

The Past, Present, and Future of
Experimental Software

Engineering

Victor Robert Basili1

1Department of Computer Science
University of Maryland

4111 A.V. Williams Building
College Park - MD - 20742 - USA

basili @cs.umd.edu

Abstract

This paper gives a 40 year overview of the
evolution of experimental software engineering, from
the past to the future, from a personal perspective. My
hypothesis is that my work followed the evolution of
the field. I use my own experiences and thoughts as a
barometer of how the field has changed and present
some opinions about where we need to go.

Keywords: empirical software engineering, experimentation,
context variables, replication, meta-analysis, big science.

1. INTRODUCTION
For ISESE 2007, Claes Wohlin and José Carlos

Maldonado asked me to take a 40 year perspective on
the evolution of experimental software engineering,
from the past to the future. That is an arduous task. So
I decided to simplify the problem for myself by
making this a personal perspective. My hypothesis is
that my work followed the evolution of the field. So, I
will use my own work and thoughts as a barometer of
how the field has changed since I have been working
in the field for the past 30 years and have some
opinions about where we need to go.

I will map the changes across several variables: the

kinds of studies that were being performed, the set of
methods used, the nature of publications and the issues
with review of the work, the community of
researchers, the status of replications and meta-
analysis, and the role of context variables.

This article will be organized in sections, each
section representing a phase. Section 2 will cover the
early days (1974 - 1985), running isolated studies for a
particular purpose. Section 3 will focus on 1986 –
1999, building software process and technique
knowledge in one domain and one environment.
Section 4 will deal with 2000 – 2005, expanding out
across environments and limiting the technologies
being studied, and Section 5 will focus on 2006 and
beyond, building knowledge about a domain.

2. PHASE I: THE EARLY DAYS (1974 – 1985)
These were the early days when people were

running isolated studies for a particular purpose,
independently using case studies and controlled
experiments as the means to analyze a particular
question of interest. The focus was on learning about
measurement in general and trying to identify an
appropriate set of metrics. Many of us were learning
about running an experimental study, and the need for
baselines as a basis for evaluation. There were

Victor Robert Basili The Past, Present, and Future of
 Experimental Software Engineering

 8

attempts to run a small number of controlled
experiments but they were done mostly in isolation,
not as part of a larger study.

Two isolated studies I was involved in were the
Iterative Enhancement product evaluation [1] and the
methodology evaluation [2]. The former was a case
study where we used quantitative observations over
time, measuring the product, and comparing the
product with itself, using prior versions as baselines.
This was a single isolated study. The latter was a
controlled experiment analyzing the effects of a
collection of methods centered on chief programmer
teams, including structured design and structured
coding. The experimental method applied was a
replicated study (controlled experiment) with three
treatments: teams using the methods, teams not using
the methods, and single programmers, all performing
the same task. The study was again a single study in a
single environment.

The break from the mold of isolated studies was
the Software Engineering Laboratory (SEL) [3] at
NASA Goddard Space Flight Center where we began
to build baselines of various project variables (defects,
effort, project metrics), identifying where methods
might make a difference. The focus moved to
collecting data from live projects, feedback on data
collection and measures, and the storage and analysis
of large amounts of data. The work involved multiple
projects and multiple methods in a single environment
and domain.

We learned the importance of understanding the
environment (context variables), the need to build our
own models to understand and characterize that
environment, the interaction of many variables and the
need to model them, (e.g., the environment, projects,
processes, products) and that data collection has to be
goal driven and well defined.

This early work stimulated the more general
recognition that experimentation and measurement
were an important aspect of software development and
that the design of experiments is an important part of
improvement (something Demming had been
preaching in manufacturing for many years [7], that
evaluation and feedback are necessary for learning,
and that we need to experiment with technologies to
reduce risk and tailor to the environment, make
improvements.

With respect to our variables, we were running
studies mostly characterizing knowledge via
measurement in a single environment and single
domain. The publications mostly consisted of project
studies and reviews were mixed. The community of

researchers was almost empty and consisted of model
builders and some scattered set of individual
experimentalists. The set of methods for
experimentation study was mostly quantitative,
nonparametric, using nominal and ordinal
measurement. The context variables were taken as a
given, not measured. There was no replication or
meta-analysis.

For the 10th anniversary of TSE (1986), Rick Selby,
Dave Hutchens, and I defined a framework for
experimentation in software engineering and wrote a
state of the field paper recognizing that most of the
papers in the literature dealt with either experimental
studies of programmers in the small doing controlled
experiments or data collection on projects in the large [4].

