
Experiences Tracking Agile
Projects: an Empirical Study

Danilo Sato, Dairton Bassi, Mariana Bravo, Alfredo Goldman& Fabio Kon

Department of Computer Science
University of São Paulo

Rua do Matão, 1010
Phone: +55 (11) 30916134 (FAX)

Zip 05508-090 - São Paulo - SP - BRAZIL
{dtsato | dairton | marivb | gold | kon}@ime.usp.br

Abstract
In this article, we gather results from several projects

we conducted recently that use some kind of agile method.
We analyze both academic and governmental software de-
velopment projects, some of them using agile methods
since the beginning and others in which agile methods
were introduced afterwards. Our main goals are to clas-
sify the different projects, and to analyze the collected
data and discover which metrics are best suited to sup-
port tracking an agile project.

We use both quantitative and qualitative methods, ob-
taining data from the source code, from the code repos-
itory, and from the feedback received from surveys and
interviews held with the team members. We use various
kinds of metrics such as lines of code, number of tests, cy-
clomatic complexity, number of commits, as well as com-
binations of these.

In this article, we describe in detail the projects, the
metrics, the obtained results, and their analysis from our
main goals standpoint, providing guidelines for the use of
metrics to track an agile software development project.

Keywords: Agile Methods, Extreme Programming,
Software Engineering, Tracking

1. INTRODUCTION
Agile Methods are becoming more popular since Ex-

treme Programming was introduced by Kent Beck in
1999 [3]. Agile Methods propose a new way of look-
ing into software development, focusing the attention on
the interactions between people collaborating to achieve
high productivity, delivering high-quality software. The
approach to obtain these results is based on a set of simple
practices that provide enough feedback to enable the team

to know where they are and to find the best way to move
towards an environment of continuous improvement.

One of the practices that enable the creation of such
environment is calledtracking. Kent Beck describes the
role of a tracker in an XP team as someone responsible
for frequently gathering metrics with data provided from
the team members and for making sure that the team is
aware of what was actually measured [3, 4]. These met-
rics should be used as guidelines for improvement and to
point out, to the team, any current problems. It is not
an easy task to decide which information to collect and
present to the team and how to present it. Moreover, some
of the development problems are not easily recognizable
from quantitative data alone.

We have been experimenting with various tracking
methods since early 2002 obtaining good results in differ-
ent kinds of projects. In this article, we describe an empir-
ical case study we conducted on seven of these projects,
gathering and analyzing data from both academic and in-
dustrial environments.

We use both quantitative and qualitative metrics, col-
lecting data from different sources, such as the source
code, the code repository, and subjective feedback re-
ceived from surveys and interviews held with team mem-
bers. The qualitative metrics were gathered at the end of
the first semester of 2006, while the quantitative metrics
were retroactively collected from the source code reposi-
tory and from the XPlanner agile management tool. Due
to the empirical and observational nature of our study we
classify it asparallel/simultaneous[39] as both types of
metrics were gathered at the same time.

In this study, we are not comparing agile and non-agile
projects. Our main goals are:

• to classify the projects according to the XP Evalua-

Danilo Sato, Dairton Bassi, Mariana Bravo,
Alfredo Goldman and Fabio Kon

Experiences Tracking Agile Projects: an
Empirical Study

tion Framework (described in Section 3), and

• to analyze the collected data and discover which
metrics are best suited to support tracking an agile
project.

The remainder of this article is organized as follows.
Section 2 provides an overview of Agile Methods fo-
cusing on Extreme Programming and presenting our ap-
proach. Section 3 describes seven software development
projects analyzed in this article. Section 4 presents the
methods that we used to collect data and the metrics cho-
sen to be analyzed. Section 5 analyzes our empirical re-
sults and provide some new metrics to support thetracker
of an agile project. Finally, we conclude in Section 6 pro-
viding guidelines for future work.

2. AGILE M ETHODS
In the last few years, Agile Methods for software de-

velopment have gained importance in many segments of
the software industry. Like conventional methods, the
goal of Agile Methods is to build high quality software
that meets users needs. The main difference between
them lies in the means to achieve this goal, that is, in the
principles used.

In software development, requirements for a project
often change while implementation is still in progress.
Kajko-Mattson et al. shows that the percentage of soft-
ware lifecycle cost due to maintenance ranges between 40
and 90% [23]. Many companies and development teams
consider changes undesirable because they break previous
plans. However, requirements are likely to change as the
customer sees the system after it is deployed and it is not
feasible to make an initial plan that foresees such changes
without having to spend too much time and money.

With Agile Methods, more value is given to practical
aspects. Detailed plans are made only for the current de-
velopment stage, and draft plans are created for the next
phases in such a way that they can be adapted to changes
when the time comes to detail and execute them. The
Manifesto for Agile Software Development [5] defines
the essential principles of Agile Methods and highlights
the differences between agile and conventional methods
by valuing:

• Individuals and interactions over processes and
tools.

• Working software over comprehensive documenta-
tion.

• Customer collaborationover contract negotiation.

• Responding to changeover following a plan.

These characteristics bring dynamism to develop-
ment, motivation to the team, and more comprehensive
information about the real situation of the project for the
customer. Some conventional methods claim to be pre-
dictive. In contrast, Agile Methods are adaptive. This ap-
proach is fundamental for the success of most projects be-
cause requirements change as the customer needs change.

There are several Agile Methods based on the prin-
ciples proposed by the Agile Manifesto, including: Ex-
treme Programming (XP) [3, 4], Scrum [35], Crystal
Methods [11], Lean Software Development [33], Fea-
ture Driven Development (FDD) [32], Adaptive Soft-
ware Development [20], and Dynamic System Develop-
ment Method (DSDM) [37]. They are used in small,
medium, and large companies, universities, and govern-
mental agencies to build different types of software and
have produced excellent results extensively described in
the literature [8, 15, 27, 28, 31].

2.1. EXTREME PROGRAMMING

The most well-known Agile Method is Extreme Pro-
gramming (XP) [3, 4]. It was developed by Kent Beck
after many years of experience in software development.
He defined a set of values and practices that improve the
productivity of a software development team and the qual-
ity of their work.

XP is based in five main values: Communication,
Simplicity, Courage, Feedback, and Respect. XP values
are translated to the team as a set of practices that should
be followed during development. The practices proposed
initially [3] are briefly described below.

Planning Game: In the beginning of the project, cus-
tomers write story cards that describe the requirements.
During the Planning Game, programmers and customers
collaborate to select a subset of the most valuable stories:
programmers provide estimates for each story while cus-
tomers define the business value of each story. The deci-
sions made at this stage are just an initial plan. Changes
are welcome to be incorporated into the plan as the iter-
ation and release progresses. The Planning Game hap-
pens at two levels: in the beginning of a release and in the
beginning of each iteration. A release is composed of a
series of iterations. At the end of each iteration a subset
of the release stories should be implemented, producing a
deployable candidate version of the system.

Small Releases: The team must implement and de-
liver small pieces of working software frequently. The set
of story cards selected during the Planning Game should
contain just enough functionality, so that the customer pri-
orities as well as the developers estimates are respected.
The iteration length should be constant throughout the
project, lasting one to three weeks. This is the heart beat
of the project and provides constant feedback to the cus-
tomer and to the team. Programmers should not try to

46

Danilo Sato, Dairton Bassi, Mariana Bravo,
Alfredo Goldman and Fabio Kon

Experiences Tracking Agile Projects: an
Empirical Study

anticipate requirements, i.e., they should never add un-
necessary flexibility to complete their current task. XP
coaches often say: “do the simplest thing that could pos-
sibly work”.

Simple Design: Simplicity is a key concept that al-
lows a system to respond to changes. To minimize the
cost of design changes one should always implement the
simplest – but not the most simplistic – design, with only
the minimum level of complexity and flexibility needed to
meet the current business needs. As development is incre-
mental, new functionalities will be added later so improv-
ing the design through refactoring is always necessary.

Pair Programming: Developers work in pairs to per-
form their programming tasks. This promotes collective
and collaborative work, brings the team together, and im-
proves communication and code quality. Pairs should
switch frequently, even several times a day. Generally,
the selection of pairs depends on the task, the availability
of programmers, and the expertise of each one. The goal
is to spread the knowledge of the whole system to all team
members.

Testing: The software is constantly verified by a set of
automated tests written by programmers and customers.
The development team writes unit tests for all system
components and runs them many times a day to assure
that recently-added functionalities do not break existing
code. Customers write acceptance tests to assure the sys-
tem does exactly what they want. These tests are executed
whenever a new functionality is finished and determine
when a story card is completed. They can be written by
a programmer pairing with the customer if he lacks the
technical knowledge to do it.

