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Abstract

This paper presents the architecture, design,
validation, and hardware prototyping of the main
architectural blocks of main profile H.264/AVC
decoder, namely the blocks: inverse transforms and
quantization, intra prediction, motion compensation and
deblocking filter, for a main profile H.264/AVC decoder.
These architectures were designed to reach high
throughputs and to be easily integrated with the other
H.264/AVC modules. The architectures, all fully
H.264/AVC compliant, were completely described in
VHDL and further validated through simulations and

FPGA prototyping. They were prototyped using a
Digilent XUP V2P board, containing a Virtex-II Pro
XC2VP30 Xilinx FPGA. The post place-and-route
synthesis results indicate that the designed architectures
are able to process 114 million samples per second and,
in the worst case, they are able to process 64 HDTV
frames (1080x1920) per second, allowing their use in
H.264/AVC decoders targeting real time HDTV
applications.

Keywords: Video Coding, H.264/AVC Decoder,
Digital Television, HDTV, VLSI Architectures,
FPGA Prototping.
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1. INTRODUCTION

Video encoding techniques have been widely studied
recently and implemented in hardware due to the increasing
demand in this field. Digital TV, video exchange through
internet, cell phones and PDAs as well as video streaming are
examples of such applications that commonly require high
quality and good compression rates.

The H.264/AVC (known as MPEG-4 part 10) [1] is the
newest video coding standard which achieves significant
improvements over the previous ones, in terms of compression
rates [2]. H264/AVC standard is organized in profiles
(baseline, extended, main and high [1,3]), each one covering a
set of applications. This work will focus the hardware for the
main profile. The main profile is designed to achieve the
highest efficiency in the encoding process for I (Intra), P
(Predictive) and B (Bi-predictive) slices. This means that this
profile covers applications that require the highest rates in
compression and quality, such as HDTV.

This work was developed within the framework of an
effort to develop intellectual property and to carry out an
evaluation for the future Brazilian system of digital television,
the SBTVD [4]. The H.264/AVC standard was chosen for the
SBTVD source video coding, since it is currently the most
advanced video compression standard. This paper focuses on
the decoder design, which has to be massively produced for
the end-user set. The main goal of this paper is to present a
high throughput architecture developed by the authors for the
H.264/AVC decoder from its architectural definition through
prototyping. This design also targets an easy integration of the
designed modules with the other H.264/AVC modules.

The prototype target is the FPGA. The decision to
prototype in FPGA was due to the scope of the SBTVD
project [4] which aimed at having a digital TV system
prototyped in less than a year. Furthermore, considering the
flexibility and the rapid prototyping characteristics of FPGAs,
this technology is an excellent validation structure for complex
digital designs, as is the case.

This paper is organized as follow. Section 2 presents an
introduction to the H.264/AVC standard. Sections 3,4, 5 and 6
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present the architectures of the inverse transforms and
quantization, the intra-prediction, the motion compensation
module and the deblocking filter, respectively. Section 7
presents the architectures validation and section 8 presents the
prototyping methodology. The synthesis results are presented
in section 9. Finally, Section 10 presents the conclusions and
future works.

2. H.264/AVC DECODER

H.264/AVC standard defines four profiles: baseline,
extended, high and main [1, 3]. The baseline was designed for
low delay applications, as well as for applications that run on
platforms with low power and in environment with high
degree of packet losses. The extended profile focuses in
streaming video applications. The high profile is divided in
sub-profiles, all targeting high resolution videos. This work is
focused in the hardware design of a H.264/AVC decoder,
considering the main profile. The main profile differs from the
baseline mainly by the inclusion of B slices, Weighted
Prediction (WP), Interlaced video support and Context-based
Adaptive Binary Arithmetic Coding (CABAC) [1, 3].

H.264/AVC decoder uses a structure similar with that used
in the previous standards, but each module of a H.264/AVC
decoder presents many innovations when compared with
previous standards as MPEG-2 (also called H.262 [5]) or
MPEG-4 part 2 [6]. Figure 1 shows the schematic of the
decoder with its main modules. Input bit stream passes first
through the entropy decoding. The next step is the inverse
quantization and inverse transforms (Q-1 and T-1 modules in
Figure 1) to recompose the prediction residues. INTER
prediction (also called motion compensation - MC)
reconstructs the macroblock (MB) from neighbor reference
frames while INTRA prediction reconstructs the macroblock
from the neighbor macroblocks in the same frame. INTER or
INTRA prediction reconstructed macroblock is added to the
residues and the results of this addition are sent to the
deblocking filter. Finally, the reconstructed frame is filtered by
deblocking filter and the result is sent to the frame memory.

