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Abstract: The analysis of volumetric datasets is the main concern in many areas ranging from geophysics to biomedical 

sciences. The direct visualization of these data plays an important role in this scenario, and in spite of developments in volume 

visualization techniques, interacting with large datasets still demands research efforts due to perceptual and performance 

issues. There is a need of interactive sculpting tools which can provide an intuitive way to examine and explore inner parts 

of the datasets, as well as to fill missing data for specific purposes. In this paper we report the development of interactive, 

intuitive and easy-to-use sculpting tools, which specify regions within the volume to be discarded from rendering, thus 

allowing inspection of the volume interior, and to be filled with material to build virtual structures in the volume. Interactive 

rates for these sculpting tools were obtained by running special fragment programs on the graphics hardware. The tools were 

implemented using two interaction metaphors (virtual pointer and virtual hand) and following different approaches in terms 

of devices and single versus two-handed interaction. We report the evaluation of these approaches in detail and concluded 

that the use of two different devices together presents a better performance and are preferred by users. Moreover, the use of 

virtual hand interaction provided better results than using the virtual pointer during the tests. 

Keywords: volume sculpting, virtual pointer, virtual hand, volumetric data, volume rendering.

1. Introduction

Several applications involve the generation, explora-

tion and analysis of volumetric datasets. For years, the 

requirements of medical applications have pushed the state-

of-the-art in visualization and interaction techniques, mainly 

driven by accuracy and computational time constraints.

Direct visualization of volume data, or volume rendering, 

has been playing an important role in this scenario allowing 

to obtain helpful images through the use of a variety of asso-

ciated techniques: from colors and transparency29, 19, 18 to 

enhance or fade away portions of the dataset to techniques 

used by scientific illustrators to improve perception of some 

structures10, 3; from geometric clipping planes to allow the 

observation of arbitrary slices of the dataset22, 30 to volume 

deformation techniques23, 7 to provide ways of browsing the 

volume.

In direct volume rendering, transfer functions29 provide a 

mapping between data values and image visual properties. 

However, although there have been a considerable research 

effort on developing these techniques, the generation of 

informative renderings from a dataset is still challenging. The 

specification of efficient transfer functions11 to segment some 

datasets is sometimes impracticable, even with recent frame-

works8, 41, requiring non-automatic segmentation tools based 

on interactive manipulation of the volume data. For example, 

it is difficult to isolate some inner structures of brain CT scans 

due to the resemblance of their density values with others in 

the volume, and frequently an expert is required to manually 

separate these structures using geometric tools.

In order to assist users to perform this task, volume clip-

ping and deformation tools have been developed30, 38, 23, 4. 

However, especially in clipping tools, most of the research 

is dedicated to improve performance in order to guarantee 

interactive rates, and few of them are concerned with the 

interactivity itself. Therefore the objective of our work is to 

develop intuitive, easy-to-use and efficient clipping tools 

(Figure 1), generic and simple enough to be used in volu-

metric datasets from different fields. In order to guarantee 

that, we performed many test with users to evaluate the 

interaction with the tools.

The operations performed to clip volumes, removing 

material resembling a manual modeling task, have been 

referred as volume sculpting37. More recently, Islam et al.17 

coined the expression volume splitting as a general form of 

referring to both deformation and clipping operations. They 

base their work on constructive volume geometry, which is a 

nice concept that provides the basis for an important opera-

tion in many applications, the insertion of material into parts 

of the volume. For example, in the volume shown in Figure 2a 

part of the jaw is missing due to trauma, and the insertion 

of material in those voxels can be used as an initial step for 

designing a prosthesis (Figure 2b).

Traditional volume sculpting is basically a selection task, 

where the voxels inside a volume are first selected (using 

some tool like the carving tools in Wang and Kaufman37) and 

then deleted. For adding a structure to empty voxels, in this 

modeling process, the same actions could be done: selecting 

voxels to fill them with a specified material.
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The selection of these voxels can be made using many 

different techniques represented by two basic metaphors33: 

virtual pointer and virtual hand. In the virtual pointer meta-

phor, the user points at the object of interest using some 

cursor even if he is far away from the object. Techniques 

based on the virtual pointer metaphor are usually easy to 

learn and use because they are based on 2D interaction, i.e., 

in tasks with two degrees-of-freedom (DOFs), and nearly 

everybody is familiar with 2D input devices and applica-

tions. However, in 3D interaction techniques based on the 

virtual hand metaphor, the continuity between the real and 

virtual world is enhanced, because the cursor has six DOFs 

and allows the user to “touch” and manipulate virtually the 

object of interest.

In an earlier paper16 we described three sculpting tools 

following a 3D interaction paradigm – the virtual hand inter-

action technique – to allow real-time volume sculpting in 

an efficient and comfortable way while using commodity 

PC workstations. Our 3D tools are called: 3D eraser, 3D digger 

and 3D clipper (Figures 1a-c). Real-time response rates have 

been achieved by running the sculpting tools and volume 

rendering on GPU. In that work we were interested in 

measuring user’s performance using different devices 

(conventional and 3D mouse) as well as one and two hands.

The present paper reports a large extension of our 

previous work comprising several aspects. We implemented 

the three sculpting tools following also a 2D interaction 

paradigm, using the virtual pointer interaction technique 

(Figures 1d-f). The efficiency of the interaction was measured 

regarding different ways of controlling the tools. Like in the 

previous work, we implemented the tools controlled by a 

conventional 2D mouse as well as a 3D mouse. As a result of 

experiments with users, we also designed and implemented 

two additional sculpting operators, for inserting material into 

the volume, thus fulfilling the lack we found in the current 

scenario regarding volume manipulation. These operators are 

mirror and filler, which we classify as filling operators. They 

were assessed by exploring alternatives in a usage scenario.

The remainder of the paper is structured as follows. In 

the next section, we review some relevant previous work. We 

then present the sculpting tools (Section 3) including details 

of their implementation (Section 4). The use of the tools by 

experimental users is reported and discussed (Section 5). 

The filling operators are described and their evaluation is 

reported in Sections 6 and  7, respectively). Conclusions and 

future work are drawn in the last section.

2. Related Work

Although volumetric visualization techniques have been 

proposed since the 80’s, only in the last years the advances 

in commodity graphics hardware allowed texture-based 

volume rendering to achieve satisfying image quality with 

better performance than software-based methods34, 19.

Interacting with volumes to expose inner structures 

through clipping tools started with the use of clipping 

planes22, 14, 28. Wang and Kaufman37 pioneered the use of 

carving and sawing tools, with voxelized geometries as tools 

and explicit set operators between volume data and the tools. 

Along the years, different clipping approaches have been 

considered in scientific visualization30, 39.

Van Gelder and Kim14 used clipping planes to specify the 

boundaries of the clipping region in texture-based volume 

rendering while Westermann and Ertl40 introduced the 

concept of clipping geometries by means of stencil buffer 

operations. Later on, Pfister et al.28 proposed the VolumePro 

hardware architecture with cropping and cutting planes 

features for clipping the volume.

