
Automated Formal Specification
Generation and Refinement from

Requirement Documents
Gustavo Cabral1,2 and Augusto Sampaio2

1 Mobile Devices R&D Motorola Industrial Ltda

Rod SP 340 - Km 128,7 A - 13820 000

Jaguariuna/SP - Brazil

2 Centro de Informática - CIn

Universidade Federal de Pernambuco - UFPE

Caixa Postal 7851 - 50732-970 - Recife/PE - Brazil

{gflc,acas}@cin.ufpe.br

Abstract
The automatic generation of formal specifications

from requirements suppresses the complexity of formal
models manual creation and reveals the immediate ben-
efits of its usage, such as the possibility to carry out re-
finements, and property verification, which contributes to
project cost reduction and quality improvement. This pa-
per proposes a Controlled Natural Language (CNL), a
subset of English, used to write use case specifications
according to a template. From these use cases a com-
plete strategy and tools enable the generation of process
algebraic formal models in the CSP notation. We define
templates that represent requirements at different levels
of abstraction, capturing different views of the system be-
havior. Moreover, a refinement notion is defined to con-
nect the generated CSP models through an event mapping
relation between abstract and concrete models. This no-
tion is further applied to detail use case specifications and
to automate its execution.

Keywords: Use Case Specification, Controlled Nat-

ural Language, Formal Specification Generation, Formal

Models Refinement, CSP.

1. INTRODUCTION
The use of formal models, which are an abstract way

to specify computer systems, is an industrial reality. Ini-

tially, the benefits regarding the use of an abstract nota-

tion, before starting the system implementation, are re-

lated to a better understanding of the problem. What has

become increasingly evident is that the use of an abstract

formal representation combined with techniques of model

refinement can even promote the decrement of implemen-

tation time. One of the possible applications is the auto-

matic generation of source code from formal models [24].

The testing phase has also been positively impacted by the

use of models concerning test case generation [7].

As the starting point for software development, re-

quirements need to be specially considered to produce

high quality documents to serve as input to the (formal)

model construction; therefore no uncertainties should re-

main concerning its contents. There is a variety of re-

quirement specification methodologies, such as the one

proposed in [21] that proposes a requirements elicitation

process performed in six steps and an agenda for formal

specification development from requirements. Neverthe-

less, even if requirements are appropriately captured, it is

still a hard task to build models and implementations that

reflect them. Usually, the transition from requirements

to an analysis or design model is a manual process, and

therefore error-prone.

Ideally, models should be formal, as formal meth-

ods provide the mathematical basis for achieving software

correctness. Nevertheless, formal methods wide adoption

in practice is still a big challenge. One of the difficulties

faced by the practical software engineer is precisely the

cost and complexity [25] involved when developing the

system formal specification. A formal approach must be

Gustavo Cabral and Augusto Sampaio Automated Formal Specification Generation and
Refinement from Requirement Documents

cost-effective so that real projects can take advantage of

formal specification benefits, such as mechanically ana-

lyzing a system to check for deadlock and livelock free-

dom, among other useful properties.

Rather than building specifications in an ad hoc way,

some approaches in the literature have explored the

derivation of formal specifications from requirements.

ECOLE [36] is a look-ahead editor for a controlled lan-

guage called PENG (Processable English), which defines

a mapping between English and First-Order Logic in or-

der to verify requirements consistency. A similar initia-

tive is the ACE (Attempto Controlled English) project

[13] also involved with natural language processing for

specification validation through logic analysis. The work

reported in [22] establishes a mapping between English

specifications and finite state machine models. In indus-

try, companies, such as Boeing [44], use a controlled nat-

ural language to write manuals and system specifications,

improving document quality. There are also approaches

that use natural language to specify system requirements

and automatically generate formal specifications in an

object-oriented notation [26].

Concerning the format to write requirements, use

cases describe how entities (actors) cooperate by perform-

ing actions in order to achieve a particular goal. Some

consensus is admitted regarding the use case structure and

writing method [6]; a use case is specified as a sequence

of steps forming system usage scenarios, and natural lan-

guage is used to describe the actions taken in a step. This

format makes use cases suitable to a wide audience.

Therefore, we build on the results achieved in [4] and

propose a strategy that automatically translates use cases,

written in a Controlled Natural Language (CNL), into

specifications in the CSP process algebra [34]. For ob-

vious reasons, it is not possible to allow a full natural lan-

guage as a source. We define a subset of English with a

fixed grammar in order to allow an automatic and mech-

anized translation into CSP. Because the context of this

work is a research cooperation between CIn-UFPE and

Motorola called CInBTCRD, the proposed CNL reflects

this domain. The generated formal model is used in this

project as an internal model to automatically generate test

cases, both in Java (for automated ones) and in CNL (for

manually executed).

Unlike the cited approaches, which focus on transla-

tion at a single level, we consider use case views possibly

reflecting different levels of abstraction of the application

specification. This is illustrated in this paper through a

user and a component view. We also explore a refinement

relation between these views; the use of CSP is partic-

ularly relevant in this context: its semantic models and

refinement notions allow precisely capturing formal rela-

tions between user and component views. The approach is

entirely supported by tools. A plug-in to Microsoft Word

2003 [40] has been implemented to allow checking adher-

ence of the use case specifications to the CNL grammar.

Another tool has been developed to automate the transla-

tion of use cases written in CNL into CSP; FDR [33], a

CSP refinement checker, is used to check refinement be-

tween user and component views.

The major contribution of this article, on top of the

results achieved in [4], is a strategy for automated re-

finement of views representing models at different levels

of abstraction. A refinement between two views (for in-

stance, user and component views) requires a mapping to

express a relationship between the events of these views,

since, in general, each view has its own alphabet. Here

we show that such a mapping can be automatically con-

structed from the use case templates, as well as a table re-

lating CNL sentences provided by the use case designer.

This frees the designer from operating directly with the

CSP notation. As far as we are aware, this is an original

approach to refinement. Furthermore, we explore several

applications of our refinement strategy such as, for ex-

ample, the consistence between implementation and use

cases through the automatic execution of the use cases

written in CNL. We also propose the definition of sub-

views through event decomposition. Each event from a

view is further detailed into concrete events enabling its

execution; it is necessary to implement the interface be-

tween the user and the system in order to automate the

delivery of events to the target application. Section 6, de-

voted to this new approach to refinement and its applica-

tions, is entirely new. We have also further improved the

presentation in [4] in several respects: the introduction to

CSP, the use case templates, the formal approach to re-

finement, the examples and related work are all addressed

in more detail.

Section 2 contains an overview of the entire solution,

which includes use case templates definitions, the CNL,

CSP model generation, a refinement strategy and possi-

ble applications. Section 3 contains the use case tem-

plate definitions and explanations about its usage, which

includes the use of the CNL; this section also contains a

brief presentation of the tools implemented to support this

strategy. Section 4 defines the CSP use model generation

approach based on the presented use case templates and

the CNL. Section 5 explores refinement between the gen-

erated CSP models, relating the user and the component

views, and how refinement is mechanically checked using

FDR. As explained above, Section 6 proposes a new ap-

proach to refinement, based on relating CNL sentences, as

well as some applications. Finally, Section 7 summarizes

our contributions, contrast the proposed solution with re-

lated work, and suggests topics for further research.

88

Gustavo Cabral and Augusto Sampaio Automated Formal Specification Generation and
Refinement from Requirement Documents

Figure 1. Proposed strategy overall process

2. STRATEGY OVERVIEW
In our approach, the interaction between the user and

the system, or between the system components, is docu-

mented as use case specifications in a specified template.

This template is structured to hold information concern-

ing traceability with requirements, a brief description, and

the way actors interact with the system. There are two use

case templates: the user view and the component view.

As shown in Figure 1, after System
Requirements are described in an abstract way,

defining what the system is intended to perform, user
view use cases are created based on requirements

analysis. This first set of use cases designs the ways

actors interact with the system. Later, component
view use cases are created based on the user view use
cases and the adopted System Architectural
Information, as presented in Figure 1.

The proposed approach focuses on use case specifica-

tions because these are used as an input to other devel-

opment phases such as design, coding, and testing. They

constitute an essential part of the software development

process. Therefore, we need to ensure that the visual

depiction of the requirements is translated into clear and

well-defined use case specifications [8].

As mentioned before, the language used to write these

use cases is a Controlled Natural Language (CNL), a sub-

set of English relevant for the specific domain. Using

CNL it is possible to write imperative and declarative sen-

tences. An imperative sentence describes actor actions

and a declarative sentence depicts system characteristics,

such as a GUI description or the current system state.

CNL is necessary to restrict the vocabulary used to write

use cases and its grammatical rules are defined by knowl-

edge bases that map verbs to CSP channels and verb com-

plements to values of CSP datatypes. Besides aiming at

automatic generation of formal models, the use of CNL

also prevents the introduction of ambiguous sentences in

the use case specification, contributing to the quality of

documentation.

Each use case sentence is translated into a CSP event,

and a sequence of sentences produces a sequence of CSP

events. These events are combined with the CSP prefix

operator giving rise to a CSP process. Each use case de-

fines part of the system formal specification. The pres-

ence of alternative or exception execution flows in use

cases is captured by the CSP external choice operator,

thus allowing process combination. Hence, the user view
use cases are translated into a user view use model and

the component view use cases are translated into a com-
ponent view use model.

Based on the generated models, a relation between

user and component use cases is established by a mapping

from the more abstract to the more concrete model (See

Figure 1). This event mapping relation is used to prove

that the component view model is a refinement of the user

view model. This strategy not only enables the relation

between these two views, but also allows the definition of

multiple levels of abstraction within a view. The type of

refinement that is explored here is called “event decom-
position”. It enables the use case designer to detail events

rewriting them as more concrete ones in order to ease the

understanding of its behavior.