Compressed Video
Stream Input

Entropy

-1 -1
T Q Decoder

Figure 1. H.264/AVC decoder diagram



Luciano Agostini, Sergio Bampi
and Altamiro Susin

Design and FPGA Prototyping of a
H.264/AVC Main Profile Decoder for HDTV

H.264/AVC entropy coding uses three main tools to allow
a high data compression: Exp-Golomb coding, Context
Adaptive Variable Length Coding (CAVLC) and Context
Adaptive Binary Arithmetic Coding (CABAC) [3]. The main
innovation of the entropy coding is the use of a context
adaptive coding. In this case, the coding process depends on
the element that will be coded, on the coding algorithm phase,
and on the previously coded elements. Entropy coding process
defines that the residual information (quantized coefficients) is
entropy coded using CAVLC or CABAC, while the other
coding units are coded using Exp-Golomb codes [3].

Q" and T" modules are responsible to generate the residual
data that are added to the prediction results to produce the
reconstructed frame. Inverse quantization module performs a
scalar multiplication. The quantization value is defined by the
QP external parameter [3]. There are three main innovations in
the transforms of this standard. The first one is related with the
block dimensions which were defined as 4x4, instead of the
traditional 8x8 block size. The second one is related with the
use of three different two dimensional transforms, depending
on the type of input data. These transforms are 4x4 inverse
discrete cosines transform, 4x4 inverse Hadamard transform
and 2x2 inverse Hadamard transform [3]. The third one is the
use of an integer approximation of these transforms, to allow a
fixed point hardware implementation. The inverse transforms
operations are divided in two parts, one is applied before and
other is applied after the inverse quantization. First the inverse
Hadamard is applied (when used), then the inverse
quantization is applied and, finally, the inverse DCT is applied.

The motion compensation (MC) operation can be regarded
as a copying of the predicted macroblock from the reference
frame, and then to add the predicted MB with the residual MB
to reconstruct the MB in current frame. This is the most
demanding component of the H.264/AVC decoder,
consuming more than a half of the complete computation
power used with the decoding process [2]. Most of the
H.264/AVC innovations rely on the motion compensation
process. An important feature of this module is the use of
blocks with variable sizes (16x16, 16x8, 8x16, 8x8, 8x4, 4x8
or 4x4). Other important feature is the use of a quarter-sample
accuracy which is used to define the best matching and to
reconstruct the frame. H264/AVC also allows the use of
multiple reference frames, which can be past or future frames
in the temporal order. Bi-predictive, weighted and direct
predictions are also innovations of this standard. Other feature
is related to the motion vectors that can point to positions
outside the frame. Finally, the motion vector prediction is an
important innovation, once these vectors are predicted from
the neighbor motion vectors [3].

H.264/AVC defines an Intra prediction process in the
spatial domain [3] and this is an innovation. The macroblocks
of the cumrent frame can be predicted considering the
previously processed macroblocks of the same frame. Intra
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prediction can process blocks with 16x16, 4x4 (considering
luma information) or 8x8 (considering chroma information).
There are nine different prediction modes for 4x4 luma blocks,
four modes for 16x16 luma modules and four modes for 8x8
chroma blocks [3].

H.264/AVC standardizes the use of a deblocking filter
(also called loop filter). This is an important improvement
added to this standard, since this filter was optional in the
previous standards. The most important characteristic of this
filter is that it is context adaptive and it is able to distinguish a
real image border from an artifact generated when the
quantization step has a high value. The boundary strength (BS)
defines the filtering strength and it can take five different
values from 0 (no filtering) to 4 (strongest filtering) [3].

3. INVERSE TRANSFORMS AND
QUANTIZATION ARCHITECTURES

The designed architecture for the Q" and T" modules is
generically presented in Figure 2. It is important to notice the
presence of the inverse quantization module between the
operations of T" module.

As discussed before, the main goal of this design was to
reach a high throughput hardware solution in order to support
HDTV. This architecture uses a balanced pipeline and it
processes one sample per cycle. This constant production rate
depends neither on the input data color type nor on the
prediction mode used to generate the inputs. Finally, the input
bit width is parameterizable to facilitate the integration.