Refactoring: Refactoring is a systematic technique
for restructuring existing source code, altering its inter-
nal structure without changing its external behavior [14].
Among the most common refactorings we can mention
the removal of duplicated code, the simplification of a
software architecture, and the renaming of elements such
as classes, methods, and variables to make the code easier
to understand. The goals are always to make the source
code more readable, simpler, cleaner, and more prepared
to accommodate changes.

Continuous Integration: The source code must be
kept in a shared repository and every time a task is com-
pleted, the new code must be built, tested, and, if cor-
rect, integrated into the repository. Developers upload and
download code from the repository several times a day so
all team members work with an up to date, synchronized
version of all of the code.

Collective Code Ownership: There is no concept of
individual ownership of code. The code base is owned by
the entire team and anyone may make changes anywhere.
If a pair of programmers identify a good opportunity to
simplify any piece of code or remove duplication, they

should do it immediately without having to ask permis-
sion for the original writer. With Collective Code Own-
ership the team members have a broad view of the entire
system, making small and large refactorings easier.

Sustainable Pace: The working rhythm should not
affect the participant’s health or their personal lives. Dur-
ing planning, the amount of hours dedicated to the project
must be defined realistically. It is acceptable for the team
to work overtime in rare occasions. But an extensive and
recurrent overload of work will reduce code quality and
lead to great losses in the long run.

On-site Customer: The team must be composed of
a variety of people with a broad knowledge and experi-
ence across the necessary skills for the project to succeed.
This must include a business representative – called the
customer– who understands the business needs and has
enough knowledge about the real users of the system. The
customer is responsible for writing stories, setting pri-
orities, and answering any doubts that the programmers
might have.

Metaphor: All members of the project, including pro-
grammers and customers, should find a common language
to talk about the system. This language should be equally
understood by technical people and business people. This
can be achieved by adopting a metaphor that relates sys-
tem abstractions to real-world objects in a certain domain.
This may be the most difficult practice to introduce in
an inexperienced team because it is directly related to
communication and to how comprehensive people will be
when they share their ideas and wishes.

Coding Standards: Before starting to code, all pro-
grammers must agree upon a set of standards to be used
when writing source code. It makes the source easier
to understand, improves communication, and facilitates
refactoring.

After some time, practitioners realized that applying
all the practices “by the book” without considering the
principles and values behind them was not always an ef-
fective approach. After all, Agile Methods should be
adaptive rather than prescriptive. This observation led to
the creation of a new practice, called“Fix XP when it
breaks”, meaning that each team has to consider the ag-
ile principles and values and adapt the practices for their
specific environment. Thus, XP practices should not be
seen as dogmas, but rather as guidelines for organizing
the behavior of a team and a basis for continuous reflec-
tion.

There are also two special roles in an XP team,
that can be reassigned to different developers during the
course of the project:

• Coach: Usually the most experienced programmer,
who is responsible for verifying whether the team
members are following the proposed practices and

47

Danilo Sato, Dairton Bassi, Mariana Bravo,
Alfredo Goldman and Fabio Kon

Experiences Tracking Agile Projects: an
Empirical Study

ensuring that the methodology is being followed.

• Tracker : Jeffries [21] describe the role of atracker
as the developer responsible for providing informa-
tion about the project progress through the use of
appropriate metrics. Thetracker is responsible for
creating charts and posters to show points of im-
provement, regularly spreading this information in
the walls, what Cockburn callsinformation radia-
tors [10].

2.2. EXTREME PROGRAMMING - SECOND EDITION

In 2004, Kent Beck published with his wife, Cynthia
Andres, the second edition of the book that first intro-
duced XP [4] five years before. The book was restruc-
tured in a more inclusive way, focusing on the importance
of the XP values. While the first edition was focused
on ‘what’ XP was, the second edition talks a lot more
about the ‘why’ of XP, introducing principles that helps
translate values into practices, tailoring the process to a
project’s specific needs. The fourteen principles proposed
in the second edition are: humanity, economics, mutual
benefit, self-similarity, improvement, diversity, reflection,
flow, opportunity, redundancy, failure, quality, baby steps,
and accepted responsibility.

As discussed in Section 2.1, teams that started imple-
menting XP usually ended up using new or changing the
original practices. In the second edition of the book, Kent
Beck breaks down the 12 original practices into two cat-
egories:primary practicesare useful independent of the
context of the project, whilecorollary practicesare likely
to be difficult without previous experience with thepri-
mary practices. The full description of each practice and
principle is out of the scope of this article, but the next
paragraph provides a list of the new practices and Table 1
compares the original practices with their new correspon-
dent.

The thirteenprimary practicesare: Sit Together,
Whole Team, Informative Workspace, Energized
Work , Pair Programming, Stories, Weekly Cycle,
Quarterly Cycle, Slack, Ten-Minute Build , Contin-
uous Integration, Test-First Programming, and In-
cremental Design. The elevencorollary practices
are:Real Customer Involvement, Incremental Deploy-
ment, Team Continuity, Shrinking Teams, Root-Cause
Analysis, Shared Code, Code and Tests, Single Code
Base, Daily Deployment, Negotiated Scope Contract,
andPay-Per-Use.

1The following practices did not change and were not includedin the ta-
ble: Pair Programming, Continuous Integration, andTest-First Pro-
gramming

Comparison table between XP practices1

First Edition Second Edition
Planning Game Stories, Weekly Cycle,

Quarterly Cycle, and Slack
Small Releases Weekly Cycle, Incremental

Deployment, Daily Deploy-
ment

Simple Design Incremental Design
Refactoring Incremental Design
Collective Code Ownership Shared Code, Single Code

Base
Sustainable Pace Energized Work, Slack
On-site Customer Whole Team, Real Customer

Involvement
Metaphor (Incremental Design)
Coding Standards (Shared Code)

Table 1. Comparison between XP practices from the first and second
edition

2.3. OUR APPROACH

Our approach is mostly based on XP practices. In
most of the projects described in Section 3, we used all
XP practices. The last practice,“Fix XP when it breaks”
was necessary in a few cases, requiring small adaptations
to maintain all values balanced. To attain higher levels
of communication and feedback, we used frequently two
other well known agile practices:Stand-Up Meetings
and Retrospectives(also known asReflection Work-
shops). The former consists of a daily, informal and short
meeting at the beginning of the work day when each de-
veloper comments on three topics: what he did yesterday,
what he intends to do today, and any problems that he
might be facing (that will be discussed later). In these
short meetings, all participants stand up to ensure it does
not take too long.

Retrospectives are meetings held at the end of each it-
eration where the development method is evaluated, the
team highlights lessons learned from the experience, and
plan for changes in the next development cycle [24].
Kerth, on his prime directive of retrospectives says [24]:

“Regardless of what we discover, we under-
stand and truly believe that everyone did the
best job they could, given what they knew at
the time, their skills and abilities, the resources
available, and the situation at hand.”

There are many formats for Reflection Workshops, but
the most usual is a meeting where the entire team dis-
cusses about “what worked well?”, “what we should do
differently?”, and “what puzzles us?”. Normally, at the
end of a workshop the team builds up a series of actions in

48

Danilo Sato, Dairton Bassi, Mariana Bravo,
Alfredo Goldman and Fabio Kon

Experiences Tracking Agile Projects: an
Empirical Study

each of those categories which they will prioritize and se-
lect from to implement in the next iteration. These actions
are captured in a poster, which is posted in the workspace.

The projects described in this article were often com-
posed of inexperienced teams on Agile Methods and
sometimes they even did not have enough previous
knowledge about the technologies, frameworks, and tools
used to build the system. In this sense, they represent
almost a worst-case scenario for deploying agile meth-
ods. An extreme difference between the team members
expertise could harm their productivity [40]. In our ap-
proach, in order to reduce large technical differences, we
introduced an extra phase at the beginning of the project:
Training . During this phase, we tried to equalize the
team members expertise by providing training classes for
specific technologies, tools, frameworks, and agile prac-
tices that would be used during the implementation. The
training was structured in classes that took about 10 to 20
hours, composed of presentations followed by practical
exercises. It was not intended to be complete or to cover
advanced topics, but to create a minimum common tech-
nical ground for the whole team from which they could
improve.

3. PROJECTS

In this article, we analyze seven software development
projects. Five of them were conducted in the academia
in a full-semester course on Extreme Programming [16],
and two of them were conducted in a governmental insti-
tution, the São Paulo State Legislative Body (ALESP).
In this section, we describe the characteristics of each
project with details about the environment, the team, as
well as context and technological factors.