Weiskopf et al.38 proposed clipping tests using per-

fragment operations on the graphics hardware to maintain 

high rendering speed. They propose a depth-based clipping 

technique that analyzes the depth structure of the clipping 

geometry to decide which parts of the volume have to be 

clipped (a similar approach is used by Diepstraten et al.9). 

They also propose a clipping tool that uses a voxelized clip-

ping object to identify clipped regions. In this tool, a texture 

buffer stores visibility information, and it is used as a mask 

that indicates if each voxel will contribute to the final image. 

This clipping texture is obtained by the voxelized geometry 

of clipping tools on the CPU. Scale, rotation and translation 

operations of the clipping object are allowed by adapting the 

texture coordinates of the clipping texture. The “voxelized 
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Figure  2. a) Part of the jaw (left side) is missing due to trauma; and 

b) Voxels filled with material to model a prosthesis.

Figure  1. Volumetric Sculpting Tools: a) 3D Eraser, b) 3D Digger, 

c) 3D Clipper, d) 2D Eraser, e) 2D Digger and f) 2D Clipper.

b
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clipping object” paradigm is also exploited in our work but 

the geometries of our tools are voxelized on the GPU.

Volume deformation tools, as proposed by McGuffin 

et al.23, have the advantage of showing inner structures 

surrounded by its context. However, as presented in that 

work, they do not serve to the purpose of actually segmenting 

parts of interest in the volume since they are devoted mainly 

to browsing purposes. They provide a way to explore 

semantic layers in the dataset (i.e. previously segmented 

data), by spreading voxels in a given direction. In the present 

work, regarding clipping, we are concerned with the actual 

isolation of voxels, removing from the view those that are not 

of interest.

VolumeShop, proposed by Bruckner and Gröller4, is a 

volume illustration system based on sculpting tools: cutaway 

and ghost tools use opacity assignments to remove occluding 

regions thus providing visual inspection of inner features. 

This is somehow similar to our approach, the difference 

relying on the way we select the regions to be eliminated from 

(or added to) the volume. They cast a ray from a point clicked 

on a screen into the volume. At the first voxel crossed by this 

ray, a volumetric brush centered on the voxel can either add 

to or erase details from the selection volume for every voxel 

within the brush bounding box.

Recently, Chen et al.6 also presented a framework of inter-

active GPU-based tools for real-time volume manipulation 

and segmentation. These tools were developed using a point-

based strategy for sculpting volumes and removing occluding 

materials. Some operations of these tools were inspired by 

medical procedures like drilling, peeling and lasering, and 

others provided basic operations like cutting and pasting. 

They also implemented a system for region-growing segmen-

tation and multiple seeds planting with sketches.

The research briefly reviewed above proposed new 

techniques to improve the performance of sculpting tools, 

while guaranteeing interactive frame rates. However, the 

authors do not exploit the advantages of different interac-

tion metaphors and devices, although sculpting applications 

for modeling purposes have used different devices, such as 

conventional 2D mouse37, 3D mouse13, and even both devices 

at the same time27.

In our previous work16, we developed three sculpting 

tools (3D eraser, 3D digger and 3D clipper) following the 

virtual hand interaction technique, using different devices 

(conventional and 3D mouse) as well as one and two hands. 

Experiments showed that the conventional 2D mouse 

yielded better performance in time completion for the eraser 

and digger tools, but error rate was lower when using the 

3D mouse for controlling the sculpting tool in two-handed 

interaction. User’s preference obtained through a question-

naire showed that subjects preferred to use the 2D mouse to 

control the sculpting tool and the 3D mouse to control the 

volume.

Even though interaction techniques could be classified 

into just two basic metaphors – virtual pointer and virtual 

hand – several different techniques should be considered to 

implement these metaphors. For the virtual pointer meta-

phor, techniques can differ from each other in the shape of 

the pointer, the definition of its direction and the methods 

of disambiguating the object the user wants to select. The 

most common example is the ray-casting technique24 and 

its variations: ray-casting with fishing reel1, spotlight25, aper-

ture selection12, and image plane31. Regarding the virtual hand 

based techniques, the choice of input devices and mappings 

between the position and orientation of real and virtual 

hands are the differentiation. The classic virtual hand was 

discussed by many authors33, 36, 26 and some extensions have 

been presented32, 1, 24.

Moreover, two-handed input has often been viewed as 

a technique to improve the efficiency of human-computer 

interaction, by enabling the user to perform two sub-tasks 

in parallel5, helping users to better perceive a 3D environ-

ment because it takes advantage of people’s innate ability 

of knowing precisely where their hands are relative to each 

other15, 35. Leganchuck et al.20 also noticed that using both 

hands in an application brings cognitive and manual advan-

tages and their work provided a complimentary perspective, 

exploring the potential benefits into everyday applications.

In the present work we exploit all these alternatives to 

enhance interactivity in volume sculpting while maintaining 

high-quality and real-time rendering by employing graphics 

hardware programming.

3. Tools for Volume Sculpting

Aiming at an intuitive interface for sculpting volumes, we 

designed a set of tools based on interaction techniques using 

both the virtual pointer and the virtual hand metaphors.

Since selection using virtual pointer is essentially a 

2D operation2, we developed a set of 2D sculpting tools using 

the “painting” paradigm present in most ordinary image-

editing applications, where the user controls virtual pens, 

brushes, and other free-hand artistic instruments to paint 

or erase on a virtual canvas. These tools are called 2D eraser, 

2D digger and 2D clipper (Figures 3a-c), and implement basic 

sculpting operations, which are used to perform complex 

cutting, clipping and cropping tasks. Even though the user is 

sculpting a 3D volume, using these 2D tools is like editing a 

common 2D image.

The three-dimensional versions of the same tools (3D eraser, 

3D digger and 3D clipper, see Figures 3d-f), reported in Huff  

et al.16, use the virtual hand metaphor. In these versions, the 

virtual hand is represented as different cursors, depending on 

the tool in use, and their shapes mimic the operation of the 2D 

tools. The following sections describe the conceptual design of 

the 2D and 3D tools as well as their implementation.

3.1. Eraser tools

The 2D Eraser tool (Figure 1d) uses the Aperture Selection 

technique12, a modification of the ray-casting technique. The 

cursor is a circle aligned with the view plane and the origin 

of the virtual pointer is set to the location of the user’s point 

of view, as shown in Figure 3a.
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The direction vector of this pointer, named line of sight, is 

the vector from the point of view to the center of the cursor. 

The size of the cursor r is previously established by the user 

and the position P is also specified by the user through the 

selection of a pixel on the screen. The size and 2D position 

of the cursor, together with its distance to the point of view, 

determine the selection volume.

When the 2D Eraser tool is applied to the volume, the 

position of each voxel is tested against the selection volume, 

and all voxels inside this volume are removed. The test is 

performed by (perspective) projecting the center of each 

voxel onto the view plane. If the 2D Euclidean distance d  of 

the projected voxel V to the center of the cursor P is smaller 

than the radius r of the cursor, the voxel is inside the volume 

(Figure 3a).

