
Muta-Pro: Towards the Definition
of a Mutation Testing Process

A. M. R. Vincenzi∗1, A. S. Simão�, M. E. Delamaro† & J. C. Maldonado�

∗Instituto de Informática
Universidade Federal de Goiás

Goiânia, GO, Brazil
auri@inf.ufg.br

�Inst. de Ciências Mat. e de Computação
Universidade de São Paulo
São Carlos, SP, Brazil

{adenilso, jcmaldon}@icmc.usp.br

†Centro Universitário Eurı́pides de Marı́lia
Marı́lia, São Paulo, Brazil
delamaro@fundanet.br

Abstract
Mutation Testing originated from a classical method

for digital circuit testing and today is used at program
and specification levels. It can be used either to generate
or to assess the quality of test sets. In spite of being very
effective in detecting faults, Mutation Testing is usually
considered a high cost criterion due to: i) the large num-
ber of generated mutants; ii) the time-consuming activity
of determining equivalent mutants; and iii) the mutant
execution time. Many initiatives aiming at reducing the
Mutation Testing application cost have been conducted,
most of them addressing one of the drawbacks mentioned
above.
In this paper, we identify and summarize some of the

most relevant researches and results related to Muta-
tion Testing cost reduction, e.g., Constrained-Mutation,
Constraint-Based Testing and Bayesian Learning. Mo-
reover, we propose a Mutation Testing process, named
Muta-Pro, that synergetically integrates the related ap-
proaches and mechanisms. This process is intended to
be incremental and tailorable to a specific application
domain such as C programs or finite state machine

1Auri Marcelo Rizzo Vincenzi
Bloco IMF I, sala 239 - Campus II - Samambaia
Caixa Postal 131, 74001-970
Goiânia, GO, Brazil
Tel: +55 62 521-1181 – Fax: +55 62 521-1182
e-mail: auri@inf.ufg.br

models. The main ideas in this paper are illustrated using
a UNIX utility program.
This process is being integrated in a Mutation Testing

environment, based on the authors’ previous experience
on implementing the Proteum Family tools, aiming at pro-
moting the technology transfer to industry and providing
the basis for improving theMuta-Pro process itself.
Keywords: Mutation Testing, Mutation Testing Pro-

cess, Testing Environment.

1. INTRODUCTION
Testing may be considered an incremental activity that

pervades most, if not all, of the software development
cycle. The success of the testing activity depends on
the quality of a test set. Since the exhaustive test is, in
general, impracticable, criteria that allow selecting a sub-
set of the input domain by preserving the probability of
revealing the existent faults in the program are necessary.
There is a large number of criteria available to evaluate a
test set for a given program against a given specification
(see Zhu et al. [51] for a survey). The idea behind a
testing criteria is to systematize the testing activity, as
well as to provide a coverage measure. Testing criteria
are usually classified in functional [39], structural [41]
or fault-based [13] techniques, according to the source of
information used to extract the testing requirements.

A. M. R. Vincenzi, A. S. Simão, M. E. Delamaro &
J. C. Maldonado

Muta-Pro: Towards the Definition of a Mutation
Testing Process

One important point to be highlighted is that testing
criteria and techniques are complementary and the tester
may use one or more of them to assess the adequacy
of a test set with respect to (w.r.t.) a program and to
eventually enhance the test set by devising additional test
cases needed to satisfy the selected criteria.
Mutation Testing appeared in the 70’s and was stron-

gly influenced by a classical method for digital circuit
testing known as “single fault test model” [18]. It
has been used to test different products, including pro-
grams [13, 11, 5] and specifications [16, 17, 45, 40, 46].
Mutation Testing requires the development of a test

set T that may reveal the presence of a well-specified
set of faults [13]. The faults are modeled by a set of
mutant operators which, when applied to a program P
under test, generate syntactically correct programs, called
mutants, with minor differences w.r.t. P. The quality of T
is measured by its ability to distinguish the behavior of
the mutants from the behavior of the original program. In
spite of its effectiveness [11], Mutation Testing possesses
drawbacks, that makes its practical application difficult,
such as:

• the large number of mutants that are generated;

• the need to inspect many mutants and analyze them
for possible equivalence w.r.t. P; and

• the time consuming activity of executing the mutants
against the test set.

As an attempt to reduce its cost, some approaches de-
rived fromMutation Testing, referred by us as Alternative
Criteria, have been investigated, e.g., Randomly Selected
Mutation [1], Constrained Mutation [29] and Selective
Mutation [35, 32, 4]. These approaches try to determine
a subset of mutants in such a way that, if a test set T
is able to distinguish such mutants, then T would also
distinguish the complete set of mutants. However, the
task of determining equivalent mutants remains.
With respect to the task of determining equivalent

mutants, some initiatives can also be identified. Since it
is not a trivial problem, different techniques have been
developed and investigated in this context, trying either
to automate the determination of equivalent mutants or
to provide guidelines to ease this task, e.g Dependence
Analysis [20], Amorphous Slicing [21], Constraints [14],
Compiler Optimizations Techniques [33, 36, 37], and
Artificial Intelligence Techniques [50].
Considering the quantity of researches related to Mu-

tation Testing, it is important to think of a mutation
testing process that aggregates these techniques aiming
at providing an effective, low-cost and practical way of
applying Mutation Testing. In a previous work, Harman
et al. [20] defined a mutation testing process that used

Dependence Analysis [22] and Constraints [14]. The
former was used to check for equivalent mutants and
the latter was used for both test case generation and
equivalent mutant determination. The idea was to use this
technique to reduce the human effort to carry out these
activities.
In this paper, we aim at combining some of these

researches in order to define a mutation testing process,
named Muta-Pro. Muta-Pro should be flexible in the
sense that it can be instantiated according to the objective,
time and cost constraints of a given product, such as
high-level hardware specifications, formal specifications
or programs. Considering this objective, in Section 2 we
present the background information which is necessary
to understand the Mutation Testing criterion and the four
steps of its application. In Section 3 we present some
related work classifying them according to each Mutation
Testing step. In Section 4 we defineMuta-Pro by pointing
out where each work can be applied. In Section 4.1
we present an example of the Muta-Pro instantiation,
showing some data collected using an UNIX utility pro-
gram. In Section 5 we present the conclusions and future
work related to this research.