3.1. FORMAT OF PRESENTATION

All of the projects, except for the last one, were
faithful to most XP practices, so we describe them in
terms of the Extreme Programming Evaluation Frame-
work (XP-EF) and its subcategories [41, 42]. The frame-
work records the context of the case study, the extent to
which the XP practices were adopted, and the result of
this adoption. The XP-EF is composed of three parts:
XP Context Factors (XP-cf), XP Adherence Metrics (XP-
am), and XP Outcome Measures (XP-om).

XP-cf and XP-om are described in this section. XP-
am were qualitatively collected by a subjective survey,
constructed based in [25], and described in detail in Ap-
pendix A.

Some of the XP-cf are common between all projects
and they will be described in Section 3.3. Factors that
differ will be presented for each project in the following
format:

• Project Name

• Description: a brief description of the goals of the
project.

• Software Classification: as prescribed by
Jones [22].

• Information Table : a table describing the sociolog-
ical and project-specific factors. Information about
the team size, education, and experience level was
gathered from the survey results (Appendix A). Do-
main and language expertise was subjectively evalu-
ated by the authors. Quantitative data such as num-
ber of delivered user stories and thousands lines of
executable code (KLOEC) were collected respec-
tively from XPlanner and from the code repository
(metrics are described in detail in Section 4).

• Polar Chart : a five-axis polar chart describing
the developmental factors suggested by Boehm and
Turner as a risk-based method for selecting an ap-
propriate methodology [6]. The five axes are used to
select an agile, plan-driven, or hybrid process:

– Dynamism: The amount of requirements
change per month.

– Culture: Measures the percentage of the team
that prefers chaos versus the percentage that
prefers order.

– Size: The number of people in the team.

– Criticality : The impact due to software failure.

– Personnel: The percentage of the development
team at the various Cockburn levels [10] de-
scribed in Section 5.3.

When the projects points are joined, the obtained
shape provides visual information. Shapes distinctly
toward the graph’s center suggest using an agile
method. Shapes distinctly toward the periphery sug-
gest using a plan-driven methodology. More varied
shapes suggest an hybrid method of both agile and
plan-driven practices.

With the exception of the team size, the value of
these risk factors for each project was subjectively
evaluated by the authors of this article.

• Outcome Measures: a table describing the available
XP-om proposed by the XP-EF framework: produc-
tivity and morale. Productivity metrics were directly
calculated from the project-specific XP-cf, such as
thousand lines of executable code (KLOEC), person
months (PM), and number of delivered user stories.
The Putnam Productivity Parameter (PPP) is a LOC-
based metric that was proposed based on historical

49

Danilo Sato, Dairton Bassi, Mariana Bravo,
Alfredo Goldman and Fabio Kon

Experiences Tracking Agile Projects: an
Empirical Study

data from several projects, and taking team size and
project duration into account as follows [34].

PPP =
TLOC

(Effort/β)
1

3 (Time)
4

3

TLOC is the total lines of code, Effort is the num-
ber of person months of work done in the project,β
is a factor chosen from a table constructed by Put-
nam based on production data from a dozen large
software projects [34], and Time is the number of
elapsed months of the project.

In addition to the productivity metrics, a qualitative
morale metric was gathered subjectively through a
niko-niko calendar, described in Section 4.2. Also,
more quantitative metrics are discussed in Sec-
tion 4.1.

3.2. CONSIDERATIONS

The academic projects had a different work schedule
from the governmental projects. Each week, the students
were required to be in the lab for two sessions lasting two
to three hours. Besides these two mandatory sessions, it
was suggested that the students came to the lab for four
extra hours of work; Even though these extra hours were
not verified by the instructors, many of the students did
come and work the extra hours. In average, each student
worked a total of 6 to 8 hours per week. The work sched-
ule for the governmental projects was different: each team
member was required to work a total of 30 hours per week
on the project.

In the academia, the full semester is considered to
be a release that is developed in two to four iterations.
We recommended the teams to have iterations no longer
than one month but, depending on the experience of the
team with the technologies and the class schedule on the
semester, the exact duration of an iteration varied from
team to team. Special considerations about the sched-
ule for the governmental projects are discussed in Sec-
tions 3.5.1 and 3.5.2.

Also, we were not capable of collecting historical data
related to defects and bugs. At the time of the writing of
this article, none of the projects were yet deployed in pro-
duction, except for Project 7 (described in Section 3.5.2).
Project 7 did not have a bug tracking system in place and
was already deployed when we started introducing some
of the XP practices.

3.3. COMMON CONTEXT FACTORS (XP-CF)
Some of the XP-cf, such as the ergonomic, techno-

logical and geographical factors, are similar for all of the
projects. They are described in Table 2 to avoid duplica-
tion of information.

Ergonomic Factors
Physical Layout Collocated in an open space.
Distraction Level
of Office Space

Moderate, as there were other
teams working closely in the
same environment.

Customer Com-
munication

Mostly on-site. Occasionally by
e-mail.

Technological Factors
Development
Method

Primarily XP2.

Language Java and related technologies
and frameworks (Struts, JDBC,
Swing, etc.).

Tools Eclipse, CheckStyle,
CVS/Subversion, XPlanner,
xUnit, Wiki.

Geographical Factors
Team Location Collocated.
Customer Loca-
tion

Academia: on-site customer.
Industry: customer representa-
tives that work in the same
building.

Table 2. Ergonomic, Technological and Geographical Factors (XP-cf)

3.4. ACADEMIC PROJECTS

3.4.1. Project 1 - “Archimedes”:

• Project Name: Archimedes

• Description: An open source CAD (computer-aided
design) software focused on the needs of profes-
sional architects. This project started a few months
before the first semester of the XP class, when the
students involved in it started to gather requirements
with architects and to recruit the team. Here, we ana-
lyze the first 4 iterations of the project, implemented
during the first semester of 2006.

• Software Classification: Commercial software, de-
veloped as an open source project.

3.4.2. Project 2 - “Grid Video Converter”:

• Project Name: GVC - Grid Video Converter

• Description: A Web-based application that offers to
its users a computational grid to convert video files
among several video encodings, qualities, and for-
mats. The file is uploaded by a registered user, con-
verted by the server using a multi-machine compu-
tational grid and later downloaded by the user. Here,

2In Project 7, just some of the XP practices were introduced during the
course of our intervention. See more details in Section 3.5.2.

50

Danilo Sato, Dairton Bassi, Mariana Bravo,
Alfredo Goldman and Fabio Kon

Experiences Tracking Agile Projects: an
Empirical Study

Sociological Factors - Project 1
Team Size 8 + 2 Customers
Team Education
Level

Undergrad students: 8

Experience Level of
Team

< 5 years: 8

Domain Expertise Low
Language Expertise High

Project-specific Factors - Project 1
Delivered User Sto-
ries

64

Domain Stand-alone Application,
CAD

Person Months 6.4
Elapsed Months 4
New & Changed
KLOEC

18.832

System KLOEC 18.832
Outcome Measures - Project 1

Productivity
KLOEC/PM 2.943
User stories/PM 10
Putnam Productivity Parameter 0.902

Morale 97 %

Table 3. XP-cf and Available XP-om - Project 1

Criticality
(Loss due to impact

of defects)

Personnel
(% Level 1B) (% Level 2&3)

Dynamism
(% Requirements
change/months)

Culture
(% thriving on chaos

vs. order)

Size
(# of personnel)

40 15

30 20

20 25

10 30

0 35

50
30

10
5

1

90

70

50

30

0

3

10

30

100

300

Comfort

Discretionary
funds

Essential
funds

Single life

Many
lives

Plan-driven

Agile

Figure 1. Developmental Factors (XP-cf) - Project 1

we analyze the first 3 iterations of the project, imple-
mented during the first semester of 2006.