Observing Figure 3a, it is possible to notice that the 

2D Eraser Tool can be interpreted in 3D as a cone (due to 

the perspective projection during the volume visualiza-

tion process) perpendicular to the view plane with the apex 

located at the user’s point of view and the base at the infinity. 

The viewing angle is the opening angle of the cone, consid-

ering a cross section through the apex point and the center of 

the cursor.

Using an orthographic projection, the resulting shape is 

a cylinder, which makes more sense when the virtual hand 

metaphor is used for controlling the tool, since the cursor 

should be independent of viewing parameters. Detaching 

the cylinder from the point of view of the user provides the 

possibility of freely rotate and translating it. Our 3D Eraser 

tool (Figure 1a) was conceived in this way (Figure 3d).

The parameters used for testing a voxel against the volu-

metric region defined by the cylinder (3D Eraser tool) are 

similar to those employed for the 2D Eraser tool: a projec-

tion plane, a 2D point P on this plane and the radius r of the 

cylinder. It should be noticed that in the 3D Eraser, the cursor 

is independent of the viewing parameters, and thus the 

projection and the view plane are independent too, as can be 

observed in Figure  3d). When the cursor is rotated and trans-

lated, these transformations are applied to this projection 

plane. The selection of a voxel for elimination is done by first 

orthogonally projecting its center into the projection plane. 

For each projected center, a distance to P is computed (called 

projected distance d of a voxel). d is a 2D Euclidean distance 

since it is calculated on the projection plane (Figure 3d). 

Following, every voxel with d < r is removed.

3.2. Digger tools

Often, during volume sculpting, instead of erasing it all the 

way through with the Eraser tools, the need is digging a hole 

in the volume. Here, this is accomplished by the Digger tools.

The 2D Digger tool (Figure 1e) considers for removal the 

same voxels of the 2D Eraser tool, i.e., inside a circle, but only 

those within a given depth from the first point on the volume 

boundary along the line of sight (Figure 3b). The cursor of 

this tool is also a circle that can be translated (by the user) on 

the view plane, and its depth is calculated from the cursor 

radius r (also defined by the user), the surface distance ds  

and the view plane distance dv to the point of view, as given 

by Equation 1.

ds
depth = * r

dv
 (1)

When the 2D Digger tool is applied, it is like an object 

hitting the surface of the volume and eliminating every voxel 

inside a region delimited by its depth. This is obtained by 

selecting the first voxel (on the surface of the volume) inter-

cepted by the line of sight and calculating the 3D Euclidean 

distance d from it to every other voxel v. All the voxels within 

a distance smaller than the depth of the tool are erased. The 
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selection region associated to the 2D Digger tool can be inter-

preted as a semi-sphere with the center located on the surface 

of the volume. The size and position of this semi-sphere are 

constrained by viewing parameters: its size varies according 

to Equation 1, and the position is determined by the intersec-

tion between the line of sight and the volume surface.

As for the 3D Digger tool, the virtual hand cursor is actu-

ally a sphere detached from the view plane. This means that 

the center of the sphere does not have to be located on the 

volume surface anymore, and can be placed anywhere in 

the volume, being freely controlled by the user (Figure 1b). 

Figure 3e shows how it was designed. The sphere has radius 

r and center position P both specified by the user, and the 

selection of a voxel for removal is done by first calculating 

the 3D Euclidean distance d of the voxel’s center to P. If this 

distance is smaller than r, the voxel is removed.

3.3. Clipper tools

Differently from the 2D Eraser and Digger tools, the 

cursor of the 2D Clipper tool (Figure 1f) is represented by a 

line segment on the view plane (Figure 3c), defined by two 

points selected by the user on the screen. This line divides 

the whole image that the user is observing, in order to delete 

part of the volume.

The 2D Clipper defines a convex region that lies inside 

the 3D original volume following a carving approach. This is 

accomplished by calculating a clipping plane through three 

points: the point of view and the two points specified by the 

user on the screen. The selection of a voxel for elimination is 

done by calculating the smallest distance of its center to that 

plane. This (signed) distance is calculated by a dot product 

between voxel coordinates and plane coefficients. The voxel 

is removed if the distance is negative. Even though a clip-

ping plane and 3D distances are used, due to the perspective 

projection, the user visualizes it as a 2D operation.

As for the virtual hand metaphor (Figure 1c), instead of a 

line, the user manipulates a square (Figure 3f) that represents 

the cutting plane. The square can be freely translated and 

rotated, and, differently from the 2D Clipper tool, it is not 

attached to the user’s point of view. When this cutting plane 

is applied for removing voxels, it slices the current volume 

and creates a shape with one additional face. This process 

can be repeated as long as needed, and is performed using 

the dot product, like for the 2D Clipper tool.

4. Tools Implementation

All the six sculpting tools presented in the previous 

section (2D and 3D Eraser, Digger and Clipper) were inte-

grated in a texture-based volume rendering system based on 

the paradigm proposed by Weiskopf et al.38. Figure 4 shows 

the structure of the system using a clipping plane as an 

example of volume sculpting tool.

The first stage (initialization) is the processing of the volu-

metric dataset and its storage as a 3D texture in the GPU. 

During this process, if required, a pre-classification according 

to a transfer function11 or calculations of scalar values and 

gradients for volume shading39 can be used.

The actual sculpting of the volume is accomplished 

through special fragment shaders that run on the GPU, and 

use the tool geometry to eliminate voxels. This is accom-

plished by the stages update and drawing.

With few parameters, the geometries of our tools are 

voxelized on the GPU by specialized fragment shaders, 

differently from the work developed by Weiskopf et al.38, 

where tools are voxelized on the CPU.

Updates are requested when the user interacts with the 

system, either changing viewing parameters or sculpting the 

volume. Viewing changes are issued at camera manipula-

tion, but sculpting can be produced by any tool. Since the 

tools are voxelized on the GPU, the active clipping tool can 

be changed interactively, resulting in real time tools manipu-

lation and volume sculpting operations. If a sculpting tool is 

applied to a volume, voxels that lie within the geometry asso-

ciated to the tool are marked to be removed, resulting in a 

3D mask. Values associated with marked voxels can be either 

binary (1 = visible; 0 = removed) or Euclidean distances to the 

closest point on the clipping object, in order to avoid jaggy 

artifacts. This is accomplished by fragment shaders.

The fragment shader that implements the eraser tools 

is called FSEraser, and receives as input the 3D mask 

(SculptMap), the projection plane, the 2D point P, and the 

tool radius r (refer to Figures 3a, d). For each fragment in the 

proxy rectangle, the steps shown in Figure 5 are performed.

The digger tools (Figure 3b, e) are implemented by the 

same fragment shader called FSDigger shown in Figure 6. 

The inputs for the shader are the 3D mask SculptMap, the 

point P and the cursor radius r.

Figure  4. Clipping example: a volume containing a red sphere is 

clipped.
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Finally, FSClipper is the fragment shader that implements 

the clipper tools (Figures 3c, f). As the other shaders, the 

SculptMap is a parameter for this one, and the cutting plane 

completes the arguments needed for rendering the result of 

the clipper tools. Cg code for FSClipper is shown in Figure 7.