2. MUTATION TESTING
In this section, we briefly explain the main concepts

of Mutation Testing which are necessary to understand
this paper. Mutation Testing provides the tester with a
systematic way both to evaluate how “good” a test set
is and to generate test cases. Let S be a specification
and P be a program that supposedly implements S. Let
D be the input domain of P and T ⊂ D be a test set for
P. Basically, the application of Mutation Testing consists
of four steps: Mutant Generation, Program Execution,
Mutant Execution, and Mutant Analysis. These steps are
represented in Figure 1, by use of a Structured Analysis
and Design Technique (SADT) diagram [42].
SADT basic build block is a box whose sides repre-

sents Input, Control, Output and Mechanism, respecti-
vely. Boxes are connected by arrows which go from an
Output of one box to the Input or Control of another box.
As stated by Ross [42], the names Input and Output
are chosen to convey the idea that the box represents a
transformation from a previous to a succeeding state of
affairs. The Control interface interacts and constrains
the transformation to ensure that it applies only under the
appropriate circumstances. Therefore, the combination
of Input, Output and Control fully specifies the bounded
piece of subject, and the interfaces relate it to the other
pieces. Finally, the Mechanism support provides means
for carrying out the complete piece represented by the
box.

50

A. M. R. Vincenzi, A. S. Simão, M. E. Delamaro &
J. C. Maldonado

Muta-Pro: Towards the Definition of a Mutation
Testing Process

Mutant Generation

Program Execution

Mutant Execution

Mutant Analysis

Mutant
Operator

Set

Program
Specification

Set of
Mutants

Set of
Mutants

Test Data
Output

Set of Live
Mutants

Tester

Reports

Test Set

Equivalent
Mutants

Input Output

Control

Mechanism

Legend

Computer

Computer

Tester

Computer

Tester

Computer

Test Set

Source
Program

Source
Program

Test Set

Test Set

Test Set

Figure 1. Steps of Mutation Testing.

Mutant Generation The mutant generation phase is one
of the most important ones, since the mutants are
responsible for either evaluating the quality of a
given test set or generating a test set.

A set of alternative implementations containing sim-
ple syntactic changes is created. The syntactic
changes are modeled by mutant operators which
can be thought of as a fault model that corresponds
to the common faults committed during software
development. In general, the more mutant operators
are used, the more mutants are generated, which
increases the cost of Mutation Testing. Mutant ope-
rators depend on the language in which the artifact
to be tested is described.

Program Execution In this step, P is executed against
the test set T. If there exists t ∈ T such that P (t) �=
S(t) a fault was discovered1, the Mutation Testing
finishes and P should be corrected. If for every t ∈ T,
P (t) = S(t), it is said that P corresponds to S w.r.t.
T. A question in this case is whether P is correct
or T is of low-quality. Observe that in this step,
the existence of an oracle (in general the tester) is
necessary to decide whether P (t) = S(t), for each
t ∈ T.

Mutant Execution If T does not reveal any fault in P, the
quality of T is evaluated in this step. LetM be the set
of mutants generated in first step. For each m ∈ M
and each t ∈ T,m(t) is compared with P (t). If there
is a t ∈ T such that m(t) �= P (t), m is said to be
“killed” by t. On the other hand, whenm(t) = P (t)
for every t ∈ T, m is said to be “alive” and should be
analyzed in the next step.

After this step, the mutation score is calculated. The
mutation score is the ratio of the number of dead

1We use the notation P (t) to represent the output of P when executed
against a given test case t.

mutants to the number of non-equivalent mutants
and provides the tester with a mechanism to assess
the quality of the testing activity. In this way, the
mutation score can be used to evaluate if the testing
objective was reached. In the case that the mutation
score reaches 1.00 (100%), it is said that the T is
adequate w.r.t. Mutation Testing (MT-adequate) to
test P. Since the identification of equivalent mutants
is important to compute the mutation score, usually,
a value of 1.00 is obtained only after the analysis of
the live mutants.

Mutant Analysis A mutant m can stay alive after being
executed with T either because m is equivalent to P
(m ≡ P) and will always behave identically to P,
for all t ∈ D; or because T is not good enough to
show the difference in the behavior of m and P, and
there exists a t′ ∈ (D\T) such that m(t′) �= P(t′).
If the mutant is equivalent, it can be dropped out.
Otherwise the tester could develop new test data
to show the difference in the behavior of the alive
mutant m and P.
As stated by Ghosh and Mathur [19], a tester is
expected to kill each mutant in M with at least one
test case t. In case a mutant cannot be killed, the
tester needs to show that m ≡ P.
There are different ways to compare the behavior of
a program P and a mutant m. Considering strong
mutation – traditional Mutation Testing – P and
m are executed and, at the end of execution, the
outputs are compared to determine whether they
behaves differently. In weak mutation P and m are
comparedwith the values of some variables just after
the mutated statement in m.
Let si be the statement in P that has been mutated to
s′i to obtain m. DeMillo and Offutt [14] defined tree
conditions that a test case t must satisfy in order to
distinguish m from P.

1. Reachability: when executing m with t, the
control must reach s′i;

2. Necessity: the state of m immediately fol-
lowing some execution of s′i must be different
from the state of P immediately following the
corresponding execution of si;

3. Sufficiency: the difference in the state of P and
m immediately following the execution of si

and s′i must propagate to the end of execution
of P or m such that P(t) �= m(t).

In case of weak mutation the two first conditions
(Reachability and Necessity) are enough to kill the
mutant, but strong mutation requires the three condi-
tions.

51

A. M. R. Vincenzi, A. S. Simão, M. E. Delamaro &
J. C. Maldonado

Muta-Pro: Towards the Definition of a Mutation
Testing Process

It must be pointed out that applying the testing cri-
teria without the support of a tool is an error-prone
and unproductive activity. The availability of a testing
tool increases the quality and the productivity of the
test activity and may ease the technology transfer to the
industry, contributing to the continuous evolution of such
environment, indispensable for the production of high
quality software products.
Considering Mutation Testing, the first tool to support

the testing of C programs based on mutation testing at
unit level was Proteum [10]. With the proposition of
the criterion Interface Mutation [11], that uses a set of
mutant operators developed to model integration faults,
the PROTEUM/IM has been developed [9]. Recently,
Proteum and PROTEUM/IM have been integrated in a
testing environment, named PROTEUM/IM 2.0 [12]. In
this way, the tester can use the same concept during
the unit and the integration testing phases. This paper
uses PROTEUM/IM 2.0 to provide support to Muta-Pro.
In the next section we discuss the support provided
by PROTEUM/IM 2.0 according to each step of Mutation
Testing and also other related works which are useful to
reduce the cost of Mutation Testing.

3. PREVIOUS WORK
This section presents some researches related to the

cost reduction of Mutation Testing. We organize the
section according to the main steps of Mutation Testing.
Although there is a lot of researches related to Mutation
Testing, we give special attention to those developed by
our research group during these last years.