• Software Classification: End-user software

Sociological Factors - Project 2
Team Size 6 (1 replaced mid-term) + 1

Customer
Team Education
Level

Undergrad students: 2
Grad students: 4

Experience Level of
Team

< 5 years: 4
5-10 years: 2

Domain Expertise Low
Language Expertise High

Project-specific Factors - Project 2
Delivered User Sto-
ries

16

Domain Web, Grid Computing,
Video Conversion

Person Months 4.2
Elapsed Months 4
New & Changed
KLOEC

2.535

System KLOEC 2.535
Outcome Measures - Project 2

Productivity
KLOEC/PM 0.604
User stories/PM 3.810
Putnam Productivity Parameter 0.134

Morale 64 %

Table 4. XP-cf and Available XP-om - Project 2

Criticality
(Loss due to impact

of defects)

Personnel
(% Level 1B) (% Level 2&3)

Dynamism
(% Requirements
change/months)

Culture
(% thriving on chaos

vs. order)

Size
(# of personnel)

40 15

30 20

20 25

10 30

0 35

50
30

10
5

1

90

70

50

30

0

3

10

30

100

300

Comfort

Discretionary
funds

Essential
funds

Single life

Many
lives

Plan-driven

Agile

Figure 2. Developmental Factors (XP-cf) - Project 2

3.4.3. Project 3 - “Colméia”:

• Project Name: Colméia (Beehive)

51

Danilo Sato, Dairton Bassi, Mariana Bravo,
Alfredo Goldman and Fabio Kon

Experiences Tracking Agile Projects: an
Empirical Study

• Description: A complete library management sys-
tem that has been developed at the University of São
Paulo by undergraduate and graduate students during
the last four offerings of the XP class. Here, we ana-
lyze the implementation of a new module that allows
a user to search for any item in the library collection.
Most of the database model was already developed
and other modules of the system were already im-
plemented. Hence, before coding, the team had to
spend some time understanding existing source code
and the database model before proceeding with the
implementation of the new module.

• Software Classification: Information system

Sociological Factors - Project 3
Team Size 7−1 (left the team) + 1 Cus-

tomer
Team Education
Level

Undergrad students: 7

Experience Level of
Team

< 5 years: 6
5-10 years: 1

Domain Expertise Low
Language Expertise Moderate

Project-specific Factors - Project 3
Delivered User Sto-
ries

12

Domain Web, Stand-alone Applica-
tion, Library System

Person Months 4.2
Elapsed Months 4
New & Changed
KLOEC

8.067

System KLOEC 31.252
Outcome Measures - Project 3

Productivity
KLOEC/PM 1.921
User stories/PM 2.857
Putnam Productivity Parameter 0.427

Morale 73 %

Table 5. XP-cf and Available XP-om - Project 3

3.4.4. Project 4 - “GinLab”:

• Project Name: GinLab -Ginástica Laboral(Labo-
ral Gymnastics)

• Description: A stand-alone application to assist in
the recovery and prevention of Repetitive Strain In-
jury (RSI). The program frequently alerts the user to

Criticality
(Loss due to impact

of defects)

Personnel
(% Level 1B) (% Level 2&3)

Dynamism
(% Requirements
change/months)

Culture
(% thriving on chaos

vs. order)

Size
(# of personnel)

40 15

30 20

20 25

10 30

0 35

50
30

10
5

1

90

70

50

30

0

3

10

30

100

300

Comfort

Discretionary
funds

Essential
funds

Single life

Many
lives

Plan-driven

Agile

Figure 3. Developmental Factors (XP-cf) - Project 3

take breaks and perform some pre-configured rou-
tines of exercises. Here, we analyze the first 3 it-
erations of the project, implemented during the first
semester of 2006.

• Software Classification: End-user software

Criticality
(Loss due to impact

of defects)

Personnel
(% Level 1B) (% Level 2&3)

Dynamism
(% Requirements
change/months)

Culture
(% thriving on chaos

vs. order)

Size
(# of personnel)

40 15

30 20

20 25

10 30

0 35

50
30

10
5

1

90

70

50

30

0

3

10

30

100

300

Comfort

Discretionary
funds

Essential
funds

Single life

Many
lives

Plan-driven

Agile

Figure 4. Developmental Factors (XP-cf) - Project 4

3.4.5. Project 5 - “Borboleta”:

• Project Name: Borboleta (Butterfly)

52

Danilo Sato, Dairton Bassi, Mariana Bravo,
Alfredo Goldman and Fabio Kon

Experiences Tracking Agile Projects: an
Empirical Study

Sociological Factors - Project 4
Team Size 4 + 1 Customer
Team Education
Level

Undergrad students: 4

Experience Level of
Team

< 5 years: 4

Domain Expertise Low
Language Expertise Moderate

Project-specific Factors - Project 4
Delivered User Sto-
ries

18

Domain Stand-alone Application,
Web

Person Months 2.6
Elapsed Months 4
New & Changed
KLOEC

4.721

System KLOEC 4.721
Outcome Measures - Project 4

Productivity
KLOEC/PM 1.816
User stories/PM 6.923
Putnam Productivity Parameter 0.294

Morale 72 %

Table 6. XP-cf and Available XP-om - Project 4

• Description: A telehealth software for PDAs and
smart phones to assist doctors and nurses in medical
appointments provided at the patients’ home as part
of programs under the Brazilian Public Health Sys-
tem (SUS). The system is composed of two parts:
a Java J2ME software running on mobile devices
where doctors and nurses take notes about the med-
ical visits, and a desktop application that synchro-
nizes all the mobile information and consolidates it
in a database of the public health facility. The project
started in 2005 with three undergraduate students
and during the first semester of 2006 new features
were implemented in the XP lab class. Here, we
analyze the 3 iterations of the project, implemented
during the second phase of development in the XP
class.

• Software Classification: Information system

3.5. GOVERNMENTAL PROJECTS

3.5.1. Project 6 - “Chinchilla”: This project started
with the initial support of our team. Training sessions
were provided before the project kick-off and the coach
and tracker roles were assigned initially to members of
our team. After some iterations, our team gradually

Sociological Factors - Project 5
Team Size 6 + 1 Customer
Team Education
Level

Undergrad students: 1
Grad students: 5

Experience Level of
Team

< 5 years: 2
5-10 years: 4

Domain Expertise Low
Language Expertise High

Project-specific Factors - Project 5
Delivered User Sto-
ries

24

Domain Mobile, Web, Medical sys-
tem

Person Months 4.2
Elapsed Months 4
New & Changed
KLOEC

7.753

System KLOEC 15.444
Outcome Measures - Project 5

Productivity
KLOEC/PM 1.846
User stories/PM 5.714
Putnam Productivity Parameter 0.411

Morale 80 %

Table 7. XP-cf and Available XP-om - Project 5

Criticality
(Loss due to impact

of defects)

Personnel
(% Level 1B) (% Level 2&3)

Dynamism
(% Requirements
change/months)

Culture
(% thriving on chaos

vs. order)

Size
(# of personnel)

40 15

30 20

20 25

10 30

0 35

50
30

10
5

1

90

70

50

30

0

3

10

30

100

300

Comfort

Discretionary
funds

Essential
funds

Single life

Many
lives

Plan-driven

Agile

Figure 5. Developmental Factors (XP-cf) - Project 5

started to leave the project, handing over these roles to
full-time employees. During the last iterations, we only
had some interns supporting the development team.

• Project Name: Chinchilla

53

Danilo Sato, Dairton Bassi, Mariana Bravo,
Alfredo Goldman and Fabio Kon

Experiences Tracking Agile Projects: an
Empirical Study

• Description: A complete human resources system
to manage information of all employees in a gov-
ernmental agency. It is being developed at the São
Paulo State Legislative Body (ALESP) by a group
of state employees guided by our team. As discussed
in Section 2.3, we spent some time training the team
on the technologies and on the agile method that we
adopted for the project (XP). After some iterations,
we decreased our level of participation in the project,
allowing the team of employees to move on by them-
selves. Here, we analyze 8 iterations of the first re-
lease of the system.

• Software Classification: Information system

Sociological Factors - Project 6
Team Size 9± 1 + 2 Customers
Team Education
Level

Bachelors: 8
Undergrad intern: 2

Experience Level of
Team

< 5 years: 2
5-10 years: 8

Domain Expertise High
Language Expertise Low

Project-specific Factors - Project 6
Delivered User Sto-
ries

106

Domain Web, Government, Human
Resources system

Person Months 58.5
Elapsed Months 11
New & Changed
KLOEC

48.517

System KLOEC 48.517
Outcome Measures - Project 6

Productivity
KLOEC/PM 0.829
User stories/PM 1.812
Putnam Productivity Parameter 0.367

Morale 67 %

Table 8. XP-cf and Available Xp-om - Project 6

3.5.2. Project 7 - “SPL” - Legislative Process Sys-
tem: The initial development of this system was out-
sourced to a private contractor. After 2 years of devel-
opment, the system was deployed and the team of em-
ployees at ALESP was trained and took over the main-
tenance of the system. Due to the lack of experience on
the technologies used to build the system and to the large
number of defects that arose as the system started to be
used in production, the team had a tough time support-
ing the end-user needs, fixing defects, and implementing

Criticality
(Loss due to impact

of defects)

Personnel
(% Level 1B) (% Level 2&3)

Dynamism
(% Requirements
change/months)

Culture
(% thriving on chaos

vs. order)

Size
(# of personnel)

40 15

30 20

20 25

10 30

0 35

50
30

10
5

1

90

70

50

30

0

3

10

30

100

300

Comfort

Discretionary
funds

Essential
funds

Single life

Many
lives

Plan-driven

Agile

Figure 6. Developmental Factors (XP-cf) - Project 6

new functionalities. When we were called to assist them,
we decided to introduce some agile practices to help them
deal with the system, such as Continuous Integration [13],
Testing (Automated Unit and Acceptance Tests), Refac-
toring [14], and Informative Workspace [4].