The inverse transforms module uses three different two
dimensional transforms, according to the type of input data.
These transforms are: 4x4 inverse discrete cosine transform,
4x4 inverse Hadamard transform and 2x2 inverse Hadamard
transform [1,7]. The inverse transforms were designed to
perform the two dimensional calculations without using the
separability property. Then, the first step to design them was to
decompose their mathematical definition [7] in algorithms that
do not use the separability property [8]. The architectures
designed for the inverse transforms use only one operator at
each pipeline stage to save hardware resources. The
architectures of the 2-D IDCT and of the 4x4 2-D inverse
Hadamard were designed in a pipeline with 4 stages, with 64
cycles of latency [8]. The 2-D inverse Hadamard was designed
in a pipeline with 2 stages, with 8 cycles of latency. All T'
datapaths have the same 133 cycles of latency.

In the inverse quantization architecture, all the internal
constants had been previously calculated and stored in
memory, saving computation time and logic cells of the target
FPGA. The designed architecture is composed by a constants
generator (tables stored in memory), a multiplier, an adder and
a barrel shifter.

A FIFO and other buffers were used in the inverse
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transforms and quantization architecture to guarantee the
desired architectural synchronism. Buffers and FIFO were
designed using registers instead of regular memory.
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Figure 2. T"' and Q" module diagram

There are a few papers that present dedicated hardware
designs for H.264/AVC transforms and quantization. The
solutions proposed in [9, 10, 11, 12] are multitransform
architectures that are able to process the calculations related to
the four 4x4 forward and inverse transforms. Our design
solution [9] processes also the 2x2 forward and inverse
Hadamards and this solution is able to select the level of
parallelism desired in the computations. The designs presented
in [13] grouped individually each 4x4 transform with their
specific quantization, but they do not group a complete inverse
transforms and quantization module.

The number of samples processed in each clock cycle
varies from 4 to 16 in designs found in the literature. This
parallelism allows a very high processing rate that surpasses
the requirements of high resolution applications. This very
high performance, however, implies several difficulties to use
these architectures in a complete inverse transforms and
quantization architecture required in a H.264/AVC decoder. In
this case, the memory overhead will be an important challenge
to be solved. Also, the connection of these modules with the
remaining ones will heavily use routing resources. Finally, it is
really very complex to design parallel H264/AVC entropy
decoder and inter or intra prediction modules with the
necessary throughput required by the parallel transforms. For
these reasons and to reduce the use of hardware resources, we
decided to design an architecture to reach the HDTV
performance requirements processing just one sample per
clock cycle.

4. INTRA PREDICTION ARCHITECTURE
One of the innovations brought by the H.264/AVC is that
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no macroblock (MB) is coded without the associated
prediction including the MBs from I slices. Thus, the
transforms are always applied in a prediction error [3].

The Intra prediction is based in the value of the pixels
above and to the left of a block or MB. For the luma, the Intra
prediction is performed for blocks with 4x4 or 16x16 samples.
The H.264/AVC allows the use of nine modes of prediction
for 4x4 blocks (luma4x4) and four different prediction modes
for 16x16 blocks (lumal6x16). The four modes of prediction
for 8x8 blocks of chroma (chroma8x8) are equivalent to
lumal6x16. The different modes allow the prediction of soft
areas as well as the edges [14].

The inputs of the Intra prediction are the samples
reconstructed before the filter and the type of code of each MB
inside the picture [1]. The outputs are the predicted samples to
be added to the residue of the inverse transform.

The Intra prediction architecture and implementation was
divided in three parts, as can be seen at Figure 3: NSB
(Neighboring Samples Buffer); SED (Syntactic Elements
Decoder); and PSP (Predict Samples Processor).

*)| FILTER

Predicted
Salees
: | :
E%{::;‘;: SED PSP | |
NSB fe
H 1Samples

Figure 3. Block diagram of Intra prediction architecture

NSB module stores the neighboring samples that will be
used to predict the subsequent macroblocks. SED module
decodes the syntactic elements supplied for the control of the
predictor. PSP module uses the information provided by other
parts and processes the predicted samples. This architecture
produces four predicted samples each cycle in a fixed order.
PSP has 4 cycles of latency to process 4 samples.

No similar work compared to this designed architecture
was presented in the literature for the Intra frame prediction,
since it was developed targeting a H.264/AVC decoder for
FPGA prototyping. A previous work of our team [15] was
published and presented the first results of this design.

4.1. NEIGHBORING SAMPLES BUFFER (NSB)
This architecture saves the neighbor samples, before the
filter, that will be used at the future prediction calculation. The
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NSB knows the position of each sample since the decoding
order was previously established. Other than buffering, the
NSB is responsible for making all the neighbors of a prediction
available in a parallel form.

4.2. SYNTACTIC ELEMENTS DECODER (SED)

This part of the Intra predictor architecture receives all the
syntactic elements and decodes data that will be supplied to
control the PSP. These data are:

Prediction Type: it informs the codification type which
can be lumal6x16, luma4x4 or chroma8x8.