3.1. ON MUTANT GENERATION
So far mutation testing has been applied to pro-

grams written in several programming languages, like
Fortran [14], C [2] and Java [27, 5], and to formal spe-
cifications written using Finite State Machines [16], Petri
Nets [17], Statecharts [45], Estelle [40] and SDL [46].
This flexibility derives from the fact that mutation testing
requires only an executable model that transforms inputs
into observable outputs that can be compared against the
results produced by the mutants.
Mutant operators are designed by referring to the

experience of using the target language and of the most
common faults. In the past, mutant operators were
designed based on experts’ knowledge. Recently, Kim
et al. [26] have proposed the use of a technique named
“Hazard and Operability Studies” (HAZOP) to systema-
tically derive mutant operators, illustrated using the Java
language. Although the resulting operators do not signifi-
cantly differ from past works, the proposed methodology
is an important step towards a more rigorous discipline in

the creation of mutant operators. The technique is based
on two main concepts. It first identifies in the grammar of
the target language the points that are subject to mutation
and then, based on suitable “Guide Words”, defines the
set of mutations that can occur in these points.
The mutant operators implementation is a time con-

suming activity in itself. This fact motivated the pro-
position of the languageMuDeL (standing for Mutant
Description Language), aiming not only at automating
the mutant generation, but also at providing precision and
formality to the operator descriptions [43]. To support
MuDeL, an application generator, named mudelgen
(standing for MuDeL Generator), has been developed.
Thesemechanisms have been applied for C and Petri-Nets
and currently been investigated for defining C++ and Java
mutant operators.
The cost and efficacy of Mutation Testing is related

to the cost and efficacy of the defined mutant operator
set. Thus, one way to reduce its cost is to use subsets
of operators or mutants that would lead to the selection
of test sets as effective as the total set of operators and
mutants would [35, 32, 4].
Using a sufficient mutant operators set, it is expected

to achieve a high cost reduction, considering the number
of mutants which are generated, as well as a highmutation
score w.r.t. the total set of operators [35].
Considering the determination of a sufficient mutation

operators set, Barbosa et al. [4] developed a procedure,
named Sufficient, that provides a systematic way to select
a subset of operators for C language at the unit level.
Using two different program suites, Barbosa et al. de-
termined the sufficient mutant operators set. The suffi-
cient set provides a high adequacy degree w.r.t. Mutation
Analysis with a high cost reduction in terms of the number
of mutants. Moreover, given the application cost and the
test requirements that each mutation class determines, the
Sufficient procedure establishes an incremental strategy of
application among the mutant operators of the sufficient
set. The idea is to first apply the mutant operators that
are relevant to certain minimal requirements of testing
(e.g., all statements execution, all control flow coverage).
Next, depending on the criticality of the application and
on the budget and time constraints, the mutant operators
related to other concepts and test requirements may be
applied [4].
Motivated by the development of an incremental tes-

ting strategy for applying mutant operators, Vincenzi
et al. [49] evaluated the 71 mutant operators implemented
in the Proteum [10] and the 33 mutant operators imple-
mented in PROTEUM/IM [12] testing tools. These tools
support the application of Mutation Testing at unit and
integration level for C programs, respectively. Currently
these tools are integrated in a single environment named
PROTEUM/IM 2.0 [12]. At the unit level, Mutation Testing

52

A. M. R. Vincenzi, A. S. Simão, M. E. Delamaro &
J. C. Maldonado

Muta-Pro: Towards the Definition of a Mutation
Testing Process

is also refereed to as Mutation Analysis (MA) [13] and
at the integration level as Interface Mutation (IM) [11].
When no distinction is necessary we will employ the
term Mutation Testing. Vincenzi et al. [49] conducted an
experiment divided in two phases. In the first phase, the
Mutation Analysis and Interface Mutation criteria were
analyzed one at a time. The idea was to minimize the
cost of application of these criteria in case they had to be
separately applied, aiming at establishing an incremental
way to apply them in isolation. In the second phase, the
results from the first phase were combined, considering
that an IM-adequate test set would have to be evolved
from an MA-adequate test set. The best results were
obtained when the sufficient mutant operators sets [4]
were applied first in the strategy, originating the Sufficient
Incremental Unit Testing Strategy (SUS) [49].
Using theSUS, it was possible to obtain an

MA-adequate test set using 20 out of the 71 unit operators
with a cost reduction of 40% w.r.t. Mutation Analysis.
Using only 5 out of 20 operators (the most prevalent
ones), it was possible to obtain test sets that determine
a mutation score of 0.995 w.r.t. Mutation Analysis, with a
cost reduction near to 87%, on average.
Another point observed by Vincenzi et al. [49] is that

to improve a mutation score from 0.995 to 1.000, the
cost reduction (in terms of number of mutants) decreases
more than 45%. In this way, the idea is to prioritize
the application of some mutant operators based on some
aspect that the tester would like to highlight, considering
the time and cost constraints. Using an incremental
strategy, the tester reduces the complexity of executing
and evaluating significative amount of mutants.
The same evaluation was done considering the Inter-

face Mutation mutant operators. Considering the Suffici-
ent Incremental Interface Testing Strategy (SIS), using 18
out of the 33 interface operators, it was possible to obtain
an IM-adequate test set with a cost reduction around 26%.
With only the 6 prevalent ones a mutation score of 0.994
and a cost reduction close to 88% were obtained, on
average [49].
In the development of these strategies, Vincenzi

et al. [49] group the mutant operators prioritizing the ap-
plication of the mutant operators that provide the highest
mutation score w.r.t. the overall set of mutant operators
with the lowest cost, in terms of the number of generated
mutants. Other incremental strategies have also been
developed considering the cost in terms of the number
of equivalent mutants. In this case, the goal is to obtain
a higher mutations score with a lower cost in analyzing
equivalent mutants [24].
Figure 2(a) illustrates which are the controls that can

be applied to the first step to reduce the cost of Mutation
Testing in terms of the number of generated mutants.
PROTEUM/IM 2.0, as Proteum and PROTEUM/IM, uses the

concept of test session. Therefore, a test session is
characterized by a database that is created and managed
by the tools to store the necessary information about the
program under testing, i.e., its mutants and test cases. It
can also be observed that MuDeL can be used in this
phase to provide a new kind of mutant operator which is
specific for a given program or application domain.

Mutant Generation

Mutant
Operator

Set

Set of
Mutants

ProteumIM 2.0

Tester

Test Session Database

Testing Strategies Database

Random, Selective,
Constrained,

Sufficient, SUS, SIS,
...