The visualization of the dataset is achieved by sampling 

a 3D texture using a set of planes aligned with the viewing 

direction as proxy geometry (see drawing phase in Figure 4). 

During the rendering stage, these planes are drawn in sorted 

order. For the 3D texture to be sampled, we use the combina-

tion of two different 3D volumes, one with the original dataset, 

and a second one, the texture mask SculptMap, with visibility 

information. Voxels marked to be removed have their alpha 

values modified in the texture mask. The visualization is 

performed by combining the original dataset with the texture 

mask, discarding marked voxels which should not contribute 

to the final image. The texture mask is frequently smaller than 

the original volume and a tri-linear interpolation of visibility 

values should also be considered during the combination 

process. In our system, the combining step is performed in a 

fragment shader, called FSCombiner (Figure 8).

5. Testing the Volume Sculpting Tools

 

In our work, we aimed at developing efficient, precise, 

intuitive and comfortable interactive tools. Based on these 

criteria of quality, we conducted two sets of tests with users. 

Since the tests were not planned for expert users from a 

specific field, we used generic volumes, which every user 

could understand and complete the task. For both tests, the 

experiments consisted of the elimination of red voxels from 

red-and-grey volumes (Figure 9).  

Figure  5. Cg code for FSEraser.

Figure  6. Cg code for FSDigger.

Figure  7. Cg code for FSClipper.

struct  vertex2fragment {float2 Tex0: TEXCOORD0;}; 

 

void  main(vertex2fragment v2f, 

  uniform float4x4  ProjPlane   : C0, 

  //P.xy = 2D Point ‘P’ | P.z = tool radius ‘r’ 

  uniform float3    P           : C4, 

  uniform sampler3D SculptMap   : TEXUNIT0, 

  uniform sampler2D PolygonCoord: TEXUNIT1, 

  out     float4    Col         : COLOR0) { 

 

  // Texture mapping           

  float4 texCoord = tex2D(PolygonCoord, v2f.Tex0); 

  Col = tex3D(SculptMap, texCoord.xyz); 

 

  // Projection 

  float4 PlaneCoordinates =  

    mul(float4(texCoord.xyz - 0.5f, 1.0f), ProjPlane); 

  PlaneCoordinates.xyz /= PlaneCoordinates.w; 

 

  // 2D Euclidean distance 

  float  D = length(PlaneCoordinates.xy - P.xy) / P.z; 

 

  if  (D < Col.a) Col.a = D; 

} 

struct  vertex2fragment {float2 Tex0: TEXCOORD0;}; 

 

void  main(vertex2fragment v2f, 

  //P.xyz = 3D Point ‘P’ | P.a = tool radius ‘r’ 

  uniform float4    P           : C0, 

  uniform sampler3D SculptMap   : TEXUNIT0, 

  uniform sampler2D PolygonCoord: TEXUNIT1, 

  out     float4    Col         : COLOR0) {   

         

  // Texture mapping    

  float4 texCoord = tex2D(PolygonCoord, v2f.Tex0); 

  Col = tex3D(SculptMap, texCoord.xyz); 

   

  // 3D Euclidean distance  

  float  D = distance(float4(P.xyz,1), texCoord) / P.a; 

 

  if  (D < Col.a) Col.a = D; 

} 

 

struct  vertex2fragment {float2 Tex0: TEXCOORD0;}; 

 

void  main(vertex2fragment v2f, 

  uniform float4    clipPlane   : C0, 

  uniform sampler3D SculptMap   : TEXUNIT0, 

  uniform sampler2D PolygonCoord: TEXUNIT1, 

  out     float4    Col         : COLOR0) { 

 

  // Texture mapping 

  float4 texCoord = tex2D(PolygonCoord, v2f.Tex0); 

  Col = tex3D(SculptMap, texCoord.xyz); 

 

  // Distance 

  D = clamp(dot(clipPlane,  

    float4(texCoord.xyz-0.5f, 1.0f))+1.0f, 0.0f, 1.0f); 

 

  if  (D < Col.a) Col.a = D; 

} 

struct  vertex2fragment {float2 Tex0: TEXCOORD0;}; 

 

void  main(vertex2fragment v2f, 

  uniform sampler3D SculptMap: TEXUNIT0, 

  uniform sampler3D VolumeTex: TEXUNIT1, 

  out     float4    Col      : COLOR0) { 

 

  // Textures mapping           

  float4 mask_voxel   = tex3D(SculptMap, v2f.Tex0);

  float4 volume_voxel = tex3D(VolumeTex, v2f.Tex0);

 

  // Textures combination 

  Col.rgb = volume_voxel.rgb; 

  Col.a = volume_voxel.a * floor(mask_voxel.a);   

} 

Figure  8. Cg code for FSCombiner.
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Considering the assumption that using 2D tools is as 

easy and natural as the editing of common 2D images with 

a mouse in a “painting” system, the first set of tests was 

designed to evaluate the preference and performance of users 

when manipulating and carving volumes with the 3D tools. 

In these tests, the user could choose between a regular mouse, 

a 3D mouse, or both concurrently to manipulate the volume 

and the tools. Section 5.1 presents details of the experiment 

reported in Huff et al.16.

The second set of tests intended to verify which inter-

action metaphor (virtual hand or virtual pointer) is the most 

appropriate for sculpting volumes. These tests actually 

compare user performance and preference between 2D and 

3D sculpting tools. Details are presented in Section 5.2.

5.1. Which is the best device to control 3D tools?

The main goal for using 3D tools is to enlarge the conti-

nuity between visualization and interaction. In the first set 

of tests, we adopted the virtual hand as the 3D interaction 

metaphor to control the tools, so the user is not forced to 

decompose a 3D task into a series of 2D or 1D tasks21.

We used a Magellan Space mouse (see Figure 10, upper 

left part), since it has 6 degrees of freedom (DOFs), and it 

is relatively simple, robust and easy to learn. However, for 

evaluation purposes, we also implemented the virtual hand 

metaphor controlled by a conventional mouse since it is the 

most commonly used input device.

In our testbed application, two different objects can be 

manipulated by the input devices: the tools and the volume 

of interest (VOI). The tools can be rotated around themselves 

and translated in x, y, and z axis. The VOI can also be rotated 

around itself but cannot be translated. While the 3D mouse 

allows easy control of 3D rotations and translations on a 

virtual hand interaction, these transformations are not trivi-

ally executed with a conventional 2D mouse.

In order to compare both devices, we had to compen-

sate the lack of DOFs of the 2D mouse. Translations along 

the x and y axis were normally performed by moving the 

2D mouse, but translations along the missing z dimension 

were performed by rolling the wheel of the common mouse 

(Figure 10). Rotations were performed by holding down a 

button and moving the mouse around in a dragging move-

ment.

The user could select in the interface of the application 

which object (tools or VOI) he/she wanted to manipulate 

with each mouse (2D or 3D). The manipulation of both objects 

with the same device at the same time was not allowed. The 

user would have to switch between them explicitly. In order 

to manipulate both objects at the same time, two-handed 

interaction was enabled by using the 2D and 3D mouse at the 

same time. In this case, the user could choose which device 

would be associated with each object (tools and VOI). Due to 

implementation issues, two 3D mice or two 2D mice could 

not be used at the same time.

