
Which Documentation For
Software Maintenance?

Sergio Cozzetti B. de Souza1, Nicolas Anquetil1, Káthia M. de Oliveira1

1UCB - Catholic University of Brasilia
SGAN 916 Môdulo B - Av. W5 Norte

Brasília - DF - 70.790-160, Brazil
{kathia,anquetil}@ucb.br

Abstract
Software engineering has been striving for years to

improve the practice of software development and main-
tenance. Documentation has long been prominent on the
list of recommended practices to improve development
and help maintenance. Recently however, agile methods
started to shake this view, arguing that the goal of the
game is to produce software and that documentation is
only useful as long as it helps to reach this goal.

On the other hand, in the re-engineering field, peo-
ple wish they could re-document useful legacy software
so that they may continue maintain them or migrate them
to new platform.

In these two case, a crucial question arises: “How
much documentation is enough?” In this article, we
present the results of a survey of software maintainers to
try to establish what documentation artifacts are the most
important to them.

1. INTRODUCTION
Among all the recommended practices in software en-

gineering, software documentation has a special place. It
is one of the oldest recommended practices and yet has
been, and continue to be, renowned for its absence (e.g.
[21]). There is no end to the stories of software systems
(particularly legacy software) lacking documentation or
with outdated documentation. For years, the importance
of documentation has been stressed by educators, pro-
cesses, quality models, etc. and despite of this we are still
discussing why it is not generally created and maintained
(e.g. [9]).

The topic gained renewed interest with two recent
trends:

• Agile methods question the importance of documen-
tation as a development aid;

• The growing gap between “traditional” (e.g.
COBOL) and up-to-date technologies (e.g. OO or
web-oriented) increased the pressure to re-document
legacy software.

Both issues raise a similar question: What documen-
tation would be most useful to software maintenance?

If they propose a renewed development paradigm, ag-
ile methods do not bring significant changes for software
maintenance. They do claim that permanent re-factoring
turns maintenance into a normal state of the approach,
however, they do not explain how such methods would
work over extended periods of time, when a development
team is sure to disperse with the knowledge it has of the
implementation details. Documentation is still a highly
relevant artifact of software maintenance.

Legacy software re-documentation tries to remedy the
deficiencies of the past in terms of documentation. How-
ever, it is a costly activity, difficult to justify to users be-
cause it does not bring any visible change for them (at
least in the short term).

In this paper we present a survey of software main-
tainers trying to establish the importance of various docu-
mentation artifacts for maintenance. The paper is divided
as follows: In Section 2, we review some basic facts about
software maintenance and summarize the relevant litera-
ture on software documentation; in Section 3, we present
the survey we conducted; in Section 4, we analyze and
comment its results; Finally, we propose our conclusion
and future work in Section 5.

2. SOFTWARE DOCUMENTATION AND
MAINTENANCE
2.1. SOFTWARE MAINTENANCE

Software maintenance is traditionally defined as any
modification made on a software system after its delivery.



S. C.B. de Souza, N. Anquetil, K. M. de Oliveira Which Documentation For Maintenance?

Studies show that software maintenance is, by far, the pre-
dominant activity in software engineering (90% of the to-
tal cost of a typical software [15, 19]). It is needed to keep
software systems up-to-date and useful: Any software
system reflects (i.e. models) the world within which it
operates, when this world changes, the software needs to
change accordingly. Lehman’s first law of software evo-
lution (law of continuing change, [11]) is that “a program
that is used undergoes continual change or becomes pro-
gressively less useful”. Maintenance is mandatory, one
cannot ignore new laws or new functionalities introduced
by a concurrent. Programs must also be adapted to new
computers (with better performances) or new operational
systems.

One of the main problems that affect software mainte-
nance is the lack of up-to-date documentation. Because of
this, maintainers must often work from the source code to
the exclusion of any other source of information. For ex-
ample, a study (see [13, p.475], [15, p.35]) reports that
from 40% to 60% of the maintenance activity is spent
on studying the software to understand it and how the
planned modification may be implemented.

To lessen this problem, organizations try to re-
document their software systems, but this is a costly op-
eration that would benefit from a clear indication of the
software documents to focus on.

2.2. DOCUMENTATION NEEDS
A software document may be described as any arti-

fact intended to communicate information on the software
system [5]. This communication is aimed at human read-
ers.

According to Ambler [1], software documentation at-
tends to three necessities: (i) contractual; (ii) support a
software development project by allowing team members
to gradually conceive the solution to be implemented, and
(iii) allow a software development team to communicate
implementation details across time to the maintenance
team.