Prediction Mode: when the prediction type is lumal6x16
or chroma8x8, the prediction mode is generated directly from
a syntactic element. When the prediction type is luma4x4 each
of the sixteen 4x4 blocks of a MB have their own mode that is
predicted based on the neighbor blocks modes.

Availability of the neighboring sample: it informs if the
neighbor samples are available. This information relies on the
MB position on the frame.

4.3. PREDICT SAMPLES PROCESSOR (PSP)

This part of the architecture uses the information supplied
by the NSB and the SED to calculate the predicted samples.
Four samples per cycle are produced by this module. The
implementation was divided in three parts: calculation of the
modes luma4x4, plane mode calculation, and other lumal6x16
and chroma modes calculation. Each part was implemented as
a separate architecture.

The 4x4 luma prediction macroblocks are subdivided
in sixteen 4x4 blocks, and each of them are predicted
independently. The 4x4 prediction is better than 16x16
prediction once it achieves more accurate results for
heterogeneous regions of an image. This part of the system
needs to perform nine modes of prediction, depending on the
mode received from control and neighbors that are available.
The engine processes 13 neighbors (4 on the left, 8 above and
1 on top-left corner) and sends out 16 sample predictions.

Figure 4 presents an approach that has four processing
element (PE) which can process 4 samples per cycle. All PEs
are identical because every pixel in every mode can be
calculated as presented in (1) (DC mode is the exception):

Pi=(n1+c1xn2+n3+c2)>>c3

1

Depending on the chosen mode, the values of nl, n2, n3,
cl, c2 and ¢3 are switched.

In order to process DC mode, processing elements PEO
and PEI are used jointly. Additional hardware is necessary to
add results, to divide by 2 and to select the DC output
according to the availability of upper and left neighbors.
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Figure 4. Luma4x4 module diagram for the PSP.

Plane mode can be used for lumal6x16 prediction and for
chroma prediction as well. The hardware architecture is
subdivided in two parts. The first is responsible for calculating
constants “a”, “b” and “’c” by using neighboring samples, and
it was implemented as three stage pipeline. The second part
utilizes these constants for calculating the predicted samples.
This implementation also has a rate of four samples per cycle.
It needs just one control signal, which is the position of
samples that are being produced.

There is also a DC mode for lumal6x16 and for chroma
samples. Its output is the mean of all neighboring samples
available. For every pixel in a macroblock the output is the
same value, i.e. the DC value. This implementation consists in
adders and a multiplexer that chooses the correct output
depending on availability of neighboring samples.

5. MOTION COMPENSATION ARCHITECTURE

In order to increase coding efficiency, the H.264/AVC
adopted a number of new technical developments, such as
variable block-size; multiple reference pictures; quarter-sample
accuracy; weighted prediction; bi-prediction and direct
prediction. Most of these new developments rely on the
motion compensation process [2]. Thus, this module is the
most demanding component of the decoder, consuming more
than half of its computation time [16].

Motion compensation operation is, basically, to copy the
predicted MB from the reference frame, adding this predicted
MB to the residual MB. Thus, this operation allows the
reconstruction of the MB in the current frame.

Motion compensation architecture consists of the motion
vector prediction, frame memory access and the sample
processing. Motion vectors for neighboring partitions are often
highly correlated. Then, to its advantage, in H.264/AVC each
motion vector is predicted from neighbor vectors, from
previously coded partitions.
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The decoded frames used as reference are stored in an
external memory. The area for the motion compensation is
read from this external memory. The problem here is that the
area, and sometimes the reference frame, is known just after
the motion vectors prediction, making this process longer.

The sample processing is formed by the quarter-sample
interpolation, weighted prediction and clipping. The bi-
predictive motion compensation is also supported by the
developed architecture.

The proposed architecture was designed in a hierarchical
pipeline formed by: Motion Vector Predictor, Memory Access
and Sample Processing. Figure 5 shows the datapath of the
proposed motion compensation module.

Frame
Memor

Motion £y 1
mpp-| Vector [l £ 5 i Macroblock g,
i ] - Buffer
Predictor s < E hroma Pr :

Figure 5. Motion Compensation (MC) datapath.

5.1. MOTION VECTOR PREDICTOR

The Motion Vector Predictor (MVPr) function restores the
motion vectors and reference frames needed in the
interpolation process. The predictor inputs are differential
motion vectors and reference frames, besides the slice and
macroblock information. For bi-predictive blocks, the direct
prediction mode can be set, using information from spatial or
temporal neighbor blocks.