This decomposition can be carried out as many times

as necessary; the goal is to translate every step into atomic

steps enabling its implementation. Consequently, this al-

lows the automatic execution of the use cases. The auto-

matic execution aims to verify the adherence of the use

case with the implemented system, validating the consis-

tence between the operational use case behavior and the

implementation. This automation strategy is application

independent; any system can be validated once the pro-

posed event dispatching interface is implemented. For

Java applications this interface can be implemented us-

ing the java.awt.Robot class or any available extension,

such as that presented in [41]. The reflection mechnism,

present in some programming languages, is also a possi-

ble implementation alternative.

3. WRITING CNL USE CASES
Use case specifications [32] capture system behavior,

possibly at different levels of abstraction. Therefore, de-

pending on the developer’s need, use cases are created

89

Gustavo Cabral and Augusto Sampaio Automated Formal Specification Generation and
Refinement from Requirement Documents

for different purposes. In this section we present use case

specification templates to document systems from the per-

spective of the user and of the system components. Both

templates define execution flows that determine the inter-

action between the user and the system. The Controlled

Natural Language (CNL), which can be seen as a process-

able version of English, is used to write use case steps

enabling validations and transformations.

3.1. USER VIEW USE CASE
User view use cases specify system behavior when

one single user executes it. It specifies user operations

and expected system responses. Table 1 presents a use

case example. The following subsections explain what

each use case field means and how it should be filled. The

example itself is explained later.

3.1.1. Feature: Use cases are initially grouped to

form a feature. Each feature contains an identification

number. This grouping is convenient for organization pur-

poses; it is not obligatory for the application of the pro-

posed use case template. The use case itself includes a

related requirement list, a brief description,

and execution flows.

3.1.2. Related requirement(s): The related require-

ment list is used for traceability purposes, thus it is pos-

sible to check the use case origin. This information is

also used to group use cases by requirements. When re-

quirements change, it is possible to know which use cases

might be impacted and, if it is the case, update them. Test

cases related to these use cases can also be updated or

regenerated (assuming an automatic approach).

3.1.3. Description: The description field gives a gen-

eral idea about the use case main purpose. Since each

use case is related to some requirement, any clarification

about this association is also described in this field.

3.1.4. Execution Flow: A use case specifies different

scenarios, depending on user inputs and actions. Hence,

each execution flow represents a possible path that the

user can perform. The following subsections describe

each part of an execution flow.

• Step

The tuple (user action, system state,
system response) is called a step. Every step

is identified through an identifier, an Id. The user

action describes an operation accomplished by the

user; depending on the system nature it may be as

simple as pressing some button or a more complex

operation, such as printing a report. The system state

is a condition on the actual system configuration just

before the user action is executed. Therefore, it can

be a condition on the current application configura-

tion (setup) or memory status. The system response

is a description of the operation result after the user

action occurs based on the current system state.

• Flow Types

Execution flows are categorized as main, alternative

or exception flows. The main execution flows repre-

sent the use cases happy path, which is a sequence of

steps where everything works as expected. An alter-

native execution flow represents a choice situation;

during the execution of a flow, such as the main flow,

it may be possible to execute other actions, compris-

ing choices. If an action from an alternative flow is

executed, the system continues its execution behav-

ing according to the new path specification. Alter-

native flows can also begin from a step of another

alternative flow; this enables reuse of specification.

The exception flows specify error scenarios caused

by invalid input data or critical system states. Alter-

native and exception flows are strictly related to the

user choices and to the system state conditions. The

latter may cause the system to respond differently

given the same user action.

• Reference between Execution Flows

There are situations when a user can choose between

different paths. When this happens it is necessary to

define one flow for each path. Every execution flow

has one or more starting points, or initial states, and

one final state. The starting point is represented by

the From steps field and the final state by the To
step field. The From steps field can assume

more than one value, meaning that the flow is trig-
gered from different source steps. When one of the

From steps items occurs, the first step from the

specified execution flow is executed. The To step
field references only one step; after the last step from

an execution flow is performed the control passes to

the step defined in the To step field.

In the main flow, whenever the From steps field

is defined as START it means that this use case does

not depend on any other, so it can be the starting

point of the system usage. Alternatively, the main

flow From steps field may refer to other use case

steps, meaning that it can be executed after a se-

quence of events has occurred in the corresponding

use case. Yet, when the To step field from any ex-

ecution flow is set to END, this flow shall terminate

successfully after its last step is executed. Subse-

quently, the user can execute another use case that

has the From steps field set to START.

90

Gustavo Cabral and Augusto Sampaio Automated Formal Specification Generation and
Refinement from Requirement Documents

UC 02 - Incoming message moved to the Important Messages folder

Related requirement(s): REQ 1302, REQ 1326
Description: User accepts an incoming message and moves it to the Important Messages folder.

Main Flow From Steps: START To Step: END

Step Id User Action System State System Response
1M Read incoming message. Message content is displayed.
2M Open the menu. “Important Messages” fea-

ture is on.
“Move to Important Messages” op-
tion is displayed.

3M Select “Move to Important Messages” op-
tion.

Message storage is not full. “Message moved to Important
Messages folder” is displayed.

4M Wait for at most 2 seconds. The next message is highlighted.

Exception Flow From Steps: 2M To Step: END

Step Id User Action System State System Response
1E Select “Move to Important Messages” op-

tion.
Message storage is full. “Memory required” dialog is dis-

played.
2E Confirm memory information dialog. Message content is displayed.

Table 1. Example of a user view use case

The From steps and the To step fields are es-

sential to define the application navigation, which

can be visualized as a Label Transition System [5].

These two fields also enable the reuse of existing

flows when new use cases are defined; a new sce-

nario may start from a preexistent step from some

flow. Finally, loops can appear in the specification if

direct or indirect circular references between flows

is defined; this scenario can result in a livelock situ-

ation in the case of infinite loops.

Some considerations: The user view use case in Ta-

ble 1 is an example of a mobile phone functionality. Nev-

ertheless, this template is generic enough to permit the

specification of any application, not only mobile phone

ones. The user view use case holds the main characteris-

tics of other use case definitions, such as UML use cases

[35]. However, our template seems to offer more flexibil-

ity and standard. The existence of execution flows start-

ing and ending according to other execution flows makes

it possible to associate use cases in a more general way

than through regular UML associations such as extend,

generalization, and include. References enable the reuse

of parts of other use cases execution flows and the pos-

sibility of defining loops, so use cases can collaborate to

express more complex functionalities.

3.1.5. Use Case Example: The example in Table 1

specifies a functionality presented in most mobile phones.

This use case is written using the CNL, which is detailed

in Section 3.3. It specifies that messages received by a

mobile phone can be moved from the inbox folder to a

special folder, called Important Messages folder.

This user view use case, in particular, includes a list of

related requirements, a brief description, and two execu-
tion flows: the main and the exception flow. The From
steps field, in the main flow, is defined as START so

this flow does not depend on any other flow, and it is one

of the possible starting points to navigate through this sys-

tem. The To step field is set to END so once the four

steps from the main flow are executed the flow terminates

successfully and the user can execute any use case with

the From steps field set to START.

As already explained, the system state column is

used to specify conditional situations. Note that this ex-

ample captures only one exception flow. The normal

execution of the main flow would pass through all its

steps until step 4M, after which it successfully termi-

nates (END). The exception execution, which describes

the situation when the message storage is full
(system state), starts from step 1E, just after the step

2M is performed. In this case, given the same user

action, Select Move to Important Messages
option, depending on the system state a different sys-

tem response is presented. It was not defined an al-

ternative flow for a possible Important Messages
feature is off state; if included, such a flow would

start from step 1M.

3.2. COMPONENT VIEW USE CASE
A component view use case specifies the system be-

havior based on the user interaction with system com-

ponents. In this view, the system is decomposed

into components that concurrently process user requests

and communicate among themselves. Table 2 shows

a component view use case example where the sys-

tem is formed of the units Message App, Message
Viewer, Menu Controller, Message Storage

91

Gustavo Cabral and Augusto Sampaio Automated Formal Specification Generation and
Refinement from Requirement Documents

App, List App, and Display App; each one repre-

sents different system concerns. For instance, the compo-

nents Message Storage App and Display App
are responsible for saving messages at the message stor-

age and displaying notices to the user, respectively. These

components design the architectural level of abstraction,

refining the user view use case specified in Table 1. In

other words, for each user view use case a related compo-

nent view use case is defined; user view steps are decom-

posed into message exchange between components.

Normally, use cases describe system functionalities

without revealing the internal structure of the system [35].

However, the proposed component view use cases break

this convention and is actually used to detail user view use

cases, which follows the regular use case idea, creating an

interface between the actor and the system. The example

in Table 2 is also written in the CNL; it is a refinement of

the user view use case in Table 1. A formal strategy for

proving this refinement is detailed in Section 5.

In the component view it is necessary to define the

component that is invoking an action and the one that is

providing the service. It is a message exchange process

composed by a sender, a receiver and a message. The

user is actually viewed here as a component, and can ei-

ther send or receive messages to or from other compo-

nents. A component can also send a message to itself.

These particularities enable the definition of concurrent

scenarios, which is a non-functional requirement. Thus,

components can share resources and exchange messages,

which is not possible in regular use case models [35].

The execution flow idea (main, alternative, and excep-

tion) is the same as in the user view. The system state

column plays the same role as previously described in the

user view (see Section 3.1.4).

In Table 2, there is one main and one exception flow.

The execution of the main flow can be deviated to an

exception path after step 7M, when the Message App
sends a message to the Menu Controller component.

Here, the next message to be exchanged depends on the

current system state. Just like in the user view exam-

ple, the Message Storage state (full or not full) de-

termines the next message to be exchanged between the

components. Note that the exception flow step 1E is ac-

tivated after the step 7M, when the condition fails. The

To step field, in the exception flow, states that after the

execution flow finishes the execution of the use case ter-

minates (END); it could alternatively transfer control back

to the main flow.

3.3. CONTROLLED NATURAL LANGUAGE
As already mentioned, use case fields (user action,

system state, system response, and message) are written

in a Controlled Natural Language (CNL) with a grammar

defined by knowledge bases. Using the CNL does not

only make use case text clear and uniform but also allows

its processing in order to generate CSP constructions.