Documentation typically suffers from the following
problems: nonexistent or of poor quality [3, 8, 17]; out-
dated [5, 16, 23, 25, 26]; over abundant and without a
definite objective [5, 12]; difficult to access (for example
when the documents are scattered on various computers
or in different formats: text, diagrams) [25]; lack of inter-
est from the programmers [15, p.45], [7, 24]; and, difficult
to standardize, due, for example, to project specificities
[7, 14].

Recently, agile methods proposed an approach to soft-
ware development that mostly eliminated the necessity
of documentation as an helper for software development.
Using informal communication (between developers and
with users), code standardization, or collectivization of
the code, agile methods propose to realize the commu-

nication necessary to a software development project on
an informal level. This ultimately can greatly reduce the
need for documentation in the development of software.
However, agile methods do not remove the need for docu-
mentation as a communication tool through time, that al-
lows developers to communicate important informations
on a system to future maintainers.

2.3. DOCUMENTATION FOR MAINTENANCE
Better defining what document(s) software maintain-

ers need has already been considered in other studies.
In a workshop organized by Thomas and Tilley at

SIGDoc 2001, they state that “no one really knows what
sort of documentation is truly useful to software engineers
to aid system understanding” [23]. This is precisely the
problem we are trying to tackle. Despite this ignorance,
many authors have proposed their vision on the document
artifacts needed for software maintenance:

• Tilley in [25, 26]) stresses the importance of a doc-
ument describing the hierarchical architecture of the
system.

• Cioch et al. [4] differentiate four stages of experi-
ence (from new comer, the first day of work; to ex-
pert, after some years of work on a system). For
each stage, they propose different documents: new-
comers need a short general view of the system; ap-
prentices need the system architecture; interns need
task oriented documents such as requirement de-
scription, process description, examples, step by step
instructions; finally, experts need low level docu-
mentation as well as requirement description, and
design specification.

• Rajlich [18] proposes a re-documentation tool that
allows to gather the following information: notes
on the application domain, dependencies among
classes, detailed description of a class’ methods.

• Ambler [1] recommends documenting the design de-
cisions, and a general view of the design: require-
ments, business rules, architecture, etc.

• Forward and Lethbridge [5], in their survey of man-
agers and developers, found the specification docu-
ments to be the most consulted whereas quality and
low level documents are the least consulted.

• Grubb and Takang [6, pp.103-106], identify some
information needs of maintainers according to their
activities. Few specific documents are listed. Man-
agers needs decision support information such as the
size of the system, cost of the modification. An-
alysts need to understand the application domain,

32



S. C.B. de Souza, N. Anquetil, K. M. de Oliveira Which Documentation For Maintenance?

the requirements and have a global view of the sys-
tem. Designers need architectural understanding
(functional components and how they interact) and
detailed design information (algorithms, data struc-
tures). Finally programmers need a detailed under-
standing of the source code as well as an higher level
view (similar to the architectural view).

• Anquetil et al. [2], present a re-documentation tool
to partially automate a re-documentation process fo-
cusing on the following information: high level view
(with description of requirements); data model; cross
references between functionalities, functions, and
data; business rules; subsystems description and in-
teraction; and comments.

• Finally, according to Teles [22, p.212], the docu-
ments that should be generated at the end of an
XP project are: stories, tests, data model, class
model, business process description, user manual,
and project minutes.

All, but one, of these studies are based on the intuition
of the authors. Forward and Lethbridge [5] are the only
ones to have performed a formal survey as the one we are
presenting here. There work differs from our in that they
did not consider specifically software maintenance. They
also focus on such issues as the best tools to create soft-
ware documents which is out of the scope of this study.

One conclusion that we may draw from this short re-
view is that system architecture is an important document
for software maintenance (cited by Tilley, Cioch, Ambler,
Grubb and Takang, and Anquetil et al.). We will see that
our results do not support this view.

3. SURVEY
To establish the relative importance of various doc-

umentation artifacts in helping understand a system, we
asked professional software maintainers to rate the impor-
tance of different documentation artifacts in helping them
understand a system.

In this section we will present the survey we per-
formed (Definition and Planning in Wohlin et al. [27]
experimentation process). The next section presents the
results and there analysis (Operation and Analysis and In-
terpretation in Wohlin et al. experimentation process).

3.1. GOAL DEFINITION
The goal of the survey is to identify the importance of

documentation artifacts in helping to understand a system.
This would allow focusing the resources of a software de-
velopment, or software re-documentation, project on the
most useful documentation artifacts for maintenance. We

are particularly interested in the opinion of actual soft-
ware maintainers on this issue as opposed to the opinion
of academics (for example as presented in the preceding
section).

For this we will consider the documentation arti-
facts typically recommended in known development ap-
proaches. We considered two approaches: structured
analysis1 and the Unified Software Development Process.

We formated this goal according to Solingen and
Berghout [20] proposal:

Analyze the set of documentation artifacts of a
programming paradigm
with the purpose of identify
with respect to importance
from the point of view of software maintenance
professionals
in the context of a given programming
paradigms.