3. PHASE II: TYING STUDIES TOGETHER

(1986 – 1999)
During this time there were attempts to tie studies

together. Controlled experiments, case studies, quasi-
experiments, qualitative analysis became part of a
larger tapestry, each useful in their own right but for
varying purposes. Controlled experiments were of
value for identifying specific variable relationships
while case studies provided the opportunity for scale
up. We learned that you could reduce risk by running
smaller experiments off-line using the mix of studies
to build confidence in a theory based upon multiple
treatments. The major focus was on measuring the
relationship between process and product. However,
in our field, the kinds of studies performed and the
topics studied are dependent on the opportunities
available.

This work stimulated the realization that we need
to package and integrate our experiences (build
models). Experience needs to be evaluated, tailored,
and packaged for reuse so software processes must be
put in place to support the reuse of experience. But
the experience packages are local to the environment
in which they are observed. Generalization is difficult.

With respect to our variables, studies were
performed to package knowledge and build models to
improve software quality based upon experience in an
environment. Project experiences were easier to
publish then experiments, as the view was that they
were usually flawed by some threat to validity. ISERN
(started in 1993) identified a community of
researchers and began to help them interact. There
was enough research going on to create the Journal of
Empirical Software Engineering (started in 1996). The
set of methods being used were mostly quantitative,
nonparametric, some qualitative, and nominal and

Victor Robert Basili The Past, Present, and Future of
 Experimental Software Engineering

 9

ordinal measurement. But context variables were
taken as a given, not fully recognized as an important
set of influencing variables. Replication involved
building some studies that varied the context, threats
to validity; building knowledge across studies about a
particular technology.

4. PHASE III: EXPANDING STUDIES ACROSS

DOMAINS AND ENVIRONMENTS (2000 –

2004)
During this period we began to see the expansion

of studies across domains and environments. There
were several examples of building knowledge for a
limited number of techniques in different
environments and domains, i.e., studying the effect of
context on techniques. One specific example was the
NSF sponsored Center for Empirically Based Software
Engineering (CeBASE) [5, 6, 9].

CeBASE made it clear that there is a great deal to
do more research before we can comfortably build an
empirical research engine that can be applied
universally to evaluate and provide support for the use
of evaluated methods. This research engine requires
that we define and improve methods to

• Formulate evolving hypotheses regarding
software development decisions

• Collect empirical data and experiences

• Record influencing variables (context)

• Build models (lessons learned, heuristics,
patterns, decision support frameworks, quantitative
models and tools)

• Integrate models into a framework

• Testing hypotheses by application

• Package what has been learned so far so it can be
used and evolved

At this point we better understood that context can
change everything and is hard to identify. This means
that experimentation in software engineering
represents big science, involving many researchers,
many environments, and many domains. We won’t
evolve the knowledge base without collaboration. This
implies we need to shrink the focus because collecting
experience across environments, domains, and
technologies, is very difficult. We need to build
testbeds to study and mature the techniques for
practice. These testbeds need to be maintained and
evolve; an expensive proposition.

The focus needs to be on specifying the effects of

technologies, and experimentally identifying the
effects, limits and bounds of techniques. So,
technologists need to be more specific about what
their technologies do and do not do and we need to
evolve empirical evidence about various techniques,
gaining new confidence over time by better
understanding the effects of influencing variables. We
need to concentrate on building a body of knowledge
based upon empirical evidence.

With respect to our variables, studies were
performed to evaluate techniques in multiple contexts
and define the relationship between user needs and
what’s available. Journal and conference publications
have come to expect some form of analysis from new
methods, even if it is only a feasibility study. The
community of researchers continues to grow;
experimentalists are replicating each other’s studies.
There are numerous repetitions of a few experiments.
The set of methods available is a rich palate of tools: a
full mix of qualitative and quantitative methods,
controlled and quasi-experiments, case studies,
surveys, folklore gathering, structured interviews and
reviews, etc. Context variables are being studied and
characterized. There are attempts to build knowledge
across studies.

5. PHASE IV: NOW AND THE FUTURE
The focus has to be bounded, limiting the context

but not artificially if possible. Ideally we can build
bodies of knowledge about specific domain. Then we
can combine what has been learned from these
domains to build larger bodies of knowledge across
domains. For each domain, this involves folklore
gathering, interviews, case studies, controlled
experiments, experience bases, etc. An example of this
is the work being performed by the development time
working group of the DARPA High Productivity
Computing Systems project where the domain is high-
end computing [8]. There is a specific practical focus:
improving time and cost of developing high end
computing (HEC) codes. There is a specific research
focus: developing theories, hypotheses, and guidelines
that allow us to characterize, evaluate, predict and
improve how a HEC environment (hardware,
software, human) affects the development of high end
computing codes. There is a large research team
consisting of MIT Lincoln Labs, MIT, UCSD, UCSB,
UMD, USC, FC-MD, UH, MSU, UNL, and SDSC.
Work is proceeding by evolving a series of studies
with novices and professionals using controlled
experiments (grad students), observational studies
(professionals, grad students), case studies (class
projects, HPC projects in academia), surveys, and
interviews (HPC experts).