MVPr architecture was modeled as a set of registers and a
state machine, for a highly sequential algorithm
implementation. Ten sets of registers were used to store the
neighbor blocks information. This predictor calculates list 0 as
well as list 1 (two lists of previously decoded frames which are
used in the prediction process [1,3]) of motion vectors and
reference frames in parallel. Internal memory stores
information of the collocated frame used in direct prediction.
The state machine has 45 states and it supports the vector
prediction for non interlaced videos in main profile.

Motion Vector Predictor has a minimal latency of 20
cycles but it takes, in average, 123.5 cycles to process each
macroblock when a video with an IPBBP frame sequence is
processed.

5.2. MEMORY ACCESS

Due to filter window size, some reference areas are used
many times to reconstruct image blocks, and every time these
areas must come from the memory to the MC interpolator.
The retransmission of this redundant data uses large amount of
memory bandwidth. To reduce the memory bandwidth, a
memory hierarchy was designed.
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After a careful balancing study of miss ratio, hardware
resources used and latency to copy data from memory to
cache, a 32 sets three-dimensional cache memory was
proposed using 16 lines X 40 rows cache sets. The cache
output provides to the sample processing, at the same time, one
line of luma and two lines of chroma samples.

The policy used in substitution mechanism was FIFO. This
policy was chosen because it requires less hardware resources
to be implemented than other policies and this policy presented
good results.

In case of a cache miss, a state machine requests these data
to the external memory. The external memory sends 40 luma
lines and 32 chroma lines to be stored in cache. This process is
controlled by a handshake mechanism. After the first 16 luma
lines had been written in cache, the cache can start a new
reading cycle.

Some techniques to save memory access were adapted
from [17] and used in this design:

Reading only necessary samples: There are cases where
just a part of the interpolation window is used. In these cases,
the rest of the interpolation window does not need to be read
from external memory.

Interleaved Y, Cb, and Cr samples: Interleaving Y, Cb
and Cr samples in the same external memory area reduces the
memory bandwidth, saving extra clock cycles for memory line
swap.

The cache memory combined with the memory bandwidth
saving techniques proposed in [17], reduced the memory
access up to 60% for the tested cases. When one cycle penalty
for changing the memory line is necessary, 75% or more in
access cycles to an external memory are saved.

5.3. SAMPLE PROCESSING

As presented in Figure 5, the luma and chroma samples
processing works in parallel. Some preliminary results of this
architecture were presented in [1,8]. There are one luma and
one chroma datapaths for motion compensation of the blocks.
A 384 position buffer stores the results of one luma and two
chroma macroblocks and synchronizes the MC module to
other decoder components.

Figure 6 shows the architecture of the luma processing
component. The luma has an input buffer, a quarter-pel luma
interpolator, a Weighted Predictor (WP), a 4x4 buffer, an
average to bi-predictive processing, a selector for single/bi-
predictive results and a clipping component. The chroma
processing element has a similar datapath, except by the
interpolator, which is bilinear, and the 2x2 buffer, replacing the
4x4 used in the luma processing. The luma datapath process
4x4 blocks. Chroma datapath process 2x2 blocks. These
formats are the basic construction for every macroblock or
macroblock (sub) partitions.
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Figure 6. Luma sample processing datapath.

The luma interpolator is presented in Figure 7 and it
decomposes the 2-D FIR filter in two 1-D FIR filters (one
vertical and other horizontal). This approach is based on [19].
Four vertical and nine horizontal 6-tap FIR filters (1, -5, 20, -5,
1) generate the half-sample interpolation while four bilinear
interpolators generate the quarter-sample interpolation results.
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Figure 7. Luma interpolator architecture

Luma datapath is four samples wide and each chroma
datapath is two samples wide. This strategy is required to meet
the throughput for HDTV decoding.

To handle bi-predictive prediction slices without
duplicating the interpolators and the WP datapaths, the
architecture process one block from each list serially. Both
reference image areas are loaded in the input buffer. The list 0
reference area is processed and its results are saved in a buffer
(4x4 for luma and 2x2 for chroma samples). When WP
generates the valid interpolated results from list 1, these results
are sent to the average calculation. The list 0 results that are
stored in the buffer are also sent to the average calculation. The
average of these two results is then calculated and this value is
sent to the clipping calculation.
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In the current literature, a motion compensation
architecture with support for bi-prediction is not available.
Some comparisons with other works are possible based on
other prediction modules.

In [19] a H.264/AVC baseline motion compensation is
described. Our work uses the architectural idea of the luma
interpolator presented in [19]. However, adaptations were
made to allow the bi-predictive support and the duplication of
performance. Other works [20, 21] focus specifically on the
interpolation problem and they do not present solutions for bi-
predictive processing.