3.2. PLANNING
The steps in planning a survey are:

Context selection: The survey will target professional
software maintainers. The subject will participate
off-line, filling a questionnaire that they will return
on their own time.

Hypothesis formulation: We are interested in the im-
portance of documentation artifacts in helping to un-
derstand a software system. Let us define a metric
Mi, which is the mean importance of a documenta-
tion artifact i (for a given programming paradigm)
according to the opinion of our subjects. Mi, is the
mean of all the answers of the subjects, that know
artifact i considering the values: “no importance”=1,
“little importance”=2, “important”=3, and “very im-
portant”=4 (Note: We chose a 4 choices scale in con-
formance to the suggestion of the ISO/IEC 9126).
When a subject did not know a given documentation
artifact, his/her answer is not computed in the metric
for that artifact. For structured analysis i ∈ [1, 24]
(24 documentation artifacts), for the unified process,
i ∈ [1, 25] (25 documentation artifacts).

The hypotheses we are trying to confirm are:

Null hypothesis HSA
0 : For the structured analysis,

all documentation artifacts have the same im-
portance for professional maintainers in help-
ing to understand a software system

HSA
0 : ∀i ∈ [1, 24],∀j ∈ [1, 24]|Mi = Mj

1It is our experience that, prior to the USDP and the UML, different
countries had different “universal” development approaches. In Brazil,
all software engineers usually know a technique called “structured anal-
ysis”, in France it would be the “Merise method”, in Germany it appears
to be the “V method”, etc.

33



S. C.B. de Souza, N. Anquetil, K. M. de Oliveira Which Documentation For Maintenance?

Alternative hypothesis HSA
1 : For the structured

analysis, documentation artifacts help profes-
sional maintainers understand a software sys-
tem to different degree

HSA
1 : ∃i ∈ [1, 24],∃j ∈ [1, 24]|Mi 6= Mj

Null hypothesis HOO
0 : For the unified process, all

documentation artifacts have the same impor-
tance for professional maintainers in helping to
understand a software system

HUP
0 : ∀i ∈ [1, 25],∀j ∈ [1, 25]|Mi = Mj

Alternative hypothesis HOO
1 : For the unified pro-

cess (Object-Oriented), documentation arti-
facts help professional maintainers understand
a software system to different degree

HOO
1 : ∃i ∈ [1, 25],∃j ∈ [1, 25]|Mi 6= Mj

Subject selection: The selection of the subjects will be
done by convenience, using the contacts of one of
the authors who is a professional software engineer.
Participation is voluntary and anonymous basis. The
questionnaire is also available on the Internet for any
one to answer it.

Instrumentation: The hypotheses will be tested through
a questionnaire distributed to the subjects on paper
and available on the internet. The questionnaire is
composed of two parts. The first part is a character-
ization of the subject: Position (manager, analyst, or
programmer); Experience in maintenance (1-3 years,
3-5 years, 5-10 years, >10 years); Experience in
number of systems already maintained (1 to 5, 6 to
10, 11 to 20, more than 20); and, Known approaches
(structured analysis, object-orientation2). The sub-
ject could also indicate his-her email (optional) in
case s-he wished to receive the results of the survey.

The second part of the questionnaire (see Figure 1)
asked the subjects to answer the following question
for a list of documentation artifacts: “Based on your
practical experience, indicate what importance each
documentation artifact have, in the activity of under-
standing a software to be maintained”. Four levels of
importance where proposed (see above): no impor-
tance, little importance, important, and very impor-
tant. The subjects could also indicate that they did
not know the artifact.

The documentation artifacts were divided by activi-
ties of a typical development process, discriminating
for each activity, artifacts specific to the structured
analysis (e.g. context diagram), the unified process

2i.e. the unified process

(based on the RUP, e.g. use case diagram), or both
(e.g. Entity-Relationship Model). The complete list
of 34 artifacts, as they were presented in the ques-
tionnaire is the following:

Requirement elicitation: Structured analysis doc-
uments are requirements list, context diagram,
requirement description; the unified process
documents are vision document, use case di-
agram; Documents common to both paradigms
are conceptual data model, glossary.

Analysis: Structured analysis documents are func-
tions derived from the requirements, hierar-
chical function diagram, data flow diagram;
the unified process documents are use cases
specifications, class diagram, activity diagram,
sequence diagram, state diagram; Documents
common to both paradigms are non functional
prototype, logical data diagram (MER), data
dictionary.

Design: Structured analysis documents are archi-
tectural model, general transaction diagram,
components specification; the unified process
documents are collaboration diagram, compo-
nents diagram, distribution diagram; Docu-
ments common to both paradigms are physical
data model, functional prototype.