Also, as described in Section 2.3, we spent a couple
of months training them on the technologies and topics of
interest that would help them on their day-to-day job, such
as object-oriented programming, Java collections, Struts,
unit testing, acceptance testing, refactoring, and source
control with CVS.

• Project Name: SPL - “Sistema do Processo Legisla-
tivo” (Legislative Process System)

• Description: A workflow system for the São Paulo
legislators and their assistants to help them to man-
age the legislature documents (bills, acts, laws,
amendments, etc.) through the legislative process.
Here, we analyze the initial 3 months of the project
after the introduction of the agile practices during the
first semester of 2006.

• Software Classification: Information system

4. METRICS
In this section, we describe the metrics that were col-

lected to analyze the projects described in Section 3. As
proposed by Hartmann [19], there is a distinction between
DiagnosticsandOrganizationalmetrics: diagnostics are
supporting metrics that assist the team in understanding

54

Danilo Sato, Dairton Bassi, Mariana Bravo,
Alfredo Goldman and Fabio Kon

Experiences Tracking Agile Projects: an
Empirical Study

Sociological Factors - Project 7
Team Size 5 full-time employees + 3

part-time consultants + 5
Customers

Team Education
Level

Undergrad students: 1
Bachelors: 7

Experience Level of
Team

< 5 years: 1
5-10 years: 7

Domain Expertise High
Language Expertise Low

Project-specific Factors - Project 7
Delivered User Sto-
ries

None

Domain Web, Workflow
Person Months 15
Elapsed Months 4
New & Changed
KLOEC

6.819

System KLOEC 177.016
Outcome Measures - Project 7

Productivity
KLOEC/PM 0.455
User stories/PM N/A
Putnam Productivity Parameter 0.236

Morale N/A

Table 9. XP-cf and Available XP-om - Project 7

Criticality
(Loss due to impact

of defects)

Personnel
(% Level 1B) (% Level 2&3)

Dynamism
(% Requirements
change/months)

Culture
(% thriving on chaos

vs. order)

Size
(# of personnel)

40 15

30 20

20 25

10 30

0 35

50
30

10
5

1

90

70

50

30

0

3

10

30

100

300

Comfort

Discretionary
funds

Essential
funds

Single life

Many
lives

Plan-driven

Agile

Figure 7. Developmental Factors (XP-cf) - Project 7

and improving the process that produces business value;
organizational metrics are those that measure the amount
of business value delivered to the customer. Goldratt

warns us that teams will behave according to how they
are being measured [17], so it is important that the team
understand the purpose of the metrics.

In this article, we are interested in analyzing and
proposing diagnostics metrics that can be used to support
the tracker of an agile team. The purpose of such diag-
nostic metrics is to support the team’s improvement. To
avoid the problem stated by Goldratt, the team must un-
derstand that these metrics are volatile, therefore as soon
as a metric is not serving its purpose, it should be dis-
carded.

The next sections describe the quantitative and quali-
tative metrics gathered in this study.

4.1. QUANTITATIVE M ETRICS

Our quantitative metrics were directly gathered from
the source code, from the source control repository and
from XPlanner [30], a light-weight Web tool for planning
and tracking XP projects. The metrics were collected at
the end of the last iteration, but historical data from all
iterations could be retrieved from the above-mentioned
tools. The quantitative metrics are described below.

• Total Lines of Code (TLOC): Counts the total num-
ber of non-blank, non-comment lines of production
code in the system.

• Total Lines of Test Code (TLOTC): Counts the to-
tal number of test points in the system, as defined by
Dubinsky [12]. One test point is defined as one step
in an automatic acceptance testing scenario or as one
non-blank, non-comment line of unit test code.

• McCabe’s Cyclomatic Complexity (v(G)): Mea-
sures the amount of decision logic in a single soft-
ware module [29]. Control flow graphs describe the
logic structure of software modules and consists of
nodes and edges. The nodes represent computational
statements or expressions, and the edges represent
transfer of control between nodes. Cyclomatic Com-
plexity is defined for each module (in our case study,
a module is a method) to bee − n + 2, wheree and
n are the number of edges and nodes in the control
flow graph, respectively.

• Weighted Methods per Class (WMC): Measures
the complexity of classes in an object-oriented sys-
tem. It is defined as the weighted sum of all methods
defined in a class [9]. In this study, we are using
McCabe’s Cyclomatic Complexity as the weighting
factor for WMC, so WMC can be calculated as

∑
ci,

whereci is McCabe’s Cyclomatic Complexity of the
class’ith method.

• Class Size: Counts the total number of non-blank,
non-comment lines of a class in the system.

55

Danilo Sato, Dairton Bassi, Mariana Bravo,
Alfredo Goldman and Fabio Kon

Experiences Tracking Agile Projects: an
Empirical Study

• Number of Commits: Counts the total number of
individual commits to the source control repository.

• Number of Lines Changed: Counts the total num-
ber of lines (not only source code) added, removed,
and updated in the source control repository.

• Number of Delivered Stories: Counts the total
number of stories implemented in an iteration and
approved by the customer.

4.2. QUALITATIVE M ETRICS

The qualitative metrics were collected at the end of
the last iteration of the first semester of 2006, so histori-
cal data for all iterations is not available. The qualitative
metrics are described below.

• Interviews: We conducted semi-structured inter-
views, with a mixture of open-ended and specific
questions [36] to give us a broader view and under-
standing of what was happening with each project.
The open-ended questions in the interview derived
from the answers to the following specific questions:

– Which XP practice(s) you found to be more
valuable to software development?

– Which XP practice(s) you found to be more
difficult to apply?

– Were thetracker and thecoachhelpful to the
team?

– Would you apply XP in other projects?

• Surveys: We used a survey developed by William
Krebs [25], extending it to include additional in-
formation about the team education and experience
level, the extent to which each XP practice was be-
ing used (see Appendix A), and a general score (in
a 0-10 scale) abouttrackingquality. For each ques-
tion, each team member had to provide the “current”
and “desired” level of their team in relation to that
practice.

• Team Morale: Throughout the last iteration, we also
collected information about the team morale by ask-
ing team members to update aniko-niko calendar[1]
in a weekly basis. At the end of each work day, team
members would paste a sticker in the calendar, with
a color that would indicate his mood (pleasant, or-
dinary, or unpleasant). This was used to gather the
XP-om for each project.

5. ANALYSIS AND RESULTS
In this section, we analyze some relationships among

the metrics described in Section 4 and discuss how they

can assist in managing and tracking an agile project. Re-
calling one of our main goals in this article, this section
will provide the “Diagnostics” metrics that we found suit-
able to support tracking an agile project and to support
process and team improvement.

5.1. ANALYSIS OF ADHERENCE M ETRICS SURVEY

By analyzing the survey results in Figure 14, we no-
ticed that the average of the desired scores was higher
than the actual scores for all practices in every project.
That means that the teams wanted to improve on every
XP practice. The survey was answered by 48 individuals
and only one answer had a lower desired score than the
actual score for one practice (Simple Design).

We also had a result similar to that reported by Krebs
in his study that proposed the original survey [25]: the av-
erage desired score for each practice was higher than their
desired overall score for XP. That, according to Krebs, in-
dicates the team’s enthusiasm for practical techniques and
less understanding of the values and principles underlying
the XP “label”. Pair Programming on Project 7 was an ex-
ception to this behavior, indicating their resistance against
this practice. Project 5 also had a lower desired score for
some practices than their desired overall score for XP. In
this case they have set a higher expectation on the process
rather than the practices, having the highest desired over-
all score for XP among all projects (9.67). Project 5 is
also the only project with an overall desired score for XP
higher than the actual average of desired scores for all XP
practices.

Finally, another information that can be extracted
from the survey’s result is the difference between the ac-
tual and desired scores for each practice. We can notice
that the practices on Project 1 were going well, with a
maximum difference of 1.37 on the Metaphor practice.
Project 7, on the other hand, was starting to adopt some
of the agile practices, showing a much larger gap on most
of the practices. We can see differences of 8.00 and 7.50
for the Coding Standards and Tracking practices, respec-
tively. These differences can inform the team about the
most important points of improvement, showing which
practices deserve more attention on the next iterations.