The CNL grammar is basically a subset of English.

Its sentence constructions contain domain specific verbs,

terms, and modifiers. The phrases construction is cen-

tered on the verb. Domain terms and modifiers are com-

bined to take thematic roles around the verb [10]. This

strategy is detailed in [27] where it has been used to trans-

late test case sentences into CSP constructions. The fol-

lowing subsections describe the knowledge bases used to

store these vocables involved in the definition of the CNL.

3.3.1. Lexicon: The Lexicon stores vocables that ap-

pear in CNL sentences. Each vocable is a verb, a term, or

a modifier. A verb is used to define an action or the system

state. A term is an element, or entity, from the application

domain. A modifier can be an adjective or an adverb that

modifies a term. In the definition of each vocable, prop-

erties are associated with each one of the verbs, terms

and modifiers, allowing subject-verb and noun-modifier

agreement checking. The meaning of modifiers, for in-

stance, is to qualify terms; they have no particular role

besides distinguishing terms.

Figure 2 gives examples of application domain term

and modifier definitions. This example defines two terms:

message storage is full, referring to a dialog

name, and message storage, referring to an applica-

tion item that can be manipulated somehow. The modi-

fiers are only and correctly. Their definitions con-

tain the position and precedence fields that deter-

mine how they are positioned among terms or other mod-

ifiers. The number inflection defines whether it is

a singular or plural modifier. The article field

determines if the modifier accepts an article or not.

3.3.2. Ontology: Each application domain has spe-

cific elements and entities represented as terms, which

are grouped in classes according to their characteris-

tics. These classes are related by inheritance. Figure 3

presents a small fragment of the Ontology that defines the

Object, the Value, and the State Value classes.

The State Value class inherits from the Value class,

and the Value class inherits from the Object class.

Note that, in Figure 2, the term message storage
is full is a dialog due to the fact that it belongs to

the dialog class of the Ontology.

3.3.3. Case Frame: The case frame defines the rela-

tion between verbs, terms and modifiers. Each case frame

determines how a verb can be used to instantiate a sen-

tence. We use the case grammar formalism [10] that con-

tains information about the input domain verbs and its

thematic roles, which can be an agent or a theme of the

92

Gustavo Cabral and Augusto Sampaio Automated Formal Specification Generation and
Refinement from Requirement Documents

Main Flow From Steps: START To Step: END

Step Id Sender Message System State Receiver
1M User Read incoming message. Message App
2M Message App Open incoming message. Message Viewer
3M User Open the Menu. Message App
4M Message App Display Menu. “Important Messages”

feature is on.
Menu Controller

5M Menu Controller “Move to Important Messages” option is
displayed.

User

6M User Select the “Move to Important Messages”
option.

Message App

7M Message App “Move to Important Messages” option. Menu Controller
8M Menu Controller Save message at “Important Messages”

folder.
Message storage is not
full.

Message Storage
App

9M Message Storage
App

“Message moved to Important Messages
folder” is displayed.

User

10M User Wait for at most 2 seconds. User
11M Message App The next inbox message is highlighted. List App
12M List App Available message is selected. User

Exception Flow From Steps: 7M To Step: END

Step Id Sender Message System Response Receiver
1E Menu Controller Save message at “Important Message”

folder.
Message storage is full. Message Storage

App
2E Message Storage

App
“Memory required” message is dis-
played.

Display App

3E User Confirm memory information dialog. Message App
4E Message App Message content is displayed. User

Table 2. Example of a component view use case

sentence. When a sentence is constructed, each term,

along with modifiers, takes a thematic role around the

verb. Each case frame can also be associated to more than

one verb, all of them assuming the same meaning. Fig-

ure 4 is the definition of the SelectItem case frame,

which is defined by two verbs select and choose.

3.4. CASE FRAME RESTRICTION
The case frame restriction defines the relation between

verb arguments and Ontology classes. Each verb argu-

ment belongs to an Ontology class in order to restrict the

way phrases are written. This minimizes the possibility

of writing semantically incorrect sentences.

Figure 5 contains the case frame definition SetItem
for the verbs set and check, and its respective case

frame restriction. Observe that this case frame contains

the following roles: agent, theme, and to-value.

Based on these roles, there are four defined restrictions:

the first three restrict the theme and the to-value ar-

guments, and the last one restricts only the theme argu-

ment; the to-value argument is not mandatory. Each

restriction has a name; this name is used to define a CSP

datatype. Finally, it is necessary to associate every role

to an Ontology class. This association restricts verb argu-

ments, for example: the DTSET FIELDVALUE FIELD
restriction defines that the theme is a term from the

field class and the to-value argument belongs to the

field value class.

3.5. SOME CONSIDERATIONS
The definition of user view and component view use

cases involves previous knowledge of the application re-

quirements and architectural definitions, such as design

patterns. Only after the designer is aware of these defini-

tions and has decided which use cases are to be created,

the use case writing should start.

During the creation of the two views, a relation be-

tween requirements and use cases is defined. This rela-

tion is detailed enough to point which use cases should

be verified whenever requirements change. An alterna-

tive approach would be mapping requirements to steps.

This would enable verifying what steps are impacted if

requirements happen to change. However, this last ap-

proach revealed itself to be laborious and resulted in fre-

quent references updates.

Analyzing the component view use case, it is easy to

verify that it is actually a textual way to specify UML se-

quence diagrams [35]. The columns sender and receiver

define actors involved in the communication and the mes-

sage is the service request itself. The message order de-

termines the sequence diagram arrangement. Besides one

component sending a request to another component, the

93

Gustavo Cabral and Augusto Sampaio Automated Formal Specification Generation and
Refinement from Requirement Documents

<noun>
<term>message storage</term>
<plural/>
<model>MESSAGE_STORAGE</model>
<class>item</class>

</noun>
<noun>
<term>message storage is full</term>
<plural/>
<model>MESSAGE_STORAGE_FULL</model>
<class>dialog</class>

</noun>

<modifier>
<term>only</term>
<position>before</position>
<precedence>0</precedence>
<numberinflection>singular</numberinflection>
<article>no</article>
<model>ONLY</model>

</modifier>
<modifier>
<term>correctly</term>
<position>both</position>
<precedence>1</precedence>
<numberinflection>plural</numberinflection>
<article>no</article>
<model>CORRECTLY</model>

</modifier>

Figure 2. Term and modifier definitions in the Lexicon

receiver component can respond this request through an-

other message dispatch. This time the receiver acts as the

sender, and vice-versa. UML sequence diagrams are also

used by the Motorola development team; the automatic

generation of these diagrams from a textual description

represents an important benefit [9].

The adaptation of a diagrammatic language, such as

UML 2.0 [38], to support features presented in the user

and component views is a subject for future research. Pre-

liminary investigation suggests that the user view use case

can be modeled as a combination of the use case and the

activity diagram of UML. Moreover, since the component

view use case can be used to generate sequence diagrams

[9], it is possible that they can actually be specified as an-

notated sequence diagrams. However, in spite of UML

being a visual language, its practical use depends on tools

and the understanding of the UML standard. Yet, the

proposed approach relies on textual descriptions, possi-

bly supported by tools as described in the next section.

3.6. TOOL SUPPORT
Use case sentences must be adherent to the CNL

grammar, so designers have to know the CNL gram-

mar. There is a tool that automatically generates the CNL

grammar documentation from the presented CNL knowl-

edge bases. The CNL grammar is generated as HTML

pages so it is possible to learn the CNL syntax navigating

through the grammar definitions. In addition, if new do-

<class>
<description>Generic Class</description>
<name>Object</name>
<code>object</code>
<subclasses>
<class>
<description>Represents a generic
value</description>
<name>Value</name>
<code>value</code>
<subclasses>
<class>
<description>Represents a state value,
e.g.,"enabled","ON","high".</description>
<name>State Value</name>
<code>state_value</code>
<subclasses/>

</class>
...

Figure 3. Ontology fragment

main specific terms or expressions need to be added to the

CNL, it is possible to regenerate the HTML documenta-

tion. Even with this documentation, learning the CNL can

be a complex task. Thus, it is recommended that the de-

signer do not waste much time trying to figure out a way

to write sentences adherent to the CNL. He should focus

attention on the use case behavior.

Therefore, we have developed a tool to automatically

validate the use case sentences and report all found in-

consistencies. This tool is called Use Case Validator and

it is a Microsoft Word 2003 [40] plug-in. It ensures use

cases are written according to use case templates and the

CNL syntax. MS Word 2003 is capable of structuring the

use case contents through XML schema definitions. The

plug-in processes the use case sentences to find inconsis-

tencies (phrases not according to the CNL grammar). Two

modules compose the plug-in. One is implemented using

the .NET Platform [23] and the other is implemented in

<frame>
<description>Select an item from
location. Example: Select the send
message option from menu</description>
<name>SelectItem</name>
<verblist>
<verb>select</verb>
<verb>choose</verb>

</verblist>
<roles>
<role mandatory="True">agent</role>
<role mandatory="True">theme</role>
<role mandatory="false">from-loc</role>

</roles>
</frame>

Figure 4. Case frame example

94

Gustavo Cabral and Augusto Sampaio Automated Formal Specification Generation and
Refinement from Requirement Documents

<frame>
<description>Set the value of an item. Example:
Set the Fix Dialing to on</description>
<name>SetItem</name>
<verblist>
<verb>set</verb>
<verb>check</verb>

</verblist>
<roles>
<role mandatory="True">agent</role>
<role mandatory="True">theme</role>
<role mandatory="false">to-value</role>

</roles>
</frame>

<frame>
<name>SetItem</name>
<restrictions>
<restriction name="DTSET_FIELDVALUE_FIELD">
<class role="theme">field</class>
<class role="to-value">field_value</class>

</restriction>
<restriction name="DTSET_SENDABLEITEM">
<class role="theme">sendable_item</class>
<class role="to-value">state_value</class>

</restriction>
<restriction name="DTSET_STATEVALUE_ITEM">
<class role="theme">item</class>
<class role="to-value">state_value</class>

</restriction>
<restriction name="DTSET_ITEM">
<class role="theme">item</class>

</restriction>
</restrictions>

</frame>

Figure 5. Case frame and respective case frame restriction example

Java [19]. The .NET module is a GUI program that ac-

complishes the CNL validation within Word. The Java

module is the Natural Language Processing (NLP) unit

responsible for verifying whether sentences are written

according to the CNL rules. We have also implemented

a Java version of the Use Case Validator. It reads a Mi-

crosoft Word file and reports all inconsistencies, such as

sentences not following the CNL grammar.