Mutation
Testing
Strategy

Source
Program

(a) Step 1

Program Execution

Program
Specification

Test Set
(Test Data, Output)

Tester

Test Set

Test Session Database

Source
Program
Source

Program

Test Set

ProteumIM 2.0

Execution Time,
Trace Information

(b) Step 2

Figure 2. Muta-Pro: Improvements on Mutant Generation and Program
Execution.

3.2. ON PROGRAM EXECUTION
During the program execution, if desired,

PROTEUM/IM 2.0 instruments the source program aiming
at collecting control flow information to accelerate the
mutant execution. When a test case t is included in the
test set, the tool stores information about the nodes of the
program graph that were reached by its execution on the
program under testing and also the time spent on each
test case execution.
To register control flow information it is necessary to

instrument the source program such that, when executing
it with each test case, the respective execution path
could be collected and stored. Using the same idea of

53

A. M. R. Vincenzi, A. S. Simão, M. E. Delamaro &
J. C. Maldonado

Muta-Pro: Towards the Definition of a Mutation
Testing Process

MuDeL, Simão et al. [44] have also been developed
an Instrumentation Description Language, named IDeL,
to support this activity. Similarly to mudelgen, Simão
et al. developed idelgen to support IDeL application.
More information about IDeL and idelgen can be
found elsewhere [44].
Figure 2(b) gives a general idea about this step of

Muta-Pro. Given P and T, PROTEUM/IM 2.0 executes
each test data with the original program, grabs and stores
the test data output, the time of execution and the trace
information. An oracle, generally the tester, should
decide whether P (t) = S(t), t ∈ T. If exists t ∈ T such
that P (t) �= S(t), the process finishes and P should be
corrected because a fault was discovered.

3.3. ON MUTANT EXECUTION
The execution of mutants is one of the bottlenecks

for mutation testing, and some approaches can be used
to speed up this step. Considering PROTEUM/IM 2.0 [12],
three approaches were developed:

1. compilation (creation of executable mutants) instead
of interpretation;

2. time reduction to create the mutant sources; and

3. storage of control-flow information to accelerate the
mutant execution.

The compilation approach contributes to improve the
execution of mutants but, on the other hand, introduces
a delay in building mutant sources and executables. To
reduce this delay, PROTEUM/IM 2.0 builds source files
that hold several mutants at once. This approach has
been addressed by many authors [25, 48]. The process
of construction/compilation is not carried out for each
mutant. Instead, it is done once for a “large” number of
mutants (currently 100 at most).

PROTEUM/IM 2.0 also uses control flow information
to accelerate the mutant execution. When a test case
t is included in the test set, the tool stores information
about the nodes of the program graph that were reached
by its execution on the program under testing, i.e. the
tool checks the reachability condition of t related to a
specific mutant m. Before trying to kill m using the test
case t, PROTEUM/IM 2.0 checks if t really can killm, i.e.,
it checks whether the node(s) in which the mutation was
done in the original program is reached by t. In general a
large number of executions is avoided and the execution
process is significantly improved [12].
Figure 3 presents the idea of this step ofMuta-Pro. At

first, the set of mutants, the set of test data, and the output
and execution time of each test case are recovered from
the Test Session Database (TSD). PROTEUM/IM 2.0 is res-
ponsible for deciding which mutants should be executed

with each test data based on control flow information, and
then for joining and compiling them. When the execution
time of a givenmutant is a certain number of times greater
than the execution previously recorded for the current test
data, the tool automatically kills this mutant assuming that
it is in infinite looping. At the end, the sets of live and
dead mutants are produced and stored into TSD. Observe
that this kind of information is also useful for developing
new testing strategies, trying to avoid the generation of
mutants that die easily [24].

Mutant Execution

Set of
Mutants

Test Data
Output

Set of Live
and Dead
Mutants

Reports

Test Set

Test Session Database

Testing Strategies Database

Random, Selective,
Constrained,

Sufficient, SUS, SIS,
...

ProteumIM 2.0

Figure 3. Muta-Pro: Improvements on Mutant Execution - Step 3.

3.4. ON MUTANT ANALYSIS
During the mutant analysis, two tasks should be ac-

complished: the determination of equivalent mutants and
the generation of new test cases to kill a given mutant.
Unfortunately, both tasks are difficult to be automated. In
general, it is undecidable whether there exists an input
data that causes for a given path in a program to be
traversed. Moreover, this limitation impacts the automatic
generation of test cases. It is also undecidable whether
two programs (P and P′) compute the same function (are
equivalent), i.e., P(t) = P′(t), ∀t ∈ D.

Detecting Equivalent Mutants Several approaches
have considered the problems of equivalent mutant
determination, using both constraint-based techni-
ques and compiler optimizations [14, 34, 36, 37].
The idea explored by Offutt and Craft [33] was to
implement a set of compiler-optimization heuristics
and evaluate them. The approach consists of looking
at the mutants which, compared to the original
program, implement traditional peep-hole compiler
optimizations [3]. Compiler optimizations are
designed to create faster but equivalent programs, so
a mutant which implements a compiler optimization
is, by definition, an equivalent mutant. The set of

54

A. M. R. Vincenzi, A. S. Simão, M. E. Delamaro &
J. C. Maldonado

Muta-Pro: Towards the Definition of a Mutation
Testing Process

implemented heuristics was able to detect about
10% of the equivalent mutants.
Another study developed by Harman et al. [20] ex-
plores the relationship between program dependence
and mutation testing. The idea was to combine
dependence analysis tools with existing mutation
testing tools, supporting the test data generation and
the determination of equivalentmutants. The authors
also proposed a new mutation testing process which
starts and ends with dependence analysis phases. In
the first phase of the process the mutants are created
using an independent approach. Next, the process
tries to applies dependence analysis [22] and uses the
constraint-based approach [14] for both generating
test cases to kill some mutants and determining
others to be equivalent. The mutants that are alive
after these steps – called stubborn mutants – are
those that are not determined to be equivalent by
neither dependence analysis nor by constraint-based
analysis.
Harman et al. suggest that the stubborn mutantswill
ultimately have to be considered by a human, but
before the human analysis occurs, two more phases
take place:

1. amorphous slicing – that produces a simplified
program tailored to the question whether or not
the mutant is equivalent [21]; and

2. domain reduction – obtained by using depen-
dence analysis [22].