Our evaluation was based on three hypotheses,  

concerning to the combination of input devices used:

฀฀฀฀฀s฀ (��฀ 4HE฀ MANIPULATION฀ OF฀ TOOLS฀ IS฀ FASTER฀ USING฀ A฀
conventional mouse. 

฀฀฀฀s฀ (��฀4HE฀ERROR฀RATE฀DECREASES฀WHEN฀THE฀SUBJECTS฀ADOPT฀
the 3D device to manipulate the tool. 

฀฀฀฀s฀ (��฀ 4HE฀ SUBJECTS฀ WILL฀ PREFER฀ TWO
HANDED฀ INPUT�฀
using both devices simultaneously to manipulate 

volume and tools. 

The first hypothesis rises from the thought that common 

users are used to the conventional mouse and a training stage 

with the 3D mouse would not provide them the same skills. 

The second hypothesis, on the other hand, is based on the 

statement that 3D devices are better suited for 3D interaction 

techniques21. Finally, the last hypothesis relies on the cogni-

tive benefits that reduce the load of mentally composing 

and visualizing the tasks at an unnatural low level which is 

imposed by traditional single-handed techniques5.

5.1.1. Scenario and subjects

The experiment consisted of the elimination of red voxels 

in a red-and-grey volume. The testbed application takes as 

input different datasets, which are volumes composed by a 

set of images with red and grey pixels. We designed three 

different datasets, one for each tool, because of the geometry 

associated with each tool. A fourth volume was used to train 

the users before they start the evaluation process (Figure 9).

The user has to remove the maximum number as possible 

of red voxels from the volume, while avoiding the elimina-

tion of the grey ones as well.

a b c d

Figure 9. Experiment datasets: a) eraser evaluation volume, b) digger 

evaluation volume, c) clipper evaluation volume and d) training 

evaluation volume.

+Z

+Z

–Z

–Z

+Y

+Y

–Y

–Y

–X

–X

+X

+X

Figure  10. System interface and the interpretation of input devices 

operation to manipulate 3D tools.
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To test the three hypotheses we defined 12 user tasks 

consisting of a basic task performed with different combi-

nation of input devices. The combination of three sculpting 

tools (digger, eraser and clipper), two different objects (tools 

and volume) to be manipulated as well as two input devices 

(2D and 3D mouse) resulted in the set of 12 different tasks.

We have performed tests with 15 subjects (one professor 

and 14 students), most of them with a Computer Science 

major. Even though only two of the students were not working 

in computer graphics projects, most of them had no or little 

experience with 3D mouse (Figure 11). Our population was 

heterogeneous, consisting of three women and 12 men with 

ages between 20 and 40, average 25 years old. Each of them 

tested the three tools and the two devices, performing the 

12 tasks.

 5.1.2. Methodology and procedure

We performed our tests in a Windows XP platform on a 

standard PC (AGP 4) with a single 3.2 GHz Intel Pentium IV 

with 512 Mb of RAM, and an ATI Mobility Radeon X600 

graphic card with 256 MB.

The following steps were applied in the same order to 

all subjects: 1) instructions about the application and devices 

were provided; 2) a pre-test questionnaire was completed by 

the subject; 3) unlimited time for training was allowed; 4) the 

12 tasks were performed randomly, being the log file recorded; 

5) a post-test questionnaire was completed by the subject.

Before being asked to perform the tasks, each user had 

unlimited time to learn and become familiarized with the 

application and devices. For this the users had training 

dataset and tasks (Figure 9d) to practice and only during 

this stage they could freely switch devices. Once the user felt 

comfortable, the 12 tasks were performed.

Tasks were selected in random order. After the display 

of a task specification, the user had to press a start button to 

actually begin the task. The task did not finish automatically, 

but when the user felt that he had accomplished it, he/she 

pressed a button. Then, the new task was randomly chosen 

by the application and displayed, until all the 12 tasks were 

accomplished.

Since the hypotheses were based on measuring user’s 

performance during 12 tasks, we designed the experiment 

with independent and dependent variables as explained 

below. The log file generated for each user contained the 

following data items associated with each task: description of 

the task, total number of grey and red voxels removed from 

the volume, remaining number of white and red voxels and 

time spent during the task.

Independent variables are the experiment variables 

that generate different conditions to be compared. As inde-

pendent variables we used: age; gender; user’s occupation; 

previous use of 2D and 3D devices; previous use of 2D and 

3D applications, like games, CAD, 3D Studio, Blender, etc., 

and finally the 12 tasks.

Flock of birds

Data glove

Head-mounted
display

Keyboard

Mouse 3D

Mouse 2D

3D Games

2D Games

3D Applications
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6.66% 66.66%

53.33%

13.33%

100%

100%

40%

60%

73.33%

26.66%
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20%
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Figure  11. Subjects previous experiences with 2D and 3D applications and devices.
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Dependent variables are measures taken during the 

execution of tasks. They can be objective, as the time spent 

to accomplish a task, or subjective, like the level of satisfac-

tion, collected from post-test questionnaires answered by the 

subjects. The dependent variables used in our experiment 

were: task completion time; error rate and device preference.

The completion time was measured from the beginning 

of each task until the user finished it by pressing a button. 

The error rate (Equation 2) took into account the error after 

the sculpting task is completed and time spent to perform the 

task, as given by Equation 2:

error_rate =  * T (2)

where T is completion time and  is given by Equation 3: 

=
#

e eR W

voxels
 (3)

with R
e
 being the number of remaining red voxels and W

e
 the 

number of deleted grey voxels.

Finally, ease of use and device preference were verified 

through the analysis of questionnaires.

5.1.3. Results and discussion

For the statistical analysis of collected data, several varia-

bles were considered. These variables were obtained through 

the pre- and post-test questionnaires and the log files. The 

pre-test form answered by the subjects provided us with 

their previous experience with 2D and 3D applications and 

devices (Figure 11). This table shows that the users had excel-

lent previous experience using the 2D mouse and keyboard, 

but only a few of them had experience with the 3D mouse.

The correlation between the data from the pre-test ques-

tionnaire and the log files (independent and dependent 

variables) was calculated.

It was possible to verify that performance with the digger 

and clipper tasks was correlated to the previous experiences 

of the subjects with 3D devices, especially when the user 

had to use the 2D mouse to manipulate the tools and the 

3D mouse to control the volume (r > 0.514, p < 0.05). Other 

variables, like age and gender, did not show having influence 

on performance.

We used ANOVA (Analysis of Variance) to verify the 

significance of the time and error results obtained from the 

log files.

To evaluate the first hypothesis (The manipulation of the 

tools is faster using a conventional mouse) the time spent by the 

users to complete each task was analyzed. ANOVA results 

showed that the difference of the time spent in each task was 

significant only for the digger (F = 5.308, p < 0.02) and eraser 

(F = 4.663, p < 0.04) tools. When setting the 2D mouse for 

controlling volume manipulation, the mean time using the 

3D mouse for guiding the tool is higher than the time spent 

using the 2D mouse for that, both for the digger and the eraser 

(Figure 12).  

