GPU-based point

radiation for interactive volume sculpting and segmentation.

The Visual Computer 2008;24(7):689-698.

7. Correa CD and Silver D. Programmable shaders for

deformation rendering. GH ‘07: Proceedings of the 2007 ACM

SIGGRAPH/EUROGRAPHICS conference on Graphics hardware;

2007; Aire-la-Ville, Switzerland. p. 89-96.

8. Pinto FM and Dal Sasso Freitas CM. Design of Multi-

dimensional Transfer Functions Using Dimensional

Reduction. EuroVis07: Joint Eurographics - IEEE VGTC

Symposium on Visualization; 2007; Sweden. p. 131-138.

9. Diepstraten J, Weiskopf D and Ertl T. Transparency in

Interactive Technical Illustrations. Computer Graphics Forum

2002;21(3):125-148.

10. Ebert D and Rheingans P. Volume Illustration: Non-Pho-

torealistic Rendering of Volume Models. Proceedings of the

IEEE Conference on Visualization; 2000. p. 195-202.

11. Engel K, Kraus M and Ertl T. High-Quality Pre-Integrated

Volume Rendering Using Hardware-Accelerated Pixel

Shading. Proceedings of the ACM SIGGRAPH/EUROGRAPHICS

Workshop on Graphics Hardware, HWWS; 2001; Los Angeles,

CA, USA. p. 9-16

12. Forsberg A, Herndon K and Zeleznik R. Aperture Based

Selection for Immersive Virtual Environments. Proceedings of

the ACM Symposium on User Interface Software and Technology,

UIST; 1996; Seattle, WA, USA. p. 95-96.

13. Galyean TA and Hughes JF. Sculpting: an interactive

volumetric modeling technique. Proceedings of the Annual

Conference on Computer Graphics and Interactive Techniques,

SIGGRAPH, 18; 1991; Las Vegas, NV, USA. p. 267-274.

17Volume sculpting based on geometric tools2009; 15(2)

14. Van Gelder A and Kim K. Direct Volume Rendering with

Shading via Three-Dimensional Textures. Proceedings of the

Symposium on Volume Visualization, VVS; 1996; San Francisco,

CA, USA. p. 23-30.

15. Hinckley K, Pausch R, Goble JC and Kassell NF. A Survey of

Design Issues in Spatial Input. Proceedings of the Annual ACM

SIGGRAPH Symposium on User Interface Software and Technology,

UIST, 7; 1994; Marina del Rey, CA, USA. p. 213-222.

16. Huff R, Dietrich CA, Nedel LP, Dal Sasso Freitas CM,

Dihl Comba JL and Olabarriaga SD. Erasing, Digging and

Clipping in Volumetric Datasets with One or Two Hands.

Proceedings of the ACM International Conference on Virtual

Reality Continuum and Its Applications, VRCIA; 2006; Hong

Kong, 2006. p. 271-278.

17. Islam S, Silver D and Chen M. Volume Splitting and Its

Applications. IEEE Transactions on Visualization and Computer

Graphics 2007;13(2):193-203.

18. Kindlmann G, Whitaker R, Tasdizen T and Möller T.

Curvature-Based Transfer Functions for Direct Volume

Rendering: Methods and Applications. Proceedings of the

IEEE Conference on Visualization, VIS; 2003. p. 513-520.

19. Kniss J, Kindlmann G and Hansen C. Interactive Volume

Rendering Using Multi-Dimensional Transfer Functions

and Direct Manipulation Widgets. Proceedings of the IEEE

Conference on Visualization, VIS ; 2001; San Diego, CA, USA.

Washington: IEEE Computer Society. p. 255-262

20. Leganchuk A, Zhai S and Buxton W. Manual and Cognitive

Benefits of Two-Handed Input: An Experimental Study.

ACM Transactions on Computer-Human Interaction 1998;

5(4):326-359.

21. Liang J and Green M. Geometric modeling using six degrees

of freedom input devices. Proceedings of the International

Conference on Computer Aided Design and Computer Graphics,

CAD/CG, 3; 1993; Beijing, China. p. 217-222.

22. Lorensen WE. Geometric clipping using boolean textures.

Proceedings of the IEEE Conference on Visualization; 1993; San

Jose, CA, USA. p. 268-274.

23. McGuffin M, Tancau L and Balakrishnan R. Using

deformations for browsing volumetric data. Proceedings of the

IEEE Conference on Visualization, VIS; 2003. p. 401-408.

24. Mine MR. Virtual Environment Interaction Techniques. Chapel

Hill, NC, USA: University of North Carolina at Chapel Hill,

Computer Science Department; 1995. Technical report

25. Mine MR, Brooks Jr. FP and Sequin CH. Moving objects in

space: exploiting proprioception in virtual-environment

interaction. Proceedings of the Annual Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH, 24; 1997; Los

Angeles, CA, USA. p. 19-26

26. Nedel LP, Dal Sasso Freitas CM, Jacob LJ and Pimenta MS.

Testing the Use of Egocentric Interactive Techniques in

Immersive Virtual Environments. Proceedings of IFIP TC13

International Conference on Human-Computer Interaction,

INTERACT, 9; 2003; Zürich, Switzerland. Amsterdam: IOS

Press. p. 471-478.