Vincenzi et al. [50] developed an approach, na-
med Bayesian Learning-Based Equivalent Detection
Technique (BaLBEDeT), that uses Bayesian Lear-
ning [31] to estimate which is the most promising
group of mutants that should be analyzed, conside-
ring a certain number of test cases. Each mutant
operator has specific characteristics, i.e., one mutant
operator may generate more equivalent mutants than
another one. Based on these characteristics and on
historical information previously collected [4, 49],
the Brute-Force algorithm [31] (based on Bayesian
Learning) is used to guide the analysis of the live
mutants, aiming at reducing the effort to determine
the equivalent ones. The idea is to provide guidelines
to ease the analysis of the live mutants.
Given the number of test cases which were executed,
the technique indicates, for each mutant operator
op, the probability of the live mutants of op to be
equivalent or non-equivalent. Considering Lop the
number of live mutants generated by op, Eop is the
probability of Lop to be equivalent, and NEop is the
probability of Lop to be non-equivalent. If Lop is

approximately equal Eop (Lop ≈ Eop), the mutants
of op should be dismissed because most of them
are equivalent. On the other hand, if Lop ≈ NEop

the mutants op should be analyzed because there
is a high probability that the live mutants will be
killed. Based on this information the tester can
decide which mutants should be analyzed first.

Table 1 illustrates the kind of information provided
by BaLBEDeT, considering the set of mutant ope-
rators for C language. For example, considering a
test set with 20 elements, the probability of u-Cccr’s
live mutants to be equivalent (P (⊕|u-Cccr)) is 0,40
against 0,60 to be non-equivalent (P (|u-Cccr)).
For a test set with 100 elements, these probabilities
are 0,75 and 0,25, respectively.

Table 1. BaLBEDeT’s Probabilities: (a) 20 test cases, (b) 100 test cases
(a) (b)

Operator P (�|op) P (⊕|op) P (�|op) P (⊕|op)
u-Cccr 0,60 0,40 0,25 0,75
u-Ccsr 0,98 0,02 0,93 0,07
· · · · · · · · · · · · · · ·

u-OLBN 0,28 0,72 0,11 0,89
u-ORRN 0,58 0,42 0,32 0,68

· · · · · · · · · · · · · · ·
u-SCRB 0,00 1,00 0,00 1,00
u-SSDL 0,70 0,30 0,34 0,66
· · · · · · · · · · · · · · ·

u-VDTR 0,14 0,86 0,04 0,96
u-VTWD 0,73 0,27 0,41 0,59

Test Case Generation The task of automatically gene-
rating test cases can be divided into three classes:
random, static and dynamic.

Random test data generation (e.g. [15]) is easy to au-
tomate, but may create many test data andmay fail to
find test data to satisfy a given requirement because
information about the test requirement is, in general,
not incorporated into the generation process.

Static generation does not require the program exe-
cution. One static technique is symbolic execution.
It works by traversing a control flow graph of the
program and building up symbolic representations of
the internal variables in terms of the input variables,
for the desired path [8, 14]. Branches within the code
introduce constraints on the variables. Solutions to
these constraints represent the desired test data. A
number of problems exist with this approach. By
using symbolic execution it is difficult to analyze
recursion, array indexes which depend on input data
and some loop structures. Also, the problem of
solving arbitrary constraints is known to be undeci-
dable [47].

Dynamic test data generation involves the execu-
tion of the program and a directed search for test

55

A. M. R. Vincenzi, A. S. Simão, M. E. Delamaro &
J. C. Maldonado

Muta-Pro: Towards the Definition of a Mutation
Testing Process

data that meets the desired criterion. The work of
Korel [28] uses locally directed search techniques,
but these techniques only work effectively for linear
continuous functions and are likely to become stuck
at a local optimum and fail to locate the required
global optimum [23]. The use of global optimization
techniques for dynamic test data generation has been
investigatedmore recently in an attempt to overcome
this limitation [23, 7, 6].

Considering Mutation Testing, DeMillo and Of-
futt [14], using the concept of constraint, developed
an automatic way to generate test cases. The idea
was that, by solving a set of constraint, it is possible
to generate a test case that kills a given mutant. Even
not being satisfied, the set of constraint is also useful
to determine equivalent mutants. Empirical studies
showed that the approach could achieve a detection
rate of equivalent mutants around 50% [36, 37].
The use of artificial Genetic Algorithms (GAs) and
other artificial intelligence search techniques have
also been explored as one alternative to test case
generation. There has been a significant amount of
research in this area, mainly related to control and
data-flow based criteria [30, 23, 38, 47, 7].

The crucial choice to be made when using GAs
is the definition of the fitness function, responsible
for classifying the best individuals (test cases). For
example, considering the problem of test cases ge-
neration to kill a given mutant, the fitness function
should consider the reachability, necessity and suffi-
ciency conditions [14]. Based on these three conditi-
ons, Bottaci [6] developed a genetic algorithm fitness
function for Mutation Testing to automatically and
effectively generate test cases to kill a given mutant.
As stated by Bottaci, the empirical investigation of
the proposed fitness function was not carried out and
should be done. Anyway, research in this area w.r.t.
Mutation Testing is in an early stage and we are also
working on this direction.

Figure 4 depicts the general idea of how to im-
prove the Mutation Analysis step. As can be observed,
from a given set of live mutants, the tester can use
some guidelines or heuristics to ease the identification of
equivalent/non-equivalent mutants, based on previously
data stored on a Knowledge Database. After determining
the equivalent ones, the tester should generate a testing
report to evaluate the quality of T. If the coverage is not
the desired one, more test data should be generated to kill
the live non-equivalentmutants and, with the new test set,
return to Step 2 (Program Execution).
Observe that, each time equivalent mutants are de-

termined for a new program under testing, both Testing

Strategies Database and Knowledge Database are upda-
ted. The idea is to continuously update these databases
to improve the incremental testing strategies and also to
ease, as soon as possible, the analysis of live mutants.

Mutant Analysis

Set of Live
Mutants

Tester

Reports

Test Set

Equivalent
Mutants

ProteumIM 2.0

Test Session Database

Testing Strategies Database

Random, Selective,
Constrained,

Sufficient, SUS, SIS,
...

Knowledge Database

BaLBEDeT,
Heuristics,

Dependence
Analysis...

Guidelines

Figure 4. Muta-Pro: Improvements on Mutant Analysis - Step 4.

4. MUTATION TESTING PROCESS
Motivated by Harman et al. [20], described in Sec-

tion 3.4, a mutation testing process (Muta-Pro) is presen-
ted below that intends not only to use dependence analysis
and constraint-based approaches to ease the application
of Mutation Testing, but also that aggregates our previ-
ous experience in the development of mutation testing
strategies, tools and guidelines to analyze live mutants.
Observe that, although Muta-Pro is defined based on
previous works carried out at program level, the ideas
presented herein can easily be extended to other contexts
where mutation testing is also applied.
The steps of application of Mutation Testing are

described as a flow chart illustrated in Figure 5.