In order to verify the second hypothesis (The error rate 

decreases when users adopt the 3D device to manipulate the tool), 

the error rate was calculated multiplying user’s error by the 

time spent in each task, as stated in Equation 2. The user’s 

error was the number of remaining red voxels and deleted 

grey voxels (recalling that the task was to remove only the 

red voxels). The difference of performance was not signifi-

cant according to ANOVA. Therefore the second hypothesis 

was not confirmed.

The analysis of the post-test questionnaire confirmed 

the third hypothesis (The users will prefer two-handed input, 

using both device simultaneously to manipulate volume and 

tools). Figure 13a shows that the great majority of the users 

preferred the 2D mouse to manipulate the tools and the 3D 

mouse to control the volume separately. Figure 13b shows 

that the users also preferred this combination of devices for 

two-handed input.
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Figure  12. Digger and Eraser mean times (in seconds) when control-

ling the volume with the 2D mouse.

Figure  13. a) Preferred device to control the volume or tools; and 

b) preferred combination of devices.
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5.2. Are 3D tools better than 2D ones?

Regarding the volume sculpting tools, our main goal 

was to make them intuitive and easy to manipulate. To 

compare user’s performance using 2D and 3D tools we chose 

the conventional mouse to control both the volume to be 

sculpted and the actual sculpting tools. This was supported 

by the results from the first set of experiments. Rotation of the 

volume was implemented by dragging the mouse with the 

right button pressed, while the left button is used to apply 

the tools to the volume.

The manipulation of 2D tools with a conventional mouse 

is trivial, since all tools have the same degrees of freedom 

(DOFs), and follows the convention shown in Figure 10. 

Depth perception was enhanced through visual feedback 

provided by lighting, fake shadows, guide lines, grid and 

rulers.

The interface of our application also provides some 

other features to help with the use of sculpting tools. Axial, 

coronal and saggital sections of the volume can be shown to 

allow observation of inner structures of the dataset during 

the use of digger tools (see Figure 10). The 3D Eraser tool 

can be rotated and additional translation options are also 

available.

The evaluation was based on three hypotheses, all of them 

regarding the use of the two different sets of sculpting tools, 

i.e., using the virtual pointer metaphor (2D) or the virtual 

hand (3D):

s฀ (��฀5SING฀THE฀�$฀VOLUME฀SCULPTING฀TOOLS฀IS฀FASTER฀THAN฀
using the 3D ones. 

s฀ (��฀ 4HE฀ ERROR฀ RATE฀ DECREASES฀ WHEN฀ USING฀ THE฀ �$฀
volume sculpting tools. 

s฀ (��฀3UBJECTS฀PREFER฀THE฀�$฀VOLUME฀SCULPTING฀TOOLS�฀

The first hypothesis was conceived upon the fact that 

regular users are familiar with 2D interactive tools, and the 

training period in 3D tools is not enough to provide them 

the same skills to manipulate 3D tools as they would have 

with 2D ones. The second hypothesis, on the other hand, 

was based on the consideration that 3D tasks are better 

performed using a 3D interaction metaphor, because some 

problems of mapping from 3D to 2D (as the projection, for 

example) would be avoided. Finally, the third hypothesis 

relied on the cognitive benefits from the reduction of the 

workload of mentally decomposing 3D tasks into unnatural 

2D tasks.

5.2.1.  Scenario and subjects

As before, the experiment consisted on the elimination of 

red voxels from red-and-grey volumes. In order to facilitate 

the visualization of cuts and holes, illumination and a marble 

procedural texture were applied onto the volumes.

The testbed application used 5 phantom datasets as input, 

each one composed by a stack of images with red and grey 

pixels: one for training the users before they start the evalua-

tion process (Figure 14a); three for the evaluations of the 

tools (digger, eraser and clipper), independent of the interac-

tion technique applied (Figures 14b-d); and a fifth volume to 

evaluate the use of the three tools concurrently (Figure 14e). 

All datasets used were opaque. Transparency was used in 

Figure 14 only to illustrate inner structures.

Tests were performed by 16 Computer Science students, 

most of them knowledgeable in Computer Graphics. In spite 

of that, the pre-test questionnaires analysis showed that most 

of them had little experience with 3D environments. The 

subjects were between 20 and 29 years old, average of 23.5 

and there were only three women in the group. Each of the 

subjects tested the six sculpting tools in eight tasks.

5.2.2.  Methodology and procedure

We performed the experiments on a HP Pavillion zd8000 

notebook with a single 3.20 GHz Intel Pentium IV CPU, 

512 MB of RAM, ATI Radeon X600 PCI Express x16 graphics 

card with 256MB, running WindowsXP.

The following steps were performed in the same order by 

each subject: 1) instructions about the application and devices 

were provided; 2) a pre-test questionnaire was completed; 

3) unlimited time for training was allowed; 4) the 8 tasks 

were performed in a defined order; and 5) a post-test ques-

tionnaire was completed.

Tasks were presented to users in a certain order; after the 

display of a task specification, the user had to press a start 

button to actually begin the task. The task did not finish 

automatically, and when the user felt that he/she had accom-

plished it, he/she pressed a button. Then, the new task was 

displayed by the application, until all the 8 tasks were accom-

plished.

Users were separated into two groups with the same size 

to avoid the order factor: one group tested the 2D set of tools 

first than the 3D, while the other did the opposite. Each set 

of tools was evaluated in the same order: the digger tool was 

followed by the eraser and clipper, and the task to evaluate all 

Figure 14. Datasets for experiment 2: a) a cube and a cylinder, for training; b) a mushroom, for the digger evaluation; c) a teapot, for the eraser 

evaluation; d) a cube, for the clipper evaluation; and e) a bitten apple, for the evaluation of the three tools at the same time.

a b c d e
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the tools together was the last one. This order was selected 

based on results obtained from the previous experiment.

For each user, a log file was generated with the following 

data items associated with each task: task id; total number of 

grey and red voxels of the volume; remaining number of grey 

and red voxels; time spent in the task; and history of actions 

performed.

As independent variables we used: age; gender; user’s 

occupation; previous use of 2D and 3D devices; previous 

use of 2D and 3D applications such as image editors, games, 

CAD, 3D Studio Max, Blender, etc.; and the eighth tasks.

The dependent variables considered were: task comple-

tion time; error rate; and device preference. The completion 

time was measured from the beginning of each task until the 

user finished it by clicking on a button in the system inter-

face. The error rate is calculated as in the first experiments 

(Equation 2).

Ease of use and device preference were verified through 

the analysis of questionnaires.

5.2.3.  Results and discussion

The pre-test form answered by the subjects provided us 

with their previous experience with 2D and 3D applications. 

The correlation between the data from the pre-test question-

naires and the data saved in the log files was calculated. 