6. DEBLOCKING FILTER ARCHITECTURE

The Deblocking Filtering process consists of possibly
modifying pixels at the four block edges by an adaptive
filtering process. The filtering process is performed by one of
the five different standardized filters, selected by mean of
boundary strength (BS) calculation. This boundary strength is
obtained from the block type and some pixel arithmetic to
verify if the existing pixel differences along the border are a
natural border or an artifact [3]. Figure 8(a) presents some
definitions employed in the deblocking filter. From this figure,
note that a block has 4x4 pixels samples; the border is the
interface between two neighbor blocks; a line-of-pixel is four
samples (luma or chroma pixel components) from the same
block orthogonal to the border; the current block (Q) is the
block being processed, while the previous block (P) is the
block already processed (left or top neighbor). The filter
operation can modify pixels in both the previous and the
current blocks. The filters employed in the deblocking filter are
one-dimensional. The two dimensional behavior is obtained by
applying the filter on both vertical and horizontal edges of all
4x4 luma or chroma blocks, as illustrated in Figure 8(b).

Previews Block (P)I Current Block (Q)

N

X
Sample (Y, Cb,orCr) f*— Border LOP
(a)
Phase 1 Phase 2 Phase 3 Phase 4
Pla pfa g s
Q
(b)

Figure 8. (a) Filter structures; (b) Edges for a 4x4 samples block
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Deblocking filter input are pixel data and block context
information from previews blocks of the decoder and output
are filtered pixel data according to the standard.

The edge filter is implemented as a 16 stage pipeline
containing both the decision logic and the filters. It operates for
both vertical and horizontal edges of the blocks. Due to a block
reordering in the input buffer, it is possible to connect the Q
output to the P input of the edge filter. The encapsulated filter
contains the edge filter and the additional buffers for that
feedback loop.

Figure 9 shows the block diagram of the proposed
deblocking filter architecture and the next paragraphs present a
quick description of each module from this figure.

Filter
Input

InpLt
Buffer Q

Encapsulated P
Edge Filter

Mux 1

'_| ME Buffer
Line Buffer I

Mued

Filter
Output

Transpose

Mux3

MLx2

Figure 9. Deblocking filter block diagram

Input Buffer: pixel data are fed into the filter through the
input buffer. Data arrives organized in double Z for luma
followed by Cb and Cr blocks and is read in columns for the
deblocking processing. For this reason, an input buffer is
needed and must be filled with at least one complete MB
(luma and chroma) to start the filtering process.

Edge Filter: it is responsible for all filter functionality,
including the thresholds and BS calculation and filtering itself.
A 16 stage pipeline was used due to data dependencies.

Edge Filter Encapsulation: this block encapsulates the
edge filter connecting the Q output to the P input and
implements some additional buffers to data control.

MB Buffer: The MB buffer stores two different types of
blocks. First, the right block column from the left macroblock
for use in the external vertical border filtering process. And the
vertically filtered blocks transposed and reordered for the
horizontal edge filtering. A total of 32 blocks and its decoding
information are stored in the MB Buffer. This buffer was
implemented as a dual-port RAM and therefore it can be read
or written when necessary (dual-port RAMs are available as
building blocks in the target FPGA).

Line Buffer: The line buffer stores the blocks needed to
make the external horizontal border filtering in the next MB
line. In order to perform this task, eight blocks, from the upper
MB, are needed. It is also needed all decoding information
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related to these eight blocks. The necessary memory in the line
buffer depends on the maximum image width required to
filter.

Transpose: In this part of the filter, data from a 4x4 pixel
block are transposed. The transpose was implemented using
two blocks of memory. So, the required data can be read at the
same cycle of the new arriving one.

This 16-stage pipeline architecture perform one luma and
two chroma macroblocks at each 256 clock cycles leading to a
production rate of 1.5 samples per clock cycle, or 1 pixel per
clock cycle (considering the 4:2:0 color relation). No other
implementation was found targeting FPGA, making
comparison from this work to others published somewhat
difficult. Therefore, [22] and [23] presents some ASIC
implementations and comparisons tables. Even for ASIC
implementations, no other 16-stage pipeline was found,
making this implementation completely unique.

7. VALIDATION PROCESS

To validate the architectures that were developed an
exhaustive simulation approach was chosen. This approach
requires a large number of test cases, so that additional
functions were inserted in the H.264/AVC reference software.
Real video sequences were processed by the H.264/AVC
reference software to generate the needed data for each module
validation. This data was then stored in text files with a
predefined format.