4. CSP SPECIFICATION GENERATION
Once use cases are created and validated using the tool

mentioned in the previous section, it is possible to auto-

matically generate CSP formal specifications.

4.1. CSP NOTATION
The CSP process algebra [34] is the target formalism

of our strategy because it can describe complex aspects

of systems, such as concurrency, in an abstract notation

but still very close to implementation. It allows the de-

scription of systems in terms of processes that operate in-

dependently (parallelly), and interact (communicate) with

each other, and with the environment.

The relationship between processes is described using

a few process algebraic operators that allow the definition

of complex process compositions. The behavior of a CSP

process itself is described in terms of sequence of events,

which are atomic and instantaneous operations. Through

a message-passing mechanism, named channels are in-

troduced using the channel keyword. These channels

can transmit messages; channels can also transmit data

of a specified datatype. As an example, we present

the data door and two channels: open and close; the ex-

ecution of the open!door event outputs the value door
through the channel open. The close event can be simi-

larly used to close the door. There are also two primitive

processes: STOP and SKIP. STOP communicates noth-

ing and stands for a canonical deadlock; SKIP represents

successful termination.

CSP Operators: Some of the CSP operators are pre-

fix (a → P), deterministic or external choice (P � Q),

and nondeterministic or internal choice (P � Q). The

prefix operator combines an event and a process to pro-

duce a new process. The external choice operator allows

the future behavior of a process to be defined as a choice

between two component processes. The internal choice

operator similarly allows the future evolution of a pro-

cess to be defined as a choice between two component

processes, but does not give the environment any control

over which of the component processes is selected. For

example, (a → P) � (b → Q) can behave like either

(a → P) or (b → Q); it refuses to accept (engage on)

a or b, and it is only obliged to communicate (transmit)

an event if the environment offers both a and b. Nonde-

terminism is also introduced into a deterministic choice if

the initial events of both sides of the choice are identical.

In (a → a → STOP) � (a → b → STOP), it is not

possible to determine the system state after the occurrence

of the event a.

channel a, b, c
events_view_1 = { a, b, c}
View_1 = a -> (b -> View_1

[] c -> View_1)

channel a1, a2, a3, b1, b2, c1
events_view_2 = {a1, a2, a3, b1, b2, c1}
View_2 = a1 -> a2 -> a3 ->

(b1 -> b2 -> View_2
[] c1 -> View_2)

Figure 6. CSP process examples

In Figure 6, the View 1 and the View 2 processes

are defined in CSPm [12], which is the machine readable

version of CSP; the CSPm syntax enables processing by

95

Gustavo Cabral and Augusto Sampaio Automated Formal Specification Generation and
Refinement from Requirement Documents

tools, such as model checkers. CSPm is used to define

all the CSP specifications in this paper. The channels

(events) a, b, and c are used by and constitute the alpha-
bet of View 1, and the channels a1, a2, a3, b1, b2, and

c1 are the alphabet of View 2. Both processes View 1
and View 2 use the prefix and the external choice oper-

ators. For instance, after engaging on event a, View 1
offers b and c to the environment. After engaging on b
or c it recurses. This example is purely symbolic, but it is

useful to illustrate simple CSP processes and refinement

notions, which are discussed in the next section.

Other CSP operators are hiding (P\s, where s is the set

of events to be hidden), renaming (P[[c← d]]), interleav-

ing (P ||| Q), and the interface parallel or parallel com-

position (P[| s |]Q, where s is the set of events in which

P and Q synchronize). The hiding operator provides a

way to abstract processes by making some events unob-

servable. A trivial example of hiding is (a → P) \ {a};
assuming that the event a does not appear in P, it reduces

(simplifies) to P. The renaming operator replaces the oc-

currences of channels by other channels in a process. For

instance, P[[c ← d]] is a process that behaves like P ex-

cept that all occurrences of channel c in P are replaced by

channel d (so that c ‘becomes’ d).

The interleaving operator represents completely in-
dependent concurrent activity. On the other hand, the

parallel composition operator represents concurrent ac-

tivity that requires synchronization between the compo-

nent processes; events in the interface set can only occur

when all component processes are able to engage on that

event. The parallel composition operator is also defined

as P[p || q]Q, where p and q are sets of events accepted

by the processes P and Q, respectively. In other words, p
and q define the interfaces of P and Q. As an example, the

process (a→ P)[| {a} |](a→ Q) can engage on event a,

and becomes the process P[| {a} |]Q, which requires that

P and Q must both be able to perform event a before this

event can occur. In (a→ P)[| {a, b} |](b→ Q), we have

an example of deadlock since a and b cannot be offered

simultaneously.

CSP Refinement: The notion of refinement is a par-

ticularly useful concept that establishes a relation between

processes (components). It captures the fact that one com-

ponent satisfies at least the same conditions as another.

Then we may replace a more abstract component by a

more concrete one, without degrading the properties of

the system. In CSP, the refinement relations are defined

in three ways, depending on the adopted semantic model.
The traces refinement is based on the sequences of

events which a process can perform (the traces of the pro-

cess). A process P is a traces refinement of P (P �t Q), if

all the possible sequences of communications that P can

execute are also possible for Q; formally:

P �t Q ≡ traces [[Q]] ⊆ traces [[P]].

A failure is a pair (t,R), where t is a trace of the pro-

cess and R is a set of events the process refuses to per-

form at that point. Thus, the failures refinement P �f Q
requires that the set of all failures of Q are included in the

failures set of P, which means

P �f Q ≡ failures [[Q]] ⊆ failures [[P]].

A process is deadlocked if it can refuse to execute every

event; it is commonly introduced when parallel processes

do not succeed in synchronizing on the same event.

The failures-divergences refinement adds the concept

of divergences in the failures refinement. The divergences

of a process is the set of traces after which the process

may livelock. This concept enhances the analysis of pro-

cesses; it enables the designer to prevent the occurrence

of potential situations when visible events are never per-

formed. The failures-divergences refinement between P
and Q is defines as

P �fd Q ≡ (failures [[Q]] ⊆ failures [[P]]) ∧
(divergences [[Q]] ⊆ divergences [[P]]).

4.2. CSP EVENTS GENERATION
Based on the presented CNL knowledge bases, we de-

fine the CSP alphabet channel names and the datatypes

of the model. The verbs determine CSP channel names.

Each class from the Ontology defines a CSP datatype.

The terms and modifiers from the Lexicon are related to

classes from the Ontology and therefore define datatype

values. Using these mappings and the case frame defini-

tions, it is possible to translate each sentence from the use

cases into CSP events.

Read incoming message.

read.DTREA_SENDABLEITEM.(INCOMING_MESSAGE,{})

Message storage is not full.

isstate.DTISS_ITEM_STATEVALUE.
(MESSAGE_STORAGE,{}).
(FULL_STATE_VALUE,{NOT})

Figure 7. CNL sentences and their translation to CSP events

Figure 7 presents sentences from steps 1M and

3M in the use case from Table 1 and their transla-

tions to CSP events. The sentence Read incoming
message is formed of the verb read and its comple-

ment, incoming message. The verb read is directly

mapped to the event read and its object is mapped to the

96

Gustavo Cabral and Augusto Sampaio Automated Formal Specification Generation and
Refinement from Requirement Documents

System =
UC_02_1M ; System
[] ...

UC_02_1M =
-- Read incoming message.
(steps -> read.DTREA_SENDABLEITEM.(INCOMING_MESSAGE,{}) ->
-- Message content is displayed.
expectedResults -> display.DTDIS_FIELDVALUE.(MESSAGE_CONTENT_FIELD_VALUE,{}) -> UC_02_2M)

UC_02_2M =
-- Open the CSM.
(steps -> open.DTOPE_MENU.(CSM_MENU_LIST,{}) ->
-- "Important Message" feature is on.
conditions -> isstate.DTISL_LIST.(FEATURE,{IMPORTANT_MESSAGE_FOLDER}).(ON_VALUE) ->
-- "Move to Important Messages" option is displayed.
expectedResults -> isstate.DTISS_MENUITEM_STATEVALUE.

(MOVE_TO_IMPORTANT_MESSAGES_OPTION,{}).(DISPLAYED_VALUE,{}) -> UC_02_3M)
[] UC_02_1E

UC_02_3M =
-- Select the "Move to Important Messages" option.
(steps -> select.DTSEL_MENUITEM.(MOVE_TO_IMPORTANT_MESSAGES_OPTION,{}) ->
-- Message storage is not full.
conditions -> isstate.DTISS_ITEM_STATEVALUE.

(MESSAGE_STORAGE,{}).(FULL_STATE_VALUE,{NOT}) ->
-- "Message moved to Important Message folder" is displayed.
expectedResults -> isstate.DTISS_DIALOG_STATEVALUE.

(MESSAGE_MOVED_TO_IMPORTANT_MESSAGE_FOLDER,{}).(DISPLAYED_VALUE,{}) -> UC_02_4M)

UC_02_4M =
-- Wait for at most 2 seconds.
(steps -> wait.DTWAI_ITEM.(SECOND, {AT_MOST.2}) ->
-- The next message is highlighted.
expectedResults -> isstate.DTISS_SENDABLEITEM_STATEVALUE.