There was no correlation between previous experiences that 

the subjects had with the performance obtained during this 

second set of tests. Other variables like age and gender did 

not show any correlation too.

As before, we used ANOVA to verify the significance of 

time and error results obtained from log files. To evaluate the 

first hypothesis (Using the 2D volume sculpting tools is faster 

than using the 3D ones) the time spent by the users to complete 

each task was analyzed.

ANOVA test results showed that the difference in the 

time spent in each task was significant only for tasks where 

we allowed the use of all the tools together (F = 9.433, 

p < 0.00494). In this case, the first hypothesis was confirmed, 

because the mean time of sculpting the volume using the 3D 

tools was much higher than the mean time spent with the 2D 

tools (Figure 15).

In order to verify the second hypothesis (The error rate 

decreases when using the 3D volume sculpting tools), the error 

rate was calculated multiplying the user’s error by the time 

spent in each task, as stated in Equation 2. The difference of 

performance was significant according to ANOVA when the 

users tested the eraser (F = 42.222, p < 6.90207E – 07) and the 

clipper tools (F = 4.264, p = 0.0490). In these cases, the second 

hypothesis was confirmed because the error rate when 

using the 2D tools was higher than when using the 3D ones 

(Figure 16).

The analysis of post-test questionnaires confirmed the 

third hypothesis (Subjects prefer the 3D volume sculpting 

tools). Figure 17 shows that most of the users preferred 3D 

interaction techniques for sculpting volumes. The only case 

where this hypothesis was not confirmed was for eraser tools 

Figure  15. Mean time for tasks combining the use of eraser, digger 

and clipper concurrently.
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Figure  16. Mean error rate for eraser and clipper tools.
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evaluation. Even though the users preferred the 2D Eraser, 

the performance analysis (Figure 16) shows that the 2D Eraser 

was much worse than the 3D Eraser. This is probably due to 

the illusion that the 2D Eraser removes the voxels as if it was 

a cylinder perpendicular to the view plane, instead of a cone. 

The illusion is caused by the perspective projection intrinsic 

to the Aperture Selection technique.
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6. Filling Tools

 Volumetric datasets can also be used for modelling 

missing structures, as exemplified in Figure 2. Such structures 

can be sculpted by inserting material in selected voxels, and 

can be used to build models of prosthesis based on isosur-

faces extracted from the sculpted volumes.

Since our volume sculpting tools were developed based 

on selection and marking of voxels inside volumetric 

datasets, it was a straightforward idea to devise tools that 

instead of cutting out volume parts would add material 

to the selected voxels. We developed two such filling tools 

as a proof-of-concept of our idea. A mirror and a filler tool 

were implemented based on the 3D virtual hand interaction 

metaphor already employed in our 3D Clipper and Digger 

tools (Figure 18).

The following subsections describe these two filling tools 

and Section 7 reports their assessment in a practical applica-

tion.

6.1.  Mirror

This tool was designed based on the existing symmetry 

of many structures of the human body (like the head, for 

example). A reflection plane, dividing the volume in two parts, 

acts by copying the content of one side to the other. The posi-

tion and orientation of the reflection plane are interactively 

selected by the user, the direction of mirroring represented by 

an arrow on the plane representation (Figure 18a). The direc-

tion of mirroring represents the part of the volume that must 

be the target (selected) area for copying purposes, while the 

opposite direction corresponds to the source region.

The mirroring process works by calculating for each 

voxel V of the selected part of the volume, the coordinates of 

V’, reflected by the plane (Figure 19a). V’ coordinates are then 

used to access the voxel in the source region for the copying 

operation. If there exists visible material on V’, V will be set 

to the same value, representing the insertion of the same 

material in V. Assuming d the distance between V and its 

orthogonal projection P on the reflection plane: the mirrored 

voxel V’ is located at the absolute distance abs(d) of P, on the 

same direction of the vector v(V-p).

6.2.  Filler

This tool was created for providing direct insertion of 

material in voxels at any position in the volume (Figure 18b). 

The 3D cursor can be moved, and works exactly as the 3D 

Digger tool, being a sphere of radius r and center P speci-

fied by the user. By moving the sphere in the volume space, 

each voxel visited by the tool is marked with inserted mate-

rial if the distance d of the voxel center to P is smaller than 

r (Figure 19b). It should be emphasized that the Filler does 

not overwrite existing material, by first checking the current 

value of the voxels inside the sphere. The voxels are filled 

only if they have background values.

6.3.  Implementation of filling tools

Mirror and filler tools were integrated in the same texture-

based volume rendering system presented in Figure 4. The 

same texture used as a mask representing the marked infor-

mation to be excluded from the rendering by the volume 

sculpting tools is used for representing the inserted mate-

rial. Actually the filling tools use a different color channel 

(B), while the clipping tools use the A values for visibility 

information. This way the user can freely add and remove 

voxels before concluding the sculpting process since she/he 

manipulates only the 3D mask.

Following the same strategy of the volume clipping tools, 

the filling tools were implemented by specific shaders.

The shader FSMirror (Figure 20) is applied for each 

fragment of the proxy geometry, and the code shows the 

implementation considering a plane that moves along the X 

axis. The Filler tool is implemented by the fragment shader 

shown in Figure 21.

The integration of the filling tools to the pipeline shown in 

Figure 3 required a modification in the following way: in the 

update part, the (SculptMap) now represents two masks with 

the visibility information and the inserted material, which are 

updated by all the tools; the drawing part (and consequently 

the shader FSCombiner) now combines the content of both 

masks with the original dataset. The modified FSCombiner is 

shown in Figure 22.

7. Evaluation of the Filling Tools

 Since the previous experiments showed that 3D volume 

sculpting tools were the preferred ones by the users while 

yielding lower error rate, we planned the assessment of the 

filling tools as a scenario-based evaluation approach, i.e., by 

describing a practical usage scenario.

In order to assess the effectiveness and quality (efficiency, 

precision, intuitiveness and comfort) of the filling tools, we 

Figure  18. Filling tools: a) Mirror, and b) Filler.

a b

Figure  19. Implementation of filling tools: a) Mirror, b) Filler.
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orientation are achieved, and apply the mirroring opera-

tion. However, due to the fact that the jaw is shifted and that 

usually it presents some asymmetry, the simple application 

of this tool does not correctly rebuild the new structure. More 

material than needed is added to that part of the volume as 

well as there are voxels that still need to be filled in. So, the 

designer chooses to inspect the condyle (see circled region in 

Figure 23, top center) with axial, coronal and sagittal views. 

To do that she moves the cursor and use the views to reach the 

new desired position. Then, in successive steps, she uses the 

clipping tools and filler to refine the added material, reaching 

the result shown in Figure  23, top right. At this point, the 

resulting rendered volume shows the original voxels as well 

as the added material.