Coding: Documents common to both paradigms are
comments in source code, source code.

Test: Documents common to both paradigms are
unitary test plan, system test plan, acceptance
test plan.

Transition: Documents common to both paradigms
are data migration plan, transition plan, user
manual.

Validity evaluation: Different issue may represent pos-
sible validity problems.

• In the construction of the questionnaire, the
list of documentation artifacts should contain
all documentation artifacts that one could rea-
sonably expect to be using. As explained, we
used the artifacts recommended by two well
documented methodologies (Structured analy-
sis and Unified Software Developement Pro-
cess), thus we do not believe that this list rep-
resent any validity problem.

• The subjects were answering the questionnaire
without our supervision and there is a risk that
they did not know what a particular documen-
tation artifact meant, or hada different under-
standing of what a document is (i.e.believing

34



S. C.B. de Souza, N. Anquetil, K. M. de Oliveira Which Documentation For Maintenance?

Figure 1. Part of the questionnaire used in the survey. The top half part (lighter gray) states the question, the bottom half part (darker gray) is the list
of artifacts and the placeholders to mark their importance.

35



S. C.B. de Souza, N. Anquetil, K. M. de Oliveira Which Documentation For Maintenance?

they know waht it is when they don’t). Be-
cause the two methodologies chosen are well
known, we believe this risk was minimal. We
also provided the possibility to indicate one did
not know some particular artifact. To keep the
material light, we did not provide any defini-
tion or other explanation on the documentation
artifacts.

• Again because the subjects were answering the
questionnaire without our supervision, there is
a risk that they did not understand the ques-
tion asked. We first applied the questionnaire
to two professional software engineers (that did
not participate further in the survey) to ensure
that they understood the question and what they
were expected to do. This test helped us to im-
prove the phrasing of the question.

• We are assuming that the set of subjects that re-
sponded the questionnaire is representative of
the general software maintainer population. An
analysis of the characteristics of the set of sub-
jects will be presented in Section 4. We have
however no means to formally verify this as-
sumption as we are not aware of any existing
characterization of the general software main-
tainer population.

• The experience of the maintainers or their func-
tion could have an impact on the results. How-
ever, we will see that the experience and the
function of the subjects are evenly distributed.

4. SURVEYS RESULTS
4.1. RAW RESULTS

A total of 76 professional maintainers answered the
survey over a period of 6 months (July to December
2004). As part of the answers were submitted by internet,
we don’t have an exact picture of the geografical distribu-
tion of the subjects. From the informations we have (an-
swers submitted on paper and emails collected on some
electronic answers), we may infer that the vast majority
of the subjects, if not all, are from Brazil, located mainly
in the cities of SÃčo Paulo and Brasilia, two of the larger
cities of Brazil in terms of TI industry. They proved to be
a heterogeneous sample population that we believe to be
representative. However, for lack of data on the general
software maintainer population, it is difficult to evaluate
this representativeness.

Position: total=76, manager=20 (26%), analyst=48
(63%), programmer=5 (7%), and 3 consultants (4%).
This appear to show a population biased toward the
“higher levels” of the profession. However, one must

also consider that many programmers are actually
called analyst / programmer, or sometimes junior an-
alyst, which may distort the characterization. (See
Figure 2, left part).

Known approach: total=76, structured=22 (29%),
OO=6 (8%), both=48 (63%). We were surprised
by the high quantity of software engineers who
declared knowing object-orientation (63+8=71%),
but it may only reflects the popularity of the RUP
and UML rather than actual OO programming. (See
Figure 2, right part).

Experience (years): total=76, 1-3 years=17 (22%), 3-
5 years=19 (25%), 5-10 years=17 (22%), >10
years=23 (30%). The experience is evenly dis-
tributed. (See Figure 3, left part).

Experience (number of systems maintained):
total=76, 1-5=26 (34%), 6-10=15 (20%), 11-20=15
(20%), >20=20 (26%). Again the experience in
number of system maintained is evenly distributed.
(See Figure 3, right part).

Tables 1 and 2 give the result of the survey for struc-
tured analysis and the unified process. The results are
ranked in decreasing order of importance (based on the
mean importance as defined by the metric Mi defined in
Section 3.2). For each artifact, the number of subject con-
sidered includes only those that know this artifact. The
value of the metric is not given in these tables for lack
of space, but it may easily be computed from the num-
bers presented and may also be found in two other ta-
bles (4 and 5) presented later. For example for the Source
code artifact, the mean importance for structured analysis
is M = (5× 3 + 63× 4)/68 = 3, 93, and for the Unified
Process M = (3 × 3 + 50 × 4)/53 = 3, 94.