(MESSAGE,{NEXT}).(HIGHLIGHTED_VALUE,{}) -> SKIP)

Figure 8. Part of the generated CSP specification from the user view use case of Table 1

INCOMING MESSAGE datatype value, which is gener-

ated from the DTREA SENDABLEITEM case frame re-

striction (see Section 3.4) of the verb read. The sen-

tence Message storage is not full contains

the verb to be, conjugated as is here, used to describe

some Message storage characteristic. The verb to
be is mapped to the event isstate. The subject and the

predicate from this sentence determine the datatype val-

ues MESSAGE STORAGE, FULL STATE VALUE, and

NOT, which are used by the isstate event based on the

DTISS ITEM STATEVALUE case frame restriction.

However, mapping CNL sentences to CSP events is

just the first step to create the CSP model. The specifi-

cation generated depends on the use case template. The

following sections explain the generation strategy for the

user and the component view use cases.

4.3. USER VIEW MODEL
Each step of a use case execution flow is mapped

to a CSP process. This process name is defined by

the step Id combined with the use case Id, forming

a unique identifier among all use case steps. Its body

contains control events (steps, conditions, and

expectedResults) that delimit the events generated

from the user action, system state, and system response

fields of the use case. As already explained, each exe-

cution flow has From steps and To step fields that

determine when the flow starts and ends. They may refer

to the steps from other execution flows or to the START
and END keywords.

Figure 8 shows part of the generated CSP model for

the use case specified in Table 1. It contains the System
process, which is the main process, and four other pro-

cesses that refer to steps from the use case main flow.

The System process refer to the process UC 02 1M and

any other execution flow with the From steps contain-

ing the START keyword (See Section 3.1.4). The pro-

cess UC 02 2M is defined as a CSP external choice be-

tween the rest of the main execution flow, the process

UC 02 3M, and the exception flow, the UC 02 1E pro-

cess. The process UC 02 4M is finalized with the SKIP
process, once the To step field is set to END.

97

Gustavo Cabral and Augusto Sampaio Automated Formal Specification Generation and
Refinement from Requirement Documents

4.4. COMPONENT VIEW MODEL
The component view model is quite different from the

user view one. The component channels contain infor-

mation about the components involved in the message ex-

change and their names are suffixed by Comp, making the

user and component view CSP alphabets different. The

datatypes used in both views are the same, since both use

cases refer to elements from the same domain.

SubSystem1 = USER_P
[User_Channels||Message_App_Channels]
MESSAGE_APP_P

SubSystem1_events = union(User_Channels,
Message_App_Channels)

SubSystem2 = SubSystem1
[SubSystem1_events||Message_View_Channels]
MESSAGE_VIEWER_P

Figure 9. Part of the component processes composition

In Figure 9, the top level process that represents

the component view model is defined by the par-

allel execution of system components, including the

user. They are composed pairwise using the alphabet-

ized parallel operator. Each component accepts a set

of events for synchronization; User Channels and

Message App Channels are examples of alphabet

sets used in the composition.

Each component has a main process that is defined

by the external choice among the component possible be-

haviors in each use case. Each use case gives rise to a

subprocess for each component, defined by the messages

exchanged between itself and other components. Each

step is mapped into two CSP events, one for each compo-

nent that takes part in the communication. Each step de-

fines events for the message passed between the compo-

nents and the system state. After the message itself, there

is a CSP prefix to the next step that involves the compo-

nent. Figure 10 shows part of the USER P process for one

use case. Events readComp.USER.MESSAGE APP
and isstateComp.MENU CONTROLLER.USER are

examples of the communication between the user and

system components. Similarly to the user view, if there

are alternative or exception flows, the external choice

operator is used to capture the alternatives. In Fig-

ure 10, the USER UC 02 process contains an exter-

nal choice between the processes USER UC 02 9M and

USER UC 02 3E to denote the exception flow.

4.5. SOME CONSIDERATIONS
The user view main process, System (see Figure 8),

is defined as the CSP external choice among the steps of

use case flows that have the From steps field set to

START. In contrast, the component view main process is

defined as the parallel composition between system com-

ponents, including the user.

Our model generation strategy is similar to [2], which

generates Message Sequence Charts (MSC) from Use

Case Maps [3]. However, the component view template

promotes better reuse of specifications, since it is possi-

ble to reuse any sequence of steps. Like CSP, MSC offer

notation to capture the concurrent aspects of the specified

system. Nevertheless, CSP is a process algebra that en-

ables the definition of channels and datatypes, along with

flexible and elegant parallel operators. In addition, the

CSP notation is supported by a refinement theory, refine-

ment checkers, such as FDR [17], animators [28], and im-

plementations, such as JCSP [43, 42] and OCCAM [16].

In the generated model, the CSP external choice op-

erator is used to represent the user decision. The user

clearly has the choice between executing a certain se-

lected use case. However, the use of the CSP exter-

nal choice operator in the alternative or exception flows

seems to be a subjective issue. Because the execution of

an alternative or exception flow is enabled by a combina-

tion of factors (user action and system state),

the CSP internal choice operator can be considered to be

used instead. For our particular application domain, how-

ever, the presence of nondeterminism in the model is ir-

relevant since only the traces model (See Section 4.1) is

considered by Motorola during test case [31] and UML-

RT sequence diagram [9] generation.

4.6. TOOL SUPPORT
A tool has been implemented to mechanize the trans-

lation of the user and the component views use cases into

CSP models. The tool reads user and component views

use cases as Word 2003 document files, checks its content

(invoking the tool presented in Section 3.6), and generates

the user and the component models.

Here, the NLP module [27] is once again used to

retrieve CSP events from the CNL sentences. The use

model generation tool itself implements the strategy pre-

sented in this chapter; it structures the CSP events, which

are effectively generated by [27], into processes to define

the system formal model.

5. MODEL REFINEMENT
Modeling systems at different levels of abstraction has

the advantage of capturing several architectural views, as

illustrated here with the user and the component views.

Nevertheless, it is essential that the several architectural

views produced are consistent. In general, these views

are expressed using different alphabets (event names) so

a relation is needed in order to compare them. One or

more events from one model can be related to one or more

events of another model. Defining a relation allows re-

98

Gustavo Cabral and Augusto Sampaio Automated Formal Specification Generation and
Refinement from Requirement Documents

USER_P =
-- Scenario Case: Incoming message is moved to the Important Messages folder
USER_UC_02
[] ...

USER_UC_02 =
-- Message: Read incoming message.
readComp.USER.MESSAGE_APP.DTREA_SENDABLEITEM.(INCOMING_MESSAGE,{}) ->
-- Message: Open the CSM.
openComp.USER.MESSAGE_APP.DTOPE_MENU.(CSM_MENU_LIST,{}) ->
-- Message: "Move to Important Messages" option is displayed.
isstateComp.MENU_CONTROLLER.USER.DTISS_MENUITEM_STATEVALUE.

(MOVE_TO_IMPORTANT_MESSAGES_OPTION,{}).(DISPLAYED_VALUE,{}) ->
-- Message: Select the "Move to Important Messages" option.
selectComp.USER.MESSAGE_APP.DTSEL_MENUITEM.(MOVE_TO_IMPORTANT_MESSAGES_OPTION,{}) ->
(USER_UC_02_9M [] USER_UC_02_3E)

USER_UC_02_9M =
-- Message: "Message moved to Important Message folder" is displayed.
isstateComp.MESSAGE_STORAGE_APP.USER.DTISS_DIALOG_STATEVALUE.

(MESSAGE_MOVED_TO_IMPORTANT_MESSAGE_FOLDER,{}}).(DISPLAYED_VALUE,{}) ->
-- Message: Wait for at most 2 seconds.
waitComp.USER.USER.DTWAI_ITEM.(SECOND,{AT_MOST.2}) ->
-- Message: The next inbox message is highlighted.
isstateComp.USER.LIST_APP.DTISS_SENDABLEITEM_STATEVALUE.

(INBOX_MESSAGE,{NEXT}).(HIGHLIGHTED_VALUE,{})->
-- Message: Available message is selected.
isstateComp.LIST_APP.USER.DTISS_SENDABLEITEM_STATEVALUE.(MESSAGE,{}).(AVAILABLE_VALUE,{}) ->
USER_P

Figure 10. User process exchanging messages with other components

placing abstract events with more concrete ones, formally

keeping track of the relationship between the models.

In this paper we consider only two abstraction levels,

user and component views. A generalization of this strat-

egy for an arbitrary number of views is discussed in Sec-

tion 6.1. Moreover, use case designers may define new

use case templates and propose new ways to map events

from use cases written at different levels of abstraction.

In general, the main goal of our approach is to decom-

pose events using other events that represent concrete sys-

tem behavior, in an incremental way. This would enrich

the model with more details and eventually the events can

be mapped into operational constructions, such as pro-

gramming languages commands (typically method calls).

5.1. REFINEMENT MAPPING
We consider that the relation between user and com-

ponent models is a mapping from sequences of user

events to sequences of component events; to avoid nonde-

terministic behavior, a one to one relationship between se-

quences of events from the two models is necessary. This

mapping is used by a CSP process (See Figure 11) that re-

ceives a set of pairs of sequences and yields a process that

represents the mapping. In each pair, the first sequence

represents events from the user view, and the second se-

quence contains events from the component view.

Figure 11 exhibits the process that represents the map-

ping used in the refinement; the MAPPING process re-

ceives the mapping between the two views and through

the TRIGGER function defines an indexed external choice

among the processes generated by the makeProcess
auxiliary function. This last function receives one se-

quence that is initiated with the events from the abstract

model followed by events from the concrete model and

recursively uses the prefix operator to create a process ter-

minated with the SKIP process.