Figure  22. Cg code for FSCombiner with the additive mask.

struct  vertex2fragment {float2 Tex0: TEXCOORD0;}; 

 

void  main(vertex2fragment v2f, 

  // P.xyz = 3D Point ‘P’ 

  uniform float4    P           : C0, 

  uniform sampler3D SculptMap   : TEXUNIT0, 

  uniform sampler2D PolygonCoord: TEXUNIT1, 

  uniform sampler3D VolumeTex   : TEXUNIT2, 

  out     float4    Col         : COLOR0) {   

         

  // Texture mapping    

  float4 texCoord = tex2D(PolygonCoord, v2f.Tex0); 

  float3 t0 = texCoord.xyz; 

  float  d = P.x - t0.x; 

  t0.x = d+P.x; 

 

  float4 r_mask  = tex3D(SculptMap, t0.xyz); 

  float4 r_texel = tex3D(VolumeTex, t0.xyz);   

 

  float4 volume_voxel = tex3D(VolumeTex, texCoord.xyz); 

  Col = tex3D(SculptMap, texCoord.xyz); 

       

  d*=P.w; 

   

  if  (((r_texel.r      != 0.0f)&&(r_mask.a != 0.0f))&& 

      ((volume_voxel.r == 0.0f)||(Col.a    == 0.0f))&& 

      (d > 0.0f)){ 

    Col.b = 1.0f; 

  } 

} 

 
Figure  20. Cg code for FSMirror.

struct  vertex2fragment {float2 Tex0: TEXCOORD0;}; 
 
void  main(vertex2fragment v2f, 
  uniform sampler3D SculptMap: TEXUNIT0, 
  uniform sampler3D VolumeTex: TEXUNIT1, 
  out     float4    Col      : COLOR0) { 
 
  // Textures mapping           
  float4 mask_voxel   = tex3D(SculptMap, v2f.Tex0);
  float4 volume_voxel = tex3D(VolumeTex, v2f.Tex0);
 
  float  viewmask = mask_voxel.a; 
  float  addmask  = mask_voxel.b; 
 
  if (addmask == 1.0f) { 
    Col.a = 1.0f; 
    Col.rgb = v2f.Tex0.rgb; 
  } else  { 
    Col.a = volume_voxel.a * floor(mask_voxel.a); 
    Col.rgb = volume_voxel.rgb;    
  } 
} 

Figure  21. Cg code for FSFiller.

struct vertex2fragment {float2 Tex0: TEXCOORD0;}; 
 
void main(vertex2fragment v2f, 
  // P.xyz = 3D Point ‘P’ | P.a = tool radius ‘r’ 
  uniform float4    P           : C0, 
  uniform sampler3D SculptMap   : TEXUNIT0, 
  uniform sampler2D PolygonCoord: TEXUNIT1, 
  uniform sampler3D VolumeTex   : TEXUNIT2, 
  out     float4    Col         : COLOR0) {   
         
  // Texture mapping    
  float4 texCoord     = tex2D(PolygonCoord, v2f.Tex0); 
  float4 volume_voxel = tex3D(VolumeTex, texCoord.xyz); 
 
  // Col.a = visibility mask | Col.b = addition texture  

  Col = tex3D(SculptMap, texCoord.xyz); 
 
  // 3D Euclidean distance  
  float D = distance(float4(P.xyz,1), texCoord) / P.a; 
 
  if (D < Col.a) { 
    // Do not overwrite existing material  
    if (volume_voxel.r == 0.0f) || (Col.a == 0.0f) { 
      Col.b = 1.0f; 
    } 
  } 
} 

 

describe how these tools could be used by a biomodel designer 

on a dataset of a cranium from an injured patient, which has 

lost part of the jaw as result of a tumor (Figure 2a). The jaw 

is partially shifted, which can be seen by the positions of the 

incisor teeth, probably due to the lack of structural support.

Since the maxilla is similar in both sides of the cranium, 

our biomodel designer starts using the mirror tool (Figure 23, 

top left). She moves the reflection plane representation 

using the conventional mouse until the desired position and 

Figure 23. Case study of filling tools. Top images, left to right: mode-

ling a prosthesis for an injured jaw. After reflecting one of the sides by 

applying the mirror tool, the resulting material was segmented using 

clipping tools. The application of filler tool completes the modeling 

process: three additional windows show axial, coronal and sagittal 

slices at the cursor position. Bottom row: the resulting volume is 

presented in the three final images.
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As a final step, the designer can submit the combined 

volume to a mesh extraction method and obtain a geometric 

model of the added structure. This model could then be used 

with rapid prototyping tools to build physical models to 

serve as implants for our patient.

 8.  Final Remarks

We presented a set of volume sculpting tools using both 

2D and 3D interaction techniques to allow exposing inner 

parts of volumes. We also investigated filling tools to allow 

the user to build structures that fit in the volume data, filling 

gaps for building prosthesis, for example. The proposed 

tools are based on the multi-texturing facilities provided by 

modern GPUs and implemented in special fragment shaders 

that discard fragments based on visibility information. This 

way we achieved real-time performance in volume and tools 

manipulation.

A first set of experiments with users allowed us to evaluate 

the use of different devices to interact with the application for 

manipulating the sculpting tools and controlling the volume 

position and orientation. Analysis of results showed that, 

in the few cases where the difference of performance was 

significant, using the 2D mouse to control the tools allowed 

a better time performance. Moreover, although the results 

were not significant under ANOVA, the error rate was lower 

when using the 3D mouse for controlling the tools. Analysis 

of the questionnaires showed that the users prefer to use 

both hands and both devices (2D mouse for moving the tool 

and 3D mouse for manipulating the volume) to perform the 

sculpting tasks. As a conclusion, collected data shows that 

better results are obtained when the mapping between the 

interaction in the real and virtual worlds is direct.

A second set of experiments was carried out to find the 

best set of tools (2D or 3D) from the user’s point of view. 

Analyses of results showed that when all tools that are based 

on the same interaction metaphor are used together, the mean 

time of those that use 3D interaction is higher. This would 

be interpreted as a disadvantage of our 3D volume sculpting 

tools if we had taken only time as a performance measure. 

Significant results favoring the 3D tools were obtained when 

analyzing the error rate. Users had fewer errors when using 

techniques based on the virtual hand metaphor. The prefer-

ence of the users, obtained from questionnaires, was also for 

the use of the 3D volume sculpting tools.

Based on results favoring 3D interaction tools we devel-

oped filling tools so the user can build structures that can be 

further visualized or extracted as meshes. These tools have 

direct application to the design of biomedical models to serve 

as prosthesis and implants. Two case studies were conducted 

as an assessment of such tools, one was reported here. Next 

steps of our work are concentrated on validating filling tools 

by building a physical prototype of the added structure in 

order to compare it with the prosthesis built by designers 

following conventional procedures.
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Color Plate

Figure 23. Case study of filling tools. Top images, left to right: modeling a prosthesis for an injured jaw. After reflecting one of the sides by 

applying the mirror tool, the resulting material was segmented using clipping tools. The application of filler tool completes the modeling 

process: three additional windows show axial, coronal and sagittal slices at the cursor position. Bottom row: the resulting volume is presented 

in the three final images.

Figure  1. Volumetric Sculpting Tools: a) 3D Eraser, b) 3D Digger, c) 3D Clipper, d) 2D Eraser, e) 2D Digger and f) 2D Clipper.
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