4.2. STATISTICAL ANALYSIS OF THE RESULTS
Results were analyzed using two statistical testes:

ANOVA and Tukey HSD. The first allow to test the dif-
ference between means, it will be used to refute our null
hypotheses. The second allow to find the significant dif-
ference between means, it will be used to define groups
of document artifacts which are statistically equivalent (of
the same importance).

The values for the ANOVA are given in Table 3. In
both case, the p-value is below 0,01 which allows us to
reject both null hypotheses (HSA0 and HOO0) with a sig-
nificance level of 1%. Therefore, we must accept the al-
ternative hypothesis that, in both programming paradigm,
there are statistically significant differences between the
degrees to which different documentation artifacts help
professional software maintainers in understanding a sys-
tem.

36



S. C.B. de Souza, N. Anquetil, K. M. de Oliveira Which Documentation For Maintenance?

Figure 2. Raw results for the position (left part) and approach known (right part) by the subjects of our survey.

Figure 3. Raw results for the maintenance experience in years (left part) and number of system maintained (right part) by the subjects of our survey.

37



S. C.B. de Souza, N. Anquetil, K. M. de Oliveira Which Documentation For Maintenance?

Table 1. Importance of documentation artifacts for the structured analysis paradigm (according to 70 software maintainers).
Structured analysis Important Total Does not

artifact no little yes very know
Source code 0 0 5 63 68 2
Comments 0 4 11 54 69 1
Logical data model (MER) 0 3 14 50 67 3
Physical data model 0 1 24 42 67 3
Requirement description 3 7 18 41 69 1
Data dictionary 1 10 24 31 66 4
Requirement list 6 9 17 36 68 2
Acceptance test plan 6 8 16 34 64 6
Conceptual data model 4 7 25 29 65 5
System test plan 4 10 23 29 66 4
Implantation plan 5 7 27 28 67 3
User manual 6 8 23 29 66 4
Unitary test plan 5 12 22 25 64 6
Data flow diagram 5 11 29 23 68 2
Data migration plan 6 10 25 23 64 6
Component specification 4 10 32 19 65 5
Functional prototype 7 12 24 21 64 6
Architectural model 5 15 26 18 64 6
Hierarchical function diagram 5 15 30 15 65 5
Glossary 4 21 26 15 66 4
General transaction diagram 5 14 25 11 55 15
Context diagram 4 25 21 17 67 3
Functions derived from requirements 4 17 21 12 54 16
Non functional prototype 8 13 29 12 62 8

38



S. C.B. de Souza, N. Anquetil, K. M. de Oliveira Which Documentation For Maintenance?

Table 2. Importance of documentation artifacts for the Unified process (according to 54 software maintainers).
Unified process Important Total Does not

artifacts no little yes very know
Source code 0 0 3 50 53 1
Comments 0 4 9 41 54 0
Logical data model (MER) 0 3 12 38 53 1
Class diagram 0 2 18 33 53 1
Physical data model 0 2 19 32 53 1
Use case diagram 0 5 17 31 53 1
Use case specification 1 3 21 26 51 3
Data dictionary 1 8 19 24 52 2
Acceptance test plan 2 8 15 25 50 4
Conceptual data model 2 5 22 22 51 3
Sequence diagram 0 5 30 18 53 1
Implantation plan 2 9 18 23 52 2
System test plan 1 9 22 20 52 2
User manual 3 8 19 23 53 1
Unitary test plan 1 10 19 19 49 5
Data migration plan 3 9 18 19 49 5
Activity diagram 3 7 27 15 52 2
Vision document 2 10 23 13 48 6
Glossary 3 13 25 11 52 2
Functional prototype 6 13 19 14 52 2
Component diagram 5 9 28 8 50 4
Non functional prototype 6 10 22 11 49 5
State diagram 6 14 23 7 50 4
Distribution diagram 5 15 26 3 49 5
Collaboration diagram 6 14 28 1 49 5

Table 3. ANOVA for the Structured Analysis survey and the unified process survey

ANOVA — Structured Analysis
sum of degree of Mean
squares freedom square F p-value

Overall 169,224 23 7,358 10,184 0,000
Within groups 1109,676 1536 0,722
Total 1278,900 1559

ANOVA — Unified Process
sum of degree of Mean
squares freedom square F p-value

Overall 174,141 24 7,256 12,268 0,000
Within groups 743,465 1257 0,591
Total 917,607 1281

39



S. C.B. de Souza, N. Anquetil, K. M. de Oliveira Which Documentation For Maintenance?

The ANOVA test only tells us that the documentation
artifact are more or less important, but it does not tell
which artifacts may be considered of the same importance
or not. For this we used the Tukey HSD test.

Tukey HSD allows to define homogeneous subsets
for which the difference of the documentation artifacts
are not statistically significant. For example, in Table 4,
the four structured analysis artifacts: Source code, Com-
ments, Logical data model, and Physical data model, all
belong to the seventh subset. This means they have sta-
tistically the same importance in our survey. This is a sta-
tistical analysis, a more intuitive analysis from the point
of view of software engineering will be proposed in the
next section. Similarly, Table 5 gives the homogeneous
subsets for the unified process documentation artifacts.