The Mentor Graphics ModelSim tool [24] was used to run
the simulations necessary for the validation of all designs.
Testbenchs were described in VHDL to manage the input and
output architecture data. The input stimuli were the data
extracted from the reference software. Its output results were
saved in different text files. The comparison of the proposed
architecture results and reference software results was
performed by specific software developed to validate the
proposed architecture. These steps were repeated exhaustively
for some coded video sequences with the main profile tools on.

The first validation step consists of a behavioral model
simulation of the designed architectures. The second step
repeats the validation process considering a post place-and-
route model of these architectures. To generate the post place-
and-route model the RTL VHDL description was synthesized
to the target FPGA device. The synthesis result is a back
annotated VHDL mapped to the FPGA device structure, with
delays of cells and wires. In this step the Xilinx ISE tool [25]
was used with the ModelSim in order to generate the post
place-and-route information about the architectures. The target
device selected was a Xilinx XC2VP30 Virtex-II Pro FPGA
[26].

To validate the developed models, the post place-and-
route model outputs were compared with the reference data,
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produced by the reference software. After VHDL debugging
process, the comparison did not point any differences between
the models. Then, the architecture was considered validated in
accordance with the H.264/AVC Main Profile standard.

8. DECODER MODULES PROTOTYPING

The prototyping was done using the XUP-V2P
development board [27] designed by Digilent Inc. This board
has a XC2VP30 Virtex-1I Pro FPGA (with two PowerPC 405
processors hardwired) [26], serial port, VGA output and many
other interface resources [27]. It was also fitted with a DDR
SDRAM DIMM module of 512MB.

Xilinxk EDK [28] was used to create the entire
programming platform which is needed for the prototyping
process. Each designed architecture module was connected to
the processor bus and prototyped individually. One of the
PowerPC processors was employed as a controller for the
prototyped module, emulating the other modules of the
decoder. The input stimuli were sent to the prototyping system
through a RS-232 serial port, using a terminal program
running in a host PC. The processor sends the stimuli to the
architectures and the module results are sent back to the host
PC by the processor. The results of the prototyped module are
compared to the reference software results, indicating if the
prototyped architecture was properly running on the target
device. This comparison was made in the host PC after the
module finishes its calculations.

The validation process of the prototype started with a
functional verification. A PowerPC processor system was
synthesized with the module under validation (MUV) and the
MUV stimuli, including the clock signal, were generated by
the processor system and send through the processor system
bus. The outputs from the MUV are sampled directly by the
processor system bus. As the clock for the MUV is generated
by software in this approach, the processor system could be
arbitrarily slow. Figure 10 illustrates this prototyping approach.

This functional verification worked correctly, but the
critical paths of the MUV could not be exercised on the FPGA
using this approach, due to the slow clock applied.

FPGA

Host [
PC |

PowerPC processor system

B

Output

Block Under Functional
Prototype Verification

Input stimuli,
including cloc

Figure 10. Functional prototype validation aproach.

Another prototyping approach will be employed to
validate the MUV at full speed. In this approach the stimuli
will be sent from the processor system at arbitrary speeds and
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accumulated in an input stimulus buffer. This buffer will store
enough stimuli for one burst cycle. When the buffer is full, the
buffered stimuli will be sent to the MUV and, at the same time,
the block output buffer will be filled with the data produced by
the MUV. These bursts of stimuli will be sent to the MUV ata
full clock speed, making the full speed prototype validation
possible.

In some modules (intra prediction, motion compensation
and deblocking filter), a VGA frame buffer was synthesized
and some visual results could be sent directly from the
prototyping board to a video display. Figure 11 presents an
example of a video output from the Motion Compensation

prototype.

The next development step is the integration of the
modules. The latencies of all modules were previously defined
to facilitate the integration process. The three main datapaths
of the decoder, as presented in Figure 1 are (1) motion
compensation, (2) intra prediction and (3) the group formed by
entropy decoder, inverse transforms and inverse quantization.
These main datapaths present the same latency to allow a rapid
synchronization of the decoder. The same approach employed
for prototype verification of individual decoder modules was
employed to verify the integrated modules. Currently, intra
prediction, T', Q" and the deblocking filter modules are
already integrated and motion compensation module is being
integrated.

Figure 11. Motion Compensation prototyping.