MAPPING(map) = TRIGGER(map); MAPPING(map)

TRIGGER(map) = [] p : map @
makeProcess(first(p)ˆsecond(p))

makeProcess(<>) = SKIP
makeProcess(<a>ˆas) = a -> makeProcess(as)

Figure 11. Mapping process

The process that represents the mapping is composed,

through an alphabetized parallel composition, with the

abstract model. This composition contains events from

both views. Once the events from the abstract model are

hidden, it produces a process that must be refined by the

99

Gustavo Cabral and Augusto Sampaio Automated Formal Specification Generation and
Refinement from Requirement Documents

concrete model. The mapping process works as a trigger

from one view to another; events executed in the abstract

model force the execution of the related concrete events.

The processes View 1 and View 2 from Fig-

ure 6 are simple examples of abstract and concrete

models. The View 1 model is more abstract than

View 2, and the strategy can be used to replace ab-

stract events from View 1 with more concrete ones, us-

ing the MAPPING process. Figure 12 presents the map-
ping between the two models and defines the process

View 1 with mapping, which have the events from

View 1 hidden, resulting in View 1 mapped that is

refined by the View 2 model.

map = {(<a>,<a1,a2,a3>),(,<b1,b2>),
(<c>,<c1>)}

View_1_with_mapping = View_1 [|events_view_1|]
MAPPING(map)

View_1_mapped = View_1_with_mapping
\events_view_1

View_1_mapped [FD= View_2

Figure 12. Mapping function usage example

The last line of Figure 12 captures the assertion that

View 1 mapped is refined by View 2 in the failures-

divergence model. This mapping strategy is based on a

framework composition technique [30]. Here we focus

on relating events from different models for refinement

purpose, while the framework composition strategy aims

to accomplish communication between frameworks pos-

sibly with different alphabets.

5.2. COMPONENT VIEW AS A REFINEMENT OF THE
USER VIEW

The same mapping strategy presented in the previous

section is used to relate user and component view models.

In this case the component view model refines the user

view through events mapping, even though it contains a

more complex structure, such as parallel composition.

Figure 15 presents part of the mapping between the

user and the component view events. The event related to

step 1M from the user view is mapped to the ones related

to steps 1M and 2M from the component view, and the user

view event from step 2M is mapped to the component view

events of steps 3M, 4M, and 5M, establishing a relation

between user and component views (Figure 13).

As explained, the component view refines the user

view through events mapping. In some cases, it is also

possible to retrieve the user view from the component

view, provided an inverse mapping from the component

to the user view.

User_View_with_mapping = User_View
[| events_user_view |] MAPPING(map)

User_View_mapped = User_View_with_mapping
\events_user_view

User_View_mapped [FD= Component_View

Figure 13. Mapping process specification based on the map

5.3. TOOL SUPPORT
The refinement relation discussed here can be me-

chanically checked using FDR [33], a refinement checker

for CSP. After loading the two models and the mapping

functions, along with the generated mapping, the only re-

maining task is to define assertions, such as in Figure 14,

to check system properties. The first assertion is related to

the illustrative example from Figure 12 and the second is

related to the user and component view refinement from

Figure 13. The results established that both refinements

hold, as expected.

assert View_1_mapped [FD= View_2
assert User_View_mapped [FD= Component_View

Figure 14. Assert commands verified by the FDR tool

Also based on refinement checking, FDR can verify

if a model is deadlock, livelock or nondeterminism free.

Moreover, CSP operators bring the possibility to accom-

plish quite complex compositions and FDR can be used

to verify elaborate system properties.

The generation of the mapping that relates the user

and the component views can be automated since a se-

quence of events in the component view always starts

with a user request and ends with a message received by

the user. This information can be used to assist the event

mapping task suggested in Section 6.

6. A STRATEGY FOR AUTOMATED RE-
FINEMENT AND ITS APPLICATIONS

The event mapping strategy presented in Section 5 en-

ables the relation, or tracking, between events expected

by the system in the user view and the behavior defined in

the system design, which is represented here as the com-

ponent view. While establishing a formal mapping is es-

sential to ensure consistency between views, this task is

usually considered as a barrier to the practical application

of formal refinement.

100

Gustavo Cabral and Augusto Sampaio Automated Formal Specification Generation and
Refinement from Requirement Documents

map = { (< steps, read.DTREA_SENDABLEITEM.(INCOMING_MESSAGE, {}),
expectedResults,display.DTDIS_FIELDVALUE.(MESSAGE_CONTENT_FIELD_VALUE,{})>,

< readComp.USER.MESSAGE_APP.DTREA_SENDABLEITEM.(INCOMING_MESSAGE, {}),
openComp.MESSAGE_APP.MESSAGE_VIEWER.DTOPE_SENDABLE_ITEM. (INCOMING_MESSAGE, {})
>) ,

(< steps,open.DTOPE_MENU.(CSM_MENU_LIST, {}),
conditions,isstate.DTISL_LIST.(IMPORTANT_MESSAGES_FOLDER, {}),
expectedResults,isstate.DTISS_MENUITEM_STATEVALUE.
(MOVE_TO_IMPORTANT_MESSAGES_OPTION, {}). (DISPLAYED_VALUE, {}) > ,

< openComp.USER.MESSAGE_APP.DTOPE_MENU.(CSM_MENU_LIST, {}),
displayComp.MESSAGE_APP.MENU_CONTROLLER.DTDIS_MENU.(CSM_MENU_LIST, {}),
isstateComp.MESSAGE_APP.MENU_CONTROLLER.DTISS_FEATURE.(VALUE,{ON}),
isstateComp.MENU_CONTROLLER.USER.DTISS_MENUITEM_STATEVALUE.
(MOVE_TO_IMPORTANT_MESSAGES_OPTION,{}).(DISPLAYED_VALUE,{}) >), ... }

Figure 15. Mapping between abstract and concrete views

Concerning the proposed approach, in particular, it re-

quires the direct manipulation of the CSP process algebra.

Nevertheless, use case designers are not usually familiar

or willing to work with formal notations. Our approach

to automated refinement is to construct the relevant map-

pings from information provided by the use case designer

at the use case level; this information is described in terms

of CNL phrases. The actual use of the CSP notation is

hidden from the final user.

Considering the relationship between the user and

the component views, formalized in the previous sec-

tion, each step from the user view is selected and asso-

ciated with one or more steps from the component view.

This selection and mapping process is entirely accom-

plished without the manipulation of CSP events; only

CNL phrases are handled by the use case designer.

Step
Id

User Action System
State

System Response

1M Read incoming
message.

Message content is
displayed.

⇓
Step
Id

Sender Message System
State

Receiver

1M User Read incoming
message.

Message
App

2M Message
App

Open incoming
message.

Message
Viewer

Table 3. Example of event mapping from user to component view

As an example, Table 3 shows the step 1M from the

user view use case and its respective refinement, which

are the steps 1M and 2M from the component view use

case. Thus, once the user-component mapping is defined

by the use case designer, manipulating CNL phrases only,

we can generate the respective CSP events from these

phrases and use them to produce the mapping definition

that is necessary for the refinement strategy presented in

Section 5. The rest of this section presents possible ap-

plications for the mapping between views, which can be

automatically generated with the use case designer assis-

tance and tool support.

6.1. EVENT DECOMPOSITION
An obvious application of event decomposition is re-

lating sequences of events from different views as already

discussed. However, this idea can be generalized.

Taking the user view as an example to apply the event

decomposition strategy, note that it is possible to express

the user behavior into several levels of abstraction. One

simple phrase could actually define a complex action and

therefore need to be decomposed in several simpler ac-

tions. The classification of an action as complex or simple

is related to the possibility of breaking it down in several

sub-actions. This process would occur in an incremental

way until the initial complex action is mapped to a se-

quence of atomic actions (or events) that does not need to

be further detailed. At this point, it is necessary to deter-

mine the atomic events according to the interface between

the user and the system. In other words, these are the con-

crete events expected by the application.

Figure 16 shows how a sequence of events in a

certain Level 1 of abstraction has its events broken

down into more concrete ones from Level 2. No-

tice that the Event A is initially decomposed into the

sequence Event A.1, Event A.2, and Event
A.3. Observing the abstraction Level 3, we can see

that not all events from Level 2 need to be further de-

composed. Only the event Event A.2 needs to be de-

tailed as Event A.2.1 and Event A.2.2. In gen-

eral, an arbitrary hierarchy level is allowed; a sequence

101

Gustavo Cabral and Augusto Sampaio Automated Formal Specification Generation and
Refinement from Requirement Documents

Figure 16. Illustration of the event decomposition strategy

of events from a more abstract view is mapped to a se-

quence of events from a more concrete view, just as in the

refinement strategy presented in Section 5.

6.1.1. CNL Atomic Events: The definition of atomic

events requires a close analysis of the system interface;

all possible events accepted by the application should be

listed. Once this set of atomic events is defined, it is nec-

essary to add them, as verb definitions, to the CNL knowl-

edge bases so they can be used by the CNL parser. The

press operation, for instance, defines an atomic event

present in mobile phone applications; keys are pressed

by the user to interact with the phone. Figure 17 defines

the press verb, case frame, and frame restriction. The

press verb does not require a subject or an agent, it re-

quires a theme that is the key to be pressed.

The press verb accepts verbal complements that are

members of the DTPRESS PRESSABLEKEY class from

the Ontology. This class is composed by nouns represent-

ing the possible keys that can be pressed by the phone

user. Thus, CNL user actions can now be written as

atomic events (concrete actions).

6.1.2. Decomposition Strategy: As presented in Sec-

tion 3.6, the use cases are written using Microsoft Word

and the CNL is validated by a plug-in. The use case is

structured by an XML schema that annotates the docu-

ment content enabling the plug-in to access each part of

the use case. The mapping presented in the beginning

of this section (See Table 3) can be similarly defined us-

ing XML annotations over the use cases. This strategy

is used for arbitrary event mapping between views and,

particularly, for event decomposition, mapping each user

abstract action to a sequence of atomic concrete actions.