4.3. SOFTWARE ENGINEERING INTERPRETATION
Our goal was to help software maintainers decide

what documentation artifacts are more important to help
understand a system. To better fulfill this goal, we now
propose a more intuitive interpretation of the results:

• One difference between the two programming
paradigms is that for the unified process, the topmost
subsets are more inclusive (larger) and the last one
more exclusive (smaller) whereas it is the opposite
for structured analysis. For example the two higher
subsets for structured analysis include only 6 arti-
facts and all the rest (18 artifacts) belongs to the last
subset. For the unified process, on the other hand,
the first two subsets hold 15 artifacts and the last one
only 9 (one artifact does not belong either to the first
two subsets, or to the last one).

• Apart from this first case, in general, the two pro-
gramming paradigms gave similar results and the
other conclusions apply to both.

• It is not a surprise to see the source code and the
comments (in the source code) appearing at the top
of the most important documentation artifacts to help
understand a system.

• If we look at the higher subset in both programming
paradigms, we see that data models are also very im-
portant. For the structured analysis paradigm they
are the logical and physical data model, for the Uni-
fied process, it also includes the class diagram.

• The second topmost subset for structured analysis in-
cludes the Data dictionary. Which is related to the
data model. The second topmost subset for the uni-
fied process also includes the Data dictionary, but we
may desconsider this subset because of the inclusive
nature of the subsets (see second point of this discus-
sion.)

• Another high-level view of the system which is fa-
vored by the maintainers is a documentation of the
requirements. The Use case diagram and the Use
case specification appear in the topmost subset for
the unified process and Requirements description ap-
pears in the second topmost subset for structured
analysis.

• On the other end of the spectrum, prototypes (either
functional or not), and abstract view of the system
(e.g. Architectural model, Vision document, Context
diagram,) ranked low and appear in the last subset.
In the case of the Architectural model this was a sur-
prise as it is an artifact generally well considered in
the literature (see Section 2).

Overall, the opinion of software maintainers, is that
the most important documentation artifacts, to help under-
standing a system, are: the source code (with comments),
a data model (whether it is logical, physical or class dia-
gram), and specification of the requirements. This agrees
with the opinion of various authors as cited in Section
2, the data model is cited in [2, 22] and the requirement
specification in [1, 2, 5, 6, 22].

One of the interest of this study is that appart from
the most important documentation artifacts, the survey
also identifies the artifacts considered less important by
the software maintainers and that should be the first can-
didates to consider when trying to simplify a process.
These artifacts are system prototype, architectural view,
and many artifacts of the design activity (e.g. component
diagram, component specification). This result does not
agree with the opinion of other authors as already high-
lighted.

Possible extensions to this study include analysing the
possible impact of the position or experience of the main-
tainer in the evaluation of the importance of the docu-
mentation artifacts. We do not have enough data to draw
any statistically significant conclusion, however, from our
data, there seems to be a difference in opinion depending
on the position of the software maintainer. For example,
programmers tend to value more any documentation arti-
fact than analysts. Also, and ironically, programmer tend
to value more analysis documentation artifact than the an-
alysts, whereas analysts value more the source code and
comments than programmers. We could not identify any
clear trend associated to the experience of the software
maintainers.

5. CONCLUSION AND FUTURE WORK
Software documentation has long been a much dis-

cussed topic in software engineering. Although it has al-
ways been heralded as an important aid to software de-

40



S. C.B. de Souza, N. Anquetil, K. M. de Oliveira Which Documentation For Maintenance?

Table 4. Homogeneous subset of document artifact for Structured analysis according to the Tukey HSD test. Alpha=0,05. We used a harmonic
average of 64,774 for the size of the samples (N) as the sizes are different.

Homogeneous subsets
Artifact N Mean 1 2 3 4 5 6 7
Source code 68 3,93 x
Comments 69 3,72 x x
Logical data model (MER) 67 3,70 x x x
Physical data model 67 3,61 x x x x
Requirement description 69 3,41 x x x x
Data dictionary 66 3,29 x x x x x
Requirement list 68 3,22 x x x x x
Acceptance test plan 64 3,22 x x x x x
Conceptual data model 65 3,22 x x x x x
System test plan 66 3,17 x x x x
Implantation plan 67 3,16 x x x x
User manual 66 3,14 x x x x
Unitary test plan 64 3,05 x x x
Data flow diagram 68 3,03 x x x
Data migration plan 64 3,02 x x x
Component specification 65 3,02 x x x
Functional prototype 64 2,92 x x x
Architectural model 64 2,89 x x x
Hierarchical function diagram 65 2,85 x x
Glossary 66 2,79 x x
General transaction diagram 55 2,76 x x
Context diagram 67 2,76 x x
Functions derived from requirements 54 2,76 x x
Non functional prototype 62 2,73 x

41



S. C.B. de Souza, N. Anquetil, K. M. de Oliveira Which Documentation For Maintenance?

Table 5. Homogeneous subset of document artifact for the unified process according to the Tukey HSD test. Alpha=0,05. We used a harmonic
average of 51,222 for the size of the samples (N) as the sizes are different.