5.2. RETROSPECTIVES AS A TRACKING TOOL

In our survey to collect the XP-am, we included a
question abouttracking(shown in Table 10) in addition to
the already existing questions about lessons learned (Ret-
rospectives) [25]. As shown in Table 10, the developer
is expected to give a score between 0 and 10 to the cur-
rent and the desired level oftracking using six sample
sentences as a guideline of how well the practice is being
implemented and followed by the team. The developer
chooses the sentence that most resembles what the team
does (and should do) and gives the score.

56

Danilo Sato, Dairton Bassi, Mariana Bravo,
Alfredo Goldman and Fabio Kon

Experiences Tracking Agile Projects: an
Empirical Study

Tracking Current:_________ Desired:_________
There are big visible charts spread over the wall that
helps us understand the project pace.
10 We have several charts that are updated daily and
we remove the ones that are not being used anymore. The
charts helps us understand and improve our process.
8 We have some interesting charts on the wall that are
updated weekly.
6 The information in the wall is updated at the end of
each release.
4 The charts are outdated and no one cares about them
anymore. We have to work to finish on schedule.
2 I do not know why we have those charts on the wall.
They do not seem to be related to my work. I think no
one would notice if they were removed.
0 We do not have any charts on the wall. We think it is
better to store important information on documents and
files in our central repository.

Table 10. Question added to the survey adapted from [25]

By analyzing the answers to the question described
in Table 10 (provided in Appendix A), we noticed that
trackingwas not working well for all of the teams: while
projects 1, 4, and 6 had an average rate of9.06, 8.50, and
7.56, projects 2, 3, 5, and 7 had an average rate of6.00,
4.67, 5.33, and1.75 respectively. That behavior was con-
firmed by the interviews with the team members of each
project. In spite of that fact, it was an unanimous opin-
ion that the Retrospective was a very valuable practice
to support the team in understanding and improving their
process. The results from the Retrospectives were posted
in the workspace and worked as an important guideline
to drive the team in the right direction. Even the teams
that were not doing well ontrackingwere keen to follow
up with the improvements proposed by the Retrospective
posters. We conclude that the Retrospective is an addi-
tional practice to supporttracking. It helps the teams to
understand the project pace and improve the process and
their performance on the next iterations.

5.3. PERSONNEL L EVEL AND AGILITY

The developmental factors described in Section 3.1
and presented in Section 3 are proposed by Boehm
and Turner as a risk-based method to classify projects
between plan-driven and agile-inclined projects [6, 7].
When the polygon formed by the project data is distinctly
toward the center of the graph, an agile method is sug-
gested as the preferred approach for that project. Shapes
distinctly toward the periphery suggest that a plan-driven
method would be preferred.

One of the proposed risk factors is the personnel level

of experience with agility and adaptability. This repre-
sents the percentage of the development team that falls
at the various Cockburn levels described in Table 11.
These levels consider the developer’s experience in tai-
loring the method to fit new situations. By analyzing
our project graphs (Figures 1, 2, 3, 4, 5, 6, and 7), we
can observe that the experience on tailoring the process
for all projects is similarly low. The top vertex of the
polygon in all graphs are toward the periphery. Although
Boehm and Turner suggest that you should consider the
five risk factors when choosing between an agile and plan-
driven approach, we noticed that the similarity between
the projects’ personnel level did not accurately repre-
sented the environment differences between the academic
and governmental projects.

Level Team member characteristics
3 Able to revise a method, breaking its rules to fit

an unprecedented new situation.
2 Able to tailor a method to fit a precedented new

situation.
1A With training, able to perform discretionary

method steps such as sizing stories to fit incre-
ments, composing patterns, compound refac-
toring, or complex COTS integration. With ex-
perience, can become Level 2.

1B With training, able to perform procedural
method steps such as coding a simple method,
simple refactoring, following coding standards
and configuration management procedures, or
running tests. With experience, can master
some Level 1A skills.

-1 May have technical skills but unable or unwill-
ing to collaborate or follow shared methods.

Table 11. Personnel levels proposed by Cockburn [10]

Having people experienced in Agile Methods and in
tailoring the process is an important risk factor, but they
will not usually be available in a large number. As de-
scribed in Section 2.3, our approach starts with training
sessions led by an experienced coach. Most of our 5-year
experience with XP involved inexperienced teams on Ag-
ile Methods. We did not find that a low percentage of
Level 2 and 3 personnel affected the adoption of an Agile
Method provided that there are a few people with a good
knowledge of the method and a good coach.

From our experience, we also noticed that it is usually
easier to teach agile practices to inexperienced program-
mers. More mature, experienced programmers sometimes
tend to resist against agile practices such as Test-First
Programming, Collective Code Ownership, and Pair Pro-
gramming because they have to change dramatically their

57

Danilo Sato, Dairton Bassi, Mariana Bravo,
Alfredo Goldman and Fabio Kon

Experiences Tracking Agile Projects: an
Empirical Study

work style.
Finally, we noticed that there is another personnel fac-

tor related to the successful adoption of an Agile Method:
the coach’s influence. After our team started to leave
Project 6, the coach role was reassigned to a full-time em-
ployee. His knowledge of the practices and influence on
the team was not the same as ours. Some of the prac-
tices started to be left aside, as we will further discuss in
Section 5.5.

There are more personnel factors that can influence
the decision between an agile and plan-driven approach.
Further investigation should be conducted to understand
how the cultural changes imposed by an agile approach
can influence the personnel of a team, and how these
changes can be evaluated when analyzing the risk factors
that influence the adoption of an Agile Method.

5.4. OBJECT-ORIENTED DESIGN M ETRICS IN AG-
ILE PROJECTS

Chidamber and Kemerer proposed a suite of object-
oriented design metrics, claiming that their measures can
aid developers in understanding design complexity, in de-
tecting design flaws, and in predicting certain quality out-
comes such as software defects, testing, and maintenance
effort [9]. Basili et al. were able to further validate these
metrics, determining that the metrics were statistically in-
dependent and therefore did not provide redundant infor-
mation [2]. It was also determined that the classes with
a higher WMC were more prone to faults. An empirical
study conducted by Subramanyam and Krishnan gathered
data from industry projects developed in C++ and Java,
and determined that larger class size and higher WMC
are related to defects detected during acceptance testing
and those reported by customers [38]. Li and Henry also
analyzed the object-oriented metrics in two commercial
systems, determining that five of six metrics (except Cou-
pling Between Objects [9]) helped predict maintenance
effort [26].

Figures 8 and 9 shows the overall average WMC and
class size at the end of each iteration for all projects, re-
spectively.

Basili et al. analyzed eight student projects using a de-
velopment process derived from the Waterfall model [2],
obtaining similar WMC results as our agile projects
(mean: 13.4) but without controlling for the class size.
Subramanyam and Krishnan analyzed two projects devel-
oped in different programming languages, obtaining sim-
ilar WMC results as our agile projects in their Java project
(mean:12.2), but with significantly larger classes (mean:
136.0) [38]. Although they do not discuss the develop-
ment process used for those projects, they do mention
that they had access to design documents and UML di-
agrams, suggesting that an agile approach was not used.
WMC and class size data from an open source software

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 3 4 5 6 7 8

A
ve

ra
ge

 W
ei

gh
te

d
M

et
ho

ds
 p

er
 C

la
ss

Iteration

Project 1
Project 2
Project 3
Project 4
Project 5
Project 6
Project 7

Figure 8. Average Weighted Methods per Class

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 3 4 5 6 7 8

A
ve

ra
ge

 C
la

ss
 S

iz
e

Iteration

Project 1
Project 2
Project 3
Project 4
Project 5
Project 6
Project 7

Figure 9. Average Class Size

were also gathered by Gyimóthy et al. showing the same
behavior: similar WMC (mean:17.4), but larger classes
(mean:183.3) [18].

By comparing these results with our agile projects (ex-
cept Project 7), we can see that, although the average
WMC metric is similar, our projects had an average class
size significantly lower. Therefore the classes from our
agile projects may have a similar design complexity (rep-
resented by WMC), but are much smaller, which makes it
easier for developers to understand and maintain it. This
might be possibly explained by the strong focus on source
code quality and testing in most agile approaches. Tech-
niques such as Test-First Programming, Continuous Inte-
gration, Refactoring, and Simple Design allow the system
to evolve and accommodate change.