9. SYNTHESIS RESULTS

The designed architecture for the H.264/AVC decoder was
synthesized to the XC2VP30 device [26], a Virtex-II Pro
FPGA. The synthesis results are presented in Table 1 and
some previous results of this work were presented in [29]. No
timing restrictions were applied to the modules in the synthesis
tool to generate these results. The throughputs presented in
table 1 are considering the worst case.
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Table 1. H.264/AVC Decoder Synthesis Results

Xilinx XC2vp30fg676-6
H.264/AVC
Modules #of |Frequency|po [ Throughput
LUTs (MHz) (Msamples/s)
]
T la29| 1325 | o 132.5
Intra
Prediction 5,516 40.0 3 160.0
Motion
Compensation 10,835 100.5 21 114.1
Deblocking
Filter 1,600 165.0 9 2475

The post place-and-route synthesis results indicate that the
designed architectures are able to process more than 110
million samples per second and, in the worst case, they are
able to process 36.7 HDTV frames per second, allowing their
use in H264/AVC decoders targeting real time HDTV
applications. Considering a HDTV frame with 1080 x 1920
pixels at 30 fps and considering a downsampling ratio of 4:2:0
[3], then the required throughput is at least 93.3 million
samples per second.

Inverse transforms and quantization synthesis indicated
that this module is able to run at 132.5MHz, reaching a
processing rate of 132.5 million samples per second, once this
architecture was designed to produce one sample per cycle.
This solution is able to process 42.6 HDTV frames per second,
surpassing the requirements for real time in this resolution. The
inverse transforms and quantization architecture uses 3,249
LUTs of the device. This high use of resources is mainly
caused by the buffers (designed as registers) which are used to
synchronize the internal operations.

Intra prediction synthesis indicated a maximum operating
frequency of 40MHz. This is due to the high complexity of the
data flow inside the module. Indeed, it is able to process four
input samples per cycle, so the throughput is 160 million
samples per second, far above the required throughput and
allowing it to process 51.5 HDTV frames per second.

Motion compensation synthesis consumes 8,465 slices,
5,671 registers, 10,835 LUTs, 21 internal memory modules
and 12 multipliers of the target FPGA. The minimum latency
achieved is 233 cycles to process one macroblock, and the
maximum is 590, without cache misses. The maximum
frequency is 100.5 MHz. The architecture proposed is able to
process 36.7 totally bi-predictive HDTV frames per second, in
the worst case. Processing P frames only, this rate increases to
64.3 frames per second, since it does not use bi-prediction.

Deblocking filter architecture was designed around a
pipelined edge filter. The filter requires eight samples for the
processing. So, the filter architecture was designed to be four
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samples wide. Due to data dependencies as well as the fact that
the samples need to go through the edge filter twice (for
vertical and horizontal filtering), the processing rate of the
deblocking filter is 1.5 samples per clock cycle. Achieving a
frequency of 165 MHz, the architecture is able to process up to
247.5 million samples per second, allowing the filter to process
79.6 HDTV frames per second, exceeding the HDTV
requirements.

The initial integration shows no significant performance
degradation when all modules are mapped together, since the
modules were designed with interfaces that match timing and
data format at each block. Furthermore, the target FPGA is
large enough to integrate the modules, leading no place-and-
route bottlenecks.

Almost all the designs related to the H.264/AVC standard
reported in the literature are directed to standard-cells
technology and the work presented in this paper has been
targeted to FPGAs. Thus, comparisons of performance and
resources usage between those solutions and the one described
here are not meaningful.

10. CONCLUSIONS

This paper presented the design, validation, and
prototyping of architectures for a main profile H.264/AVC
decoder. The decoder modules were designed to meet HDTV
(1920x1080 at 30fps) requirements as well as to be easily
integrated with other modules. These architectures were
targeted to FPGAs, employing all types of resources available
in the target device, like memory, multipliers and processors.

This work was focused on FPGA implementation, but the
VHDL code itself was developed as portable as possible. A
FPGA to ASIC migration should be straightforward, although
some architectural modifications would be necessary to
optimize the design to a given ASIC technology.

The synthesis results indicate that the designed
architectures are able to process at least 114 million samples
per second, surpassing the HDTV requirement of 93 million
samples per second at a 4:2:0 color ratio. The designed
architectures reach, in the worst case, the processing of 36.7
HDTYV frames per second, allowing their use in H264/AVC
decoders for HDTV.

To finish the decoder implementation, the parser and the
entropy decoder have to be developed. Currently these
modules are being designed, with some open issues still to be
resolved. Although a simple architecture is used in the entropy
decoder, data dependences at bin (binarized string) level, lead
to a low throughput even at the highest possible frequency in
the target device used (less than that required to HDTV
implementation). With all modules ready, the complete
decoder integration, validation and prototyping will be
finished.
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