Homogeneous subsets
Artifact N Mean 1 2 3 4 5 6 7 8
Source code 53 3,94 x
Comments 54 3,69 x x
Logical data model (MER) 53 3,66 x x
Class diagram 53 3,58 x x x
Physical data model 53 3,57 x x x
Use case diagram 53 3,49 x x x x
Use case specification 51 3,41 x x x x
Data dictionary 52 3,27 x x x x
Acceptance test plan 50 3,26 x x x x
Conceptual data model 51 3,25 x x x x
Sequence diagram 53 3,25 x x x x
Implantation plan 52 3,19 x x x x
System test plan 52 3,17 x x x x x
User manual 53 3,17 x x x x x
Unitary test plan 49 3,14 x x x x x
Data migration plan 49 3,08 x x x x x
Activity diagram 52 3,04 x x x x x x
Vision document 48 2,98 x x x x x
Glossary 52 2,85 x x x x
Functional prototype 52 2,79 x x x x
Component diagram 50 2,78 x x x x
Non functional prototype 49 2,78 x x x x
State diagram 50 2,62 x x x
Distribution diagram 49 2,55 x x
Collaboration diagram 49 2,49 x

42



S. C.B. de Souza, N. Anquetil, K. M. de Oliveira Which Documentation For Maintenance?

velopment and maintenance, it is notoriously absent or
out-dated in many legacy software.

Recently, agile methods have shaken a bit the tradi-
tional view of software documentation, proposing a devel-
opment model that relies more on informal communica-
tion than on documentation. We explained, however, that
this model is not suited to software maintenance which
still has great need for documentation.

The question arose then to identify the documentation
artifacts most important to help software maintainers. We
conducted a survey among software maintainers to try to
settle this issue. In this survey, professional maintainers
were asked what artifacts they though important or not in
helping understand the system to maintain. The subject
population was heterogeneous and, although we have no
comparative data to prove it, seems representative of the
broad community of software maintainers.

The survey confirmed that source code and comments
are very important documentation artifact. Data model
and requirement specification appear also at the top of the
list. Surprisingly, and contrary to what we found in the
literature, architectural models and other abstract view of
the system are not judged important. This could indicate
that such documentation artifacts are used once to have
a global understanding of the system and never looked
at again after. This explanation would make a difference
between quantity and quality: the architectural model is
little used, but could, nevertheless, be important.

Further research is needed in the same direction, for
example Cioch et al. [4] states that different stages of
experience have different documentation requirement. A
similar experience could be setup to correlate the impor-
tance of document artifacts with the experience of the
maintainer. Similarly, Grubb and Takang [6] differentiate
the activities of the software engineers. Again this could
be verified with a similar experiment.

REFERENCES
[1] S. W. Ambler. Agile documenta-

tion. available on the internet at:
http://www.agilemodeling.com/essays/ agile-
Documentation.htm, 2001-2005. Last accessed on
May 27, 2005.

[2] N. Anquetil, K. M. Oliveira, A. G. dos Santos, P. C.
da Silva jr., L. C. de Araujo jr., and S. D. Vieira. A
tool to automate re-documentation. In Forum of the
CAISE, Conference on Advanced Information Sys-
tems Engineering (CAiSE’05), jun. 15 2005. ac-
cepted for publication.

[3] L. C. Briand. Software documentation: How much
is enough. In Proceedings of the Seventh European

Conference on Software Maintenance and Reengi-
neering (CSMR’03), pages 13–17. IEEE, IEEE
Comp. Soc. Press, March 26 - 28 2003.

[4] F. A. Cioch and M. Palazzolo. A documentation
suite for maintenance programmers. In Proceed-
ings of the 1996 International Conference on Soft-
ware Maintenance (ICSM’96), pages 286–95. IEEE,
IEEE Comp. Soc. Press, Nov 1996.

[5] A. Forward and T. C. Lethbridge. The relevance of
software documentation, tools and technologies: a
survey. In DocEng ’02: Proceedings of the 2002
ACM symposium on Document engineering, pages
26–33, New York, NY, USA, 2002. ACM Press.

[6] P. Grubb and A. Takang. Software Maintenance:
Concepts and Practice. World Scientific Publishing
Co., Singapore, 2nd edition, 2003.