In Table 4, we have examples of user actions and

<verb>
<name>press</name>
<third-person>presses</third-person>
<gerund>pressing</gerund>
<past>pressed</past>
<participle>pressed</participle>

</verb>

<frame>
<description>Press a key. Ex.:
Press the menu key</description>
<name>pressKey</name>
<verblist>

<verb>press</verb>
</verblist>
<roles>

<role mandatory="False">agent</role>
<role mandatory="True">theme</role>

</roles>
</frame>

<frame>
<name>PressKey</name>
<restrictions>
<restriction name="DTPRESS_PRESSABLEKEY">
<class role="theme">pressable_item</class>

</restriction>
</restrictions>

</frame>

Figure 17. Definition of press verb, case frame and frame restriction

the respective atomic action. Since user definitions of

events can be quite abstract, the decomposition of such

events may occur in several stages. The action Select
‘Move to Important Messages’ option, for

instance, is decomposed into the atomic action Press
down arrow key, which happens twice.

6.2. USE CASE EXECUTION
The decomposition of events, all the way into atomic

user actions, not only details the use case definition but

102

Gustavo Cabral and Augusto Sampaio Automated Formal Specification Generation and
Refinement from Requirement Documents

User Action Atomic Actions
Read incoming message. Press center key.

Confirm memory infor-

mation dialog.

Press left soft key.

Select “Move to Impor-

tant Messages” option.

Press down arrow key.

Press down arrow key.

Table 4. Decomposition of user events into atomic events.

may enable its execution. Once the set of atomic events

is defined for a particular application domain, it is possi-

ble to simulate the actual execution of its events. These

atomic events are mapped to an interface that dispatches

them to the system, simulating the user behavior.

channel press : DTPress

datatype DTPress = DTPRESS_PRESSABLEKEY.
(KeyValue,Set(Modifier))

datatype KeyValue = MENU_KEY | CENTER_KEY |
RIGHT_SOFT_KEY | LEFT_SOFT_KEY | ...

⇓
public interface AtomicEvents {
public void press(KeyValue key);

}

public enum KeyValue {
menu, center, rightSoft, leftSoft ...

}

Table 5. Press channel and associated datatype

Table 5 illustrates part of the CSP specification that

defines the press channel and its associated datatypes;

this definition is automatically derived from the CNL

knowledge bases. Notice that the DTPress datatype

holds the KeyValue information and a possible set of

Modifiers. Here, each CSP channel is mapped to a

method in the AtomicEvents Java Interface and the

datatypes are implemented as Java Enumeration. This

Java code can be also automatically generated from the

CNL knowledge bases.

6.2.1. Mobile Phone Automation: At this point, the

automatic execution of an application depends only on the

implementation of the presented interface. In the case of

a Motorola mobile phone, there is an API that allows the

access of the phone’s current state and event dispatching.

Such an API enables the implementation of the presented

interface. Thus, once a user view use case is written and

each step is decomposed into atomic events, it is possible

to execute it, therefore verifying its consistence with the

implementation. This procedure is seen as a preliminary

development of the necessary infra-structure to enable use

case or test case automatic execution.

In the case of test case execution, its generation from

the user view CSP model (See Section 4) is achieved ap-

plying strategies such as the one defined in [31]. This

strategy allows the definition of test purposes (as CSP pro-

cesses) that filter the generated model and yields traces

according to specified guidelines.

6.2.2. Desktop Application Automation: Since the

event decomposition strategy manipulates only CNL

phrases in the use case specifications, it is extensible for

different application domains, such as Desktop or Web

applications. It defines a Platform Independent Model

(PIM) [24]. It is a matter of updating the CNL knowl-

edge bases with domain terms and define the set of atomic

events (application interface) in order to enable the exe-

cution of use cases (or test cases) in the new application

domain. Thus, once the interface is implemented, it is

possible to execute new use cases without extra effort.

This strategy was initially applied for Java Desktop

applications since the Java platform implements an in-

terface that provides access to the application’s running

objects, such as Graphical User Interface (GUI) compo-

nents. The java.awt.Robot class intercepts a running Java

application and allows access to variable values and event

dispatching, enabling the implementation of user actions.

In the Desktop application domain, we have defined a

new set of atomic events formed by the click and the

type events. Table 6 contains part of these event def-

initions. The click event denotes the mouse click ac-

tion performed on a specified item, such as a button or

menu identified by a name (ClickValue). The type
action represents the interaction of the user through the

keyboard, enabling data input.

The java.awt.Robot class can be directly used to ac-

cess the running system. Nevertheless, more robust

frameworks have been implemented to facilitate the ac-

cess of the application GUI components. Jemmy [41] is

a framework that provides a high level API to capture ap-

plication state and perform actions. It is used in an ex-

perimental implementation of the Java interface defined

in Table 6 to validate the presented technique.

6.3. SOME CONSIDERATIONS
The event decomposition strategy presented in sub-

section 6.1 is based on the formalism explained in early

sections and enables the use of formal methods for the

use case execution purposes. The strategy itself requires

assistance from the use case designer, such as interface

implementation, but the results seem promising.

The decomposition strategy allows substantial reuse

103

Gustavo Cabral and Augusto Sampaio Automated Formal Specification Generation and
Refinement from Requirement Documents

channel click : DTClick
datatype DTClick = DTCLICK_ITEM.

(ClickValue,Set(Modifier)).
(ClickItem,Set(Modifier)).

datatype ClickValue = OK | CANCEL |
EDIT | OPTION | BACK ...

datatype ClickItem = MENU | SUBMENU |
BUTTON | FIELD | IMAGE ...

channel type : DTType
datatype DTType = DTTYPE.

(TypeValue,Set(Modifier))

datatype TypeValue = JOHN | MARY |
RECIFE | CIN | ...

⇓

public interface DesktopAtomicEvents {
public void click(ClickValue value,

ClickItem item);
public void type(TypeValue value);

}

public enum ClickValue {
ok, cancel, edit, back, ...

}
public enum ClickItem {
menu, subMenu, button, field, ...

}
public enum TypeValue {
john, mary, recife, cin, ...

}

Table 6. Click and type channel and associated datatypes

of user action definitions; once a user action is mapped to

atomic events, this mapping is reused in the automation

of other use cases without the necessity of decomposing

the same user action again. Similarly, the atomic event

interface only needs to be implemented once for a partic-

ular application domain; new use cases are immediately

automated after their events are decomposed.

Initially, the definition of atomic events can be com-

plex; it is difficult to determine a generic interface for a

wide range of applications. It is still necessary to inves-

tigate the variety of possible ways users can interact with

systems. The rise of new types of GUI components, for

example, forces the definition of new atomic events and

their respective implementations.

Nevertheless, the use of such a strategy can be further

extended enabling the definition of scripts, as in a script

language, in order to automate tasks frequently executed

by the user. The execution of test cases still requires fur-

ther analysis since test cases involve not only execution

of user action but verification of the system responses.

7. FINAL CONSIDERATIONS
The usage of formal methods with the purpose of doc-

umenting system and consequently enabling the genera-

tion of test cases and other artifacts is being unusually

explored in this paper. The use of formal methods is com-

monly related to the definition of a specification that can

be refined and eventually mapped to code, thus guarantee-

ing the quality of the implementation; such usage is not

the main goal here.

The cooperation with a company, such as Motorola

Inc., brought a practical appeal to the accomplishment of

this research. The proposed strategy focuses on generat-

ing formal specifications through validation and process-

ing of requirements at an early stage. The sooner the re-

quirements are validated, the lower is the risk involved in

the system development; problems can be found and ana-

lyzed even before system implementation starts. The use

of a CNL and use case templates seem relevant to guaran-

tee requirements consistency. In addition, the validation

of the use cases behavior reinforces the adequacy of the

specified scenarios.

The use of natural or restricted languages to write re-

quirements is approached by various works [18, 13, 14,

15] that generate first-order logic models. However, this

strategy seems to be more suitable for requirements con-

sistence verification. Using only a logical notation to

specify system architecture and design seems inappropri-

ate; the gap between logical propositions and structured

design is wide. Nevertheless, the use of CNL to en-

sure requirements consistence and specify systems seems

promising. In addition to that, CNL editors [13, 37] are a

viable solution to enable the use of CNL, minimizing any

negative impact.

Processing use case specifications to generate formal

models is brightly addressed in [29], however the pro-

posed CNL presents a clear definition of grammar that is

simple to learn, use and extend. We also define structured

use case specification templates. The implementation of

the CNL editor is a possible future work.

In [39] an approach is defined to generate CSP models

from policies. However, the definition of policies to spec-

ify a system seems confusing. The use of the proposed

use case specification templates seems to favor a better

understanding of the system behavior.

An approach similar to ours is presented in [3] where

a notation called Use Case Maps (UCMs) is introduced to

allow the design of scenarios at a more abstract level in

terms of sequences of responsibilities over a set of com-

ponents, just as in the component view. Still, UCMs do

not model explicit inter-component communication, but

it can be translated to Message Sequence Chart (MSC)

[20] specifications [2]; MSC is also supported by model

checkers [1], allowing property verification. This combi-

nation of strategies needs to be further investigated.

104

Gustavo Cabral and Augusto Sampaio Automated Formal Specification Generation and
Refinement from Requirement Documents

Apart from the fact that we use a process algebra as

a formal model, our strategy goes beyond the translation

itself: it generates structured models, possibly at differ-

ent levels of abstraction, and addresses the formal refine-

ment between them. Furthermore, along with the pro-

posed strategy, there are tools that mechanize the entire

process: the use case specification creation, the refine-

ment checking, and the use case execution. These tools

are essential to the introduction of formal methods in real

projects, as in the Motorola environment.

The major benefit of this strategy is related to the

possible uses of the generated models. The user view

model contains important information related to user ac-

tions and system responses. This is essential information

used to define test cases. There are several approaches

related to Model Based-Testing that use system specifica-

tions to generate test cases. In particular, the user view

models generated by the presented strategy are used in

the CInBTCRD research project to automatically gener-

ate test cases based on test purposes [5]. There is also

complementary work in the CInBTCRD research project

that uses the proposed component view model to generate

UML diagrams; in [9] a set of laws is proposed to map

CSP specifications into UML-RT diagrams, which is now

part of version 2.0 of UML.