Victor Robert Basili The Past, Present, and Future of
 Experimental Software Engineering

 10

Testbeds vary from classroom assignments (Array
Compaction, the Game of Life, Parallel Sorting, LU
Decomposition, …) to compact Applications
(Combinations of Kernels, e.g., Embarrassingly
Parallel, Coherence, Broadcast, Nearest Neighbor) to
full scientific applications (nuclear simulation, climate
modeling, …). There is the beginnings of an
experience base focused on empirical evidence and as
well as one focused on the sub-domain of high end
computing defects. There are experimental packages
containing experimentation supports from checklist
for instructors and experts running studies to
instrumentation downloads and data collection and
analysis packages.

This full scale attack is only possible because the
domain is limited, the team size is big, and there is a
fair amount of support.

5.1. THE JOURNEY
To recapitulate, early work characterized the

effects of various methods, (all study variables fixed).
Then we built baselines of various project variables
(defects, effort, product and project metrics) for a
single domain and environment, identifying where
methods might make a difference (fixed context,
varied techniques). e.g., ground support software at
NASA/GSFC (SEL). Then we expanded out across
several domains, environments, focusing on building
knowledge for a couple of techniques (fixed the
techniques to study context), e.g., defect removal
techniques, COTS-based development, and agile
methods (CeBASE). Then we did experimental work
to elicit and quantitatively define the software
dependability needs of various stakeholders, identify
the appropriateness and effectiveness of technologies
to satisfy those needs under varying conditions before
transferring them into practice, (introduced testbeds
(context) to study techniques), e.g., increasing the
ability of NASA to engineer highly dependable
software systems via new technologies (HDCP). Now
we are working on building knowledge in a particular
domain, packaging that knowledge in an experience
base so it can be used by others, demonstrating the
effectiveness of various approaches and in what
context they are effective (fixed domain, studying
techniques and context variables), e.g., building a
software domain experience base to help understand
and increase the time and cost of developing high end
computing (HEC) codes (HPCS).

Where are we and where are we going?

5.2. KINDS OF STUDIES
With regard to the study of techniques, we need to

begin with feasibility studies. No technique should be
published without trying it out. The feedback should

be used for improvement. Techniques need to be
experimentally tested to see where they can be
improved. We need to evaluate the bounds and limits
of each technique and see how techniques can be
integrated and what their integration buys you.

We need to build knowledge about the domain,
identify folklore, theories, do ethnographic studies,
interviews, observations, build models using grounded
theory, case studies, quasi-experiments, controlled
experiments, and evolve models supported by
evidence. We need to test models and hypotheses via
experiments of all kinds.

5.3. COMMUNITY OF RESEARCHERS
We have been evolving a community that talks to

each other. This year was the 14th ISERN workshop
and the number of members has grown dramatically.
The Empirical Software Engineering Journal is 11
years old and has a very good ISI Impact rating (.965).
The International Symposium on Empirical Software
Engineering (ISESE) is in its fifth year and has been
merged with the Metrics Symposium to form ESEM.
But we need more of a community that works with
each other more. Collaboration is necessary for
defining a research agenda. There has been a variety
of proposals for experimental guidelines but no
consensus. We haven’t even solved the terminology
problem; everyone uses a different terminology.

5.4. PUBLICATION
With regard to publications, the guidelines that exist

are very long, especially for conference papers. So there
is a need to break studies into small useful modules,
possibly backed up by technical reports that deal with all
guideline issues or are backed up by web site material.
Journals are better than conferences as publication targets
due to the feedback and dialog that is associated with the
review process. The community needs to identify
conference guidelines and find ways to use various
publication forms to create an integrated whole.

 Papers need to build on prior work. There is
now a lot more literature around. Partly due to the
history of isolated studies, we do not have a good
enough culture of reading, referencing, and
assimilating existing material. For example, we have
been criticized for lots of studies about “inspections”
that doesn’t seem to recognize or integrate with the
past work. This is partly because the “inspection”
community of researchers hasn’t made it clear that
there are many reading techniques, like many testing
techniques, that need to be developed, evolved,
evaluated, etc. As a community we have not always
distinguished the method (inspection) from the
technique (reading) so why should anyone else – we
need to be more scholarly.