4.1. MUTA-PRO INSTANTIATION
Let P be the program under testing, OP be the total

set of mutant operators, and SQ be the sequence of
mutant operators to be applied incrementally (SQ =
〈op1, op2, . . . , opn〉 such that opi ∈ OP for 1 ≤ i ≤
n). Using the Comm UNIX utility program, we present
how the Muta-Pro can be instantiated and the results
obtained by applying it. Again, the process is illustrated
considering the steps of Mutation Testing application.
Comm, which has 119 LOC (Lines Of Code), compa-

res two sorted files line by line, producing a three-column
output: column one contains lines unique to the first file,
column two contains lines unique to the second file, and
column three contains the lines common to both files.

56

A. M. R. Vincenzi, A. S. Simão, M. E. Delamaro &
J. C. Maldonado

Muta-Pro: Towards the Definition of a Mutation
Testing Process

1 - Mutant Generation
for op i

2 - Program P
Execution

3 - Mutants Execution

4 - Live Mutants
Analysis

Presense of Fault
Detected?Yes

No

Correction of P

Testing Objective
for op i Reached?

Calculation of Mutation
Score

Yes

No
Equivalent Mutant

Detected?

Yes

Addition of Test Cases
(T U opi-1 , i = 2..| OP |)

No

There are more
operators?

No

Yes

End

Control Flow
Information

Frequence of
Execution

Heuristic
Information

(BaLBEDeT)

Figure 5. Mutation Testing Process – Muta-Pro.

Mutant Generation
Mutant generation should be an incremental activity,

trying to reduce the complexity of Mutation Testing.
Considering the set of all unit mutant operators
implemented in the PROTEUM/IM 2.0 testing tool,
we instantiate the sequence of application of mutant
operators as the one defined by the Sufficient Incremental
Unit Testing Strategy– SUS [49], i.e. SQ = 〈u-SMTC,
u-SSDL, u-OEBA, u-ORRN, u-VTWD, u-VDTR,
u-OBSN, u-OASN, u-OLRN, u-SWDD, u-VLAR,
u-VGAR, u-Oido, u-SSWM, u-OEAA, u-ORBN,
u-SRSR, u-STRI, u-VLSR, u-VGSR, u-OABN, u-Cccr〉.
In this way, considering the source program Comm,
PROTEUM/IM 2.0 generates and stores the set of mutants
for each one of the SUS’s mutant operators. Figure 6
illustrates the cost of each SUS’s mutant operator in
terms of the number of generated mutants.

Figure 6. Cost of each SUS’s mutant operator.

Figure 7 illustrates the cost of SUS w.r.t. OP (the total
set of mutant operators). Considering OP, 1,632 mutants
are generated for Comm program. SUS Essential (first six
operators of SQ) is responsible by generating 23% of the

mutants, SUS Non-Essential (other operators of SQ) by
49% and the other mutants operators (the ones not used
by SUS) by 28%.

Figure 7. Cost of each SUS w.r.t. Mutation Analysis.

Program Execution
In this step, PROTEUM/IM 2.0 registers the execution

path of each test case t ∈ T when executing it against
P. Therefore, this information can be used to reduce the
time spent during the mutants execution. In order to
collect this information, PROTEUM/IM 2.0 requires that P
be instrumented. Considering the Comm program (119
LOC), the instrumentation takes around 230 milliseconds
which can be considered very low compared to the gain
that is obtained during the mutant execution which is
shown in the following section.

Mutants Execution
In this step, some approaches are used to accelerate as

much as possible the time expended during the mutant
execution. In the case of PROTEUM/IM 2.0 the use of
compilative approach, the creation of multiple mutants
in a single source code and the use of control-flow
information to avoid the execution with some test cases
are some of these approaches.
Figure 8 illustrates the difference in the execution time

of the mutants considering an instrumented code (that
enables the collection of control-flow information) and
a non-instrumented one. Observe that the instrumented
code provides a faster mechanism to speed up the mutant
execution time and the more mutants are generated, the
greater the time difference is.
Another important information derived from the

control-flow information is related to the frequency of
execution of each mutant. Since PROTEUM/IM 2.0 regis-
ters whether a test case executes or not a given mutated
object, for each mutant there is information about how
many test cases in the test set touch the mutated part,

57

A. M. R. Vincenzi, A. S. Simão, M. E. Delamaro &
J. C. Maldonado

Muta-Pro: Towards the Definition of a Mutation
Testing Process

Figure 8. Mutant Execution Time: Instrumented versus
Non-Instrumented Code.

i.e. satisfied the reachability condition. The frequency of
execution combined with some probabilistic information
about each mutant operator can be used to automatically
determine equivalent mutants.

Mutants Analysis
After the execution of the mutants, the ones that

survive should be analyzed either to improve the test
set or to determine the equivalent ones. In this step,
BaLBEDeT and the frequency of execution can be used
to provide an automatic way to determine equivalent
mutants. Therefore, considering the set of live mutants
(LMi), the current test set (Ti−1) and the current mutant
operator opi, BaLBEDeT takes the cardinality of Ti−1

and provides the probability of opi’s live mutants to be
equivalent (P (⊕|opi)). The set of opi’s live mutants is
classified according to the frequency of execution and the
most prevalent ones are marked as equivalent until the
probability P (⊕|opi) be reached. Figure 9 shows the
real number of equivalent mutants for each SUS mutant
operator and the estimated one.

Figure 9. Determination of Equivalents Mutants: BaLBEDeT and
frequency of execution.

As can be observed, BaLBEDeT overestimates the
number of equivalent mutants for six mutant operators
and underestimates one. We consider a reasonable result
since BaLBEDeT provided the probabilistic information
based on previous data w.r.t. equivalent mutants, so a
more accurate result will be obtained as more information
about equivalent mutants is collected in other programs.

After eliminating the equivalent mutants, the live ones
are expected to be killed by one or more test cases. In this
version ofMuta-Pro, this activity was performed by hand,
i.e. the tester has to analyze the live mutants and generate
one or more test cases to kill them.
To compare the performance of the SUS mutant ope-

rators with the Mutation Analysis criterion, at each step
of the Muta-Pro algorithm, we evaluate the adequacy of
Ti against OP and the associated cost. Figure 10 shows
the obtained data.

Figure 10. SUS versus Mutation Analysis: Mutation Score and Cost.