[7] HCI. What to put in software maintenance
documentation. Available on the Internet
at: http://www.hci.com.au/hcisite2/journal/
What to put in software maintenance docu-
mentation.htm, 2001–2002. Last accessed on May
27, 2005.

[8] S. Huang and S. Tilley. Towards a documentation
maturity model. In SIGDOC ’03: Proceedings of the
21st annual international conference on Documen-
tation, pages 93–99, New York, NY, USA, 2003.
ACM Press.

[9] M. Kajko-Mattsson. The state of documentation
practice within corrective maintenance. In Proceed-
ings of the International Conference on Software
Maintenance (ICSM’01), pages 354–363. IEEE,
IEEE Comp. Soc. Press, Nov. 07-09 2001.

[10] B. A. Kitchenham, G. H. Travassos, A. von
Mayrhauser, F. Niessink, N. F. Schneidewind,
J. Singer, S. Takada, R. Vehvilainen, and H. Yang.
Towards an ontology of software maintenance.
Journal of Software Maintenance: Research and
Practice, 11:365–389, 1999.

[11] M. Lehman. Programs, life cycles and the laws
of software evolution. Proceedings of the IEEE,
68(9):1060–76, sept. 1980.

[12] M. Lindvall, V. R. Basili, B. W. Boehm, P. Costa,
K. Dangle, F. Shull, R. Tesoriero, L. A. Williams,
and M. V. Zelkowitz. Empirical findings in agile
methods. In Proceedings of the Second XP Uni-
verse and First Agile Universe Conference on Ex-
treme Programming and Agile Methods - XP/Agile
Universe 2002, pages 197–207, London, UK, 2002.
Springer-Verlag.

43



S. C.B. de Souza, N. Anquetil, K. M. de Oliveira Which Documentation For Maintenance?

[13] S. L. Pfleeger. Software Engineering: Theory and
Practice. Prentice Hall, 2nd edition, 2001.

[14] V. Phoha. A standard for software documentation.
Computer, 30(10):97–98, Oct. 1997.

[15] T. M. Pigoski. Practical Software Maintenance:
Best Practices for Software Investment. John Wiley
& Sons, Inc., 1996.

[16] C. J. Poole, T. Murphy, J. W. Huisman, and A. Hig-
gins. Extreme maintenance. In International Con-
ference on Software Maintenance, ICSM’01, pages
301–10. IEEE, IEEE Comp. Soc. Press, Nov. 2001.

[17] R. S. Pressman. Software Engineering: A Practi-
tioner’s Approach. McGraw-Hill, 5th edition, 2001.

[18] V. Rajlich. Incremental redocumentation using the
web. IEEE Software, 17(5):102–6, Sep 2000.

[19] R. C. Seacord, D. plakosh, and G. A. Lewis.
Modernizing Legacy Systems – Software technolo-
gies, engineering processes, and business practices.
Addison-Wesley, 2003.

[20] R. van Solingen and E. Berghout. The
Goal/Question/Metric Method: A practical guide
for quality improvement of software development.
McGraw-Hill, 1999.

[21] M. J. Sousa. A survey on the software maintenance
process. In International Conference on Software
Maintenance, ICSM’98, pages 265–74. IEEE, IEEE
Comp. Soc. Press, Mar. 1998.

[22] V. M. Teles. Extreme Programming. Novatec Edi-
tora Ltda, Rua cons. Moreira de Barros, 1084, conj.
01, São Paulo, SP, 02018-012, Brazil, 2004. ISBN:
85-7522-047-0.

[23] B. Thomas and S. Tilley. Documentation for soft-
ware engineers: what is needed to aid system under-
standing? In SIGDOC ’01: Proceedings of the 19th
annual international conference on Computer doc-
umentation, pages 235–236, New York, NY, USA,
2001. ACM Press.

[24] S. Tilley and H. Müller. Info: a simple document
annotation facility. In SIGDOC ’91: Proceedings of
the 9th annual international conference on Systems
documentation, pages 30–36, New York, NY, USA,
1991. ACM Press.

[25] S. R. Tilley. Documenting-in-the-large vs.
documenting-in-the-small. In Proceedings of CAS-
CON’93, pages 1083–90. IBM Centre for Advanced
Studies, Oct. 1993.

[26] S. R. Tilley, H. A. Müeller, and M. A. Orgun. Doc-
umenting software systems with views. In Proceed-
ings of the 10th International Conference on Sys-
tems Documentation, SIGDOC’92, pages 211–19.
ACM, ACM Press, Oct 1992.

[27] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B.
Regnell, and A. Wesslén. Experimentation in soft-
ware engineering: an introduction. Kluwer Aca-
demic Publishers, 2000. ISBN: 0-7923-8682-5.

44