Victor Robert Basili The Past, Present, and Future of
 Experimental Software Engineering

 11

5.5. CONTEXT VARIABLES
This is the biggest problem. There are too many

influencing variables and we do not even know what
they are or how to measure for them or the extent of
their influence. They range from subject experience,
e.g., professional vs. student to multi-dimensional
categories such as environment, domain, class of SE
technologies applied (how many variables are hidden
in these?). If we are to build knowledge – we need to
limit some of these categories, like focusing on
specific domains, classes of technologies, or
environments, expanding out slowly, unifying across
the differences.

5.6. REPLICATIONS AND META-ANALYSIS
Building theories requires replication, varying the

threats, varying the artifacts, and varying the
population. These studies require coordination,
collaboration, and independence. It takes a team to run
an experiment; it is hard to do it alone. It involves
multiple groups, multiple disciplines. Once a basis has
been formed, it requires a certain level of
independence in the studies.

5.7. CONVINCING A SOFTWARE DOMAIN COMMUNITY
As stated earlier, working with a specific domain is

our best bet at studying the effectiveness of techniques
and building a body of knowledge. Look at the
focused work of Barry Boehm, government agencies
and contractors, Nancy Leveson, aeronautical
engineering, and Elaine Weyuker, telephony software.
They made great progress because of their focus. So,
do we work with software engineers or with engineers
in a domain?

6. CONCLUDING REMARKS
Experimentation in Software Engineering is here to

stay. Software engineering techniques need to be studied
experimentally if software engineering is to be anything
other than a theoretical discipline. Many technology
developers are already doing feasibility studies, although
they may not be called that. They are trying out their
methods to see if they work. They are not
experimentalists and may not want to be
experimentalists. They may not want to do what it takes
to perform such studies, and leaving the experimentalists
to test the bounds and limits of their techniques. But no
experimentalist wants to run an experiment on a
technique that has not been shown feasible. We need find
a balance between what is expected of the theoretician
and the role of the experimentation.

 So, what is the role of the experimental
software engineering community? We need to develop
the experimental research engine, perform studies,
work with theoreticians, developers, and domain
experts, e.g., the HPCS project.

 Is there a future for experimentation in
software engineering? We have matured a lot in terms
of the questions we ask, the types of studies we
perform, and the development of a community.
Software Engineering is “big science”; and
experimentation is a necessary ingredient of any big
science.

ACKNOWLEDGEMENTS
The work alluded to and referenced here was

developed by many people collaborating as teams at
the University of Maryland and its partner
organizations. Members of the team are too numerous
to mention and have varied over time.

REFERENCES
[1] V. Basili, A. Turner, Iterative Enhancement: A

Practical Technique for Software Development,
IEEE Transactions on Software Engineering, vol.
1(4), December 1975.

[2] V. Basili, R. Reiter, Jr., A Controlled Experiment
Quantitatively Comparing Software Development
Approaches IEEE Transactions on Software
Engineering, vol. 7(3): 299-320 (IEEE Computer
Society Outstanding Paper Award), May 1981.

[3] V. Basili and M. Zelkowitz, Analyzing Medium
Scale Software Development, in Proceedings of
the Third International Conference on Software
Engineering, May 1978.

[4] V. Basili, R. Selby, D. Hutchens, Experimentation
in Software Engineering, IEEE Transactions on
Software Engineering vol. 12(7): 733-743, July
1986.

[5] B. Boehm and V. Basili, Software Defect
Reduction Top 10 List, IEEE Computer, vol.
34(1): 135-137, January 2001.

[6] V. Basili and B. Boehm, COTS-Based Systems
Top 10 List, IEEE Computer, vol. 34(5): 91-93,
May 2001.

[7] W. Edwards Deming, Out of the Crisis
(Cambridge, Massachusetts: MIT Press, Center
for Advanced Engineering Study, 1986).

[8] L. Hochstein, T. Nakamura, V.R. Basili, S.
Asgari, M.V. Zelkowitz, J.K. Hollingsworth, F.
Shull, J. Carver, M. Voelp, N. Zazworka, P.
Johnson, Experiments to Understand HPC Time
to Development, Cyberinfrastructure Technology
Watch Quarterly, vol.2(4A): 24-32, November
2006.

Victor Robert Basili The Past, Present, and Future of
 Experimental Software Engineering

 12

[9] J. Maldonado, J. Carver, F. Shull, S. Fabbri,
E.Dória, L.Martimiano, M. Mendonça, V. Basili,
Perspective-Based Reading: A Replicated
Experiment Focused on Individual Reviewer
Effectiveness, Empirical Software Engineering:
An International Journal, vol. 11(1): March 2006.