Observe that from a previous functional test set T0,
applying the second mutant operator (u-SSDL), a muta-
tion score above 0.99 w.r.t. Mutation Analysis is obtained
with a cost around 93%, since u-SMTC and u-SSDL are
responsible for generating less then 7% of the total of
mutants. We can also observe that for u-VDTR mutant
operator to obtain a little increment in the mutation
score it is necessary to execute and evaluate a greater
number of mutants which motivates the improvement and
the development of more accurate techniques for both
the generation of test cases and the determination of
equivalent mutants.

5. CONCLUSIONS
In this paper, we proposed a mutation testing process,

Muta-Pro, that integrates research under development
in our research group with others from the literature.
Muta-Pro provides an approach to apply mutation testing
incrementally, considering the time and cost constraints.
We are working on integrating Muta-Pro into

PROTEUM/IM 2.0 testing environment. This integration
will allow us to conduct empirical studies evaluating the
mutation testing process and the relationship between
Mutation Testing and other criteria. The main objective
which has been pursued is the definition of an integrated
testing environment that enable us to apply mutation
based testing criteria in a low-cost and effective way, such
that they can be used by the industry in the improvement
of their products.

58

A. M. R. Vincenzi, A. S. Simão, M. E. Delamaro &
J. C. Maldonado

Muta-Pro: Towards the Definition of a Mutation
Testing Process

Another research interest is to use Genetic Algorithms
to try to improve some parts of theMuta-Pro, mainly w.r.t.
the automatic determination of equivalent mutants and to
generate test cases to kill a mutant. The most important
work in this sense is the definition of a fitness function
that satisfies the three conditions required to kill a mutant:
reachability, necessity and sufficient conditions. There
are different approaches that can be used to associate a
given cost with each one of these conditions and we are
currently investigating such approaches.

6. ACKNOWLEDGMENTS
The authors would like to thank the Brazilian Funding

Agencies – CNPq, FAPESP, CAPES and FUNAPE – and
the Telcordia Technologies (USA) for their partial support
to this research.

References
[1] A. T. Acree. On Mutation. PhD thesis, Georgia Institute

of Technology, Atlanta, GA, 1980.

[2] H. Agrawal, R. A. DeMillo, R. Hathaway, W. Hsu,
W. Hsu, E. W. Krauser, R. J. Martin, A. P. Mathur, and
E. H. Spafford. Design of mutant operators for the C
programming language. Technical Report SERC-TR41-P,
Software Engineering Research Center, Purdue University,
West Lafayette, IN, Mar. 1989.

[3] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques and Tools. Addison Wesley, 1996.

[4] E. F. Barbosa, J. C. Maldonado, and A. M. R. Vincenzi.
Towards the determination of sufficient mutant operators
for C. STVR – Software Testing, Verification and Reliabi-
lity, 11(2):113–136, June 2001.

[5] J. M. Bieman, S. Ghosh, and R. T. Alexander. A technique
for mutation of Java objects. In 16th IEEE International
Conference on Automated Software Engineering, pages
23–26, San Diego, CA, Nov. 2001.

[6] L. Bottaci. A genetic algorithm fitness function for
mutation testing. In SEMINAL’2001 – First International
Workshop on Software Engineering using Metaheuristic
INnovative ALgorithms, Toronto, Ontario, Canada, May
2001.

[7] P. M. S. Bueno and M. Jino. Automated test data
generaton for program paths using genetic algorithms. In
13th International Conference on Software Engineering &
Knowledge Engineering – SEKE’2001, pages 2–9, Buenos
Aires, Argentina, June 2001.

[8] L. A. Clarke. A system to generate test data and symbo-
lically execute programs. IEEE Transactions on Software
Engineering, 2(3):215–222, Sept. 1976.

[9] M. Delamaro and J. Maldonado. Interface mutation:
Assessing testing quality at interprocedural level. In 19th
International Conference of the Chilean Computer Science
Society (SCCC’99), pages 78–86, Talca – Chile, Nov.
1999.

[10] M. E. Delamaro and J. C. Maldonado. Proteum – a
tool for the assessment of test adequacy for C programs.
In Conference on Performability in Computing Systems
(PCS’96), pages 79–95, East Brunswick, NJ, July 1996.

[11] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur. Inter-
face mutation: An approach for integration testing. IEEE
Transactions on Software Engineering, 27(3):228–247,
Mar. 2001.

[12] M. E. Delamaro, J. C. Maldonado, and A. M. R. Vincenzi.
Proteum/IM 2.0: An integrated mutation testing environ-
ment. In Mutation 2000 Symposium, pages 91–101, San
Jose, CA, Oct. 2000. Kluwer Academic Publishers.

[13] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints
on test data selection: Help for the practicing programmer.
IEEE Computer, 11(4):34–43, Apr. 1978.

[14] R. A. DeMillo and A. J. Offutt. Constraint based automatic
test data generation. IEEE Transactions on Software
Engineering, 17(9):900–910, Sept. 1991.

[15] J. W. Duran and S. C. Ntafos. An evaluation of random
testing. IEEE Transactions on Software Engineering,
10(4), July 1984.

[16] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, and
M. E. Delamaro. Mutation analysis testing for finite state
machines. In 5th International Symposium on Software
Reliability Engineering (ISSRE’94), pages 220–229, Mon-
terey – CA, Nov. 1994. IEEE Computer Society Press.

[17] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, and
M. E. Delamaro. Mutation analysis applied to validate
specifications based on petri nets. In FORTE’95 – 8th
IFIP Conference on Formal Descriptions Techniques for
Distribute Systems and Communication Protocols, pages
329–337, Montreal, Canada, Oct. 1995. Kluwer Academic
Publishers.

[18] A. D. Friedman. Logical Design of Digital Systems.
Computer Science Press, 1975.

[19] S. Ghosh and A. P. Mathur. Interface mutation.
STVR – Software Testing, Verification and Reliability,
11(4):227–247, Dec. 2001. (Special Issue: Mutation 2000
- A Symposium on Mutation Testing. Issue Edited by W.
Eric Wong).

[20] M. Harman, R. Hierons, and S. Danicic. The relationship
between program dependence and mutation analysis. In
Mutation 2000 Symposium, pages 5–12, San Jose, CA,
Oct. 2000. Kluwer Academic Publishers.

[21] R. M. Hierons, M. Harman, and S. Danicic. Using
program slicing to assist in the detection of equivalent
mutants. STVR – Software Testing, Verification and
Reliability, 9(4):233–262, 1999.

59

A. M. R. Vincenzi, A. S. Simão, M. E. Delamaro &
J. C. Maldonado

Muta-Pro: Towards the Definition of a Mutation
Testing Process

[22] D. Jackson and E. J. Rollins. Chopping: A generalization
of slicing. Technical Report CMU-CS-94-169, School of
Computer Science – Carnegie Mellon University, Pitts-
burgh, PA, July 1994.