Besides automatic generating test cases from formal

models, there are means to animate the formal model [11]

and trigger the execution of commands that shall execute

operations at the real application. These operations would

result in system responses, which can be verified using

the system response definition from the user view model.

In other words, the formal specification can be executed

through an animator and the real application would con-

currently receive concrete stimuli from the environment.

The proposed model refinement strategy, through

events mapping, and the use case execution approach can

also be used as an important step towards automating test

case execution. The execution of user actions based on

atomic events associated with automatization of test case

verification enables the execution of test cases generated

from the model. Along with code generation, test scripts

generation is a possible topic for future investigation as-

sociated to our strategy.

Acknowledgments

This work has been developed in the context of a

research cooperation between Motorola Inc. and CIn-

UFPE. We thank the entire group for all the support, crit-

icisms and suggestions throughout this research.

REFERENCES
[1] Rajeev Alur and Mihalis Yannakakis. Model checking of

message sequence charts. In CONCUR’99: Proceedings
of the 10th International Conference on Concurrency The-
ory, pages 114–129. Springer, 1999.

[2] F. Bordeleau. A Systematic and Traceable Progression
from Scenario Models to Communicating Hierarchical Fi-
nite State Machines. PhD thesis, Carleton University,
1999.

[3] R. Buhr. Use Case Maps as architectural entities for com-
plex systems. IEEE Transactions on Software Engineer-
ing, 24(12):1131–1155, 1998.

[4] Gustavo Cabral and Augusto Sampaio. Formal specifica-
tion generation from requirement documents. In Brazilian
Symposium on Formal Methods (SBMF), pages 217–232,
2006.

[5] Emanuela Cartaxo. Test case generation by means of
UML sequence diagrams and Label Transition System for
mobile phone applications. Master’s thesis, Universidade
Federal de Campina Grande (UFCG), 2006.

[6] Alistair Cockburn. Writing Effective Use Cases. Addison-
Wesley, 2000.

[7] S. Dalal, A. Jain, N. Karunanithi, J. Leaton, C. Lott,
G. Patton, and B. Horowitz. Model-based testing in
practice. In ICSE’99: Proceedings of the 21st interna-
tional conference on Software engineering, pages 285–
294. IEEE Computer Society Press, 1999.

[8] Brian Dobing and Jeffrey Parsons. How UML is used.
Communications of the ACM, 49(5):109–113, 2006.

[9] Patricia Ferreira, Augusto Sampaio, and Alexandre Mota.
Viewing CSP specifications with UML-RT diagrams. In
Brazilian Symposium on Formal Methods (SBMF), pages
73–88, 2006.

[10] C.J. Fillmore. Frame semantics and the nature of language.
In Proceeding of the New York Academy of Sciences: Con-
ference on the Origin and Development of Language and
Speech, 280, 1976.

[11] Angela Freitas and Ana Cavalcanti. Automatic translation
from Circus to Java. In Lecture Notes in Computer Science
: FM’2006: Formal Methods, volume 4085, pages 115–
130. Springer, 2006.

[12] Leonardo Freitas, Ana Cavalcanti, and Hermano Moura.
Animating CSPm using Action Semantics. In Proceed-
ings of IV Workshop em Métodos Formais, pages 58–69.
Sociedade Brasileira de Computacão (SBC), 2001.

[13] N. Fuchs, U. Schwertel, and R. Schwitter. Attempto Con-
trolled English - not just another logic specification lan-
guage. In LOPSTR’98: Proceedings of the 8th Inter-
national Workshop on Logic Programming Synthesis and
Transformation, pages 1–20. Springer, 1990.

[14] N. Fuchs, U. Schwertel, and S. Torge. Controlled natural
language can replace first-order logic. In ASE’99: Pro-
ceedings of the 14th IEEE international conference on Au-
tomated software engineering, page 295. IEEE Computer
Society, 1999.

105

Gustavo Cabral and Augusto Sampaio Automated Formal Specification Generation and
Refinement from Requirement Documents

[15] N. Fuchs and R. Schwitter. Specifying logic programs in
controlled natural language. Technical Report ifi-95.17,
University of Zurich, 1995.

[16] John Galletly. Occam-2. University College London Press,
1996.

[17] P. Gardiner. Failures-Divergence Refinement, FDR2 User
Manual and Tutorial. Formal Systems Ltd., 1997.

[18] Vincenzo Gervasi and Didar Zowghi. Reasoning
about inconsistencies in natural language requirements.
ACM Transactions on Software Engineering Methodology,
14(3):277–330, 2005.

[19] Mark Grand. Java language reference. O’Reilly & Asso-
ciates, Inc., 1997.

[20] David Harel and P. Thiagarajan. Message sequence charts.
In UML for real: design of embedded real-time systems,
pages 77–105. Kluwer Academic Publishers, 2003.

[21] Maritta Heisel and Jeanine Souquières. A method for re-
quirements elicitation and formal specification. In ER’99:
Proceedings of the 18th International Conference on Con-
ceptual Modeling, pages 309–324. Springer, 1999.

[22] Alexander Holt. Formal verification with natural language
specifications: guidelines, experiments and lessons so far.
South African Computer Journal, 24:253–257, 1999.

[23] Brian Johnson, Marc Young, and Craig Skibo. Inside Mi-
crosoft Visual Studio .NET. Microsoft Press, 2002.

[24] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Ex-
plained: The Model Driven Architecture: Practice and
Promise. Addison-Wesley, 2003.

[25] Richard Kuhn, Ramaswamy Chandramouli, and Ricky
Butler. Cost effective use of formal methods in verification
and validation. In Foundations’02 Workshop on Verifica-
tion & Validation, 2002.

[26] Beum-Seuk Lee and Barrett Bryant. Automated con-
version from requirements documentation to an object-
oriented formal specification language. In SAC’02: Pro-
ceedings of the 2002 ACM symposium on Applied comput-
ing, pages 932–936. ACM Press, 2002.

[27] Daniel Leitão. NLForSpec: Translating natural language
descriptions into formal test case specifications. Mas-
ter’s thesis, Universidade Federal de Pernambuco (UFPE),
2006.

[28] Formal Systems (Europe) Ltd. PROBE Users Manual ver-
sion 1.25. Formal Systems (Europe) Ltd, 1998.

[29] Vladimir Mencl. Deriving behavior specifications from
textual use cases. In WITSE’04 - Workshop on Intelligent
Technologies for Software Engineering, pages 331–341,
2004.

[30] Walter Mesquita, Augusto Sampaio, and Ana Melo. A
strategy for the formal composition of frameworks. In
SEFM’2005, Third IEEE International Conference on
Software Engineering and Formal Methods, pages 404–
413. IEEE Computer Society, 2005.

[31] Sidney Nogueira. Geracão automática de casos de teste
CSP dirigida por propósitos. Master’s thesis, Universidade
Federal de Pernambuco (UFPE), 2006.

[32] Colette Rolland and Camille Achour. Guiding the con-
struction of textual use case specifications. Data Knowl.
Eng., 25(1-2):125–160, 1998.

[33] A.W. Roscoe. Modeling and verifying key-exchange pro-
tocols using CSP and FDR. In CSFW’95: Proceedings of
the The 8th IEEE Computer Security Foundations Work-
shop, page 98. IEEE Computer Society, 1995.

[34] A.W. Roscoe, C.A.R. Hoare, and Richard Bird. The The-
ory and Practice of Concurrency. Prentice Hall, 1997.

[35] James Rumbaugh, Ivar Jacobson, and Grady Booch, edi-
tors. The Unified Modeling Language reference manual.
Addison-Wesley, 1999.

[36] R. Schwitter, A. Ljungberg, and D. Hood. ECOLE - a
look-ahead editor for a controlled language. In EAMT-
CLAW’03 - Joint Conference combining the 8th Interna-
tional Workshop of the European Association for Machine
Translation and the 4th Controlled Language Application
Workshop, pages 141–150, 2003.

[37] R. Schwitter, A. Ljungberg, and D. Hood. ECOLE - a
look-ahead editor for a controlled language, in: Controlled
translation. In EAMT-CLAW’03 - Joint Conference com-
bining the 8th International Workshop of the European As-
sociation for Machine Translation and the 4th Controlled
Language Application Workshop, 2003.

[38] Bran Selic. Tutorial: An overview of UML 2.0. In
ICSE’04: Proceedings of the 26th International Con-
ference on Software Engineering, pages 741–742. IEEE
Computer Society, 2004.

[39] R. Sterritt, M. Hinchey, J. Rash, W. Truszkowski, C. Rouff,
and D. Gracanin. Towards formal specification and gener-
ation of autonomic policies. In EUC Workshops, pages
1245–1254, 2005.

[40] Simon St.Laurent, Evan Lenz, and Mary McRae. Office
2003 XML: Integrating Office with the rest of the world.
O’Reilly & Associates, Inc., 2004.

[41] Yanhong Sun and Edward Jones. Specification-driven au-
tomated testing of GUI-based Java programs. In ACM-SE
42: Proceedings of the 42nd annual Southeast regional
conference, pages 140–145. ACM Press, 2004.

[42] Peter Welch. Process Oriented Design for Java: Concur-
rency for All. In Computational Science - ICCS’2002, vol-
ume 2330, pages 687–687. Springer, 2002.

[43] Peter Welch, Jo Aldous, and Jon Foster. CSP networking
for Java (JCSP.net). In ICCS’02: Proceedings of the In-
ternational Conference on Computational Science-Part II,
pages 695–708. Springer, 2002.

[44] R. Wojcik, J. Hoard, and K. Holzhauser. The Boeing Sim-
plified English Checker. In Proceedings of the Interna-
tional Conference, Human Machine Interaction and Artifi-
cial Intelligence in Aeronautics and Space. Toulouse: Cen-
tre d’Etudes et de Recherches de Toulouse, pages 43–57,
1990.

106

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