27. Parviainen J, Sainio N and Raisamo R. Perceiving Tools in 3D

Sculpting. Proceedings of the Asia-Pacific Computer and Human

Interaction, APCHI, 6; 2004; Rotorua, New Zealand. Berlin:

Springer-Verlag. p. 328-337.

28. Pfister H, Hardenbergh J, Knittel J, Lauer H and Seiler L.

The VolumePro Real-Time Ray-Casting System. Proceedings

of the Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH, 26; 1999; Los Angeles, CA, USA.

p. 251-260.

29. Pfister H, Lorensen WE, Schroeder WJ, Bajaj CL and

Kindlmann GL. The transfer function bake-off (panel session).

Proceedings of the IEEE Conference on Visualization, VIS; 2000.

p. 523-526.

30. Pflesser B, Petersik A, Tiede U, Höhne KH and Leuwer R.

Volume cutting for virtual petrous bone surgery. Computer

Aided Surgery 2002;7(2):74-83.

31. Pierce JS, Forsberg AS, Conway MJ, Hong S, Zeleznik RC and

Mine MR. Image Plane Interaction Techniques in 3D Immersive

Environments. Providence, RI, USA: ACM; 1997. P. 39-43.

32. Poupyrev I, Billinghurst M, Weghorst S and Ichikawa T.

The Go-Go Interaction Technique: Non-Linear Mapping

for Direct Manipulation in VR. Proceedings of the Annual

ACM SIGGRAPH Symposium on User Interface Software and

Technology, UIST, 9; 1996; Seattle, WA, United States. p. 79-80

33. Poupyrev I, Weghorst S, Billinghurst M and Ichikawa T.

Egocentric Object Manipulation in Virtual Environments:

Evaluation of Interaction Techniques. Computer Graphics

Forum 1998; 17(3):41-52.

34. Rezk-Salama C, Engel K, Bauer M, Greiner G and

Ertl T. Interactive Volume Rendering on Standard PC

Graphics Hardware Using Multi-Textures and Multi-

Stage Rasterization. Proceedings of the ACM SIGGRAPH/

EUROGRAPHICS Workshop on Graphics Hardware, HWWS;

2000; Interlaken, Switzerland. p. 109-118.

35. Sachs E, Roberts A and Stoops D. 3-Draw: A Tool for Designing

3D Shapes. IEEE Computer Graphics and Applications 1991;

11(6):18-26.

36. Song D and Norman M. Nonlinear Interactive Motion

Control Techniques for Virtual Space Navigation. Proceedings

of IEEE Virtual Reality Annual International Symposium, VR;

1993; Seattle, WA, USA. p. 111-117.

37. Wang SW and Kaufman AE. Volume Sculpting. Monterey, CA,

USA: ACM; 1995. p. 151-156.

38. Weiskopf D, Engel K and Ertl T. Interactive Clipping

Techniques for Texture-Based Volume Visualization and

Volume Shading. IEEE Transactions on Visualization and

Computer Graphics 2003; 9(3):298-312.

39. Weiskopf D, Engel K and Ertl T. Volume Clipping via

Per-Fragment Operations in Texture-Based Volume

Visualization. Proceedings of the IEEE Conference on

Visualization, VIS; 2002; Boston, MA. p. 93-100.

40. Westermann R and Ertl T. Efficiently Using Graphics Hardware

in Volume Rendering Applications. Proceedings of the Annual

Conference on Computer Graphics and Interactive Techniques,

SIGGRAPH, 25; 1998; Orlando, FL, USA. p. 169-177.

41. Wu Y and Qu H. Interactive Transfer Function Design Based

on Editing Direct Volume Rendered Images. IEEE Transactions

on Visualization and Computer Graphics 2007; 13(5):1027-1046.

Journal of the Brazilian Computer Society18 Huff R, Rosa-Jr RS, Nedel LP and Freitas CMDS

Color Plate

Figure 23. Case study of filling tools. Top images, left to right: modeling a prosthesis for an injured jaw. After reflecting one of the sides by

applying the mirror tool, the resulting material was segmented using clipping tools. The application of filler tool completes the modeling

process: three additional windows show axial, coronal and sagittal slices at the cursor position. Bottom row: the resulting volume is presented

in the three final images.

Figure 1. Volumetric Sculpting Tools: a) 3D Eraser, b) 3D Digger, c) 3D Clipper, d) 2D Eraser, e) 2D Digger and f) 2D Clipper.

a b c

d e f