[23] B. F. Jones, D. E. Eyres, and H. H. Sthamer. A stra-
tegy for using genetic algorithms to automate branch and
fault-based testing. The Computer Journal, 41(2):98–107,
1998.

[24] R. F. Jorge, A. M. R. Vincenzi, M. E. Delamaro, and J. C.
Maldonado. Teste de mutaço: Estratégias baseadas em
equivalência de mutantes para reduço do custo de aplicaço.
In CLEI’2001 – XXVII Latin-American Conference on
Informatics, Mérida – Venezuela, May 2001. (available
in CD-ROM: article number – a202.pdf).

[25] M. Kim. Design of a mutation testing tool for C. De-
partment of Computer Sciences, Purdue University, Apr.
1992.

[26] S. Kim, J. A. Clark, and J. A. Mcdermid. The rigorous
generation of Java mutation operators using HAZOP. In
12th International Conference on Software & Systems
Engineering and their Applications (ICSSEA’99), Dec.
1999.

[27] S. Kim, J. A. Clark, and J. A. Mcdermid. Class muta-
tion: Mutation testing for object-oriented programs. In
Object-Oriented Software Systems – OOSS, 2000. Dis-
ponvel em: http://www.cs.york.ac.uk/˜jac/.
Acesso em: 01/03/2004.

[28] B. Korel. Automated software test data generation. IEEE
Transactions on Software Engineering, 16(8):870–879,
Aug. 1990.

[29] A. P. Mathur. Performance, effectiveness and reliability
issues in software testing. In 15th Annual International
Computer Software and Applications Conference, pages
604–605, Tokio, Japan, Sept. 1991. IEEE Computer So-
ciety Press.

[30] C. Michael and G. McGraw. Opportunism and diversity in
automated software test data generation. Technical Report
RSTR-003-97-13, RST Corporation, Sterling, VA, Dec.
1997.

[31] T. Mitchell. Machine Learning. McGraw-Hill, New York,
NY, 1997.

[32] E. Mresa and L. Bottaci. Efficiency of mutation operators
and selective mutation strategies: an empirical study. The
Journal of Software Testing, Verification and Reliability,
9(4):205–232, Dec. 1999.

[33] A. J. Offutt and W. M. Craft. Using compiler optimization
techniques to detect equivalent mutants. STVR – Software
Testing, Verification and Reliability, 4:131–154, 1994.

[34] A. J. Offutt, Z. Jin, and J. Pan. The dynamic domain
reduction approach to test data generation. Software
Practice and Experience, 29(2):167–193, Jan. 1999.

[35] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and
C. Zapf. An experimental determination of sufficient
mutant operators. ACM Transactions on Software Engi-
neering Methodology, 5(2):99–118, Apr. 1996.

[36] A. J. Offutt and J. Pan. Detecting equivalent mutants
and the feasible path problem. In COMPASS’96– In An-
nual Conference on Computer Assurance, pages 224–236,
Gaithersburg, MD, June 1996. IEEE Computer Society
Press.

[37] A. J. Offutt and J. Pan. Automatically detecting equivalent
mutants and infeasible paths. STVR – Software Testing,
Verification and Reliability, 7(3):165–192, Sept. 1997.

[38] R. P. Pargas, M. J. Harrold, and R. Peck. Test-data
generation using genetic algorithms. STVR – Software
Testing, Verification and Reliability, 9(4):263–282, 1999.

[39] R. S. Pressman. Software Engineering – A Practitioner’s
Approach. McGraw-Hill, 5 edition, 2001.

[40] R. L. Probert and F. Guo. Mutation testing of protocols:
Principles and preliminary experimental results. In IFIP
TC6 – Third International Workshop on Protocol Test
Systems, pages 57–76. North-Holland, 1991.

[41] S. Rapps and E. J. Weyuker. Selecting software test
data using data flow information. IEEE Transactions on
Software Engineering, 11(4):367–375, Apr. 1985.

[42] D. T. Ross. Structured analysis (sa): A language for
communicating ideas. IEEE Transactions on Software
Engineering, 3(1):16–34, Jan. 1977.

[43] A. S. Simo and J. C. Maldonado. MuDeL: A language
and a system for describing and generating mutants. In
XV SBES – Simpsio Brasileiro de Engenharia de Software,
pages 240–255, Rio de Janeiro, Brasil, Oct. 2001.

[44] A. S. Simo, A. M. R. Vincenzi, J. C. Maldonado, and
A. C. L. Santana. Software product instrumentation
description. Technical Report 157, Instituto de Cincias
Matemáticas e de Computaço – ICMC-USP, Mar. 2002.

[45] T. Sugeta. Proteum-rs/st : Uma ferramenta para apoiar a
validaço de especificações statecharts baseada na análise
de mutantes. Master’s thesis, ICMC-USP, So Carlos, SP,
Nov. 1999.

[46] T. Sugeta, J. C. Maldonado, and W. E. Wong. Mutation
testing applied to validate SDL specifications. In 16th IFIP
International Conference on Testing of Communicating
Systems – TestCom2004, pages 193–208, Oxford, United
Kingdom, Mar. 2004. Springer.

[47] N. Tracey, J. Clark, K. Mander, and J. McDermid. Auto-
mated test-data generation for exception conditions. Soft-
ware Practice and Experience, 30:61–79, 2000.

[48] R. Untch, M. J. Harrold, and J. Offutt. Mutation analysis
using mutant schemata. In International Symposium on
Software Testing and Analysis, pages 139–148, Cam-
bridge, Massachusetts, June 1993.

[49] A. M. R. Vincenzi, J. C. Maldonado, E. F. Barbosa, and
M. E. Delamaro. Unit and integration testing strategies for
C programs using mutation-based criteria. STVR – Soft-
ware Testing, Verification and Reliability, 11(4):249–268,
Dec. 2001.

60

A. M. R. Vincenzi, A. S. Simão, M. E. Delamaro &
J. C. Maldonado

Muta-Pro: Towards the Definition of a Mutation
Testing Process

[50] A. M. R. Vincenzi, E. Y. Nakagawa, J. C. Maldonado,
M. E. Delamaro, and R. A. F. Romero. Bayesian-learning
based guidelines to determine equivalent mutants. Inter-
national Journal of Software Engineering and Knowledge
Engineering – IJSEKE, 12(6):675–689, Dec. 2002.

[51] H. Zhu, P. Hall, and J. May. Software unit test coverage
and adequacy. ACM Computing Surveys, 29(4):366–427,
Dec. 1997.

61

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