We can also see that Project 7 had a significantly
higher average WMC and class size than the other
projects. As discussed earlier, this suggests that Project
7 will be more prone to defects and will require more

58

Danilo Sato, Dairton Bassi, Mariana Bravo,
Alfredo Goldman and Fabio Kon

Experiences Tracking Agile Projects: an
Empirical Study

testing and maintenance effort. As discussed in Sec-
tion 3.5.2, this was the only project in which some ag-
ile practices were later introduced during the maintenance
phase. Also, by comparing WMC and class size from
Project 7 with the results from other studies, we can see
that it has a similar class size average (mean≈ 180),
but a significantly higher design complexity (mean WMC
≈ 48). Many other factors prior to our intervention may
have affected these metrics, but WMC and class size can
be suitable metrics to be used when we later introduce
more agile practices related to testing, Refactoring and
Simple Design.

5.5. MEASURING CONTINUOUS I NTEGRATION

Continuous Integration is one of the most important
XP practices to allow a team to deliver and deploy work-
ing software at the end of each release [13]. It is a tech-
nique that reduces the risk of large integrations at the end
of a development cycle by providing an automated build
of the entire system, frequent execution of the test suite,
and the means for the entire team to understand what is
happening with the system in a frequent basis.

By reflecting on data retrieved from the code repos-
itory, we propose a metric to analyze and diagnose how
well Continuous Integration is going in a project. This
metric can support thetracker to understand and improve
the adoption of this practice in an agile team. We define
the Integration FactorIFi for iterationi as follows:

IFi =
LAi + LRi + LUi

TCi

where:

LAi = total number of lines added in iterationi
LRi = total number of lines removed in iterationi
LUi = total number of lines updated in iterationi
TCi = total number of commits in iterationi

If the team is properly doing Continuous Integration,
the Integration Factor should be low, indicating that there
are few line changes per commit.TCi can be retrieved by
analyzing the repository history log andLAi, LRi, and
LUi can be obtained from the file diffs retrieved from the
repository. Figure 10 shows the value of the Integration
Factor for each iteration of all projects:

Again, we can observe that Project 7 team members
were used to wait longer before committing their changes
to the repository. This behavior started to change after we
introduced them to Continuous Integration, which can be
seen in the graph as a rapidly decreasing line. We also ob-
serve a growing trend in the Integration Factor for Project
6. As our team gradually left the lead of Project 6 and let
the state employees run the process, they kept some of the
XP practices but were less rigorous with others, such as

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 3 4 5 6 7 8In
te

gr
at

io
n

F
ac

to
r

(L
in

e
C

ha
ng

es
 /

C
om

m
it)

Iteration

Project 1
Project 2
Project 3
Project 4
Project 5
Project 6
Project 7

Figure 10. Integration Factor

Continuous Integration. This shows that it is hard to sus-
tain changes imposed by some of the agile practices. As
opposed to what common sense would suggest, running
and maintaining an agile method such as XP requires dis-
cipline.

To validate the suitability of this metric we calculated
the Spearman’s rank correlation between the Integration
Factor and the team’s average evaluation of Continuous
Integration. A negative correlation of−0.57 was deter-
mined, but it was not statistically significant at a 95%
confidence level (p-value= 0.1, N = 7). We believe
that this is due to the small sample size, because the sur-
vey was only conducted at the end of the semester (last
iteration).

5.6. MEASURING THE TEAM ’ S ADOPTION OF

TESTING PRACTICES

Quality is one of the most important XP principles.
Quality is not considered to be a control variable during
XP planning [4]. Many XP practices provide the means to
build and maintain the quality of a system, such as Test-
First Programming, Continuous Integration, Refactoring,
and Simple Design. In particular, XP suggests that both
unit and acceptance tests should be automated to be fre-
quently executed and to provide constant feedback about
the system quality.

By analyzing data retrieved from the source code, we
propose a metric to analyze and diagnose how well the
Testing practices are going in a project. We define the Test
FactorTi for iterationi as the ratio between the number
of lines of test code and the number of lines of production
code:

Ti =
TLOTCi

TLOCi

59

Danilo Sato, Dairton Bassi, Mariana Bravo,
Alfredo Goldman and Fabio Kon

Experiences Tracking Agile Projects: an
Empirical Study

where:

TLOTCi = total lines of test code in iterationi
TLOCi = total lines of production code in iterationi

Figure 11 shows the value of the Test Factor for each
iteration of all projects:

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 3 4 5 6 7 8

T
es

t F
ac

to
r

(T
LO

T
C

/T
LO

C
)

Iteration

Project 1
Project 2
Project 3
Project 4
Project 5
Project 6
Project 7

Figure 11. Test Factor

We observe that some projects may have more lines
of test code than production code (Ti > 1). We can also
observe iterations where testing was left aside, causing
the Test Factor to drop and showing that more production
code was developed without tests. We can also observe
a low Test Factor for Projects 5 and 7 in which devel-
opment started prior to the adoption of an agile method.
The flat format of the graph for those projects reflects the
difficulty of adopting testing practices in a legacy system
where most of the production code was developed without
and automated test suite.

Although the developers started to write automated
tests for the legacy code, the systems had approximately
10, 000 and170, 000 lines of code to be covered by auto-
mated tests. A great effort is still necessary to improve the
test coverage for these projects. Figures 12 and 13 shows
the evolution of the total lines of production and test code,
iteration by iteration. An automated test suite is a highly
effective means to build and maintain software with high
quality, so it is important to develop a testing culture from
the beginning of a project.

To validate the suitability of this metric we calculated
the Spearman’s rank correlation between the Test Factor
and the team’s average evaluation of the Testing practice
at the end of the last iteration. A positive correlation of
0.72 was determined with statistical significance at a 95%
confidence level (p-value= 0.03382, N = 7).

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 1 2 3 4 5 6 7 8

T
ot

al
 L

in
es

 o
f P

ro
du

ct
io

n
C

od
e

(lo
g

sc
al

e)

Iteration

Project 1
Project 2
Project 3
Project 4
Project 5
Project 6
Project 7

Figure 12. Total Lines of Production Code

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 1 2 3 4 5 6 7 8

T
ot

al
 L

in
es

 o
f T

es
t C

od
e

(lo
g

sc
al

e)

Iteration

Project 1
Project 2
Project 3
Project 4
Project 5
Project 6
Project 7

Figure 13. Total Lines of Test Code

6. CONCLUSIONS AND FUTURE WORK
In our empirical case study, we analyzed seven

projects from both academic and governmental environ-
ments from the point of view of tracking an agile process.
The projects were conducted by experienced coaches and
were mostly composed of team members without pre-
vious experience with Agile Methods. We classified
the projects using the XP-EF framework, contributing to
build up the weight of empirical evidence about XP and
Agile Methods.

Also, we collected several metrics that were analyzed
to understand their suitability to support diagnosing and
tracking an agile project. Some of our findings in analyz-
ing those metrics were:

• All projects had a higher desired score for every
practice, showing their willingness to improve in all
XP practices. The difference between actual and de-
sired scores can point the team to the most important

60

Danilo Sato, Dairton Bassi, Mariana Bravo,
Alfredo Goldman and Fabio Kon

Experiences Tracking Agile Projects: an
Empirical Study

points of improvement.

• Retrospectives and their posters are complementary
tools to tracking, helping the team to understand the
project pace. Even the teams that were not capable
of tracking properly, could carry out good retrospec-
tives and benefit from them.

• A low percentage of Level 2 and 3 personnel, ca-
pable of tailoring the method to fit new situations,
did not affect the successful adoption of an agile
approach in our projects. There are other person-
nel factors that can influence the adoption of an ag-
ile approach, such as the team experience and the
coach’s influence. Further investigation should be
conducted to understand how the cultural changes
imposed by an agile approach can influence the per-
sonnel of a team, and how these changes can be con-
sidered when classifying projects between an agile
and plan-driven approach.

• Project 7 had a considerably larger average for
WMC and class size, suggesting that it would be
more prone do faults (defects) and would require
more maintenance and testing effort.

• The adoption of an agile approach resulted in classes
with an average WMC similar to the average WMC
of classes from projects using different development
processes. However, the average class size was sig-
nificantly lower, which makes it less error prone and
easier for developers to understand and maintain.

• We propose a new metric to diagnose how well test-
ing is going in a project. The Spearman’s rank
correlation between our proposed Test Factor and
the team’s evaluation of Testing adoption was0.72,
which is statistically significant at a 95% confidence
level (p-value= 0.03382, N = 7).

• We propose a new metric to diagnose how well Con-
tinuous Integration is going in a project. The Spear-
man’s rank correlation between our proposed Inte-
gration Factor and the team’s evaluation of Con-
tinuous Integration adoption was−0.57 but not
statistically significant at a 95% confidence level
(p-value= 0.1, N = 7) because of the small sample
size.

In future work, we plan to continue gathering more
data and more metrics to build a larger history for agile
projects. We are particularly interested in measuring de-
fects and bugs after the projects are deployed in produc-
tion, trying to correlate the level of XP adherence to the
quality of the system as perceived by the final users. It
would also be interesting to gather more data from agile

and non-agile projects to statistically confirm the suitabil-
ity of the proposed metrics, and to propose new metrics
to aid thetracker in diagnosing the adoption of different
agile practices. Finally, it would be interesting to com-
pare similar projects adopting agile and non-agile meth-
ods with respect to the speed and quality of the produced
software.

REFERENCES
[1] Sakata Akinori. Niko-niko calendar web-

site. http://www.geocities.jp/
nikonikocalendar/index_en.html,
Jul. 2006.

[2] Victor R. Basili, Lionel C. Briand, and Walcélio L.
Melo. A validation of object-oriented design metrics
as quality indicators.IEEE Transactions on Soft-
ware Engineering, 22(10):751–761, 1996.

[3] Kent Beck. Extreme Programming Explained: Em-
brace Change. Addison-Wesley, 1st edition, 1999.

[4] Kent Beck and Cynthia Andres. Extreme Pro-
gramming Explained: Embrace Change. Addison-
Wesley, 2nd edition, 2004.

[5] Kent Beck et al. Manifesto for agile software devel-
opment.http://agilemanifesto.org, Jul.
2006.

[6] Barry Boehm and Richard Turner. Balancing
Agility and Discipline: A Guide for the Perplexed.
Addison-Wesley, 2003.

[7] Barry Boehm and Richard Turner. Using risk to bal-
ance agile and plan-driven methods. InIEEE Com-
puter, volume 36, pages 57–66, 2003.

[8] Piergiuliano Bossi. Extreme Programming applied:
a case in the private banking domain. InProceedings
of OOP, Munich, 2003.

[9] S.R. Chidamber and C.F. Kemerer. A metrics suite
for object oriented design.IEEE Transactions on
Software Engineering, 20(6):476–493, 1994.

[10] Alistair Cockburn. Agile Software Development.
Addison-Wesley, 2002.

[11] Alistair Cockburn. Crystal Clear: A Human-
Powered Methodology for Small Teams. Addison-
Wesley Professional, 2004.

[12] Yael Dubinsky, David Talby, Orit Hazzan, and Arie
Keren. Agile metrics at the israeli air force. InAgile
2005 Conference, pages 12–19, 2005.

61

Danilo Sato, Dairton Bassi, Mariana Bravo,
Alfredo Goldman and Fabio Kon

Experiences Tracking Agile Projects: an
Empirical Study

[13] Martin Fowler. Continuous integration.
http://martinfowler.com/articles/
continuousIntegration.html, Jul. 2006.

[14] Martin Fowler, Kent Beck, John Brant, William
Opdyke, and Don Roberts.Refactoring: Improv-
ing the Design of Existing Code. Addison-Wesley,
1999.

[15] Alexandre Freire da Silva, Fabio Kon, and Cicero
Torteli. XP south of the equator: An experience
implementing XP in Brazil. InProceedings of the
6th International Conference on Extreme Program-
ming and Agile Processes in Software Engineering
(XP’2005), pages 10–18, 2005.

[16] Alfredo Goldman, Fabio Kon, Paulo J. S. Silva, and
Joe Yoder. Being extreme in the classroom: Expe-
riences teaching XP.Journal of the Brazilian Com-
puter Society, 10(2):1–17, 2004.

[17] Eliyahu M. Goldratt.The Haystack Syndrome: Sift-
ing Information Out of the Data Ocean. North River
Press, 1991.

[18] Tibor Gyimóthy, Rudolf Ferenc, and István Siket.
Empirical validation of object-oriented metrics on
open source software for fault prediction.IEEE
Transactions on Software Engineering, 31(10):897–
910, 2005.

[19] Deborah Hartmann and Robin Dymond. Appropri-
ate agile measurements: Using metrics and diagnos-
tics to deliver business value. InAgile 2006 Confer-
ence, pages 126–131, 2006.

[20] Jim Highsmith. Messy, exciting, and anxiety-
ridden: Adaptive software development. InAmer-
ican Programmer, volume 10, 1997.

[21] Ronald E. Jeffries, Ann Anderson, and Chet
Hendrickson. Extreme Programming Installed.
Addison-Wesley, 2000.

[22] Capers Jones.Software Assessments, Benchmarks,
and Best Practices. Addison Wesley, 2000.

[23] Mira Kajko-Mattsson, Ulf Westblom, Stefan
Forssander, Gunnar Andersson, Mats Medin, Sari
Ebarasi, Tord Fahlgren, Sven-Erik Johansson, Ste-
fan Törnquist, and Margareta Holmgren. Taxonomy
of problem management activities. InProceedings
of the Fifth European Conference on Software
Maintenance and Reengineering, pages 1–10, 2001.

[24] Norman L. Kerth.Project Retrospectives: A Hand-
book for Team Reviews. Dorset House Publishing
Company, 2001.

[25] William Krebs. Turning the knobs: A coaching pat-
tern for XP through agile metrics.XP/Agile Uni-
verse 2002, LNCS 2418:60–69, 2002.

[26] Wei Li and Sallie Henry. Object oriented metrics
that predict maintainability. J. Systems and Soft-
ware, 23:111–122, 1993.

[27] Kim Man Lui and Keith C.C. Chan. Test driven
development and software process improvement in
china. InProceedings of the 5th International Con-
ference on Extreme Programming and Agile Pro-
cesses in Software Engineering (XP 2004), volume
3092 ofLecture Notes on Computer Science, pages
219–222, 2004.

[28] C. Mann and F. Maurer. A case study on the impact
of scrum on overtime and customer satisfaction. In
Agile 2005 Conference, pages 70–79, 2005.

[29] Thomas J. McCabe and Arthur H. Watson. Software
complexity.Crosstalk: Journal of Defense Software
Engineering, 7:5–9, 1994.

[30] Jacques Morel et al. Xplanner website.http://
www.xplanner.org, Jul. 2006.

[31] Roger A. Müller. Extreme programming in a uni-
versity project. InProceedings of the 5th Inter-
national Conference on Extreme Programming and
Agile Processes in Software Engineering (XP 2004),
volume 3092 ofLecture Notes on Computer Sci-
ence, pages 312–315, 2004.

[32] Stephen R Palmer and John M. Felsing.A Practi-
cal Guide to Feature Driven Development. Prentice
Hall, 2002.

[33] Mary Poppendieck and Tom Poppendieck.Lean
Software Development: An Agile Toolkit for Soft-
ware Development Managers. Addison-Wesley,
2003.

[34] Lawrence H. Putnam and Ware Meyers.Measures
For Excellence: Reliable Software On Time, Within
Budget. Yourdon Press Computing Series, 1992.

[35] Ken Schwaber and Mike Beedle.Agile Software De-
velopment with Scrum. Alan R. Apt, 2001.

[36] Carolyn B. Seaman. Qualitative methods in empiri-
cal studies of software engineering.IEEE Transac-
tions on Software Engineering, 25:557–572, 1999.

[37] Jennifer Stapleton.DSDM: A framework for busi-
ness centered development. Addison-Wesley Pro-
fessional, 1997.

62

Danilo Sato, Dairton Bassi, Mariana Bravo,
Alfredo Goldman and Fabio Kon

Experiences Tracking Agile Projects: an
Empirical Study

[38] Ramanath Subramanyam and M.S. Krishnan. Em-
pirical analysis of CK metrics for object-oriented
design complexity: Implications for software de-
fects. IEEE Transactions on Software Engineering,
29(4):297–310, 2003.

[39] Abbas Tashakkori and Charles Teddlie.Mixed
Methodology: Combining Qualitative and Quanti-
tative Approaches. Sage Publications, 1998.

[40] Laurie Williams. Pair Programming Illuminated.
Addison-Wesley Professional, 2002.

[41] Laurie Williams, William Krebs, Lucas Layman,
and Annie I. Antón. Toward a framework for evalu-
ating Extreme Programming. In8th International
Conference on Empirical Assessment in Software
Engineering (EASE ’04), pages 11–20, 2004.

[42] Laurie Williams, Lucas Layman, and William
Krebs. Extreme Programming evaluation frame-
work for object-oriented languages – version 1.4.
Technical report, North Carolina State University
Department of Computer Science, 2004.

63

